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ABSTRACT

In this paper we consider some recent relative versions of Menger prop-
erty called set strongly star Menger and set star Menger properties
and the corresponding Hurewicz-type properties. In particular, using
[2], we “easily” prove that the set strong star Menger and set strong
star Hurewicz properties are between countable compactness and the
property of having countable extent. Also we show that the extent of
a regular set star Menger or a set star Hurewicz space cannot exceed c.
Moreover, we construct (1) a consistent example of a set star Menger
(set star Hurewicz) space which is not set strongly star Menger (set
strongly star Hurewicz) and show that (2) the product of a set star
Menger (set star Hurewicz) space with a compact space need not be
set star Menger (set star Hurewicz). In particular, (1) and (2) answer
some questions posed by Kocinac, Konca and Singh in [17] and [23].
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1. INTRODUCTION

Let U be a cover of a space X and A be a subsct of X; the star of A with
respect to U is the set st(A,U) = | J{U : U € Y and U N A # @}. The star of
a onc-point set {x} with respect to a cover U is denoted by st(z,U).

Recall that a space X is star compact, briefly SC (strongly star compact,
briefly SSC) if for every open cover U of the space X, there exists a finite
subfamily V of U (resp., a finite subscet I of X) such that st(JV,U) = X
(resp., st(F\U) = X) (sce [12] where another terminology is used, and [7]);
X is star Lindelof, briefly SL (strongly star Lindeléf, briefly SSL) if for every
open cover Y of the space X, there exists a countable subfamily V of U (resp.,
a countable subset C' of X)) such that st(|JV,U) = X (resp., st(C.U) = X)
(see [10] and [11], where different terminology is used).

In [18, 17] Koéinac, Konca and Singh introduced the following relative ver-
sions of SC, SSC, SL and SSL propertices.

Definition 1.1 ([17]). A space X is set star compact, briefly set SC (resp.,
set strongly star compact, briefly set SSC), if for every nonempty subset A of
X and for every family U of open scts in X such that A C JU, there exists a
finite subfamily V of U (resp., finite subset I of A) such that st((JV,U) D A
(resp., st(F,U) D A).!

Replacing “finite” with “countable” in Definition 1.1, one obtains the classes
of set star Lindelof (briefly set SL) and set strongly star Lindelof (briefly set
SSL) spaces (sce [18]).

In the following CC means countably compact.

Proposition 1.2 ([2, Proposition 2.2]). In the class of Hausdorff spaces SSC,
set SSC and CC are equivalent properties.

We prove the following

Proposition 1.3. In the class of reqular spaces set SC and CC' are equivalent
properties.

Proof. Of course, every CC space is set SC. Now, let X be a regular set SC
space. By contradiction, assume there exists a closed and discrete subspace
D = {z, : n € w} of X. By regularity, there exists a disjoint family U4 =
{U,, : n € w} of open subsets of X such that x,, € U,,, for every n € w. Then
D C |JU but for every finite subfamily V of U, we have that D ¢ st(|JV,U);
a contradiction. O

For a space X, e(X) = sup{|C| : C'is a closed and discrete subset of X'}
and ¢(X) = sup{|A| : Ais a cellular family of X} are, respectively, the ex-
tent and the cellularity of X. One says that a space X has the countable chain
condition (briefly cce) if ¢(X) = w.

1Recently, the properties of Definition 1.1 were studied in [2]. Note that in [2] there is
a misprint in the statement of the definition of “relatively® SSC” that the authors use to
describe set SSC property: in particular, the authors write that the set “F is a finite subset
of A” instead of “F is a finite subsct of A”.
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Proposition 1.4 ([2, Proposition 3.1|). In the class of Ty spaces, set SSL
spaces are eractly spaces having countable extent.

Proposition 1.5 ([2, Corollary 3.3] ). Every eccc space is set SL.

Recall that a space X is Menger, briefly M, if for cach sequence (U, : n € w)
of open covers of X there exists a sequence (V, 1 n € w) such that V,,, n € w, is
a finite subset of U,, and X =, ., |JVn: X is Hurewicz, briefly H, if for cach
sequence (U, - n € w) of open covers of X there exists a sequence (V,, 1 n € w)
such that V,,, n € w, is a finite subset of Y,, and for every = € X, z € |V, for
all but finitely many n € w.

In [13, 14, 1] star versions of Menger and Hurewicz properties called star
Menger, strongly star Menger, star Hurewicz and strongly star Hurewicz prop-
erties (Definitions 2.1 and 4.1 below) were introduced and recently in [17]
Koé¢inac, Konca and Singh considered some relative versions of them called,
respectively, set star Menger, set strongly star Menger, set star Hurewicz and
set strongly star Hurewicz properties.

In this paper we study the previous set properties. In particular, using [2],
we casily prove that sct strongly star Menger and set strongly star Hurewicz
properties are between countable compactness and property of having countable
extent. Also we show that the extent of a regular set star Menger or a set star
Hurewicz space cannot exceed ¢ and use this result to give a Tychonoff star
Menger (star Hurewiez) space which is not set star Menger (set star Hurewicz).
In fact, the constructed example (Example 2.12) is even star compact and then
it gives a positive answer to the following question.

Question 1.6 ([23]). Does there exist a Tychonoff star compact space which
is not set star compact?

Morcover, we give a consistent answer (Example 2.24) to the following ques-
tion.

Question 1.7 ([17]). Does there exist a Tychonoff set star Menger space which
is not set strongly star Menger?

Further, we answer in the negative (Example 3.10) to the following.

Question 1.8 ([17]). Is the product of a set star Menger space with a compact
space a set star Menger space?

In fact Example 3.10 shows even more: it proves that set star compact and
set star Lindelof properties are not preserved in the product with compact
spaces. Then, the same example answers in the negative the following two
questions.

Question 1.9. Is the product of a set star Hurewicz space with a compact space
a set star Hurewicz space?

Question 1.10 ([23]). Is the product of a set star compact space with a compact
space a set star compact space?
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Morcover we give partial answers to the following questions.

Question 1.11 ([17]). Is the product of a set strongly star Menger space with
a compact space a set strongly star Menger space?

Question 1.12. Is the product of a set strongly star Hurewicz space with a
compact space a set strongly star Hurewicz space?

No separation axiom will be assumed a priori. Recall that a family of sets
is almost disjoint if the intersection of any two distinet clements is finite. Let
A be an almost disjoint family of infinite subscts of w. Put ¥(A) = w U
A and topologize V(A) as follows: the points of w are isolated and a basic
neighbourhood of a point a € A takes the form {a} U (a\ F'), where I is a
finite set. W(A) is called Isbell-Mrowka or W-space (sce [§]). Recall that for
frg € w¥, f <* g means that f(n) < g(n) for all but finitcly many n (and
f < g means that f(n) < g(n) for all n € w). A subset B C w* is bounded
if there is ¢ € w® such that f <* g for every f € B. D C w¥ is cofinal if
for cach g € w¥ there is f € D such that ¢ <* f. The minimal cardinality of
an unbounded subset of w® is denoted by b, and the minimal cardinality of a
cofinal subsct of w* is denoted by 9. The value of ? does not change if one
considers the relation < instead of <* [6, Theorem 3.6].

2. ON SET STAR MENGER AND SET STRONGLY STAR MENGER PROPERTIES.
In [13], Koé¢inac introduced the following star versions of Menger property.

Definition 2.1 ([13]). A space X is
e star Menger (briefly, SM) if for cach sequence (U, : n € w) of open
covers of X there exists a sequence (V, @ n € w) such that V,, n € w,
is a finite subset of U,, and X = J,,., st(UVn,Un):
e strongly star Menger (briefly, SSM) if for cach sequence (U, 1 n € w)
of open covers of X there exists a sequence (I, : n € w) such that F,,
n € w, is a finite subset of X and X = st( L, Uy).

new

The following result gives a characterization of the SSM property in terms
of a relative version of it.

Proposition 2.2. The followings are equivalent for a space X :
(1) X s SSM;
(2) for each nonempty subset A of X and each sequence (U, : n € w) of
collection of open sets of X such that A C UU,, for every n € w, there
ezists a sequence (I, : n € w) such that I, n € w, is a finite subset of

X and ACl st(F,Uy).

new

Proof. 2. = 1. is obvious. Let A C X be a nonempty subset and (U, : n € w)
be a sequence of families of open sets of X such that A C |JU,, for every n € w.
Define

U, = U, U{X\ A}
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for all n € w. Clearly, cach H:L is an open cover for X. Since X is SSM, there is
a sequence (F}, : n € w) of finite subsets of X such that X =, . st(F,,U,).

Fix z € A. Then there exists n € w such that = € st(F],, H:L). Observe that
x € st(F,,U,) < st(z,U,)NF, # 2.
We also have that
stx,U) = {U eld, :zcUy={U elU, : z € U} = st(z,U,).
So
z € st(F,U,) & st(z,U,) NF, # 3 & st(x,U,) N F, # D & x € st(Fn,Uy).

‘St(Fn:uu)- O

new

Since x is an arbitrary point of A, we have that A C |J

In [17] the following relative version of the SM and SSM properties were
considered.

Definition 2.3 ([17]). A space X is

e sct star Menger (shortly, set SM) if for cach nonempty subset A of X
and for cach sequence (U, : n € w) of collection of open sets of X such
that A C Uun for every n € w, there exists a sequence (V,, 1 n € w)
such that V,,, n € w, is a finite subset of U,, and A C |, st(lJ Vi, Un)-

e sct strongly star Menger (shortly, set SSM) if for each nonempty subset
A of X and for each sequence (U, : n € w) of collection of open sets
of X such that A UJU, for every n € w, there exists a sequence
(F, @ n € w) such that F,, n € w, is a finite subset of Aand A C
Unew st Uy, ).

The following result is easy to check.
Proposition 2.4. A space X is set SSM iff every closed subspace of X is SSM.

The previous result is not true for set SM spaces as the following example
shows.

Example 2.5. A set SM space having a closed subspace which is not SM.

Consider the set SM space X of Example 3.10 below and its closed subspace
A. Since A is a discrete subspace of uncountable cardinality, it is not SM. A

Recall that in [25] it is proved that the extent of a T3 SSM space can be
arbitrarily big. Also

Proposition 2.6 ([22, Corollary 2.2|). Every closed and discrete subspace of
a regqular SSM space has cardinality less than ¢. Hence a SSM space has extent
less or equal to c.
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It is well known that a CC space has countable extent. Since every CC space
is set SSC (see [7, Theorem 2.1.4] and recall that CC property is hereditary
with respeet to closed sets) and every set SSL space has countable extent [2,
Proposition 3.1] we have that

CC = sct SSH = set SSM = countable extent.

Note that the previous implications can not be reversed. Indeed, of course,
every Hurewicz non countably compact space is a set SSH non countably com-
pact space: consider, for example, the discrete space w. For the converse of the
other implications sce Examples 4.4 and 2.17.

In [21] it was shown that the extent of a Tychonoff SSL space can be ar-
bitrarily large (note that in [21] a SSL space is called a space with countable
weak extent). In [22] the space constructed in [21] was used to prove that the
extent of a Tychonoff SM (in fact SC) space can be arbitrarily large. Morcover
in [22] the author shows the following.

Theorem 2.7 ([22]). If X is a reqular SM space such that w(X) = ¢, then
every closed and discrete subspace of X has cardinality less than ¢. Hence, we
have e(X) < c.

Now we show that the extent of a regular set SM space cannot exceed c.

Theorem 2.8. If X is a reqular set SM space, then every closed and discrete
subspace of X has cardinality less than ¢. Hence, we have e(X) < c.

Proof. Fix Y a closed and discrete subspace of X and assume |Y| = ¢. Consider
a family B of open subsets of X such that for every y € Y there exists B € B
such that y € B and BNY = {y} and suppose that |B| = ¢. Denote by
[B]=“ the family of all finite subsets of B, by P = ([B]=“)* the family of all the
sequences of elements of [B]<“ and introduce on P the partial order “<” defined
as follows: if (B )new, (Bh)new € P then (B))new < (BY)new means B, C
B! for every n € w. Let {(By ) new : @ < ¢} be a cofinal family in (P, <). Take
Z = {ya : @ < ¢} by choosing for every o < ¢ a point yo € Y\ U,co, UBa.n
and y, # yg for @ # f. For every a < ¢ let {V,,(ya) : n € w} be a sequence
of open neighbourhoods of y, such that V,(y,) € B for some B € B and
every n € w and V,,(yo) N UBan = @ for every n € w. For every n € w
put U, = {Vi(ya) : @ < ¢}. Clearly Z = Z C UU, for every n € w. We
will show that the subset Z and the sequence (U, : n € w) do not satisfy
the set SM property. Let (V, @ n € w) be any sequence of finite subsets
of U, for every n € w. Let (B, : n € w) € P such that every member of
V, is contained in a member of B],. Since {(Ban)new @ @ < ¢} is a cofinal
family in P, there exists y < ¢ such that B], C B, ,, for every n € w. Then
Vo(yy) UV € Viu(yy) NU B, = @ for every n € w. Since V,,(y,) is the only

member of U, containing y.,, we have y., ¢ Un&w st(UVn,Un). [l

Example 2.10 below gives a consistent example of a SSM space which is not
set SSM. In fact, such an example was already described in [17]; here we show
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that it can be casily obtained from the next characterization and from the fact
that set SSM spaces have countable extent.

Theorem 2.9 ([4]). The followings are equivalent:
(i) W(A) is SSM
(i) Al <.

Example 2.10 ([17]). (w1 < ?) There exists a SSM space which is not set
SSM.

Assume w; < 0 and consider ¥(A) with [A| = w;. By Theorem 2.9 and
since e(V(A)) > w, we have that WU(A) is a SSM not set SSM space. VAN

Question 2.11. Does there exist a ZFC example of a SSM space which is not
set SKS‘MQ

Using Theorem 2.8 we can give a Tychonoff space distinguishing SM and
sct SM properties. In fact, the following example distinguishes SCness and set
SCness too.

Example 2.12. A Tychonoff SC (hence SM) space which is not set SM (hence
not set SC).

In [21], for cach infinite cardinal 7 the following space X (1) was considered.
Let Z = {f, : @ < 7} where f, denotes the points in 27 with only the ath
coordinate equal to 1. Consider the sct

X(r) =@ x (" + 1))\ (2" \ 2) x {77}
with the topology inherited from the product topology on 27 x (77 +1). Denote
Xg=2"x77and X; = Z x {"r+}. Then X(7) = XoU X;. X7 is a closed and
discrete subspace of X (7) of cardinality 7. So the extent of X(7) is 7.
In [22] it is proven that the space X(c) is SC (hence SM). By Theorem 2.8,
X(c) it is not set SM. A

Recall the following result.

Proposition 2.13 ([22]). Every SL (SSL) space of cardinality less than 0 is
SM (SSM).

Now we prove that the set versions of the previous proposition holds.
Proposition 2.14. Every set SL space of cardinality less than 0 is set SM.

Proof. Let X be a set SL space of cardinality less than 9. Let A € X and
(U, : n € w) be asequence of families of open sets of X such that A C Ui,
for every n € w. For every n € w there is a countable subfamily V,, = {K,,m :
m € w} of U, such that A C st(|JV,,U,). For every z € A we choose a
function f, € w*“ such that st(z,U,) NV, ;. () # @ for all n € w. Since

{f: : = € A} is not a cofinal family in (w*, <), there are some g € w* and
n, € w for z € A such that f.(n,) < g(n.). Let W, = {V,.; : 7 < g(n)}.
Then A C U, ¢, st(UWa, Un). O
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In a similar way we can prove the following.
Proposition 2.15. Every set SSL space of cardinality less than 0 is set SSM.
Then, by Proposition 1.4 we obtain

Corollary 2.16. For every Ty space X of cardinality less than 0, the following
are equivalent:

(1) X is set SSM

(2) e(X) = w.

Example 2.17. There is a Tychonoff space of cardinality 9 having countable
extent which is not set SSM.

Let P be the space of irrationals. Take any non-Menger subspace X C P of
cardinality 0 (for instance, consider the Baire space w* which is homeomorphic
to P and take a cofinal subsct of cardinality 9. It is well known that any cofinal
subset of w* is not Menger). Of course, X is a paracompact space having
countable extent. Since in the class of paracompact Hausdorft spaces we have
that M < SM (see [13]), we have that X is not set SSM. A

By Corollary 2.16 and Example 2.17 we have:

Corollary 2.18. The following statements are equivalent:

(1) w1 <?;
(2) every Ty space of cardinality wy having countable extent is set SSM.

Recall the following result.

Theorem 2.19 ([22]). The following statements are equivalent for regular
spaces.

(1) wy = D

(2) if X is a SSM space, then e(X) < w.

We can add some equivalent conditions to the ones in the previous theorem.

Theorem 2.20. The following statements are equivalent for reqular spaces.

(1) wy = D

(2) if X is a SSM space, then e(X) < w;

(3) for spaces of cardinality less than 0, set SSM and SSM are equivalent
properties.

(4) for spaces of cardinality less than 9, set SSL and SSL are equivalent
properties.

(5) every closed subspace of a SSM space X such that |X| < 0 is SSM.

Proof. 1. < 2. holds by Theorem 2.19. Now we prove 2. = 3.. Let X be a
space of cardinality less than 9. By 2. and Corollary 2.16, we have that X is
SSM iff X is set SSM. Now we prove 3. = 1.. Assume wy < 0. Consider a space
U(A), with |A| = wy. By Theorem 2.9, U(A) is SSM, and since e(V(A)) > w,
U(A) is not set SSM. 3. < 4. is obvious. 3. < 5. follows from Proposition
2.4. O
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Of course, countable spaces are Menger, then set SSM and SSM.

Corollary 2.21. For regular spaces X such that w < |X| < 0, SSM and set
SSM are not equivalent properties.

Corollary 2.22. Uncountable reqular spaces in which SSM and set SSM are
equivalent properties have cardinality > 0.

In [17, Example 5| Koéinac, Konca and Singh constructed a Ty set SM space
which is not set SSM and posed the following question.

Question 2.23 ([17]). Does there exist a Tychonoff set SM space which is not
set SKS‘MQ

Using Proposition 2.14 we can give a consistent answer to Question 2.23.
Example 2.24. (w; < 0) A Tychonoff set SM space which is not set SSM.

Assume wy < 0 and consider W(A) with |A| = w;. Since ¥(A) is separable,
it is set SL hence, by Proposition 2.14, it is set SM. Since e(¥(A)) > w, ¥(A)
is not sct SSM. A

3. ON THE PRODUCT OF SET SM AND SET SSM WITH COMPACT SPACES

Recall that the product of a SC (SSC) space with a compact space is SC
(SSC) ([9], [7]); further the product of a SL space with a compact space is
SL [7] while the product of a SSL space with a compact space need not be
SSL [7, Example 3.3.4]. In [13] Koé¢inac proved that the product of a SM
space with a compact space is SM. Using [3, Lemma 2.3|, Matveev noted that
assuming w; < 0, if X = W(A) with [A| = w; and Y is a compact space such
that ¢(Y') > w, then the product X x Y is not SSL, hence not SSM; therefore
he gave a consistent example of a not SSM space which is the product of a
SSM space and a compact space. Then, it is natural to consider the following
questions.

Question 3.1 ([17]). Is the product of a set SSM space with a compact space
a set SSM space?

Question 3.2 ([17]). Is the product of a set SM space with a compact space a
set SM space?

In the following we give a partial answer to Question 3.1 and a negative
answer to Question 3.2. Note that we also show that set SSL property is
preserved in the 77 product with compact spaces and that set SC and sct
SL propertics are not preserved in the product with compact spaces.  (For
completeness, we note that, by Proposition 1.2, set SSC property is preserved
in the Hausdorff product with compact spaces).

The following fact can be easily checked (we give the proof for sake of com-
pleteness). Recall that a map is perfect if it is continuous, closed, onto and
cach fiber is compact.
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Proposition 3.3. If f : X — Y is a perfect map and A is an uncountable
closed and discrete subspace of X, then f(A) is an uncountable closed and
discrete subspace of Y.

Proof. Let f and A be as in the hypothesis. Clearly f(A) is closed in Y. Note
that, for every y € f(A), £~ (y)N A is a closed subset of the compact subspace
f!(y) and then, since A is discrete, it is finite. Then A is countable, otherwise
f(A) is countable. Now, fix y € f(A) and say f~(y) N A = {zy,...,2,}.
For every i = 1,...,n fix an open subset U; of X such that ANU; = {z;}
and put U = [J* , U;. Since A\ U is a closed subset of X, we have that

i=1
FANU) = f(A)\ {y} is a closed subsect of Y, and then {y} is open in f(A)
with the topology inherited from Y. [l

By the previous proposition, we obtain the following result.

Corollary 3.4. The product of a space having countable extent with a compact
space has countable extent.

Proof. Let X be a space with countable extent and Y be a compact space. The
projection from X x Y onto X is a perfect map. Then, by Proposition 3.3,
e(X xY)=w. O

By Proposition 1.4, the previous result can be restated as follows.

Proposition 3.5. The T7 product of a set SSL space with a compact space is

set 1?5‘11 -

Corollary 3.6. The product of a set SSM space with a compact space has
countable extent.

Then, by Corollary 2.16 we have

Corollary 3.7. The Ty product of cardinality less than 0 of a set SSM space
with a compact space is set SSM.

Recall the following proposition.

Proposition 3.8 ([2, Proposition 3.4]). Let X be a space. If there exist a
closed and discrete subspace D of X having uncountable cardinality and a dis-
joint family U = {0, : a € D} of open neighbourhoods of points a € D, then
X s not set SL.

Now we prove the following useful result.

Proposition 3.9. If e(X) > w and ¢(Y) > w, where Y s Ty, then X x Y 1s
not set SL.

Proof. Let S = {s, : @ < w;} be a closed and discrete subset of X, O = {0, :
« < wy } be a pairwise disjoint family of nonempty open subsets of Y. For every
o < wy, fix t, € Oy. Put A = {(54,t,) : @ < wi}. It is obvious that A is an
uncountable discrete subspace of X x Y. Now we prove that A is closed. For
every o < wy there exists an open set, say N,,, such that N, NS = {s,}. Then
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(X xY)\A=((X\S)xY)UU, -0, (Na x (Y \ {ta})). Then, by Proposition
3.8, X x Y is not set SL. O

Example 3.10. There exists a set SC (hence set SL and set SM) space X and
a compact space Y with ¢(Y) > w such that X x Y is not set SL (hence neither
set SM nor set SC).

Consider the set X = wy UA, where A = {a, : @ € wy } is a set of cardinality
w1, topologized as follows: wq has the usual order topology and is an open
subspace of X; a basic neighborhood of a point a,, € A takes the form

Op(aa) = {aa} U (B,wi), where f < wy.

In [2] it was proved that X is set SC, hence X is set SM. We have that e(X) > w.
If Y is any compact space with ¢(Y') > w, by Proposition 3.9, X x Y is not sct
SL. JAN

4. ON SET STAR HUREWICZ AND SET STRONCGLY STAR HUREWICZ
PROPERTIES

Recall the following definitions.

Definition 4.1 ([13, 1]). A space X is

e star Hurewicz (briefly, SH) if for cach sequence (U, : n € N) of open
covers of X there exists a sequence (V,, : n € N) such that V,, n € w,
is a finite subset of U, and Vz € X, z € st(|J V,,U,,) for all but finitely
many n € w;

e strongly star Hurewicz (briefly, SSH) if for each sequence (U, : n € N)
of open covers of X there exists a sequence (F), : n € N) such that F,,
n € w, is a finite subset of X and Vo € X, x € st(F,,U,) for all but
finitely many n € w.

The following result is a characterization of SSH property in terms of a
relative version of it. The proof is similar to the proof of Proposition 2.2.

Proposition 4.2. The followings are equivalent for a space X :

(1) X is SSH;

(2) for each nonempty subset A of X and for each sequence (U, : n € N) of
collection of open sets of X such that A C UU,, for every n € w, there
erists a sequence (I, : n € N) such that F,,, n € w, is a finite subset
of X andVr € A, x € st(F,,Uy,) for all but finitely many n € w.

Definition 4.3 ([17]). A space X is
e sct star Hurewicz (briefly, set SH) if for cach nonempty subset A C X
and for cach sequence (U, : n € w) of collection of open sets of X
such that A C U, for every n € w, there exists a sequence (V, :
n € N) such that V,,, n € w, is a finite subset of U, and Vz € A,
x € st(JV,,U,) for all but finitely many n € w.
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e sct strongly star Hurewicez (briefly, set SSH) if for cach nonempty subset
A C X and for each sequence (U, : n € w) of collection of open scts
of X such that A C UJU, for every n € w, there exists a sequence
(F, s n € w) such that F,, n € w, is a finite subset of Aand Vz € A,
x € st(F,,Uy,) for all but finitely many n € w.

Example 4.4. (b < ?) There is a Tychonoff set SSM space which is not sct
SSH.

Consider an unbounded subset X of the Baire space w® of cardinality b.
Then X is not Hurewicz and, by Corollary 2.16, X is set SSM. Since X is a
paracompact space and in the class of paracompact Hausdorff spaces we have
that H < SH (sce [1]), we have that X is not set SSH. A

Recall the following characterization of SSH spaces.

Theorem 4.5 ([4]). The following properties are equivalent:
(i) w(A) is SSH
(i) |A] <b.

Then, we can “easily” give the following result (the same example was given
in [24] using a longer proof).

Example 4.6. (w; < b) There exists a SSH not set SSH space.

Assume w; < b and consider ¥(A) with |A| = wy. Then, by Theorem 4.5
and since e(V(A)) > w, we have that W(.A) is SSH not a set SSH space. A

Question 4.7. Does there exist a ZFC example of a SSH not set SSH space?
By Theorem 2.8 we can give the following.

Theorem 4.8. If X is a reqular set SH space, then every closed and discrete
subspace of X has cardinality less than ¢. Hence, we have e(X) < c.

In [24, Esempio 2.4] it is given a Hausdorff SH space which is not set SH.
Now we can provide the following example.

Example 4.9. A Tychonoff SC (henee SH) space which is not set SH.

Consider the space X (c) of Example 2.12. X(c) is SC (henee SH) and, by
Theorem 4.8, it is not set SH. AN
Recall the following

Proposition 4.10 ([5, Corollary 3.10]). Every SL (SSL) space of cardinality
less than b 1s SH (SSH).

In analogy to Proposition 2.14 and Proposition 2.15, we can prove the fol-
lowing.

Proposition 4.11. Every set SL (set SSL) space of cardinality less than b is
set SH (set SSH).
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Proof. Let X be a set SL space of cardinality less than b (the proof is similar
if X is set SSL). Let A € X and (4, : n € w) be a sequence of families of
open sets of X such that A C U, for every n € w. TFor every n € w there is a
countable subfamily V,, = {V,, ;. : m € w} of U, such that A C st(|JV,.,U,).
For every = € A we choose a function f, € w® such that st(z,U,)NV,, ;. () # D
for all n € w. Since {f; : = € A} is a bounded family in (w*, <*), there exists
g € w* such that for every x € A we have that f.(n) < g(n) for every but
finitely many n € w. Let W, = {V,,; : 7 < g(n)}. Then for every z € A we
have that = € st(|JW,,U,,) for all but finitely many n € w. O

Then, by Proposition 1.4, we have

Corollary 4.12. For every Ty space X of cardinality less than b, the followings
are equivalent:

(1) X is set SSH

(2) e(X) = w.

By Corollary 2.16 and Corollary 4.12 we have the following

Corollary 4.13. For spaces X such that | X| < b, the followings are equivalent:
(1) X is set SSM
(2) X is set SSH
(3) e(X) = w.

In [24] the authors give a Ty set SH space which is not set SSH. Now we
provide the following

Example 4.14. (w; < b) A Tychonoff set SH space which is not set SSH.

Assume wy < b and consider W(A) with |A| = w;. Since W(.A) is separable,
it is set SL henee, by Proposition 4.11, it is set SH. Since e(V(A)) > w, ¥(A)
is not sct SSH. A

Using Example 3.10 we obtain:

Proposition 4.15. Set SH property is not preserved in the product with com-
pact spaces.

By Corollary 3.4 we have that

Proposition 4.16. The product of a set SSH space with a compact space has
countable extent.

Then, by Corollary 4.13 we obtain

Proposition 4.17. The Ty product of cardinality less than b of a set SSH
space with a compact space is set SSH.

The following question is open.

Question 4.18. Is the product of a set SSH space with a compact space a set
SSH space?
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We give the following uscful diagram.

Lindelof M H Compact
countable extent set S55C
In set SSM set SSH
set S5L
CC <= S5C
|
cce set 5L set SM — set SH ~—
T regular
T set SC
SS5L % SM SH =—0
T ssm SSH T s
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