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Abstract: Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to
excessive deposition of extracellular matrix. In this study, the bleomycin experimental model of
pulmonary fibrosis was employed to investigate the anti-fibrotic and immunomodulatory activity
of the inhibition of MALT1 protease activity. Mice received a single intra-tracheal administration of
bleomycin (1 mg/kg) in the presence or absence of MI-2, a selective MALT1 inhibitor, (a dose of 30 mg/kg
administered intra-peritoneally 1 h after bleomycin and daily until the end of the experiment). Seven
days after bleomycin instillation mice were sacrificed and bronchoalveolar lavage fluid analysis,
measurement of collagen content in the lung, histology, molecular analysis and immunohistochemistry
were performed. To evaluate mortality and body weight gain a subset of mice was administered
daily with MI-2 for 21 days. Mice that received MI-2 showed decreased weight loss and mortality,
inflammatory cells infiltration, cytokines overexpression and tissue injury. Moreover, biochemical and
immunohistochemical analysis displayed that MI-2 was able to modulate the excessive production
of reactive oxygen species and the inflammatory mediator upregulation induced by bleomycin
instillation. Additionally, MI-2 demonstrated anti-fibrotic activity by reducing transforming growth
factor-β (TGF-β), α-smooth muscle actin (α-SMA) and receptor associated factor 6 (TRAF6) expression.
The underlying mechanisms for the protective effect of MI-2 bleomycin induced pulmonary fibrosis
may be attributed to its inhibition on NF-κB pathway. This is the first report showing the therapeutic
role of MALT1 inhibition in a bleomycin model of pulmonary fibrosis, thus supporting further
preclinical and clinical studies.

Keywords: inflammation; fibrosis; MALT1

1. Introduction

Persistent airway stimulation from nonantigenic and antigenic sources leads to pulmonary fibrosis,
producing progressive remodeling of lung architecture by deposition of collagen [1–3]. At early stages
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tissue repair has positive effects on the histological alteration induced by pathology, but prolonged
connective tissue deposition produces scarring, fibrosis and loss of organ functionality [4].

Fibrotic lungs show enriched area of proliferating myofibroblasts and fibroblasts with excessive
extracellular matrix deposition (ECM), which in turn produce respiratory failure and compromise
gaseous exchange [5]. Thanks to its pulmonary toxicity, administration of bleomycin is a widely used
model of pulmonary fibrosis. This model is characterized by increased inflammatory cell response,
collagen deposition and T lymphocyte activation. In particular, seven days after bleomycin-induced
injury inflammation is accompanied with fibroproliferative activity. Moreover, it modifies the
antioxidant/oxidant balance and increased lipid peroxidation. Up-regulated production of reactive
oxygen species (ROS) leads to nitrosative stress and DNA damage. While new therapeutic strategies
continue to be developed, enhancing our understanding of the immunologic foundation responsible for
pulmonary fibrosis remains a crucial point. Recently, mucosa-associated lymphoid tissue lymphoma
translocation 1 (MALT1) has been described as a crucial modulator of immune cell function [6]
thanks to its proteolytic activity [7,8]. Many MALT1 substrates are implicated in the regulation of the
inflammatory answers, its protease activity is emerging as therapeutic tool [9,10].

Recently, different studies present MALT1 as modulator of T cell activation. In particular, MALT1
proteolytic activity is activated after T cell stimulation [10]. Additionally, MALT1 together with
caspase-recruitment domain containing membrane-associated guanylate kinase protein 1 (CARMA1)
and B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10) forms a complex which manages the
recruitment of (receptor associated factor 6) TRAF6 and induce the activation of several transcription
factors such as NF-kB, which is involved in the bleomycin-induced lung injury [8,11].

Recent evidences underline the important role of MALT1 in alveolar macrophages and its ability
to manage their functions in respiratory disease [12], suggesting that pharmacological inhibition of
MALT1 protease activity may be an effective strategy for preventing/treating sepsis associated lung
injury. Moreover, compound MI-2 has been indicated as a MALT1 inhibitor, binding the active site of
MALT1 [13]. In particular, it has been described that the administration of MI-2 can selectively enhance
the expression of myeloid monocyte chemotactic protein-inducible protein 1 (MCPIP1) and protected
mice from LPS-induced inflammation, lung injury and death [14].

In order to evaluate the role of MALT1 in the pulmonary fibrosis pathway, we used an animal
model of bleomycin induced lung injury and the MALT1 inhibitor MI-2.

2. Results

2.1. MI-2 Improved Histopathological Score and Reduced Mortality and Weight Loss Bleomycin-Induced

Seven days after bleomycin administration, histological analysis of lung samples harvested
from vehicle-treated mice showed tissue injury and extracellular matrix deposition (Figure 1B,E),
as compared to sham animals (Figure 1A,E). MI-2 (Figure 1C,E) and mepazine (Figure 1D,E) treatment
reduced lung damage, as showed by hematoxylin and eosin staining, and pulmonary edema, as showed
by wet/dry weight ratio (Figure 1F). Additionally, MI-2 and mepazine were able to reduce neutrophils
activity, as showed by MPO assay (Figure 1G). A subset group of mice was than observed for twenty-one
days after bleomycin instillation. MI-2 and mepazine administration reduced mortality (Figure 1H)
and body weight loss (Figure 1I) associated with pulmonary fibrosis.
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Figure 1. Effect of MI-2 on histological changes, lung edema, MPO activity, survival rate and body 
weight: hematoxylin and eosin staining of sham (A), vehicle (B), MI-2 (C), Mepazine (D), histological 
injury score (E), wet/dry lung weight ratio (F), MPO activity (G), survival rate (H), body weight gain 
(I). For each analysis, n = 10 animals from each group were employed. 

2.2. MI-2 Reduced Mast Cells Infiltration and Degranulation Bleomycin-Induced 

Seven days after bleomycin injection an augmented number of infiltrating mast cells was 
detected in lung samples harvested from vehicle treated mice (Figures 2B,D), as compared to the 
sham tissue group (Figures 1A,D). MI-2 injections reduced mast cells recruitment in lung tissue 
(Figures 2C,D). Additionally, it was able to decrease chymase activity (Figure 2E), which is the major 
proteins secreted by mast cells and promote inflammation and matrix destruction. 

 
Figure 2. Effect of MI-2 on mast cells analysis: sham (A), vehicle (B), MI-2 (C), mast cells count (D); chymase 
activity (E). For each analysis, n = 10 animals from each group were employed. 
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Figure 1. Effect of MI-2 on histological changes, lung edema, MPO activity, survival rate and body
weight: hematoxylin and eosin staining of sham (A), vehicle (B), MI-2 (C), Mepazine (D), histological
injury score (E), wet/dry lung weight ratio (F), MPO activity (G), survival rate (H), body weight gain (I).
For each analysis, n = 10 animals from each group were employed.

2.2. MI-2 Reduced Mast Cells Infiltration and Degranulation Bleomycin-Induced

Seven days after bleomycin injection an augmented number of infiltrating mast cells was detected
in lung samples harvested from vehicle treated mice (Figure 2B,D), as compared to the sham tissue
group (Figure 1A,D). MI-2 injections reduced mast cells recruitment in lung tissue (Figure 2C,D).
Additionally, it was able to decrease chymase activity (Figure 2E), which is the major proteins secreted
by mast cells and promote inflammation and matrix destruction.
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Figure 2. Effect of MI-2 on mast cells analysis: sham (A), vehicle (B), MI-2 (C), mast cells count (D);
chymase activity (E). For each analysis, n = 10 animals from each group were employed.
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2.3. MI-2 Suppressed T Lymphocyte Infiltration Bleomycin-Induced

Seven days after bleomycin instillation vehicle-treated animals showed an increased number
of CD4 and CD8 positive cells (Figure 3B,D,F,H), as compared to sham animals (Figure 3A,D,E,H).
In MI-2 treated animals these numbers were decreased (Figure 3C,D,G,H).
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Figure 3. Effect of MI-2 on CD4 and CD8 expression: Immunohistochemical analysis of CD4: sham (A),
vehicle (B), MI-2 (C), number of positive cells/field (D), immunohistochemical analysis of CD8: sham (E),
vehicle (F), MI-2 (G), number of positive cells/field (H). For each analysis, n = 10 animals from each
group were employed.

2.4. MI-2 Reduced Inflammatory Cells Recruitment and Cytokines Overexpression Bleomycin-Induced

Seven days after bleomycin instillation vehicle treated mice showed inflammatory cells recruitment
in the bronchoalveolar lavage fluid, as compared to the sham group (Figure 4A).
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Figure 4. Effect of MI-2 on cells infiltration and proinflammatory cytokines over-expression: total
cells (A); macrophages, neutrophils, lymphocytes and eosinophils (B); cytokines expression in
bronchoalveolar lavage fluid: TNF-α (C), IL-1β (D), IL6 (E); cytokines expression in lung tissues:
TNF-α (F), IL-1β (G), IL6 (H). For each analysis, n = 10 animals from each group were employed.
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In particular, we evaluated neutrophils, macrophages, eosinophils and lymphocytes detecting
a significant rise in cell numbers (Figure 4B). MI-2 reduced the inflammatory cells infiltration in the
bronchoalveolar lavage fluid (Figure 4A,B). Moreover, it was able to reduce IL-1β, TNF-α and IL-6
over-expressions in both bronchoalveolar lavage fluid (Figure 4C–E) and lung tissues (Figure 4F–H)
associated with pulmonary fibrosis.

2.5. MI-2 Reduced Oxidative Stress Bleomycin-Induced

To test whether MI-2 may modulate the oxidative stress induced by bleomycin administration
antioxidant enzymes activity were measured. Vehicle-treated mice showed decreased SOD (Figure 5A)
and GSH (Figure 5B) activity, as compared to sham mice. Additionally, they showed increased lipid
peroxidation (Figure 5C) and NO content (Figure 5D). MI-2 restored SOD and GSH levels, while
decreased lipid peroxidation and NO production in the bronchioalveolar lavage fluid. In order to
evaluate nitrosative stress and DNA damage immunohistochemical analysis for nitrotyrosine and
PARP expression were performed. No positive staining of both antibodies was detected in sham group
(Figure 5E,H,I,L). Vehicle treated mice showed nitrotyrosine (Figure 5F,H) and PARP (Figure 5J,L)
increased expression, while MI-2 reduced them immunostaining (Figure 5G,H,K,L).
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Figure 5. Effect of MI-2 on oxidative stress: SOD (A), GSH (B), MDA (C), NO content (D),
immunohistochemical analysis of nitrotyrosine expression: sham (E), vehicle (F), MI-2 (G), % of
positive pixels (H), immunohistochemical analysis of PARP: sham (I), vehicle (J), MI-2 (K), % of positive
pixels (L). For each analysis, n = 10 animals from each group were employed.

2.6. MI-2 Reduced Lung Fibrotic Changes Bleomycin-Induced

Pulmonary injury produced by bleomycin is characterized by increased collagen deposition and
severe fibrosis. Masson trichrome staining showed increased blue area in tissues from vehicle-treated
mice (Figure 6B), as compared to sham tissue (Figure 6A). MI-2 reduced fibrosis and collagen deposition
as showed by masson trichrome (Figure 6C) and sircol soluble collagen assay (Figure 6D). In order to
evaluate fibrosis, we also performed immunohistochemical analysis for TGF-1β and α-sma expression.
No positive staining of both antibodies was detected in sham group (Figure 6E,H and Figure 7A,D).
Vehicle treated mice showed TGF-1β (Figure 6F,H) and α-sma (Figure 7B,D) increased expression,
while MI-2 reduced them immunostaining (Figure 6G,H and Figure 7B,C).
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Figure 6. Effect of MI-2 on collagen deposition and TGF-β expression: Masson trichrome staining:
sham (A), vehicle (B), MI-2 (C), sircol soluble collagen assay (D), immunohistochemical analysis of
TGF-1β expression: sham (E), vehicle (F), MI-2 (G), % of positive pixels (H), concentration of total
TGF-β (I) and active TGF-β (J) in BAL fluids. For each analysis, n = 10 animals from each group
were employed.
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Figure 7. Effect of MI-2 on α-sma and TRAF6 expression: Immunohistochemical analysis of α-sma:
sham (A), vehicle (B), MI-2 (C), % of positive pixels (D). Western blot analysis of α-sma (E) and
TRAF6 (F). For each analysis, n = 10 animals from each group were employed.

The levels of total TGF-β in BAL fluid also significantly increased in the vehicle treated mice as
compared with sham mice; however, treatment with MI-2 did not decrease these levels (Figure 6I).
The levels of active TGF-β in the BAL fluid were also significantly elevated in the vehicle treated mice
as compared with the sham group. Interestingly, treatment with MI-2 significantly reduced these levels
(Figure 6J).
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Western blot analysis confirmed the increased expression of α-sma in vehicle treated animals and
its reduced levels following MI-2 treatment (Figure 7E). Additionally, vehicle-treated mice showed
increased TRAF6 expression, as compared to the sham animals. Samples harvested from MI-2 mice
displayed reduced TRAF6 expression (Figure 7F).

2.7. MI-2 Managed the MCPIP1 and NF-kB Pathways Bleomycin-Induced

To further investigate the MALT1 proteolitic activity we evaluated the MCPIP1 protein degradation
in the lungs. Western blot analysis showed that the MCPIP1 protein levels were markedly decreased
in lungs from vehicle-treated mice compared with those from control mice. MI-2 treatment restored
MCPIP1 protein levels (Figure 8A), while the MALT1 protein levels was not changed by any of these
treatments (Figure 8B).
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Figure 8. Effect of MI-2 on MCPIP1, Ikb-α, NF-kB expression: Western blot analysis of MCPIP (A),
MALT1 (B), Ikb-α (C), and NF-kB (D). For each analysis, n = 10 animals from each group were employed.

In order to evaluate the pathway behind inflammation bleomycin-induced we evaluated the
Ikb-α/NF-kB expressions by western blot analysis. Vehicle-treated mice showed increased reduced
Ikb-α expression, as compared to sham animals (Figure 8C). Additionally, samples from vehicle group
showed increased NF-kB expression into the nucleus (Figure 8D). MI-2 administration restored Ikb-α
expression in cytoplasm and reduced NF-kB expression into the nucleus.

3. Discussion

Our experiments have demonstrated, for the first time, that MI-2, a MALT-1 inhibitor, can protect
from bleomycin-induced pulmonary fibrosis based on the the following results: MI-2 reduced lung
damage, pulmonary edema, inflammatory cells infiltration in both bronchoalveolar lavage fluid
and lung tissues, cytokines over-expression, production of free oxygen radicals, collagen deposition,
fibrosis, changes in α-sma, an EMT related gene, and TGF-β expression. Crucially, those effects were
accompanied with MI-2-mediated suppression on infiltration of T lymphocyte and modulation of
TRAF6, Ikb-α/NF-kB pathways. Bleomycin administration induces alveolar epithelial cell injury and
pan-alveolitis [15], modifying of lung architecture [16]. MI-2 administration for seven consecutive
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days ameliorated the histological changes produced by pulmonary fibrosis and counteracted the body
weight loss and mortality related with this pathology. Additionally, it reduced the inflammatory cells
recruitment in the injured airways, both in lung tissues and bronchoalveolar lavage fluid. In particular,
we provided some side-by-side comparison with an alternative MALT1 inhibitor, mepazine, to support
better the aim and interpretation of the study. However, it did not rule out that off-target activities of
MI-2 might have contributed to its overall in vivo efficacy.

Seven days from bleomycin administration MI-2 reduced MPO and chymase activity, showing a
decreased infiltration of neutrophils and mast cells in the lung tissues. Infiltration of T lymphocyte,
a key cellular inflammatory response, plays a key role in the pathophysiology of pulmonary fibrosis [17].
MI-2 reduced lung tissue sequestration of T lymphocytes, as showed by the reduced number of CD4
and CD8 positive cells. Another prominent characteristic of the bleomycin induced pulmonary fibrosis
is the cytokines and chemokines overexpression [18] and particular relevance has been attributed
to TNF-α, IL-1β and IL6 [19]. Seven days from bleomycin instillation bronchoalveolar lavage fluid
and lung tissues showed increased expression of these inflammatory mediators and MI-2 treatment
reduced them overexpression. Several evidences reported important modification in the cellular
redox state in animal models and patients affected by pulmonary fibrosis. Bleomycin administration
produced increased of oxidative stress and free oxygen radicals (ROS) production [20]. MI-2 restored
homeostasis in the anti-oxidant/oxidant balance, increasing SOD and GSH activity and reducing
lipid peroxidation. Animals subjected to pulmonary fibrosis also exhibited NO over-production [21].
NO combined with ROS produce of highly reactive mediators such as peroxynitrite and other stress
nitrosative derivatives. Nitrotyrosine formation is a widely used marker for nitrosative stress. MI-2
was able to reduce NO content of bronchoalveolar lavage fluid and to reduce nitrotyrosine expression
in lung tissues. ROS and nitrogen species mediate DNA damage activating DNA repair mechanisms
such as nuclear enzyme PARs. MI-2 reduced DNA damage as showed by the reduced expression of
PARP in lung tissues of treated mice. There is a complex relationship between chronic inflammation,
lung injury and epithelial to mesenchymal transition (EMT). Bleomycin administration mediates
fibrogenic events as showed by the increased collagen deposition and fibrosis in lungs. EMT contribute
to collagen-producing fibroblasts in pulmonary fibrosis [22,23]. TGF-β1 is a crucial mediator in the
trans-differentiation of epithelial cells into cells with myofibroblast or fibroblast properties, a process
involved into fibroproliferative disease [24]. In particular, myofibroblast differentiation is characterized
by α-smooth muscle actin (α-SMA) expression [25]. Injured lung cells showed increased expression of
TGF-β [26] which drives differentiation of neighboring cells into collagen-producing fibroblast. Several
studies show the key role of TRAF6 in the TGF-β induced EMT [27]. MI-2 reduced fibrosis, TGF-β,
α-SMA and TRAF6 expression.

In order to evaluate the pharmacological inhibition of MALT1 by MI-2 we evaluated the MCPIP1
protein levels in lung tissues from different groups. Bleomycin administration reduced MCPIP1
expression in lung tissues from vehicle treated mice, as compared to the sham mice. MI-2 treatment by
inhibiting MALT1 activity increase MCPIP1 protein levels. Taken together, these results demonstrate
that the MCPIP1 protein levels in the lungs are preserved by pharmacological inhibition of MALT1
protease. Administration of MI-2 protects mice from lung injury and fibrosis.

The increased expression of cytokines, chemokines and inflammatory mediators produce changes
in transcription factors [28]. In particular, pulmonary inflammation and fibrosis has been linked with
the activation of the NF-kB pathway. It enhance the epithelial–mesenchymal transition and fibrosis
and in response to chronic inflammation [29]. NF-kB is usually stored in cytoplasm firmed to the IκBα
inhibitor. Chronic inflammatory stimuli induce the phosphorylation of the inhibitor and release NF-kB
which translocates into the nucleus [30]. MI-2 administration reduced NF-kB nuclear expression and
IκBα cytoplasmic expression.
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4. Materials and Methods

4.1. Animals

Male CD1 mice (Envigo, Milan, Italy) were housed in a controlled location, with food and water
ad libitum. The University of Messina Review Board for animal care (OPBA) approved the study
(9 February 2017, 137/2017-pr). All in vivo experiments followed the new directives of USA, Europe,
Italy and the ARRIVE guidelines.

4.2. Induction of Lung Injury

Bleomycin administration was performed as previously described [19]. Bleomycin sulphate
(0.1 lU per mouse) was delivered by an intratracheal administration [31]. One hour after surgery MI-2
(30 mg/kg in DMSO) was given intraperitoneally [12]. The treatment was repeated daily. Seven days
from bleomycin administration animals were euthanized and tissues were harvested for further analysis.

4.3. Experimental Groups

Mice were randomized into experimental groups (n = 10):

• Bleomycin + vehicle group. Mice received bleomycin administration and were treated daily with
vehicle (DMSO);

• Bleomycin + MI-2 group. Mice received bleomycin administration and were treated daily with
MI-2 (30 mg/kg);

• Bleomycin + mepazine group. Mice received bleomycin administration and were treated daily
with Mepazine (30 mg/kg);

• Sham + mepazine group. Identical to the bleomycin + Mepazine group but animals received
intratracheal instillation of saline (0.9% w/v) instead of bleomycin, and were treated daily with
mepazine (30 mg/kg);

• Sham + vehicle group. Identical to the bleomycin + vehicle group but animals received intratracheal
instillation of saline (0.9% w/v) instead of bleomycin, and were treated daily with vehicle (DMSO).

• Sham + MI-2 group. Identical to the bleomycin + MI-2 group but animals received intratracheal
instillation of saline (0.9% w/v) instead of bleomycin and were treated daily with MI-2 (30 mg/kg).

The dose of MI-2 was selected based on previous experiments [32].

4.4. Survival Rate and Body Weight Gain

Mortality and body weight were assessed daily up to 21 days.

4.5. Bronchoalveolar Lavage (BAL)

Seven days after bleomycin instillation, mice were sacrificed, the tracheas cannulated and the
lavage performed as previously described [33]. 0.5 mL Dulbecco’s phosphate-buffered saline (PBS)
(GIBCO, Paisley, UK) was employed. The BAL fluid recovered was spun, the pelleted cells collected
and the supernatants stored at −20 ◦C. Using a hemocytometer total BAL cells were counted in presence
of trypan blue [34].

4.6. Measurement of Lung Edema

After 7 days from injection of bleomycin wet lung weights were recorded. Subsequently, they
were dried for 48 h at 180 ◦C and then weighed again. Water content of the lungs was calculated as the
ratio of wet: dry weight of the tissue.
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4.7. Histological Examination

Lung tissues samples were collected 7 days from bleomycin injection. Tissues were fixed in
buffered formaldehyde solution (10% in PBS), histological sections were stained with haematoxylin and
eosin and Masson Trichrome and evaluated using a Leica DM6 microscope (Leica Microsystems SpA,
Milan, Italy) associated with Leica LAS X Navigator software (Leica Microsystems SpA). The severity
of lung fibrosis was scored on a scale from 0 to 8 as already published [19]. Lung sections were stained
with toluidine blue to enumerate mast cells [35].

4.8. Measurement of Chymase Activity

Lung tissues were homogenized and the chymase activity was measured in the supernatant
according the method described by Pasztor et al. [36,37].

4.9. MPO Assay

MPO activity was determined as already described [19,38]. It was defined as the quantity of
enzyme degrading 1 µmol of peroxide per min at 37 ◦C and was expressed in units per gram wet
tissue weight.

4.10. Soluble Collagen Assay

The Sircol Soluble Collagen Assay (Biocolor, Newtownabbey, Northern Ireland), was performed
following the manufacturer’s instructions [39].

4.11. Enzyme-Linked Immunosorbent Assays (ELISA)

The bronchoalveolar fluid lavage (BALF) IL,6 IL-1β, TNF-α and TGF-β levels were detected by
using ELISA kits (Dakewe, Shenzhen, China; Biosource International, Camarillo, CA, USA; R&D,
Minneapolis, MN, USA) [40–42]. Levels of IL6 IL-1β and TNF-α in lung tissues were measured by
using ELISA kits (Calbiochem-Novabiochem Corporation, San Diego, CA, USA) [43,44].

4.12. Nitric Oxide (NO) Analysis

The pulmonary production of NO in the BALF was analyzed with a nitrate/nitrite colorimetric
assay [45]. The absorbance was measured at 550 nm using a plate absorbance reader (Bio-Tek Instruments,
Inc., Winooski, VT, USA).

4.13. Measurement of Oxidative Stress

The malondialdehyde (MDA) [46], glutathione (GSH) and superoxide dismutase (SOD) levels in
the lung tissues were measured using activity assay kits (Nanjing Jiancheng Bioengineering Institute,
Jiangsu, China) [40].

4.14. Western Blot Analysis

Western blots were performed as described from our previous studies [47,48]. Specific primary
antibody: anti-IkBα (Santa Cruz Biotechnology, Dallas, TX, USA) or anti-NF-kB p65 (Santa Cruz
Biotechnology) or anti-TRAF6 (Santa Cruz Biotechnology) or anti-αsma (Santa Cruz Biotechnology)
or anti-MCPIP1 (Santa Cruz Biotechnology) or anti-MALT1 (Santa Cruz Biotechnology) were
mixed in 1× PBS, 5% w/v nonfat dried milk, 0.1% Tween-20, and incubated at 4 ◦C, overnight.
After, blots were incubated with peroxidase-conjugated bovine anti-mouse IgG secondary antibody or
peroxidase-conjugated goat anti-rabbit IgG (1:2000, Jackson Immuno Research, West Grove, PA, USA)
for 1 h at room temperature. To verify that membranes were loaded with equal amounts of protein, they
were also incubated with the antibody against laminin (1:1000; Santa Cruz Biotechnology) and GADPH
(1:1000; Santa Cruz Biotechnology). Signals were detected with enhanced chemiluminescence detection
system reagent according to manufacturer’s instructions (Super- Signal West Pico Chemiluminescent
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Substrate, Pierce, Altrincham, UK). The relative expression of the protein bands was quantified by
densitometry with ChemiDoc XRS software (Bio-Rad, Perth, UK) and standardized tob-actin levels.
Images of blot signals (8-bit/600-dpi) were imported to analysis software (Image Quant TL, v2003,
Altrincham, UK).

4.15. Immunohistochemical Localization of Transforming Growth Factor-B (TGF-β), α-Smooth Muscle Actin
(α-sma), Poly(ADP-Ribose Polymerase) (PARP), Nitrotyrosine, CD4 and CD8

Immunohistochemical analysis was performed as already described [49]. The sections were
incubated overnight with primary antibodies: anti-TGF-β antibody (1:250, Santa Cruz Biotechnology),
anti-(α-sma antibody (1:250, Santa Cruz Biotechnology), anti-nitrotyrosine antibody (1:500, Millipore),
anti-PARP antibody (1:250, Santa Cruz Biotechnology), anti-CD4 (1:250, Santa Cruz Biotechnology)
and anti-CD8 (1:250, Santa Cruz Biotecnology). All sections were washed with PBS and then treated
as previously reported [50]. Stained sections from each mouse were scored in a blinded fashion and
observed using a Leica DM6 microscope (Leica Microsystems SpA) following a typical procedure [51].
The histogram profile is related to the positive pixel intensity value obtained [52]. The number of
positive cells was counted in three sections per animal and presented as the number of positive cells
per high-power field.

4.16. Materials

All compounds used in this study were purchased from Sigma-Aldrich Company Ltd. (Milan, Italy)
and were of the highest commercial grade available. MI-2 were purchased from DBA (Milan, Italy).

4.17. Statistical Evaluation

All values in the figures and text are expressed as mean ± standard error of the mean (SEM) of n
number of animals. Results were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test
for multiple comparisons. A p-value < 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05
vs. vehicle, ** p < 0.01 vs. sham, ## p < 0.01 vs. vehicle, *** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

5. Conclusions

In conclusion, our data demonstrate that inhibition of the protease activity of MALT1 may a viable
strategy for the treatment of pulmonary fibrosis, suggesting MALT1 as potential therapeutic target
against lung injury.
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Abbreviations

BAL Bronchoalveolar lavage
BALF Bronchoalveolar fluid lavage
GSH Glutathione
H&E Haematoxylin and eosin
MALT1 Mucosa-associated lymphoid tissue lymphoma translocation 1
MDA Malondialdehyde
MPO Myeloperoxidase
NFkB Nuclear factor-κB
NO Nitric oxide
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PMN Polymorphonuclear leukocytes
ROS Reactive oxygen species
SOD Superoxide dismutase
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