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ABSTRACT The canine distemper virus (CDV) matrix (M) protein is multifunctional;
it orchestrates viral assembly and budding, drives the formation of virus-like particles
(VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M
may assemble into dimers, where each protomer is constituted by N-terminal and
C-terminal domains (NTD and CTD, respectively). Here, to investigate whether elec-
trostatic interactions between CDV M and the plasma membrane (PM) may contrib-
ute to budding activity, selected surface-exposed positively charged lysine residues,
which are located within a large basic patch of CTD, were replaced by amino acids
with selected properties. We found that some M mutants harboring amino acids
with neutral and positive charge (methionine and arginine, respectively) maintained
full functionality, including proper interaction and localization with the PM as well as
intact VLP and progeny virus production as demonstrated by employing a cell exit-
complementation system. Conversely, while the overall structural integrity remained
mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid;
negatively charged) exhibited a cytosolic phenotype secondary to the lack of inter-
action with the PM. Consequently, such M variants were entirely defective in VLP
production and viral particle formation. Furthermore, the proteasome inhibitor bort-
ezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in
the absence of the compound, all engineered M lysine variants exhibited unaffected
ubiquitination profiles, consistent with other residues likely involved in this function-
ally essential posttranslational modification. Altogether, our data identified multiple
surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically
contributing to PM association and ensuing membrane budding activity.

IMPORTANCE Although vaccines against some morbilliviruses exist, infections still
occur, which can result in dramatic brain disease or fatal outcome. Postexposure
prophylaxis with antivirals would support global vaccination campaigns. Unfortu-
nately, there is no efficient antiviral drug currently approved. The matrix (M) protein
of morbilliviruses coordinates viral assembly and egress through interaction with
multiple cellular and viral components. However, molecular mechanisms supporting
these functions remain poorly understood, which preclude the rationale design of
inhibitors. Here, to investigate potential interactions between canine distemper virus
(CDV) M and the plasma membrane (PM), we combined structure-guided mutagene-
sis of selected surface-exposed lysine residues with biochemical, cellular, and viro-
logical assays. We identified several lysines clustering in a basic patch microdomain
of the CDV M C-terminal domain, which contributed to PM association and budding
activity. Our findings provide novel mechanistic information of how morbilliviruses
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assemble and egress from infected cells, thereby delivering bases for future antiviral
drug development.

KEYWORDS Morbillivirus cell exit, matrix protein, lysine residues, cell periphery
accumulation, membrane association, VLP production

easles virus (MeV) and canine distemper virus (CDV), two members of the genus

Morbillivirus within the family Paramyxoviridae, are associated with severe im-
pacts on human and animal populations, respectively (1, 2). Both of these infectious
agents are enveloped, nonsegmented, single-stranded, and negative-sense RNA vi-
ruses. Their genome encodes for six structural (nucleocapsid [N], phosphoprotein [P],
matrix [M], fusion [F], attachment [H], and polymerase [L]) proteins as well as two
nonstructural accessory elements, the V and C proteins. Multiple units of N protein
encapsidate the viral RNA genome, which in turn forms a helical structure enabling the
RNA-dependent RNA polymerase (VRdRp; composed of L+P) to dock on. This large
complex, also termed the ribonucleoprotein (RNP), represents the minimal infectious
unit (3). The viral envelope H glycoprotein binds to a specific host cell receptor, which
initiates the cell entry process by activating the interacting fusion glycoprotein. Upon
activation, the F protein dramatically refolds and merges the viral envelope with the
host cell plasma membrane (PM), thereby generating a fusion pore allowing for the
injection of the RNP into the host cell cytoplasm (4-14). The signaling lymphocyte
activation molecule (SLAM or CD150) on immune cells and nectin-4 on epithelial cells
act as specific MeV and CDV receptors, respectively (15-24). C and V are involved in RNA
synthesis as well as in counteracting the antiviral immune cell response. Morbilliviruses
replicate in the cytoplasm and exit the cell by employing a budding process proposed
to occur at the host cell plasma membrane, a molecular mechanism where the matrix
(M) protein plays a pivotal role (3).

The M protein is a major structural protein interacting with the viral envelope. It not
only orchestrates viral assembly and budding but also regulates viral RNA synthesis.
Moreover, expression of M protein alone in the cell can lead to the formation of
virus-like particles (VLPs) either in the presence or absence of other viral components
(3, 25-32). Supporting an important role of the M protein in viral assembly, so-called
“matrix-less” recombinant MeVs were severely impaired in viral particle formation.
Furthermore, such engineered recombinant viruses exhibited enhanced cell-cell fusion,
implying a potential role of M in fusion regulation (33). Importantly, M proteins of some
related paramyxoviruses and pneumoviruses (e.g., respiratory syncytial virus [RSV],
Newcastle disease virus [NDV], Nipah virus [NiV], Hendra virus [HeV], Sendai virus [SeV],
or Mumps virus [MuV]) were also documented to traffic through the nucleus. This
specific transport mechanism relied on a bipartite nuclear localization signal (NLS) as
well as a leucine-rich nuclear export signal (NES). Additionally, ubiquitination of a lysine
residue within the NLS, presumptively modified in the nucleus, is assumed to play a key
role in viral particle formation (34-41). Intriguingly, such transient nuclear trafficking
could not be illustrated in case of morbilliviruses M proteins (42).

To recruit viral factors and initiate assembly at the PM, it is assumed that the M
protein interacts with the cytoplasmic tails of H and F glycoproteins as well as with the
C-terminal end of N proteins (RNP complex). In addition, interaction of M with the actin
cytoskeleton occurs in many viral infections (33, 43-53). For instance, electron micros-
copy (EM) studies revealed the association of MeV M and actin filaments during
budding, where they facilitate the intracellular transport of M-RNP complexes (54).
Moreover, downregulation of MeV and CDV budding in the presence of actin polym-
erization inhibitors was reported, further underlining the critical role of actin filaments
during viral assembly (47-49).

Currently, no high-resolution structural data are available for any of the morbillivirus
M proteins. However, crystallographic studies of the related NDV, RSV, HeV, and human
metapneumovirus (hMPV) M proteins illustrated high structural conservation (27, 55—
58). The architecture comprises two similarly folded B-sandwich domains, connected by
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an unstructured linker. Two protomers, each composed of amino- and carboxy-terminal
domains (NTD and CTD, respectively), assemble in a “head-to-tail” fashion through a
large dimeric binding interface (27, 56-59). Multimerization of stable M dimers into a
grid-like array at the inner surface of the PM is proposed to drive membrane curvature
and formation of viral budding platforms. Both NTD and CTD were proposed to
contribute to the formation of high-order oligomers putatively through two surface-
exposed a-helices (namely, a2 in NTD and a9 in CTD) located at opposite sides of the
dimeric binding interface (27, 56, 57, 59, 60). Interestingly, cryo-electron tomography
(cryo-ET) studies revealed an organization of MeV M as a potentially two-dimensional
(2D) paracrystalline array. This array was suggested to coordinate contacts between the
surface F and H glycoproteins as well as with RNP complexes, thereby contributing in
shaping the overall particle architecture (61). However, although this study revealed
important structural data, the limited resolution precluded precise mapping of protein-
protein interactions and awaits next-generation technologies for validation. Further-
more, another recent structural study revealed that MeV particles may assume an
alternative organization, where M proteins form helices coating the RNP complex rather
than interacting with the inner leaflet of the viral envelope (54).

The inner leaflet of the PM is enriched in anionic phospholipids, which provide
platforms for proteins to mediate membrane association by using surface-exposed
positively charged residues. A number of related virus M proteins (e.g., RSV, NDV, and
hMPV) are known to bind membranes or lipid vesicles, most likely through a combi-
nation of hydrophobic and electrostatic interactions (26, 27, 56, 62-64). Additionally,
some matrix proteins of filoviruses, including Ebola virus (EBOV) and Marburg virus,
which belong to the same order as paramyxoviruses (i.e, Mononegavirales), interact
with the inner leaflet of the PM via electrostatic interactions (65-71). Coarse-grained
molecular dynamics simulation revealed that cationic patch residues, especially lysine
residues, mediate the interaction between EBOV-VP40 and the PM (72).

In the present study, we aimed to gain functional insights into the inherent
functions of CDV M that are necessary for cell exit. Based on a previously generated
homology three-dimensional (3D) model, we performed a structure-guided mutagen-
esis approach, which targeted surface-exposed positively charged lysine residues lo-
cated within M-CTD. The derivative mutants underwent biochemical, cellular, and
virological analyses. Altogether, our data identified multiple lysine residues of CDV
M-CTD as key regulators of the cornerstone processes of the viral cycle, including
cellular localization, membrane association, budding activity, and infectious particle
production, while not directly contributing to self-assembly and ubiquitination pro-
cesses.

RESULTS

Nonconservative M-CTD lysine mutants failed to accumulate at the cell periph-
ery. Recent structural studies highlighted a network-like assembly of the measles
matrix protein beneath the PM and the viral envelope (61). Although important insights
were provided, the resolution achieved by the technology available could not deter-
mine microdomains contributing to M dimer-dimer contacts or even how M dimers
spatially organize with regard to the PM. Here, to gain further knowledge on diverse M
functions and spatial positioning, we aimed at determining domains of CDV M that may
interact with the inner leaflet of the PM. By employing a previously determined
homology 3D structural model of the M dimer (27, 59), a large and uniform surface-
exposed basic patch, located within the CTD of each M promoter, was unambiguously
highlighted (Fig. 1A and B).

Consistently with the proposed electrostatic membrane, interactions for other en-
velope virus matrix-like proteins (i.e., paramyxoviruses, pneumoviruses, filoviruses), all
positively charged lysine residues (K) residing within the basic patch of the CDV M-CTD,
were subjected to site-directed mutagenesis (Fig. 1C and D). The targeted lysine
residues were replaced by (i) arginine (R; positive charge, conservative mutation), (ii)
glutamic acid (E; negative charge, nonconservative mutation), and (iii) methionine (M;
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FIG 1 Structural model of CDV M and putative electrostatic interaction via surface-exposed, positively charged,
lysine residues. (A) NDV-based (PDB code 4G1G) structural homology model of a CDV M dimer. The three major
domains of a protomer are colored in red (NTD), pink (linker), and blue (CTD). Surface-exposed helices, proposed
to be involved in dimer-dimer interactions, are labeled as a2 and «9. The promoter-promoter binding interface is
highlighted with a dashed black line (59). (B) Electrostatic potential at the molecular surface of CDV M, ranging from
blue (+72.424KkT/e) to red (—72.424KkT/e). The basic patch is indicated. (C) Surface-exposed positively charged lysine
residues within the basic patch of the CTD (blue) are highlighted in red. (D) One-directional representation of
plasma membrane association via electrostatic interaction (26, 27, 72). (E) Sequence alignment of M proteins of
representative paramyxoviruses. At the top is a schematic representation of the M protein’s main domains and
highlighted lysine residues targeted for mutagenesis. Accession numbers (GenBank or NCBI) for the virus se-
quences are as follows: CDV A75/17 (CDV A75), AAD49701; CDV Snyder Hill (CDV SH), AFC40215; CDV Onder-
stepoort (CDV OP), NP_047204; phocine distemper virus (PDV), AGL33552; MeV IC-B (MeV ICB), BAM36454; MeV
genotype B3, an SSPE strain (MeV SSPE), ALL29057; rinderpest virus (RPV), CAA53779; cetacean morbillivirus
(CeMV), AEO51054; peste-des-petits-ruminants virus (PPRV), ACQ44669; Nipah virus (NiV), NP_112025; Newcastle
disease virus (NDV), AEZ36128; and human parainfluenza virus 5 (hPIV5), ABC75775. The stars represent amino
acids conserved throughout members of the subfamily. Amino acids differing from the reference CDV M sequence
(strain A75/17) are shown in gray boxes.
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FIG 2 Cellular localization of CDV M mutants. FLAG-tagged M wt (A) and M mutant proteins (B) were expressed in
HEK-293T cells, and cellular localization was investigated by immunofluorescence analysis after 24 h. FLAG-tagged
M proteins were stained in red, and the PM and nuclei were counterstained in green and blue, respectively.

neutral charge, similar in structure to lysine). Of note, the selected lysine residues are
well conserved among all members of the Morbillivirus genus, with some even broadly
in paramyxoviruses (Fig. 1E).

To investigate the impact of the rationally designed M mutants on intracellular
localization, immunofluorescence analyses were performed. To highlight the cell pe-
riphery, plasma membranes were counterstained with an antibody targeting the
PM-residing alpha 1 subunit of the sodium-potassium pump. In accordance with our
previous study (59), wild-type (wt) M proteins were efficiently transported to the cell
periphery (Fig. 2A). Likewise, the conservative M mutants exhibited similar phenotypes
(Fig. 2B, left panels). In contrast, the nonconservative M variants exhibited a clear
cytosolic phenotype, except for M-K240E and M-K243E, which preserved cell periphery
localization (Fig. 2B, right panels). The methionine mutants, M-K227M, -K228M, -K238M,
and -K240M were efficiently transported to the cell periphery, whereas the others
(M-K243M, -K265M, -K268M, -K277M, and -K278M) showed a location consistent with a
cytosolic phenotype (Fig. 2B, panel 2). Taken together, immunofluorescence analyses
revealed that most of the nonconservative M variants exhibited a cytosolic phenotype
presumably secondary to the lack of interaction with the PM. Conversely, conservative
M mutants revealed proper localization with PM indirectly supporting the critical role
of positively charged residues.
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FIG 3 Cellular localization of CDV mNeonGreen-M mutants. mNeonGreen-tagged M-wt (A) and M-mutant (B)
proteins were expressed 24 h in MDCK cells, and cellular localization was investigated by fluorescence analysis.
Nuclei were counterstained with DAPI.

Interestingly, M-K240E and M-K243E preserved cell periphery localization despite
harboring nonconservative amino acid changes (Fig. 2B). However, both residues are
potentially located within the M-CTD a9-helix, a microdomain proposed to rather
contribute in self-assembly (27, 59). Accordingly, those two mutants were excluded
from this study, and the next biochemical and functional analyses were then focused
on M lysine mutants, which unequivocally exhibited a lack of cell periphery accumu-
lation when carrying nonconservative substitutions. Specifically, for M-K238E (which
also featured cytosolic accumulation), our 3D model suggested that residue at position
238 of CDV M might be buried deeper inside the protein, thereby putatively affecting
protein folding and, eventually, cellular localization. This potential difference warranted
a separate analysis of M-K238E.

In addition, to investigate the impact of CDV M mutants on intracellular localization
in a canine cell line, fluorescence analyses with mNeonGreen-tagged M mutants were
performed in MDCK (Madin-Darby canine kidney) cells (Fig. 3). As expected, no differ-
ences in localization compared to FLAG-tagged M mutants in HEK-293T cells were
monitored. Interestingly, for M variants that lacked PM targeting, we noted fluores-
cence emission also in the nucleus. Since mNeonGreen is found in the cytosol and
nucleus when expressed alone, the intrinsic localization of mNeonGreen is likely
dominant when attached to M protein variants lacking PM binding.
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FIG 4 Investigation of self-assembly by coimmunoprecipitation (colP). (A to C) The inherent self-assembly
efficiencies of M wt and mutant proteins were determined by colP and immunoblot (IB) analysis. The
antibodies used for the immunoprecipitation (IP) and IB are indicated on the left (aHA, aM, and aTub).
The different tagged mutants are labeled on the right and above, respectively. TL, total cell lysate. (D) The
graphic shows the colP efficiency index from three independent experiments (means and standard
deviation [SD]). All ratios were normalized to wild-type M.

Nonconservative M protein lysine mutants retained self-assembly efficiency.
To exclude the possibility that loss of PM targeting of selected M mutants was
secondary to improper protein folding/assembly, coimmunoprecipitation (colP) assays
were carried out. In order to distinguish between IP and colP M proteins in a single
setting, HEK-293T cells were cotransfected with DNA plasmids encoding for M proteins
of different sizes as follows: (i) a FLAG-linker-tagged M variant and (ii) a 2X hemag-
glutinin (HA) double-linker-tagged M mutant. Mixed M protein populations extracted
from total cell lysates (TL) were immunoprecipitated using anti-HA monoclonal anti-
body (@HA) and fractionated in SDS-PAGE gels under reducing conditions. Upon
membrane transfer, M proteins were finally detected using a polyclonal anti-Mcp,
antibody (aM) (Fig. 4A to C). Regardless of the tag (FLAG or 2XHA), all M mutants were

January 2021 Volume 95 Issue 1 e01269-20

Journal of Virology

jviasm.org 7

Downloaded from https://journals.asm.org/journal/jvi on 10 July 2023 by 192.167.111.173.


https://jvi.asm.org

Kadzioch et al.

ns

ns
A R Biso- I
999 &
IB:aM g
e - S e <IFLAG-M O 100 -
35 kDa — b
c
PM g
% 50 1
IB:aM o <FLAG-M
35 kDa — 0
CF Mo & &

So)
NN

FIG 5 Analysis of plasma membrane association of various CDV M mutants. (A) The association of M-K228 mutants
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on the left (aHA). (B) The graphic shows the ratios between the PM- and cytosolic-associated M proteins from three

independent experiments (means and SD). All ratios were normalized to wild-type M.

expressed in cells, although M-K277M and -K278M exhibited limited expression profiles
(Fig. 4C). As expected, when both protein variants were expressed separately, no colP
(FLAG-tagged) M proteins were detected (Fig. 4A). In contrast, (FLAG-tagged) M was
readily pulled down in conditions where both M wt variants were coexpressed in the
same cells, thereby validating our biochemical assay. Strikingly, all conservative, neutral,
and nonconservative M variants preserved their ability to self-assemble. We also
calculated the colP efficiency index (ratio between the intensity of the IP and colP M
protein bands divided by the ratio of the TL M protein bands), which clearly confirmed
that self-assembly remained mostly unaffected regardless of the amino acid side chain
present at the selected M positions (Fig. 4D). Collectively, our data reveled that
mutating lysine residues within CDV M-CTD did not significantly alter the overall M
protein structural architecture.

We observed a minor shift in gel migration specifically for M-K277M and -K278M
mutants, which is likely a consequence of the introduction of the hydrophobic side
chain at those two specific positions, given that other amino acid modifications (R and
E) did not lead to any obvious detectable difference (Fig. 4C).

The cytosolic retention profile of nonconservative M mutants correlates with
lack of association with the plasma membrane. To determine whether the lack of
cell periphery accumulation phenotype observed with nonconservative M mutants
specifically correlated with deficiency in PM association, we processed some targeted
mutants (M-K228) with a biochemical assay enabling focused analyses on the PM
fraction. As expected, the M-K228R and M-K228M protein variants, which were char-
acterized by intact cell periphery accumulation, also exhibited proper interaction with
the lipids of the PM (Fig. 5). In sharp contrast, the M-K228E mutant, which was
associated with cytosolic retention, was barely detected in the PM fraction (Fig. 5). In
summary, these findings provided strong evidence that switching the negative charge
at targeted lysine residues within CDV M-CTD prevented cell periphery targeting as a
consequence of impaired association with the PM.

M mutants with PM targeting deficiencies also failed to produce VLPs. The
delivery of CDV M to the cell surface, its arrangement into a regular lattice beneath the
PM, and its association are considered to be essential for the production of M-induced
VLPs. To investigate the inherent capacity of CDV M and its derivative mutants to
release VLPs, we employed a previously described biochemical assay (59). The VLP
budding index illustrates the ratio between the M signal derived from the cell super-
natant (VLPs) versus the M signal recorded from the total cell lysate (TL) (Fig. 6).
Conservative M lysine mutants, which preserved the PM binding capacity and were
localized at the PM, remained functional in VLP formation (>50%) (Fig. 6A to C and E).
Among the methionine mutants, only M-K227M and M-K228M remained partially
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FIG 6 Analysis of VLP production induced by CDV M mutants. (A, C, E) VLPs were purified from the supernatants
of HEK-293T cells expressing M mutants at 48 h posttransfection (hpt) by centrifugation through a 25% glycerol
cushion. Equal amounts of total cell lysate (TL) and VLPs were subjected to SDS-PAGE and Western blotting
analysis. The antibody used for the immunoblot is shown on the left (a«M). As loading control, tubulin was detected
thanks to a monoclonal anti-tubulin antibody (aTub). (A) K227/8-mutants, (C) K265/8-mutants, (E) K277/8-mutants.
(B, D, F) The graphic represents the means and SD of the budding index, which was defined as the amount of M
in the VLPs divided by the amount in TL from three independent experiments.

functional (VLP formed at ~50% compared to that of the wt) (Fig. 6A and D), correlating
with their efficient PM targeting. Conversely, the intracellularly retained mutants
M-K265M, M-K268M, M-K277M, and M-K278M were entirely defective in VLP formation
(Fig. 6C to E). Finally, all tested nonconservative M mutants with a clear cytosolic
phenotype secondary to lack of PM interactions were also drastically impaired in VLP
production (Fig. 6A, C, E, and F). Altogether, these results confirmed and further
expanded the mechanistic reach of our previous findings: the negative charge at
selected lysine residues (positions 227, 228, 265, 268, 277, and 278) within M-CTD, while
not crucial in protein folding, is essential in regulating PM localization/association and
enabling productive membrane budding activity.

Lysine residue at position 238 of CDV M affects protein folding. The potentially
mostly buried position of lysine residue 238 in the M protein was consistent with a
different molecular mechanism leading to the lack of PM localization. To address this
possibility, we submitted the M-K238 mutants to the colP and VLP biochemical assays.
Although M-K238R and M-K238M preserved their ability to efficiently oligomerize, we
observed a low level of expression for the mutant M-K238E (and therefore any colP M
could be observed) since only barely detected in Western blotting analyses (Fig. 7A and
B). Membrane budding activity was retained by M-K238R only, whereas M-K238E/M
were strongly impaired in VLP production (Fig. 7C and D). Collectively, our results
revealed that the M-K238E mutant was not expressed properly, which explained the
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FIG 7 Investigation of K238 function. (A) The inherent self-assembly efficiencies of M-K238 mutants were deter-
mined by colP and IB analysis. The antibodies used for the IP and IB are shown on the left (aHA, «M, and «aTub).
The different tagged mutants are labeled on the right and above, respectively. The white line indicates where the
image was cropped for better presentation. (B) The graphic shows the colP efficiency index from three independent
experiments (means and SD). All ratios were normalized to wild-type M, which was arbitrarily set at 100%. (C) VLPs
were purified from the supernatants of HEK-293T cells expressing M-K238 mutants at 48 hpt. Equal amounts of TL
and VLPs were subjected to SDS-PAGE and Western blotting analysis. The antibody used for the immunoblot is
indicated on the left (aM). As loading control, tubulin was revealed by employing a monoclonal anti-tubulin
antibody («aTub). (D) The graphic represents the means and SD of the budding index, which was defined as the
amount of M in the VLPs divided by the amount in cell lysates.

lack of PM targeting. This result strongly supported our initial hypothesis predicting the
lysine residue at position 238 to be critical for protein folding.

Recombinant viruses bearing nonconservative mutation at selected M posi-
tions are defective in viral particle formation. We previously determined that some
nonconservative M lysine mutants were defective in VLP formation. To study these
mutations in a more biologically relevant context, we engineered three recombinant
viruses: rA75/17-M-K227R, rA75/17-M-K227E, and rA75/17-M-K227M. Because budding-
deficient viruses cannot be efficiently recovered from cDNA, we established a comple-
mentation system. In this set of experiments, we transiently coexpressed vesicular
stomatitis virus (VSV)-G in addition to all other plasmids necessary for viral rescue.
Indeed, the VSV-G glycoprotein not only drives cell entry but also contains the inherent
ability to form VLPs. Using this strategy, we could successfully generate stock of
infectious viruses harboring a defective M protein. Stocks of recombinant trans-
complemented viruses were then transferred to Vero-cSLAM cells (~50 to 100 PFU),
and the impact of the different M variants on membrane budding activity was assessed
3 days postinfection (determination of the infectivity titers from collected cell-
associated [CA] and cell-free [SN] viruses).

While CA titers obtained from rA75/17-M-wt- and rA75/17-M-K227R-infected Vero-
cSLAM cells reached a plateau at about 2.0 X 10* 50% tissue culture infective dose
(TCID50)/ml (Fig. 8A), SN titers recorded for these two viruses peaked at 4.0 X 103
TCIDgo/ml (Fig. 8B). In contrast, rA75/17-M-K227M showed reduced budding activity
(~3.5 X 103 TCIDso/ml for CA and 1.4 X 102 TCID5o/ml for SN). Finally, the rA75/17M-
K227E virus was markedly defective in infectious virus production (~1.7 X 10!
TCIDso/ml for CA and SN). Altogether, these data confirmed the results obtained with
the M protein-based VLP assay. Conservative M lysine mutants retained membrane
budding activity (VLPs and infectious virus production), whereas nonconservative M
lysine mutants did not. We also noted that, regardless of the M protein variant
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FIG 8 Analysis of progeny virus production of recombinant canine distemper virus bearing a single nonconser-
vative mutation of the lysine within the M-CTD. Viral titers of rescued rA75/17 viruses containing M-wt, -K227R,
-K227E, and -K227M mutants from three independent experiments are shown as follows: cell-associated (CA)
progeny viruses (A) and cell-free (SN) progeny viruses (B). (C) Syncytia formation in Vero-cSLAM cells 3 days
postinfection (dpi). Pictures of representative fields of view were acquired using an Invitrogen EVOS M5000
microscope.

expressed, all three viruses were efficiently triggering membrane fusion activity
(Fig. 8C).

The proteasome inhibitor bortezomib reduces M-dependent VLP formation. It
is assumed that multiple posttranslational modifications can target surface-exposed
lysine residues of proteins (i.e., ubiquitination, SUMOylation, acetylation). Interestingly,
several members of the families Paramyxoviridae and Paramyxovirinae encode matrix
proteins that are indeed ubiquitinated, a posttranslational modification that may be
acquired within the nucleus and important for controlling nuclear export, viral assem-
bly, and egress (34, 35). However, although recent studies suggested that the morbil-
livirus M protein (including MeV and CDV) may not traffic through the nucleus (42),
previous data nevertheless indicated efficient ubiquitination at lysine position 240 of
the MeV M protein (34).

To investigate whether (i) CDV M is equally ubiquitinated and (ii) this posttransla-
tional modification contributes to membrane budding activity, we took advantage of
the drug bortezomib, a well-characterized FDA-approved proteasome inhibitor that
leads to the depletion of free ubiquitin in the cell (35, 73). Strikingly, in bortezomib-
treated cells, M wt was characterized by a dose-dependent reduction of VLP formation
(Fig. 9A and B). Given that expression levels of exogenous (FLAG-M) and endogenous
(tubulin) proteins in the total cell lysate were comparable to dimethyl sulfoxide
(DMSO)-treated samples, we excluded cytotoxicity as the major cause of reduced VLP
production in M-expressing cells. Moreover, M-driven membrane budding activity was
partially restored by exogenous overexpression of a mutated ubiquitin version (HA-
Ub-KO0) (Fig. 9C and D). This ubiquitin variant contains all lysine residues replaced by
arginines (74), which in turn leads to monoubiquitination of target proteins, a post-
translational modification relevant to several regulatory functions. In summary, these
results confirmed the essential role of the ubiquitination in CDV M-mediated VLP
formation, even though the CDV M protein may not traffic through the nucleus like
other paramyxovirus matrix proteins.
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FIG 9 VLP formation of CDV M-wt in the presence of the proteasome inhibitor bortezomib. (A, C) CDV M-wt VLP
budding in the presence of bortezomib. HEK-293T cells expressing FLAG-M-wt (A) or coexpressing FLAG-M-wt plus
HA-Ub-KO (C) were incubated with DMSO, 10 uM, 20 uM, or 30 uM bortezomib for 24 h. VLPs and cell lysates were
immunoblotted with a polyclonal anti-Mp,, antibody (aM). As loading control, tubulin was revealed by employing
a monoclonal anti-tubulin antibody (aTub). (B, D) The graphics represent the means and SD of the budding index,
which was defined as the amount of M in the VLPs divided by the amount in cell lysates.

CDV M-CTD lysine mutants remain properly ubiquitinated. Given that the
proteasome inhibitor bortezomib potently inhibited M-driven VLP formation, we next
investigated whether the studied lysine residues within M-CTD were involved in
ubiquitination. In order to biochemically determine the ubiquitination status of the
various M mutants, we coexpressed FLAG-M with HA-Ub-KO in HEK-293T cells. One day
posttransfection (potentially ubiquitinated), M proteins were immunoprecipitated
with a monoclonal anti-HA antibody and, upon Western blotting analyses, CDV M was
detected using a polyclonal anti-Mcp,, antibody. Regardless of whether the M lysine
residues were mutated into conservative (Fig. 10A and B) or nonconservative amino
acids (Fig. 10E and F), all M protein variants preserved wt-like monoubiquitination
profiles. Remarkably, even dual M lysine mutants remained properly ubiquitinated (Fig.
10C and D). Collectively, these data not only demonstrate the importance of ubiquiti-
nation in M-mediated membrane budding activity but further suggest that additional
lysine residues, besides that targeted in this study, are involved in this functionally
essential posttranslational modification.

DISCUSSION

A recent cryo-electron tomography (cryo-ET) study of the measles virus matrix
protein revealed evidence for a grid-like organization under both the plasma mem-
brane (PM) of infected cells and the viral envelope (61). These findings were consistent
with previous data obtained for related pneumoviruses and paramyxoviruses (i.e., NDV,
RSV, HeV, hMPV), indicating a possible underlying conserved mechanism mediated by
M proteins for membrane budding activity (27, 55-58). However, although cryo-ET
analyses revealed interaction of MeV M with lipids, glycoproteins, and nucleocapsids,
the limited structural resolution not only precluded the determination of the precise
orientation of M within the network but could not highlight microdomains regulating
functional interactions.
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FIG 10 Ubiquitination of lysine residues within CTD of CDV M. (A, C, E) Immunoblot analysis of ubiquitination of
lysine mutants of CDV M. HEK-293T cells were cotransfected with HA-Ub-KO and the FLAG-tagged M-wt or
indicated mutant. Single R mutants (A), double R mutants (C), single E mutants (E). After 24 hpt, FLAG-tagged M
was immunoprecipitated, and its ubiquitinated species were detected by Western blotting analysis using a
polyclonal anti-MCDV antibody (aM). The white lines indicate where the images were cropped for better
presentation. (B, D, F) The graphics represent the means and SD of the ubiquitination efficiency index, which was
defined as the ratio of FLAG-M-Ub to FLAG-M. All ratios were normalized to wild-type M.

In some related paramyxoviral and filoviral viruses, large positively charged patches
of matrix-like proteins were suggested to be involved in membrane association (3,
26-28, 63, 65, 70-72). Based on a homology 3D model, we highlighted two conserved,
surface-exposed, basic patches, located within each CDV M-CTD protomer. Assuming
the basic patch positioned toward the PM, part of the CTD might interact with the inner
leaflet of the lipid bilayer, whereas other regions located within the NTD may point
toward the cytosol and, upon budding, toward the inside of the viral particle. Such M
orientation infers an interaction with nucleocapsids through the NTD and assembly of
M oligomers as well as binding to the inner leaflet of lipid bilayers through the CTD. In
this study, we aimed at providing biochemical and mechanistic evidence that CDV
M-CTD (i) indeed contributes to PM binding and (i) whether the binding relies on
electrostatic interactions.

Toward this goal, nine lysine (K) residues encompassed within the M-CTD basic
patch were mutated into alternative basic (R), neutral (M), and acidic (E) amino acids.
Abrogation of PM association and release of VLPs in the supernatant with most of the
nonconservative M mutants (K227E, K228E, K265E, K268E, K277E, and K278E), combined
with the absence of any other large and uniform basic patches present on the surface
of our CDV M structural model, provided strong evidence that the basic patch very
likely interacted with the negatively charged inner leaflet of cellular membranes

January 2021 Volume 95 Issue 1 e01269-20

Journal of Virology

jviasm.org 13

Downloaded from https://journals.asm.org/journal/jvi on 10 July 2023 by 192.167.111.173.


https://jvi.asm.org

Kadzioch et al.

(including the PM). Strikingly, switching a single positive charge of the large basic patch
into a negative one was sufficient to severely impair M-mediated membrane associa-
tion and release of VLPs. Importantly, these data are relevant for the whole infectious
virus, since a recombinant CDV carrying the single M-K227E mutation also exhibited
strong deficiency in virus progeny production. Although we cannot exclude that the
introduced substitutions led to local conformational changes preventing membrane
association, our data (indicating proper expression and self-assembly profiles of the
nonconservative M mutants [except K238E]) led us to hypothesize that the basic patch
promoted M-mediated electrostatic membrane interactions. Interestingly, while M
mutants harboring a neutral amino acid (M) at positions 227 and 228 within the basic
patch preserved PM targeting and partial membrane budding activity, M variants
K265M, K268M, K277M, and K278M were completely deficient in promoting both
functions. These data are consistent with lysine residues at position 265, 268, 277, and
278 of CDV M as key regulators of PM association and critical for membrane budding
activity. Furthermore, the findings that recombinant viruses harboring nonconservative
M mutants were drastically impaired in membrane budding activity, while still able to
induce cell-cell fusion, demonstrated that the two expressed surface glycoproteins (H
and F) could not restore egress of the recombinant viruses. These data further high-
lighted the essential role of M (and associated functions) and the identified lysines in
viral budding activity.

Intriguingly, the M-K240E and M-K243E single mutants preserved plasma membrane
localization, albeit displaying a negative charge within the basic patch. Based on our
homology, the 3D structural model, and the proposed M orientation, K240 and K243
may not be ideally exposed toward the PM but may be located more sideway in the
a9-helix; a microdomain hypothesized to contribute to M dimer-dimer contacts. There-
fore, our data suggested that both lysines may not directly contribute to electrostatic
interactions with lipids but would affect the assembly of M proteins into higher
oligomers. Conversely, the structural model indicated that the nearby lysine residue at
position 238 is only poorly exposed on the M protein surface. The limited expression
profile monitored when this position was converted into a nonconserved amino acid
(M-K238E) not only argued in favor of a role of this lysine residue in proper protein
folding but strengthened the relevance of our 3D model. Consistently, mutating lysine
238 into an amino acid with a similar charge (R) led to M protein variants exhibiting
wt-like phenotypes (PM targeting and VLP production). Interestingly, immunofluores-
cence analyses of M-K238M revealed that, despite a clear PM localization phenotype,
the latter mutant was defective in VLP formation. For all other tested methionine
mutants, PM targeting correlated with efficient VLP formation. Therefore, these results
strongly supported our initial hypothesis, predicting the lysine residue at position 238
to be critical for protein folding. Replacing lysine 238 with an amino acid containing
either a negative charge or a hydrophobic side chain may impact the overall structural
M architecture and, consequently, compromise its multiple functions.

It was previously reported that some paramyxovirus and pneumovirus matrix pro-
teins (i.e., SeV, NDV, RSV, NiV, HeV, and MuV) traffic through the nucleus via a conserved
functional bipartite nuclear localization signal (NLS,,) and, consequently, undergo
ubiquitination, a posttranslational modification considered essential for controlling
nuclear export, viral assembly, and membrane egress (34, 35). In sharp contrast, it was
shown that CDV and MeV M proteins do not traffic through the nucleus (42), although
ubiquitination at lysine residue 240 of the MeV M protein (K240) was proposed (34).
Here, we provided evidence that the CDV M protein is equally ubiquitinated and that
this modification was essential for M-mediated membrane budding activity. Indeed, in
bortezomib-treated cells, CDV M lost its inherent ability to bud VLPs. Even though these
findings suggested that ubiquitination of the morbillivirus matrix protein may be
acquired in the cytosol, none of the analyzed CDV M lysine mutants (including those
lacking electrostatic membrane interactions) exhibited substantial reduction of their
ubiquitination profiles, which argued for alternative lysine residues regulating this
essential process. Therefore, additional work is warranted to (i) identify which amino
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acid(s) of the CDV M protein is important for ubiquitination and whether differences
exist among morbilliviral members, (ii) determine the precise role of ubiquitinated M
proteins in the morbilliviral life cycle, and (i) define how ubiquitinated M proteins are
arranged within the grid-like structure. Nevertheless, our findings provided further
evidence for a crucial role of this posttranslational modification in regulating paramyxo-
virus and pneumovirus membrane egress.

In summary, our data identified multiple surface-exposed lysine residues located
within the CTD of the CDV M protein, which critically contributed to PM association and
ensuing membrane budding activity but were not involved in ubiquitination modifi-
cations. These findings provide novel mechanistic information on the largely unex-
plored multiple functions promoted by morbilliviral M proteins.

MATERIALS AND METHODS

Cell cultures and transfection. Depending on the experiment, the cells used included HEK-293T
cells (ATCC CRL-11268), Vero cells stably expressing canine SLAM (Vero-cSLAM; kindly provided by
Yusuke Yanagi, Kyushu University, Japan), BSR-T7 (75), and MDCK cells (ATCC CCL-34). Cells of every type
were grown in Dulbecco’s modified Eagle medium (DMEM; Gibco, Invitrogen) containing 10% fetal calf
serum (FCS; Bioswisstech) and penicillin-streptomycin at 37°C in a 5% CO, atmosphere. Cells were
transfected with TransIT-LT1 (Mirus) or Helix-IN (OZ Biosciences) by following the manufacturer’s
instructions.

Plasmids and mutagenesis. All mutant CDV M protein-expressing plasmids were based on the pCl
vector containing CDV M of the A75/17 CDV strain (59). All CDV M variants had an N-terminal tag (FLAG,
2XHA, or the green fluorescent protein mNeonGreen). CDV mutations were introduced using In-Fusion
HD cloning plus (Takara). Mutagenesis primer sequences will be communicated upon request.

Indirect immunofluorescence analysis. HEK-293T cells transfected with plasmids encoding CDV-M
wt or mutants were fixed 24 h posttransfection (hpt) with 4% paraformaldehyde (PFA; pH 7.4) in
phosphate-buffered saline (1X PBS) and permeabilized with 0.5% Triton X-100 in PBS. Immunodetection
was performed using as a primary antibody mouse monoclonal anti-FLAG M2 antibody (1:1,000;
Sigma-Aldrich) for FLAG-M constructs and rabbit monoclonal anti-sodium potassium ATPase antibody
(1:500; Abcam) for the plasma membrane; as a secondary antibody, Alexa Fluor 555-conjuated goat
anti-mouse IgG (H+L) and Alexa Fluor 488-conjugated goat anti-rabbit IgG (H+L) (1:1,000; Life Tech-
nologies) were used. Nuclei are counterstained with 4’,6-diamidino-2-phenylidole (DAPI; 1:5,000; Appli-
Chem). Pictures were acquired by laser scanning confocal microscopy using Olympus FV3000 with
FluoView FV3000 system software.

Fluorescence analysis of mNeonGreen-M constructs. MDCK cells were transfected with plasmids
encoding CDV mNeonGreen-tagged M wt or mutants with Helix-IN (OZ Biosciences) by following the
manufacturer’s instructions. One day posttransfection, cells were fixed with 4% PFA (pH 7.4) in 1X PBS.
Nuclei were counterstained with DAPI (1:5,000; AppliChem). Pictures were acquired by laser scanning
confocal microscopy using Olympus FV3000 with FluoView FV3000 system software.

Western blotting. Western blotting and SDS-PAGE were performed with standard protocol. Samples
were loaded onto 12% Tris-glycine SDS-PAGE. Separated proteins were transferred to nitrocellulose
membranes (GE Healthcare Amersham protran premium 0.2-um NC nitrocellulose membranes; Fisher) by
electroblotting. Proteins were detected with an in-house-generated rabbit polyclonal anti-Mp,, antibody
(aM) (1:1,000) (45) and a horseradish peroxidase (HRP)-conjugated goat anti-rabbit antibody (1:10,000;
Dako) or a mouse monoclonal anti-tubulin antibody (aTub) (1:5,000; Abcam) and an HRP-conjugated
rabbit anti-mouse antibody (1:5,000; Abcam). Chemiluminescence signals were detected using 1-Step
Ultra TMB (3,3',5,5'-tetramethylbenzidine)-blotting solution (Thermo Fisher Scientific) according to the
manufacturer’s instructions.

Production of viral-like particles. HEK-293T cells in 6-well plates were transfected with 3 ug per
well of FLAG-tagged CDV-M or M mutants expressing constructs. Forty-eight hours posttransfection, 1 ml
of the culture supernatants was collected and centrifuged (10 min; 500 X g; 4°C) to remove cellular
debris. The clarified supernatants were incubated with 40 ul of 10X trypsin-EDTA solution (Sigma-
Aldrich) for 30 min at 37°C. Subsequently, 50 ul of soybean trypsin inhibitor (1 mg/ml solved in distilled
water; Roche Diagnostics) was added to reduce the activity of trypsin. Consequently, the supernatant
mixtures were loaded on a 25% glycerol cushion and centrifuged at 16,100 X g for 2 h at 4°C. Following
this, the supernatants mixture was removed, the VLP-pellets were resuspended in 0.2 M dithiothreitol
(DTT)-1.6X Laemmli buffer (Bio-Rad), boiled at 97°C, and subjected to Western blotting analysis. As for
the cell lysate expressions, cells were harvested in 1 ml PBS 48 hpt. A total of 100 ul of the cells were
transferred in new tube and centrifuged (10 min; 500 X g; 4°C). The TL pellets were resuspended in 0.2
M DTT-1.6X Laemmli buffer (Bio-Rad), boiled at 97°C, and subjected to Western blotting analysis as
described above. The intensities of the bands were quantified with the FUSION FX software (Vilber). The
budding index was defined as the amount of M in the VLPs divided by the amount in TLs
(VLP FLAG—M

TLFLAG—M [ All ratios were normalized to wild-type M, which was arbitrarily set at 100%.

Coimmunoprecipitation and immunoprecipitation of matrix ubiquitination. HEK-293T cells
coexpressing FLAG-linker-M and 2 XHA-double-linker-M, both bearing the same mutations, or coexpress-
ing FLAG-linker-M variants and HA-ubiquitin-KO, were resuspended in PBS 24 hpt and centrifuged (10
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min; 500 X g; 4°C). The cell pellets were lysed with radioimmunoprecipitation assay (RIPA) buffer (50 mM
Tris, pH 7.2, 150 mM NaCl, 10 mM EDTA, 1% sodium deoxycholate, 1% Nonidet P-40, 0.05% SDS)
containing protease inhibitor (Roche; cOmplete mix) for 1h at 4°C. Cell lysates were clarified by
centrifugation (16,100 X g; 20 min; 4°C). Supernatants were transferred into new tubes, and 15 ul of
Dynabeads protein G (Invitrogen) were added as well as 1:1,000 monoclonal mouse anti-HA antibody
(BioLegend) for colP assay or 1:1,000 monoclonal mouse anti-FLAG M2 antibody (Sigma-Aldrich) for IP of
matrix ubiquitination. The mixture was incubated overnight at 4°C on a rotating wheel. The beads were
washed with PBS containing 0.05% Tween 20 (Merck), resuspended in 2X Laemmli buffer (Sigma-
Aldrich), boiled at 97°C, and subjected to Western blotting analysis. The intensities of the bands were
quantified with the FUSION FX software (Vilber). The colP efficiency index was defined as the ratio of colP
to IP signals divided by the ratio of TLs as follows:

IP FLAG — M TLFLAG - M
colP2 X HA—M/ TL2 XHA-M

o . . X FLAG—M—-Ub
The ubiquitination efficiency index was defined as the ratio of FLAG-M-Ub to FLAG-M | ———+——

FLAG—-M
All ratios were normalized to wild-type M, which was arbitrarily set at 100%.

Plasma membrane association. The association of M mutants with the plasma membrane was
analyzed at 24 hpt using a plasma membrane protein extraction kit (101Bio) according to the manu-
facturer’s protocol. The extracted plasma membrane- and cytosolic-associated proteins were resus-
pended in 2X Laemmli buffer (Sigma-Aldrich), boiled at 97°C, and subjected to Western blotting analysis.

Recombinant virus rescue. For the rescue of rA75/17-M-wt or -mutants, BSR-T7 cells were trans-
fected with recombinant plasmids encoding the anti-genome along with helper plasmids (pMD2.G
[Addgene], pTM-NOP_p,, pTM-POP,,_Cko, pTM-LOP_y,,_V13E [unpublished data]) using TransIT-LT1
(Mirus) according to manufacturer’s instructions. The cells were heat-shocked for 2 h at 42°C after 3 hpt,
medium changed, and incubated for 48 h. Cells and supernatants were collected and frozen at —80°C
overnight. Cells and supernatants were thawed and directly centrifuged (5 min, 800 X g, 4°C). Six-well
plates were prepared with 0.7 X 106 Vero-cSLAM cells and infected with the supernatants for 72 h.
Supernatant and cells were collected separately from the rescue for quantification of viral titers.

Statistical analysis. Statistical significance was determined using one-way analysis of variance
(ANOVA) followed by Tukey's test using GraphPad Prism 5 to analyze differences between wild-type and
mutant means (*, P < 0.05; ***, P < 0.001; ns: not significant).
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