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Abstract: Background: Multiple sclerosis (MS) is characterized as a neurodegenerative condition
possibly triggered by autoimmune mechanisms, impacting the entire central nervous system. In this
context, neurorehabilitation plays a crucial role in every phase of the disease, aiming to restore and
preserve motor functions in MS patients. In particular, robotic gait training (RGT) allows intensive,
repetitive, and task-oriented training, which is pivotal in boosting neuroplastic processes. Thus,
the primary aim of our study is to evaluate the effectiveness of innovative robotic gait training,
using the G-EO system, on gait, functional abilities, and quality of life (QoL) in patients affected by
MS. Secondly, we evaluated the effect of the robotic rehabilitation on lower-limb motor function-
ing, balance, sensation, and joint functioning. Methods: The study involved twenty MS patients,
divided into two groups with comparable medical characteristics and rehabilitation training duration.
The experimental group (EG) underwent robotic gait training with the G-EO system (n. 10), while
the control group (CG) received traditional rehabilitation training (n. 10). Results: Both groups
exhibited improvements in disability level (Functional Independence Measure), 10 m walking dis-
tance (10MWT), gait, and balance performance (Functional Ambulation Classification, Tinetti Scale).
However, the EG demonstrated a more significant improvement. The G-EO system notably reduced
spasticity in the lower limbs (Modified Ashworth Scale) exclusively in the EG. Discussion: This
study suggests that the G-EO system could be a valuable tool for enhancing gait functions, including
lower-limb movements, functional abilities, and QoL in individuals with MS.

Keywords: end effector; multiple sclerosis; neurorehabilitation; quality of life; robotic gait training

1. Introduction

Multiple sclerosis (MS) is characterized as a neurodegenerative condition possibly
triggered by autoimmune mechanisms, impacting the entire central nervous system [1,2]. In
Italy, the estimated prevalence varies between 122 and 232 cases per 100,000 individuals in
mainland regions and Sicily, averaging at 176 cases per 100,000 people [3]. Generally, the on-
set of MS occurs in early adulthood, negatively impacting functional outcomes and quality
of life [4]. Symptoms are varied and heterogeneous since they depend on the localization of
demyelination plaques throughout the brain [5]. Regarding mobility, patients with MS can
experience fatigue, changes in gait due to ataxia, muscle weakness, spasticity, and sensory
and proprioceptive deficits [6]. In addition, spasticity in the quadriceps, weakness of the
hamstrings, and gastrocnemius tend to reduce hip extension during the stance phase of
gait, as well as knee flexion during the swing phase [6,7]. These biomechanical alterations
of gait are more pronounced when MS patients manifest spasticity. Even people with mild
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MS have shown gait abnormalities when they are compared to healthy people, as observed
by various studies [8,9]. By or large, MS patients, compared to healthy controls, can often
manifest alterations in the temporal parameters of gait, causing a decreased velocity, stride
duration, and cadence. These gait alterations can increase the risk of falling and they
are also associated with a worse quality of life [10]. Furthermore, MS patients present
differences in gait alterations among the two main clinical subtypes, relapsing–remitting
MS (RR-MS) and progressive MS (PR-MS). According to some authors [10,11], gait patterns
seem to depend on the level of disability, suggesting that PR-MS may have worse gait
parameters compared to RR-MS. The level of disability in patients with MS can be measured
with the Expanded Disability Status Scale (EDSS), proposed by Kurtzke in 1983 [12]. This
encompasses eight distinct systems, the pyramidal, cerebellar, visual, perceptual, cognitive,
visceral, cerebral, and brainstem levels [12]. Additionally, it categorizes patients based on
their residual walking capacity. Typically, scores up to 3.5 indicate mild-to-moderate im-
pairment of functional autonomy, whereas scores surpassing 7.5 indicate severe disability,
often resulting in wheelchair dependency or bed confinement [13]. In this context, neurore-
habilitation plays a crucial role in every phase of the disease, aiming to restore and preserve
motor functions in MS patients [14]. Conventional rehabilitation training includes physical
exercise, which is a well-known approach to improving cardiorespiratory fitness, muscle
strength, flexibility, and balance [15]. Physiotherapy treatments emphasizing gait training
have consistently demonstrated their effectiveness in enhancing gait and mobility, while
also mitigating the risk of falls [16]. However, when patients with MS experience increased
difficulties in walking and decreased levels of independence, clinicians must adopt other
rehabilitation strategies. In this sense, robotic gait training (RGT) allows intensive, repeti-
tive, and task-oriented training, which is pivotal in boosting neuroplastic processes [17].
Among robotic tools, there is a distinction between exoskeletons and end effectors, based on
their biomechanical features [18]. The first category of robots can be further distinguished
as fixed or tethered exoskeletons like Lokomat (Hocoma, AG, Volketswil, Switzerland),
and as portable or untethered exoskeletons for overground gait, like Ekso-GT and Indego
(Ekso-Bionics, San Rafael, CA 94901, USA). Both types consist of wearable powered or-
thoses that match the joint of the device to the joint of the subject. Our previous study [19]
demonstrated that Ekso (Ekso Bionics, USA) can be a valid tool to promote functional
recovery in MS patients. Indeed, exoskeletons produce an automatized overground gait,
with different degrees of assistance, improving motor outcomes, such as balance and gait.
Differently from such exoskeletons, the end effectors are stationary devices with a single
distal control requiring active participation. End effectors allow constant contact between
feet and the moving platform, simulating gait phases [20]. Among end effectors for lower
limbs, the G-EO system provides a propulsive motion of the legs thanks to two footplates,
alternating stance and swing phases of gait, also simulating ascending and descending gait.
Despite its potential, the role of the G-EO system in improving lower-limb functions in MS
patients has not been yet investigated.

For these reasons, the primary aim of our study is to evaluate the effectiveness of
an innovative RGT, using the G-EO system, on gait, functional abilities, and QoL in
patients affected by MS. In addition, as a secondary aim, we evaluated the effect of robotic
rehabilitation on lower-limb motor functioning, balance, sensation, and joint functioning
only in the EG.

2. Materials and Methods
2.1. Study Design and Population

All patients included in the study were diagnosed with relapsing–remitting multiple
sclerosis (RRMS). Twenty MS patients, who attended the Robotic and Behavioral Neurore-
habilitation Unit of the IRCCS Centro Neurolesi “Bonino-Pulejo” between June 2018 and
November 2019, underwent evaluation for inclusion in the analysis through an electronic
recovery data system.



J. Clin. Med. 2024, 13, 1545 3 of 14

This retrospective case–control study adhered to the principles of the 1964 Helsinki
Declaration and received approval from our Research Institute Ethics Committee (ID:
IRCCSME 43/2018). The retrospective nature of the study and the extraction of data from
electronic medical records helped minimize scoring bias. Motor and cognitive parameters
were utilized to select suitable MS patients for inclusion in the analysis.

The MS patients included received rehabilitation with either the G-EO System or
conventional approaches, based on their initial rehabilitation assignments. Retrospective
evaluations, conducted at the onset and conclusion of training, were carried out by a
multidisciplinary rehabilitation team comprising a neurologist, physiatrist, nurse, physio-
therapist, and psychologist.

Inclusion criteria were as follows: (i) diagnosis of RRMS according to the revised
McDonald criteria [21]; (ii) stable therapy for a minimum of six months before entry
into the study; (iii) ability to walk independently (Functional Ambulation Classification—
FAC ≥ 2); (iv) patients aged between 18 and 75 years.

Otherwise, patients were excluded if they presented the following criteria:
(i) age > 75 years; (ii) diagnosis of concurrent psychiatric conditions or other significant
medical comorbidities; (iii) presence of deficits (e.g., cognitive, visual, or auditory) that
could limit the comprehension and/or execution of the proposed exercise; (iv) comorbidi-
ties that prevented upright posture and walking (e.g., hypotension); (v) refused consent or
were unable to provide informed consent; (vi) recent bone fractures. In addition, we ex-
cluded patients if they had contraindications to the use of the technological instrumentation
such as a weight > 150 kg and open lesions or bandages in contact with the harness.

2.2. Data Collection

Demographic and clinical information were retrospectively collected from all gathered
patients. The outcomes obtained, along with details of the rehabilitation sessions, were
documented. The data were collected retrospectively and subsequently analyzed. Prior
to participation, patients provided general informed consent for the use of their data for
research purposes.

2.3. Procedures

The included patients were divided into two groups, sharing similar medical char-
acteristics and duration of rehabilitation training. However, they diverged in the type of
rehabilitation approaches. Finally, the groups differed in demographic characteristics due
to the small sample size.

The experimental group (EG) underwent robotic gait training (RGT) with the G-EO sys-
tem (n. 10), while the control group (CG) received traditional rehabilitation training (n. 10).

Our rehabilitation protocol consisted of 40 training sessions each lasting around an
hour for both groups (i.e., five sessions per week for eight weeks, in accordance with our
established standard and clinical research protocols).

All patients underwent a clinical visit and neuropsychological evaluation at the begin-
ning (T0) and the conclusion of the rehabilitation program (T1). In our neurorehabilitation
unit, patients who undergo robotic rehabilitation treatments receive further clinical evalua-
tions, to understand the effects of robotics on body segmental outcomes. This is why MS
patients in the EG were also evaluated with the Fugl-Meyer–Lower Extremity assessment
at T0 and T1.

2.4. Outcome Measures

Outcome measures were administered by a physiotherapist (LC) and a psycholo-
gist (MGM).

The primary outcomes, the motor and functional scales administered by the phys-
iotherapist at baseline (T0) and post-treatment (T1), included the following: (i) The
10 Meters Walking Test (10MWT) [22] to assess walking speed in meters per second over a
short distance. (ii) The Functional Ambulation Category (FAC) [23], a 6-point assessment
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tool used to evaluate the functional walking ability of patients. This considers the level
of assistance required by patients during walking. (iii) The Tinetti scale (TS), made up of
16 items, with seven items assessing gait and nine items evaluating balance. A total score of
19 or less on the scale indicates a high risk of falls [24]. (iv) The Modified Ashworth Scale
(MAS) [25] was used to assess spasticity in lower limbs. (v) The Functional Independence
Measure (FIM) [26] was utilized to assess overall functioning across six subscales—self-care,
sphincter control, transfer, locomotion, communication, and social cognition ability. A
higher score indicates less disability for basic daily functions. On the other hand, the
psychological measure administered by the psychologist consisted of the Quality of Life-54
Multiple Sclerosis (MSQoL-54) questionnaire [27] to evaluate the quality of life related to
physical and emotional aspects in individuals suffering from MS.

Finally, for the secondary outcome, EG patients were also evaluated with the Fugl-
Meyer–Lower Extremity (FMA-LE) assessment [28], which assesses motor functioning at
the hip, knee, and ankle, coordination, reflexes, sensory functioning, balance, joint range of
motion, and joint pain.

2.5. G-EO System

The G-EO System (Reha Technology, Olten, Switzerland) [29] is a robotic end effector
that features footplates (pedals) for lower-limb movement. These footplates facilitate
movement from the bottom to the top with fully programmable trajectories. Parameters
such as step length (up to 550 mm), step height (up to 400 mm), footplate angles (up to
90 degrees), velocity of movements (up to 2.3 km/h), and acceleration peak (up to 10 m/s2)
can all be adjusted according to specific requirements. The actuation of leg movement does
not come from hips and knee, but from ankles. In particular, the patients’ feet are stitched
into the footplate’s thorough straps. In this way, the device simulates walking, performing
forward and backward movements, and ascending and descending stairs. Additionally,
the device is outfitted with handrails on both sides and incorporates a body weight support
(BWS) system.

This BWS system guarantees the vertical displacement of the patient’s center of mass
(CoM), which is controlled by a precise regulation of the patient’s lateral movement. For a
visual elucidation, consult Figure 1.
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During the sessions, the patients initiated walking at a comfortable pace of approxi-
mately 0.4 m/s, progressively increasing by 0.5 m/s every three minutes until reaching
the maximum tolerated velocity. Once the patient achieved the maximum tolerated ve-
locity, the session commenced. This technique was repeated daily. If patients were able
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to maintain step length, cadence, step number, and stride length safely, the velocity was
maintained; otherwise, training continued at the velocity of the previous session. Step ca-
dence remained constant in each session. The intensity of training progressed individually
to prevent fatigue, with patients closely monitored. In cases of fatigue, walking speed was
reduced to a comfortable pace (approximately 25% lower).

Similarly, the time required for ascending/descending stairs (step by step in an alter-
nating pattern) and the pace (stairs/min) were determined. Both parameters were adjusted
similarly to floor walking, with the step rise standardized at 18 cm and the vertical (lateral)
hip displacement at 5 ± 2.5 cm.

Initially, body weight support (BWS) was set at 80% discharge for both floor walking
and stair climbing, gradually decreasing by 10% each week until reaching 10% or the
highest tolerated BWS, which was compatible with the patient’s tolerance and fatigue
levels. Refer to Figure 2 for a visual representation.
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Conventional Gait Training

Patients in the control group (CG) underwent conventional gait training (CGT), which
included various exercises such as weight-shifting, core muscle strengthening, monopodal
and bipodal balance exercises, and gait training involving obstacles, tandem, and slalom
walking. Like the experimental group (EG), the intensity of training in the CG was individu-
ally tailored to prevent fatigue, with close monitoring of patients. Additionally, throughout
all sessions, MS patients received manual guidance and supervision from physiotherapists
to minimize the risk of falls.

2.6. Statistical Analysis

The data were analyzed using GraphPad Prism version 7.0, with statistical significance
set at p < 0.05. Descriptive statistics were presented as mean (standard deviation) or
median (first–third quartile) for continuous variables, while frequencies (%) were used
for categorical variables. Given the small sample, we decided to use a non-parametric
approach. Thus, we used the Wilcoxon test for paired data comparisons, particularly
in evaluating patient outcomes at different time points. This test was implemented as
two-tailed, where appropriate. Additionally, we used the Mann–Whitney U test to compare
groups based on some demographic factors, such as education, and baseline test scores.
We used Fisher’s exact test to compare the two groups in terms of sex and medication.

Finally, to identify predictors of treatment response, linear regression models were
estimated for all clinical scales at T1, entering age, sex, EDSS, and time since onset as
covariates. Normality of distribution of dependent variable was tested using the Shapiro–
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Wilk test, the homoscedasticity of the data was examined using Bartlett’s test, and the
presence of multicollinearity among the explanatory variables was evaluated by means of
Variance Inflation Factor (VIF). Once the normality in distribution of dependent variables,
the homoscedasticity, and the absence of multicollinearity had been checked, we estimated
the regression models on the whole sample of examined subjects. When appropriate,
correlations between variables were calculated using the Spearman coefficient. Analyses
were performed using a GraphPad software package (version 10.2.0). A confidence level of
95% was set with an alpha error of 5%. Statistical significance was set at p < 0.05.

3. Results

The medical records of 185 MS patients treated in our unit were examined. We assessed
and excluded 165 patients based on the inclusion criteria (Figure 3). MS patients were
excluded because they were older than 75 years or younger than 18 years (86 patients);
or because they had psychiatric or medical comorbidities (70 patients); or had previous
fractures (9 patients). The final sample comprised 20 MS patients, divided equally between
the EG (n. 10) and the CG (n. 10).
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Figure 3. Flow diagram of patient selection process.

All patients completed the study without any significant side effects and both groups
received the same amount of rehabilitation training. No significant differences were
observed in age (p = 0.24), education (p = 0.98), sex (p = 0.08), medical characteristics
(disease duration (p = 0.68), or EDSS score (p = 0.41) between the EG and CG. The fi-
nal sample consisted of 20 MS patients (10 females and 10 males, with a mean age of
52.5 (10.4)). A more detailed description of the sample is reported in Table 1. No significant
differences were found between the two groups at T0 except for the MSQoL Mental and
Physical scores (see Table 2).
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Table 1. Demographic and clinical characteristics of the patients.

Experimental Control All p-Value

Patients 10 (50.0%) 10 (50.0%) 20 (100%)
Age 49.0 (10.0) 53.4 (10.7) 52.5 (10.4) 0.24
Education 11.3 (3.3) 11.6 (0.8) 11.9 (4.9) 0.98
Sex
Male 8 (80.0%) 2 (20.0%) 10 (50.0%) 0.007
Female 2 (20.0%) 8 (80.0%) 10 (50.0%)
Disease
duration, (years) 10.7 (5.3) 10.1 (6.1) 10.5 (5.8) 0.68

Median EDSS 4.7 (1.4) 4.9 (0.4) 4.8 (1.0) 0.41
Therapy
Avonex 3 (30.0%) 2 (20.0%) 5 (25.0%) 0.85
Tecfidera 2 (20.0%) 3 (30.0%) 5 (25.0%)
Natalizumab 3 (30.0%) 3 (30.0%) 6 (30.0%)
Alemtuzumab 2 (20.0%) 0 (0.00) 2 (10.0%)
Fingolimod 0 (0.00) 2 (20.0%) 2 (10.0%)

Mean (standard deviation) was used to describe continuous variables; proportions (numbers and percentages)
were used to describe categorical variables.

Table 2. Statistical comparisons between the experimental (EG) and control (CG) groups at
baseline (T0).

Clinical Assessment
Experimental Group Control Group

p-Value *
T0 T0

10MWT 9.5 (7.4–11.3) 13.2 (7.5–22.8) 0.61

FAC 1.0 (1.0–4.0) 3.0 (1.7–3.2) 0.70

TS 15.5 (14.5–19.5) 16.0 (11.0–20.2) 0.70

MAS 0.7 (0.0–1.0) 0.3 (0.1–0.7) 0.30

FIM 105 (97–110) 115 (109.75–117.5) 0.09

MSQoL Ph 62.7 (54.7–78.5) 49.0 (41.6–64.8) 0.05

MSQoL MT 62.7 (54.7–78.5) 49.0 (41.6–64.8) <0.001
* Statistical significances are in bold. The results are expressed as median (first and third quartiles). Legend:
10MWT: 10 Meters Walking Test, FAC: Functional Ambulation Classification, TS: Tinetti Scale, MAS: Modified
Ashworth Scale, FIM: Functional Independence Measure, MSQoL Ph: Multiple Sclerosis Quality of Life of Physical
Health Composite Score, and MSQoL MT: Multiple Sclerosis Quality of Life of Mental Health Composite Score.

Regarding the primary outcome, the results of the Wilcoxon’s tests showed that both
types of rehabilitation led to an improvement in the level of disability (FIM), an increase in
the distance covered in 10 m (10MWT), and in the performance in gait and balance (TS),
although the statistical significance was greater (FIM, p < 0.001; 10MWT, p < 0.001; TS,
p < 0.002) in the EG. Additionally, the G-EO System had an impact on reducing spasticity in
the lower limbs (MAS) exclusively in the EG. Both groups also demonstrated an enhance-
ment in the perception of quality of life (QoL), with a more significant improvement in
physical and mental perception observed in the EG (Table 3).

For all clinical scales at T1, entering age, sex, EDSS, and time since onset as covari-
ates, we observed the following (Table 4): Mental MSQoL is significantly influenced by
sex, particularly in males, associated with higher levels of Mental MSQoL. The outcome
10 MTW at T1 is influenced by time since the onset of disease. Specifically, the negative
coefficient indicates that lower duration of disease onset is associated with higher levels of
the outcome 10 MTW at T1. FAC is influenced by age, whereby younger subjects exhibit
significantly higher levels of FAC and tend to score higher on the Tinetti test as well.
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Table 3. Statistical comparisons of clinical scores between baseline (T0) and follow-up (T1) were
conducted for both the experimental (EG) and control (CG) groups.

Clinical Assessment
Experimental Group

p-Value *
Control Group

p-Value *
T0 T1 T0 T1

10MWT 9.5 (7.4–11.3) 9.6 (6.2–11.9) <0.001 13.2 (7.5–22.8) 10.4 (5.1–28.1) 0.002

FAC 1.0 (1.0–4.0) 3.0 (2.0–4.0) 0.01 3.0 (1.7–3.2) 3.0 (2.0–4.0) 0.76

TS 15.5 (14.5–19.5) 18.0 (15.8–24.0) <0.001 16.0 (11.0–20.2) 23.0 (15.0–26.0) <0.001

MAS 0.7 (0.0–1.0) 0.1 (0–0.5) <0.001 0.3 (0.1–0.7) 0.3 (0.0–0.6) 0.30

FIM 105 (97–110) 111.5 (107–116) <0.001 115
(109.75–117.5)

121
(120–123.75) <0.001

MSQoL Ph 62.7 (54.7–78.5) 86.7 (69.1–94.6) <0.001 49.0 (41.6–64.8) 74.6 (68.7–83.3) <0.001

MSQoL MT 62.7 (54.7–78.5) 86.7 (69.1–94.6) <0.001 49.0 (41.6–64.8) 74.6 (68.7–83.4) <0.001

* Statistical significances are in bold. The results are expressed as median (first and third quartiles). Legend:
10MWT: 10 Meters Walking Test, FAC: Functional Ambulation Classification, TS: Tinetti Scale, MAS: Modified
Ashworth Scale, FIM: Functional Independence Measure, MSQoL Ph: Multiple Sclerosis Quality of Life of Physical
Health Composite Score, and MSQoL MT: Multiple Sclerosis Quality of Life of Mental Health Composite Score.

Table 4. Linear regression models for treatment response outcomes.

Independent Variables
Unstandardized
Coefficients

Standardized
Coefficients t p-Value

95% CI for B

B SD Beta Lower Limit Upper Limits

Outcome: Physical MSQoL

Sex −18.75 10.76 −0.46 −1.74 0.10 −41.69 4.18
Age −0.45 0.45 −0.22 −1.00 0.33 −1.41 0.51
EDSS 2.98 5.93 0.12 0.50 0.62 −9.65 15.63
Time since onset 0.01 1.58 0.002 0.01 0.99 −3.36 3.38

Outcome: Mental MSQoL

Sex −40.00 18.14 −0.57 −2.20 0.04 −78.66 −1.33
Age −0.30 0.76 −0.08 −0.39 0.70 −1.92 1.32
EDSS 7.86 10.00 0.20 0.78 0.44 −13.44 29.18
Time since onset −0.46 2.66 −0.03 −0.17 0.86 −6.15 5.22

Outcome: FIM t1

y

Sex 15.62 19.73.8 0.22 0.79 0.44 −26.44 57.70
Age 0.81 0.83 0.24 0.97 0.34 −0.96 2.58
EDSS −1.98 10.88 −0.05 −182 0.85 −25.17 21.21
Time since onset −0.35 2.90 −0.03 −0.12 0.90 −6.54 5.84

Outcome: 10 MTW t1

Sex 7.44 6.44 0.29 1.15 0.26 −6.28 21.17
Age −0.23 0.27 −0.18 −0.84 0.41 −0.80 0.34
EDSS −4.50 3.55 −0.30 −1.27 0.22 −12.07 3.06
Time since onset −2.00 0.94 −0.45 −2.11 0.05 −4.02 0.02

Outcome: FAC t1

Sex 0.35 0.49 0.18 0.73 0.48 −0.69 1.41
Age −0.05 0.01 0.53 −2.78 0.01 −0.09 −0.01
EDSS 0.54 0.29 0.46 1.85 0.09 −0.09 1.18
Time since onset 0.09 0.06 0.27 1.42 0.18 −0.05 0.22
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Table 4. Cont.

Independent Variables
Unstandardized
Coefficients

Standardized
Coefficients t p-Value

95% CI for B

B SD Beta Lower Limit Upper Limits

Outcome: Tinetti t1

Sex 1.28 2.67 0.12 0.48 0.64 −4.42 6.99
Age −0.22 0.11 −0.44 −2.02 0.06 −0.46 0.01
EDSS 0.56 1.47 0.09 0.38 0.70 −2.58 3.70
Time since onset 0.72 0.39 0.40 1.84 0.08 −0.11 1.56

Concerning the secondary outcome, we observed improvement in almost all motor
functions, including those related to hip, knee, and ankle, coordination, reflexes, and
balance, as indicated by the FMA-LE subscales (Table 5).

Table 5. Wilcoxon’s test of Fugl-Meyer–Lower Extremity (FMA-LE) assessment in the EG.

Clinical Assessment
Experimental Group

p-Value*
T0 T1

Motor functioning lower extremity 14.00 (10–17.7) 15.5 (12.5–19.5) 0.002

Balance 3.0 (2.2–3.7) 4.0 (4.0–4.0) <0.001

Sensory functioning 12.0 (10.0–12.0) 12.0 (11.0–12.0) 0.10

Joint range of motion 20.0 (16.5–20.0) 20.0 (17.7–20.0) 0.52

Joint pain 20.0 (20.0–20–0) 20.0 (20.0–20–0) 0.34

Total 17.5 (12.2–21.7) 19.5 (16.5–24.5) <0.001

* Statistical significances are in bold. The results are expressed as median (first and third quartiles). Legend:
10MWT: 10 Meters Walking Test, FAC: Functional Ambulation Classification, TS: Tinetti Scale, MAS: Modified
Ashworth Scale, FIM: Functional Independence Measure, MSQoL Ph: Multiple Sclerosis Quality of Life of Physical
Health Composite Score, and MSQoL MT: Multiple Sclerosis Quality of Life of Mental Health Composite Score.

4. Discussion

As far as we know, this is the first study investigating the outcomes of patients with
MS trained with the G-EO System device. Our results revealed that this innovative training
improved both motors (FMA-LE, TS,10MWT), functional outcomes (FAC, FIM), spasticity
(MAS), and quality of life (MSQoL). In particular, we have registered improvements in
lower-limb movements (FMA-LE), gait function (TS, FAC), spasticity (MAS), and gait
acceleration (10MWT). Our findings are likely influenced by the suitability of end-effector
devices for patients who had residual locomotor function, indicating a sufficient activation
of proximal joints and muscles [30]. Most MS patients manifest a hemiparetic gait due to
spasticity and stiffness localized at the knee and ankle [6,31]. This could lead to reduced
ankle dorsiflexion during initial contact and insufficient plantarflexion during the pre-swing
phase of the gait [31]. Moreover, the use of end effectors for gait training could improve the
insufficient inter-limb ankle–knee–hip coordination of MS patients during gait [32]. The
end-effector robot functions by securing the patient’s feet onto separate footplates, which
move along programmed gait trajectories for both the vertical and horizontal components
of the center of mass (COM). It offers guidance and real-time visual feedback to the patient
during the process [33]. During training with the G-EO system, the gait cycle became as
nearly physiological as possible, with a reduction in pathological co-activation. This system
facilitates ankle dorsiflexion and plantar flexion more than a grounded exoskeleton, like the
Lokomat, can. In fact, exoskeletons applied forces at hip and knee plus passive guidance
provided by robotic motors [34]. Other commercially available exoskeletons, such as the
Ekso-GT and Indego, have also been investigated in the context of gait training in patients
with MS, as well as the Lokomat. However, it is difficult to compare our results with
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these findings because of the substantial differences in device functionality. For example,
Ekso-GT is an overground exoskeleton, providing motorized assistance at hip and knee,
while the GE-O system only provides support on the foot. As already demonstrated by
some authors [35,36], Ekso-GT is a feasible and effective device to improve gait speed and
independence during walking. Otherwise, Keeogo [37] provides motorized assistance only
at the knees. The main difference between Keeogo and other exoskeletons is that it is lighter
than Ekso-GT and it can also be used at home and not only in clinical settings. However, we
did not find studies comparing end effectors with exoskeletons. In this vein, future studies
could investigate which robotic device, between the exoskeleton and the end effector, is
better to improve gait abilities in MS patients [38].

Moreover, as demonstrated in our previous work, the G-EO system seemed to influ-
ence cortical excitability in patients affected by spinal cord injury [39]. Intensive, repetitive,
assisted-as-needed, and task-oriented training can enhance motor learning by engaging
both the efferent motor pathways and afferent sensory pathways throughout the training
process [40]. This dual activation does have a role not only in enhancing cortical excitability
but also in activating the central pattern generator (CPG) in the spinal cord. What is more,
CPG receives and elaborates sensorimotor information coming from supraspinal centers
(corticospinal drive and extra-pyramidal descending output) and peripheral inputs [41].
In fact, walking with end effectors allows high degrees of freedom motions, which may
provide a more realistic gait [42]. This aspect could have promoted an effective recovery
instead of relying solely on behavioral compensation mechanisms.

Thus, repetitive movements can serve as a foundational element in the acquisition of
motor skills, promoting muscle memory and improving motor coordination. Repetition
allows patients to hone specific movements, promoting greater efficiency and precision
over time [16]. This approach is particularly useful in activities that require precise and
consistent motor control, such as gait training or fine motor skill development. Furthermore,
the incorporation of strategies during training, such as the presence of obstacles and the
diversification of paths, introduces elements of complexity and adaptability to therapeutic
sessions [16,35]. These strategies mimic real-world challenges, encouraging patients to
engage in problem solving and adapt their movements accordingly. By incorporating
different stimuli and environmental conditions, therapy sessions become more dynamic
and reflect the challenges encountered in everyday life. Finally, repetitive movements lay
the foundation for skill acquisition and motor refinement, and the integration of strategies
adds depth and versatility to therapeutic sessions, promoting greater transferability of skills
to real-world contexts [34]. A balanced approach that combines repetitive movements and
strategic interventions may offer the most comprehensive and effective means of achieving
therapeutic results.

An early rehabilitation intervention aimed at strengthening the residual components
is supported by the results emerging from our linear regression. Indeed, our study shows
that the duration of the disease influences the outcome of 10 MTW. This suggests that
disease progression over time may impact motor skills as measured by this outcome. A
shorter duration from onset could indicate an early stage of the disease, while a longer
duration could indicate a more advanced stage. This aspect indicates the importance of
an early rehabilitation intervention aimed at maintaining motor functioning over time.
Furthermore, another aspect that influences the motor component is age, which influences
FAC scores, with higher scores in younger subjects. This finding suggests a correlation
between age and motor skills. This may be due to greater physical resilience and ability to
maintain motor function in younger individuals.

The substantial involvement of the lower-limb distal muscle may possibly be explained
by the engagement of the CPG through both ascending and descending inputs, which
runs counter to what is typically seen after exoskeleton-based gait training [30]. However,
certain characteristics are necessary for CPG activation, including a heel strike, which is
impossible to replicate in end effectors. In this view, CPGs are not only activated through
sensory and afferent inputs like the heel strike, but they also receive information from
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supraspinal areas. These inputs help initiate locomotion, activating CPGs, and adapt the
pattern based on environmental cues [43]. This could rely on the end effector’s particular
mode of operation, whereby the footplates drive bottom-to-top movements as opposed
to the top-to-bottom movements provided by motorized orthoses. The dynamics of end
effectors ensure that the footplates move along a natural trajectory throughout the phases
of gait and closely mimic the natural movements of walking, which can help to stimulate
the CPG [44].

Notably, the spasticity outcome (as per MAS) was significantly improved only in
the EG, revealing that RGT could be superior to conventional gait training in reducing
spasticity, as reported by other authors. It has been hypothesized that RGT, through
the activation of neuroplastic processes, could contribute to regulating the corticospinal
excitability mechanisms responsible for spasticity [45,46]. Spasticity refers to an increase in
tonic stretch reflexes that is dependent on the velocity of movement, often accompanied by
exaggerated tendon jerks [47]. In this view, RGT with its repetitive movements may reduce
spasticity by activating spinal locomotor centers and modulating the corticospinal pathway.

In addition, our results revealed improvements in the balance subitem of FMA-LE,
although our MS sample performed gait training. The improvements in balance observed
through the G-EO system may be attributed to the concept of “reverse transfer”. This notion
suggests that repetitive and highly intensive gait training could enhance non-walking tasks,
including balance and postural stability [48,49].

Lastly, we found an improvement in perceived quality of life (MSQoL) in both groups
at the end of the training. According to other authors [50,51], such a result can be interpreted
as a positive impact of rehabilitation on QoL. In particular, the MSQoL evaluates both
emotional and physical aspects of QoL, suggesting that specific and effective treatment may
have a positive impact on how patients perceive QoL. In this vein, the necessity of tailoring
rehabilitation treatment according to patients’ needs becomes clear. Indeed, comprehend-
ing the impact of robotic therapies on the quality of life of people with MS is essential for
evaluating the effectiveness of such interventions [19]. While the improvement of mobility
and physical function through these therapies is often emphasized, it is equally crucial
to examine their impact on patients’ overall well-being, considering physical, emotional,
social, and psychological aspects. As highlighted in our studies, exoskeleton therapies can
influence daily activities, social participation, emotional well-being, and health perception.
Understanding patients’ perspectives on such therapies is crucial for tailoring interventions
to their specific needs and preferences. Patients’ opinions provide valuable insights into
the practical challenges, benefits, and limitations of exoskeleton therapies, thus guiding
healthcare professionals in refining treatment protocols and optimizing the overall patient
experience [52]. Patients’ feedback and high scores about their perceived motor and mental
well-being highlights the necessity of incorporating the patient’s viewpoint within rehabili-
tative interventions. Additionally, previous studies have shown that patients find robotic
rehabilitation attractive, adopting an active attitude without feeling stressed [53]. Moreover,
high usability scores in healthy subjects and stroke patients undergoing robot-assisted
therapy for upper-limb rehabilitation suggest the potential benefits of such approaches
in managing neurological conditions [54]. It is interesting to note that sex appears to
significantly influence the Mental MSQoL score, with higher scores observed in males. This
might suggest a difference in the perception of health-related quality of life between men
and women within the sample. Future study with a larger sample is needed to understand
this important issue.

This retrospective study has several limitations worth acknowledging, including its
retrospective design. The sample size is small, potentially limiting the generalizability of
the results to the wider MS population. Furthermore, the absence of gait analysis, as well
as kinematic and kinetic parameters, could have impacted the findings. Moreover, the
two groups exhibited significant differences at baseline in terms of sex and quality of life.
Consequently, it is challenging to accurately estimate the treatment effect. However, it is
important to note that this study serves as an exploratory endeavor, underscoring the need
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for future clinical studies with larger sample sizes and more targeted motor and cognitive
outcome measures to validate and expand upon our initial findings.

5. Conclusions

In conclusion, our findings suggests that end effectors, like the G-EO system, could be
considered as a useful device to improve gait functions, including lower-limb movements,
functional abilities, and QoL, in patients with MS. However, larger-sample randomized
studies are needed to confirm these promising results and to investigate whether and to
what extent they last over time.
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