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Abstract
This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed 
from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The 
CNN performance comparison in respect to expert interpretation of CMR with late gadolinium enhancement (LGE) images, 
used as ground truth (GT), was conducted on 206 patients (158 scar, 48 control) from Centro Cardiologico Monzino (Milan, 
Italy) at both slice- and patient-levels. Left ventricle dynamic features were extracted in non-enhanced cine images using 
parametric images based on both Fourier and monogenic signal analyses. The CNN, fed with cine images and Fourier-based 
parametric images, achieved an area under the ROC curve of 0.86 (accuracy 0.79, F1 0.81, sensitivity 0.9, specificity 0.65, 
and negative (NPV) and positive (PPV) predictive values 0.83 and 0.77, respectively), for individual slice classification. 
Remarkably, it exhibited 1.0 prediction accuracy (F1 0.98, sensitivity 1.0, specificity 0.9, NPV 1.0, and PPV 0.97) in patient 
classification as a control or pathologic. The proposed approach represents a first step towards scar detection in contrast-free 
CMR images. Patient-level results suggest its preliminary potential as a screening tool to guide decisions regarding LGE-
CMR prescription, particularly in cases where indication is uncertain.

Keywords Convolutional neural networks · Magnetic resonance image classification · Cardiac magnetic resonance imaging · 
Deep learning · Parametric images

1 Introduction

Ischemic cardiomyopathy (ICM) is the most common cause 
of heart failure. At its first stage, ICM causes a reversible 
loss in cardiac function due to reduced oxygenation. When 
ischemia is prolonged, irreversible damage to myocardial 
tissue occurs, leading to fibrosis through a tissue remod-
eling process. Myocardial fibrosis impacts the contractile 
properties of the affected area, setting the stage for increased 
arrhythmogenicity [1].

Cardiac magnetic resonance (CMR) with late gadolin-
ium (Gd) enhancement (CMR-LGE) is the elective imag-
ing modality for myocardial scar characterization [2–5]. 
CMR-LGE imaging relies on the different accumulation of 
Gd in different tissues, with a larger uptake in chronically 
damaged myocardium. This contrast-enhanced imaging 
modality relies on visual interpretation, being dependent on 
observer’s experience and expertise. Despite subjective fac-
tors that may lead to user-related measurement errors and 
high inter-observer variability, in clinical practice, the visual 
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inspection of CMR-LGE represents the conventional tech-
nique to assess cardiac viability and to identify myocardial 
scars [6–8].

Recent studies have shown that CMR-LGE is highly 
contraindicated in patients with severe kidney disorders, 
and the exposure to Gd contrast agent has been associated 
with nephrogenic systemic fibrosis [9]. Studies also showed 
that Gd may represent a long-term risk factor as it can be 
retained in the cerebral and cerebellar nuclei by crossing 
the blood–brain barrier [10], and it can accumulate in the 
bone, skin, liver, and lungs [11]. For these reasons, Gd-based 
contrast agent administration should be considered carefully 
with respect to potential risks and benefits, and only used 
when required, as well as standard dosing should be used, 
and repeated administrations should be avoided unless nec-
essary [12, 13].

Non-contrast CMR can be considered as an alternative 
[14], as the use of Gd-free steady-state free precession 
(SSFP) cine CMR pulse sequences could be explored to 
potentially identify scars in an indirect way. In fact, as the 
left ventricular (LV) wall motion and contractile proper-
ties are modified by the presence of nonviable scar tissue, 
researchers are investigating the potential of deep learning 
(DL) as a strategy to support the physician in identifying 
fibrotic tissue in the LV myocardial wall in Gd-free CMR 
cine sequences [15], thus overcoming the problem of Gd 
toxicity concerns [16].

Although previous methods [8, 16–20], based on captur-
ing dynamic changes in videointensity across various spatial 
locations within the heart and temporal phases of the cardiac 
cycle, potentially enable the detection of myocardial fibro-
sis, they are still subject to limitations. In fact, due to the 
poorly contrasted scar tissue in cine frames, to apply this 
spatio-temporal learning paradigm, an increase in feature 
size is introduced, as they are extracted from all frames in 
the cardiac cycle, thus posing issues relevant to overfitting. 
In addition, hence optical flow-based methods for motion 
analysis are valuable, they could potentially be sensitive to 
through-plane motion artifacts, image quality, and brightness 
variation along the cine sequence [21, 22].

To overcome these issues, we hypothesized that the 
use of parametric images, derived from SSFP cine CMR 
images, integrating spatial and temporal information on LV 
wall motion in a compact way [23, 24], could overcome the 
intrinsic complexity of modeling motion deformation of 
the LV myocardium by synthetizing it into a single image 
[24–26].

Accordingly, our aim was to propose a novel DL 
approach, utilizing a convolutional neural network (CNN) 
that exploits the information from a single static end-dias-
tolic (ED) frame together with multiple parametric images 
derived from the cine CMR loop, computed by two different 
approaches (i.e., Fourier transform and monogenic signal), 

to obtain a classification for each image slice, indicating the 
presence or absence of LV scar tissue.

To evaluate the effectiveness of this methodology, by test-
ing various combinations of parametric images, its perfor-
mance will be compared against the use of LGE images and 
expert interpretation, considered as the ground truth (GT). 
Such approach could be used to attract attention of the medi-
cal observer interpreting the cine CMR images towards 
those slices where the scar presence has been detected, thus 
serving as a support to the decision-making process of pre-
scribing LGE imaging, in particular in cases in which the 
clinical indication is uncertain [14].

2  Materials and methods

2.1  Study population and image acquisition

This retrospective study included a cohort of consecutive 
patients who were referred for LGE-CMR imaging at the 
IRCCS Centro Cardiologico Monzino (Milan, Italy) between 
2010 and 2016. Patients were excluded if standard contrain-
dications to CMR-LGE existed, such as a glomerular filtra-
tion rate of ≤ 30 mL/min/1.73  m2. Institution’s ethical com-
mittee approved the protocol (ref. R659/17-CCM 698), and 
all patients gave written consent.

Images from 158 patients with ischemic dilated cardio-
myopathy (DCM) showing the presence of fibrotic tissue 
in the LV myocardium, and from 48 control patients with 
a negative CMR-LGE, were studied. The main clinical and 
anthropometric parameters relevant to the enrolled subjects 
as a whole, and separately as DCM and control group, are 
reported in Table 1, together with the result of their statisti-
cal comparison (Mann–Whitney, or chi-square test).

All CMR acquisitions were performed using a 1.5 T 
scanner (Discovery MR 450, GE Healthcare, Milwaukee, 
Wisconsin, USA), using phased-array surface receiver coils, 
and electrocardiogram triggering. Breath-hold SSFP cine 
imaging was performed in vertical and horizontal long-axis 
orientations as well as in short-axis, using the following 
parameters: field of view (FOV) 380 × 380  mm2, repetition 
time 3.2 ms, echo time 1.4 ms, flip angle 50°, image matrix 
size 224 × 256 pixels, bandwidth 488.3 Hz/pixel, and slice 
thickness 8 mm with no gap.

In addition, a contrast-enhanced, breath-hold, segmented 
T1-weighted inversion-recovery gradient-echo sequence 
(FOV 380 × 380  mm2, repetition time 6.6 ms, echo time 
1.5 ms, flip angle 20°, image matrix size 224 × 192 pixels, 
bandwidth 122.1 Hz/pixel, slice thickness 8 mm) was used: 
LGE imaging was performed 10 to 20 min after the adminis-
tration of an intravenous bolus of 0.1 mmol/kg of Gd-based 
contrast agent (Gadovist; Bayer AG, Berlin, Germany) at a 
flow rate of 3 ml/s, followed by 20 ml of saline flush with 
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the same rate. Inversion time was individually adapted to 
null the signal of remote myocardium (220 to 300 ms) [27].

2.2  Ground truth assessment

All images were analyzed using cvi42 cardiac software 
(version 5.11, Circle Cardiovascular Imaging Inc., Calgary, 
Canada) by an expert cardiologist (EACVI Level III CMR 
certified). For each patient, short-axis cine and LGE were 
extracted at matched anatomical slices.

On the stack of LGE images, the LV endocardium and 
epicardium borders were traced, and the myocardial fibrosis 
was outlined by the expert cardiologist through manual con-
touring, after appropriate setting of the display window level 
and width. Subsequently, each LGE image was automatically 

labeled based on the presence or absence of the scar in it, and 
this label was used as GT.

Additionally, in the matched cine short-axis view, the LV 
endocardium and epicardium borders at ED frame, automati-
cally selected as the one with the largest LV blood pool at the 
mid-ventricular level, were manually contoured by the expert 
to include papillary muscles and trabeculations as part of the 
LV cavity, in agreement with recent guidelines [28–30].

2.3  Deep learning model

2.3.1  Data pre‑processing and augmentation

To reduce the processing area, CNN computational cost 
and memory requirement, in accordance with literature, a 

Table 1  Clinical and anthropometric characteristics of patients: com-
parison of DCM and control groups using Mann–Whitney and Chi-
Square Tests (P-Values). Continuous variables are presented as medi-

ans with first and third quartiles (Q1-Q3). Categorical variables are 
presented as percentages (%)

Characteristics All
(206)

DCM
(158)

CTRL
(48)

P value

Age, years (Q1–Q3) 67.0 (56.0–72.8) 68.0 (59.0–73.8) 54.5 (34.8–70.0)  < 0.0001
Sex, %
 female 20.4 15.2 37.5 0.002
 male 79.6 84.8 62.5
Weight, Kg (Q1–Q3) 77.0 (69.0–86.0) 79.0 (70.0–87.0) 70.0 (60.5–83.5) 0.013
Height, cm (Q1–Q3) 171.5 (165.0–178.0) 172.0 (165.0–178.0) 170.0 (165.0–180.0) 0.671
BMI, Kg/m2 (Q1–Q3) 26.0 (23.3–28.9) 26.1 (24.3–29.3) 24.0 (21.8–27.0) 0.001
BSA,  m2 (Q1–Q3) 1.9 (1.8–2.0) 1.9 (1.8–2.0) 1.8 (1.7–2.0) 0.238
Familiar history, % 25.5 27.7 15.2 0.199
Smoking, % 33.0 37.4 12.1 0.009
Hypertension, % 59.0 65.8 27.3  < 0.0001
Hyperlipemia, % 52.7 57.4 30.3 0.008
Diabetes, % 29.8 33.5 12.1 0.026
Beta-blockade, % 77.1 88.4 24.2  < 0.0001
ACE inhibitor/AT1 blockade, % 67.6 76.8 24.2  < 0.0001
Diuretics, % 63.8 76.8 3.0  < 0.0001
Ca blockade, % 8.0 8.4 6.1 0.920
Anti-thrombotic agents, % 77.1 89.0 21.2  < 0.0001
Nitrates, % 19.3 23.2 0.0 0.005
Statin, % 63.3 69.0 36.4 0.001
Antiarrhythmic, % 29.8 31.6 21.2 0.330
LV EDVi, mL/m2 (Q1–Q3) 104.0 (85.6–130.3) 114.0 (94.9–144.9) 76.3 (63.8–88.4)  < 0.0001
LV ESVi, mL/m2 (Q1–Q3) 72.1 (45.1–95.1) 78.7 (62.8–105.5) 32.1 (26.5–38.1)  < 0.0001
CMR LV EF, % (Q1–Q3) 32.6 (25.1–44.9) 30.4 (23.2–35.2) 57.0 (55.0–63.5)  < 0.0001
CMR LV SV, mL (Q1–Q3) 36.8 (29.4–46.1) 34.5 (27.3–41.4) 48.7 (41.0–54.9)  < 0.0001
LV mass ind, g/m2 (Q1–Q3) 65.5 (52.1–81.0) 70.0 (58.8–85.9) 50.4 (44.1–59.0)  < 0.0001
RV EDVi, mL/m2 (Q1–Q3) 64.5 (52.9–81.0) 60.9 (50.9–76.9) 76.1 (66.5–85.9)  < 0.0001
RV ESVi, mL/m2 (Q1–Q3) 29.6 (22.7–40.4) 28.4 (22.1–40.5) 35.4 (24.8–39.8) 0.130
CMR RV EF, % (Q1–Q3) 53.2 (44.5–61.6) 50.9 (41.0–61.1) 59.0 (53.0–63.0) 0.0004
CMR RV SV, mL (Q1–Q3) 53.2 (43.6–70.8) 56.0 (44.0–73.3) 46.3 (40.7–54.8) 0.003
LGE ischemic mass, g (Q1–Q3) 25.5 (15.5–37.9) 25.5 (15.5–37.9) - -
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squared bounding-box including the whole LV myocardium 
was automatically retrieved and used to crop each ED image. 
To guarantee better generalization to unseen data, reducing 
overfitting, and preventing gradient-related issues, images 
were normalized to achieve zero mean and unit standard 
deviation, and resized to 224 × 224.

The dataset consisted of a total number of 1793 ED 
cropped images, of which 1047 with scar (SCAR) from the 
158 DCM patients, and 746 without (NL) from the 48 con-
trol patients, based on the GT interpretation.

Our CNN embedded the encoding branch of U-Net [31], 
with one convolutional block followed by three residual 
blocks characterized by skip connections that connect the 
input of the block directly to the next one. Figure 1 shows 
the architecture of the proposed CNN.

The first initial convolutional block was made of a convo-
lutional layer (number of kernels = 64, kernel size 3 × 3) with 
batch normalization [32]. The three residual blocks differed 
by filter size, respectively 128, 256, and 512, and had the 
following structure: two convolutional blocks (as in the ini-
tial convolutional block) and a max-pooling layer (size 2 × 2) 
[33]. A skip-connection was introduced between the input 
and the output of the residual block. All convolutional layers 
were characterized by a kernel size 3 × 3, rectified linear unit 
(ReLU) [33] as activation function and He uniform as kernel 
initializer. This convolutional module was connected through 
a tensor flattening layer to two sequential fully connected 
(FC) layers with 256 and 128 neurons, respectively, each fol-
lowed by a batch normalization layer and a dropout layer (rate 
0.2) [33, 34]. A final dense layer with one node and sigmoid 
activation function was used for binary classification.

2.3.2  Parametric images computation

The parametric imaging technique is based on the measure-
ment of signal variability within the same pixel coordinates 
over the cardiac cycle to capture dynamic information of the 

LV myocardium [25]. For each extracted signal over time, 
amplitude and phase were computed as representative of 
the myocardium wall motion throughout the cardiac cycle, 
according to the applied approach (i.e., Fourier or mono-
genic signal analysis).

Fourier analysis Along each cine loop, for each image pixel 
coordinate, the time series of video intensity values was 
obtained [24, 35] and approximated to a best-fit curve by 
using the standard least squares analysis. As during the car-
diac cycle the signal is assumed to be periodic, based on the 
Fourier theorem, this continuous and periodic function can 
be decomposed into a linear combination of harmonics and 
represented by the Fourier series (Eq. 1).

For each pixel at a particular location, focusing on the 
fundamental series of order n = 1, the amplitude A

1
 and the 

phase P
1
 of this first harmonic were exploited to create the 

two corresponding parametric images. This process was 
applied for each cine-loop available from the study (Fig. 2).

Monogenic signal analysis In the second approach, based 
on the monogenic signal, information of the myocardial dis-
placement was obtained considering only the ED and the 
end-systolic (ES) frames for each cardiac cycle, following 
the method described in [21, 36]. In brief, the monogenic 
signal Sm (Eq. 4) was obtained by first convolving the image 
I with the even log-Gabor filter H (Eq. 2), and then convolv-
ing its result w with two odd filters h

1
 and h

2
 (Eq. 3), calcu-

lated applying to H the Riesz transform (Fig. 3).

(1)f (t) = A
0
+
(
A
1
× sin

(
�t + P

1

))

(2)w = I ∗ H

(3)
q
1
= w ∗ h

1

q
2
= w ∗ h

2

Fig. 1  Sequence of basic 
components constituting the 
proposed CNN: initial con-
volutional block (composed 
of a convolutional layer and 
a batch normalization layer), 
three residual blocks (each one 
composed of two convolutional 
blocks followed by a max pool-
ing layer with the addition of a 
skip connection), a flatten layer, 
two fully connected blocks 
(each composed of a dense 
layer, a batch normalization 
layer and a dropout layer), and a 
final dense layer
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Fig. 2  The time series of videointensity values is approximated to a periodic function (oscillations of amplitude A
1
 around the mean value A

0
 ) 

that can be represented with the Fourier series. Amplitude and phase for each pixel are obtained from the first harmonic

Fig. 3  Workflow to obtain the monogenic signal S
m
 and derive parametric amplitude and phase images from it (see text for details)
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The signal Sm was then decomposed in a standard spheri-
cal polar coordinates system to obtain its amplitude (Eq. 5) 
and phase (Eq. 6) values.

The corresponding parametric images of amplitude 
(Eq. 7) and phase (Eq. 8) were obtained computing the dif-
ference between the corresponding ED and ES values:

2.4  Model inputs

Five different types of parametric images were considered for 
each patient for each slice: the region of interest in correspond-
ence to the myocardium of the ED cine frame (C), the ampli-
tude (FA) and phase (FP) from Fourier analysis, the amplitude 
(MA), and phase (MP) from monogenic signal. As regards the 
ED cine frame, the LV endocardium and epicardium contours 
traced by the expert were used as a mask to maintain the vid-
eointensity content only in the region of interest in correspond-
ence to the myocardium, and zero values elsewhere.

Different combinations of those images were composed 
to create n-channel input with whom to train and validate 
the CNN by computing the relevant performance compared 
to the GT label, thus generating different evaluation proto-
cols, as shown in Fig. 4. In the first one (P1), only the single 
ED frame (static information) was included as reference: in 
this way, the added value of including motion features from 
consecutive cine frames obtained through parametric images 
(dynamic information) by Fourier (P2, P3, P4) or monogenic 
signal (P5, P6, P7) analysis could be derived. In P8 and P9, 
only amplitude and phase images, respectively, were added, 
while in P10, all parametric images were jointly utilized. 
Additionally, in P11 and P12, a combination of FA with MP, 
and of FP with MA, respectively, were considered.

2.5  Model evaluation and experimental protocol

The dataset was randomly divided (patient-wise) into train-
ing and test set by stratifying the two groups according to 

(4)Sm = w + i ∗ q
1
+ j ∗ q

2

(5)A =

√
w2 + q2

1
+ q2

2

(6)P = arctan

⎛
⎜⎜⎜⎝

�
q2
1
+ q2

2

w

⎞
⎟⎟⎟⎠

(7)A
diff

= AED − AES

(8)P
diff

= PED − PES

the global label of the patient (SCAR and NL) and allocating 
80% of the initial patients to the training set (164 patients, 
resulting in 840 SCAR and 587 NL images) and 20% to the 
test set (42 patients, resulting in 207 SCAR and 159 NL 
images).

The training set was further divided (patient-wise) to allo-
cate 15% of these patients for validation (25 patients, result-
ing in 132 SCAR and 83 NL images) and 85% for the actual 
training set (139 patients, resulting in 708 SCAR and 504 
NL images). The training dataset was augmented applying 
random image flipping, width and height shifting (randomly 
from 0 to 0.2), and rotation (randomly from − 20 to 20°).

The performance of each protocol was evaluated by con-
sidering the target label of each individual image for the 
classification of SCAR and NL images. For CNN training, 
stochastic gradient descent was used as the optimizer (with 
0.001 as learning rate) to minimize the binary cross-entropy. 
The maximum number of epochs was set to 200, with an 
early stopping if a plateau of validation loss was reached 
over 16 consecutive epochs. The batch size was fixed to 32 
for the training set.

To evaluate the performance of the model on the test set, 
the confusion matrix was computed and accuracy (acc), 
F1, sensitivity and specificity, positive (PPV) and negative 
(NPV) predictive values, together with the area under the 
curve (AUCs) of the receiver operating characteristic (ROC) 
curve, were derived.

In the second step, the performance of the CNNs obtained 
in the defined protocols was tested at patient-level by consid-
ering as target label the existence of at least one scar (i.e., a 
patient in the DCM group) or none (i.e., a patient in the control 
group) in the acquired slices. Patient-wise accuracy was cal-
culated as the number of correctly classified patients divided 
by the total number of patients in the test set, and reported 
together with F1, sensitivity, specificity, PPV, and NPV.

3  Results

The different performance, in terms of test set accuracy, F1, 
sensitivity and specificity of the CNN trained with the exam-
ined protocols are shown in Fig. 5, while relevant NPV and 
PPV are reported in Table 2. The accuracy (acc) obtained 
using only the static information (P1) was lower to all but 
one (P5, adding the amplitude of monogenic signal) the 
remaining protocols. P2, which adds the Fourier parametric 
amplitude, reached the highest values (acc 0.79). Adding 
also the Fourier phase information did not further improve 
the results (P4, acc 0.78), while for monogenic signal the 
only addition of the phase image resulted in a better per-
formance (P6, acc 0.75) than combining both amplitude 
and phase (P7, acc 0.72). Considering only amplitudes FA 
and MA (P8, acc 0.74), or phase FP and MP (P9, acc 0.75) 
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parametric images resulted in intermediate values. The 
combination of Fourier amplitude and monogenic phase 
(P11, acc 0.78), as well as of Fourier phase and monogenic 
amplitude (P12. acc 0.77) did not further improve the per-
formance. Finally, the inclusion of all the parametric images 
(P10, acc 0.75) appeared constrained to the lower results 
obtained by the monogenic approach.

The AUCs for all protocols, with similar findings, are 
shown in Fig. 6.

When comparing the performance obtained using the 
Fourier and the monogenic signal analyses, Fourier approach 
showed the best accuracy and AUCs results (P2, acc 0.79; 
AUC ROC, 0.86).

3.1  Patient‑level analysis

The accuracy, F1, sensitivity and specificity values of the 
proposed CNN considering the global label of the patient 
are shown in Fig. 7, and relevant NPV and PPV are reported 
in Table 3. Results were very good for all the considered 
protocols, with the worst performance in P10 (all parametric 
images together), and the best in P6 and P8, in which all 
patients were correctly classified as DCM or control, thus 
achieving an accuracy equal to 1.0. When considering P2, 
P5, and P11, a quasi-excellent performance (acc 0.98) was 
found, with 41/42 patients classified correctly and only one 
false positive.

Fig. 4  The evaluation protocols 
are summarized in the figure 
showing the protocol name, the 
number of channels, and the 
combination of input images: 
original cine images (C), 
amplitude of parametric based 
on Fourier analysis (FA), phase 
of parametric based on Fourier 
analysis (FP), amplitude of 
parametric based on monogenic 
signal (MA), and phase of 
parametric based on monogenic 
signal (MP)
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Fig. 5  Results in terms of accuracy, F1 score, sensitivity and specificity obtained by testing the CNN with the protocol P1, containing static 
information, and with the protocols from P2 to P12, including the addition of dynamic information

Table 2  Results in terms of PPV and NPV predictive values obtained by testing the CNN with the protocol P1, containing static information, 
and with the protocols from P2 to P12, including the addition of dynamic information

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

NPV 0.70 0.83 0.81 0.86 0.69 0.72 0.73 0.74 0.79 0.79 0.77 0.84
PPV 0.71 0.77 0.73 0.75 0.70 0.78 0.71 0.74 0.73 0.74 0.79 0.74
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4  Discussion

In this study, a DL method was proposed for the classifica-
tion of the presence or absence of scar in LV myocardial 
tissue from Gd-free cine CMR images using the static ED 
frame combined with a diverse set of parametric images, 
each defining distinct protocols.

For each slice, the inclusion of motion features computed 
from consecutive cine frames proved to be more effective 
with respect to considering the ED frame only. Specifically, 
the parametric images synthetize the abnormal movement 
of the LV myocardial wall in presence of fibrotic tissue [37] 
inside one single frame, thus allowing the network, taking 
advantage from the encoder branch of the U-Net, to extract 
additional features useful to better distinguish healthy myo-
cardium from the scarred one, without the risk of drastically 
increasing the feature size [24–26].

We previously tested a similar approach using a Random 
Forest (RF) classifier [35] in a small group of 40 patients, in 
which a parametric image was computed using the Fourier 
analysis. In this work, we extended our study by considering 
a wider population, by applying a CNN, and by comparing 
the performance of using several combinations of parametric 
images, computed both with the Fourier analysis and the 
monogenic signal [21, 38].

Unlike the Fourier analysis, the monogenic signal com-
putation is not based on the hypothesis of periodicity of the 
videointensity signal through the cardiac cycle, and also has 
the advantage of requiring less computational resources, 
being based on the convolution of the ED and ES frames 
with specific filters. Despite these benefits, the approach 
based on the Fourier analysis provided better results, prob-
ably due to the punctual evaluation pixel by pixel of the vid-
eointensity oscillations along the entire cine sequence, thus 

allowing the extraction of more detailed and comprehensive 
dynamic information.

Among the multitude of benefits provided by the integra-
tion of residual blocks into the CNN architecture, one of the 
most significant is their ability in addressing the vanishing 
gradient problem [39, 40]. In fact, in deep neural networks, 
the gradient of the loss function approaches zero during the 
backpropagation, making the early layers parameter update 
negligible. However, the inclusion of residual blocks over-
comes this limitation providing alternative shortcut paths for 
the propagation of the gradient. In advance, CNN including 
residual blocks can learn intricate and complex mapping, 
capturing hierarchical and multi-scale features from the 
input data. In fact, by transmitting information directly to 
deeper layers, skip connections allow the network to simul-
taneously preserve fine-grained details while progressively 
extracting highly abstract features delving deeper into the 
network. This combination of information at various scales 
and levels of abstraction enables the network to tackle chal-
lenging image classification tasks [40]. Furthermore, skip 
connections enhance the generalization capabilities of deep 
neural networks, grasping meaningful representations of 
underlying patterns in data without becoming overly specific 
to the training dataset. In this way, the CNN with residual 
blocks becomes more robust and reliable in real-world appli-
cations thus preventing overfitting [39].

Given the network’s capability to classify slices as either 
SCAR or NL (with an accuracy of 0.79 and an AUC ROC of 
0.86), the proposed method could serve as a tool for clinicians 
to focus their attention on slices representing myocardium with 
potential scar tissue, to confirm or not such classification by 
visualizing the corresponding dynamic cine images to check 
for wall motion abnormalities, and subsequently prescribe 
CMR-LGE imaging for possible confirmation of the diagnosis.

Fig. 6  ROC curves with corresponding AUC of the CNN tested with the protocol P1 (static information) and with the protocols from P2 to P12 
(addition of dynamic information) 
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Similarly, by repeating this classification for all the slices 
of the cine CMR exam, it could be possible to preliminary 
classify a patient as a control or pathologic based on the 
presence or not of a scar in the whole myocardium. Specifi-
cally, using P6 and P8 combinations, no false negative and 
false positive classifications were present when considering 
such patient-level analysis. Due to its high sensitivity and 

specificity, the proposed DL-model could represent a pos-
sible preliminary screening tool to serve as support to the 
decision of performing or not LGE in those cases in which 
its clinical indication is uncertain [14]. Indeed, several stud-
ies showed that about 50% of patients with a specific type of 
cardiomyopathy have no scar but undergo repeated Gd-based 
CMRs throughout their life [8].

Fig. 7  Results in terms of accuracy, F1 score, sensitivity, and specificity obtained by testing the CNN at patient-level

Table 3  Results in terms of 
PPV and NPV predictive values 
obtained by testing the CNN at 
patient-level

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

NPV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.86 1.0 1.0
PPV 0.89 0.97 0.94 0.91 0.97 1.0 0.91 1.0 0.89 0.89 0.97 0.94
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On the other hand, in patients in which both cine CMR 
and the CMR-LGE images have been acquired, the pro-
posed approach could represent a valuable tool to facilitate 
and speed up the clinician in the examination of the Gd-
enhanced images, by flagging those slices classified as hav-
ing a possible scar for further confirmation.

In specific clinical applications, such as cardiac resyn-
chronization therapy, where it is not necessary to quan-
tify the scar area but to localize its presence along the 
slices, our approach could provide insightful information. 
As a scar in the basal wall (i.e., over the LV pacing site) 
has been shown to be associated to an adverse impact on 
long-term prognosis [8, 41, 42], a preliminary assessment 
for the presence of a scar in that slice could be initially 
performed without contrast medium using the proposed 
approach.

Table 4 shows the comparison of the results obtained in 
this work with similar studies using machine learning (ML) 
or DL methods for scar detection from contrast-free cine 
sequences.

In particular, Larroza et al. [16] used a ML classifier 
to identify the presence of nonviable segments in LV sec-
tors using local binary patterns (LBP), computed from the 
cine dynamic images using a 2D + t approach, as textural 
descriptors.

Applying a DL approach, Zhang et al. [17] proposed a 
recurrent neural network (RNN) capable of extracting global 
and local motion features using optical flow and achieving 
an AUC of 0.94 in the scar detection task. Xu et al. [18] 
introduced a long short-term memory (LSTM) RNN to 
demonstrate the correspondence between motion features 
extracted from non-enhanced images and tissue properties 
allowing to determine the tissue identity in each pixel from 
its motion pattern, further proposing a progressive sequen-
tial causal generative adversarial network (PSCGAN) for 
LGE-equivalent image generation and simultaneous scar 
segmentation, resulting in an AUC of 0.90 [19].

More recently, Zhang et al. [20] proposed a method to 
generate virtual LGE-like images combining cine images 
and T1-maps through a learning-based strategy, thus reach-
ing an overall accuracy of 0.84 in detecting scars, but being 
limited to a single frame analysis and not exploiting the 
LV motion features. Fahmy et al. [8] performed scar detec-
tion in cine sequences using a logistic regression (LR) 
classifier exploiting a set of radiomics features combined 
with DL features obtained through a pre-trained network, 
reaching an AUC of 0.81, without considering the motion 
information.

The results obtained in this study at slice-level with 
CNN relying on parametric images were comparable to 
[16] obtained with Support Vector Machines (SVM). 
On the contrary, our performance at slice-level appears 

slightly inferior to studies in which more elaborate net-
work architectures were used for automatic motion feature 
extraction [19, 20] or used in combination with local and 
global motion features extracted through optical flow [17, 
18]. On the other hand, when compared to [8, 35] where 
the classification models were based on ML approach, 
this work showed higher performance. Furthermore, 
results of our network reached the highest accuracy, sen-
sitivity and specificity when considering the analysis at 
patient-level.

4.1  Limits and future developments

A possible limitation of our study concerns the relatively 
small size of the dataset. Collecting more data to expand 
the input dataset would improve the performance of the 
network. Moreover, the GT definition was constrained by 
the limited availability of specialized experts, due to its 
time-consuming aspect, thus relying solely on myocardial 
fibrosis outlined by one expert cardiologist through man-
ual contouring on the LGE images; future studies should 
be designed to include multiple independent annotations 
from which to derive consensus, or considering interob-
server variability in the definition of the GT, to widen the 
reliability and applicability of the findings. Another limit 
of this work is that only a single trial was performed for 
each protocol. As it is well known, there is a certain com-
ponent of variability in neural networks training; there-
fore, to make the conclusions more robust, several trials 
could be run to compute the mean and standard deviation. 
Similarly, we opted for a simple validation method based 
on a random split instead of multifold cross-validation 
due to the associated computational complexity and the 
significant increase in processing time in this specific 
case, which included the implementation of multimodal 
protocols. Future research could incorporate multifold 
cross-validation to more rigorously validate the models. 
In addition, since images were acquired through one sin-
gle scanner, it would be beneficial to consider the influ-
ence of different CMR acquisition systems, to test for 
external validity of the proposed CNN.

An additional limitation is that the proposed method 
does not provide scar segmentation and quantification of 
its area, but only the possible presence of the scar in the 
slice of interest (or at patient-level). However, this could 
be seen as a first step towards that goal that would require 
a larger and more extensive validation.

Further developments may involve the implementation 
and comparison of new techniques for including temporal 
information, such as optical flow or new types of para-
metric images.
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5  Conclusion

The possibility of using Gd-free cine CMR images to clas-
sify the presence of scar tissue at both slice and patient-
level using a DL approach, utilizing a custom-made convolu-
tional neural network (CNN) that exploits several parametric 
images to capture dynamic wall motion information, was 
tested.

The innovation in this study primarily lies in the differ-
ent methods (i.e., Fourier analysis and monogenic signal) 
to generate the parametric images, and the comparison of 
their multiple combinations to define the most performant 
one compared to the expert interpretation of LGE images. 
Globally, the use of parametric images in the CNN improved 
the accuracy of properly classifying a slice compared to the 
use of only the static ED image, with the best performance 
obtained by adding the parametric image of the Fourier’s 
transform module. At patient-level, an accuracy of 1.0 in 
classifying normal or pathologic patient was achieved, thus 
suggesting its potential use as a preliminary screening tool 
to guide decision making in performing LGE-CMR in those 
cases in which its indication is uncertain.
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