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ABSTRACT: Human African Trypanosomiasis (HAT) is a neglected tropical
disease widespread in sub-Saharan Africa. Rhodesain, a cysteine protease of
Trypanosoma brucei rhodesiense, has been identified as a valid target for the
development of anti-HAT agents. Herein, we report a series of urea-bond-containing
Michael acceptors, which were demonstrated to be potent rhodesain inhibitors with
Ki values ranging from 0.15 to 2.51 nM, and five of them showed comparable k2nd
values to that of K11777, a potent antitrypanosomal agent. Moreover, most of the
urea derivatives exhibited single-digit micromolar activity against the protozoa, and
the presence of substituents at the P3 position appears to be essential for the
antitrypanosomal effect. Replacement of Phe with Leu at the P2 site kept unchanged
the inhibitory properties. Compound 7 (SPR7) showed the best compromise in
terms of rhodesain inhibition, selectivity, and antiparasitic activity, thus representing a new lead compound for future SAR studies.
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Human African Trypanosomiasis, also known by its
acronym HAT or sleeping sickness, is a vector-borne

Neglected Tropical Disease (NTD) caused by protozoa of
Trypanosoma brucei (T. b.) species, widespread in sub-Saharan
Africa.1,2 Two morphologically identical subspecies cause a
different progression of the infection: T. b. gambiense is
responsible for the chronic form of HAT characterized by slow
development (gHAT); meanwhile, T. b. rhodesiense causes the
acute form (rHAT).2 The clinical manifestations of the disease
were classified into two stages, namely, the hemolymphatic and
neurological stages (stages 1 and 2, respectively).3,4 During
stage 1, the protozoa, inoculated by the tsetse fly bite, mainly
remain in the hemolymphatic system, spleen, and interstitial
spaces, resulting in nonspecific symptoms, such as fever and
general malaise.5,6 Subsequently, for still unclear reasons, the
protozoa cross the blood-brain barrier (BBB) and invade the
central nervous system (CNS), giving rise to stage 2, which is
characterized by severe neurological problems, such as mental
confusion, delirium, coma, and, last, death.7,8 As mentioned
above, the two forms of HAT deeply differ in the disease
manifestation progression: in fact, while gHAT can last for
years, rHAT is characterized by a rapid progression (4−5
weeks) and higher mortality rate.9 To date, chemotherapy is
the sole strategy to treat the infection: suramin, pentamidine,
melarsoprol, and eflornithine were largely employed in the last
century with modest results, mainly due to their toxicity,
narrow-spectrum activity, and onset of resistance.10,11 In the
last decades, nifurtimox, a well-known nitrofuran used to treat

Chagas disease, was off-label employed in combination with
eflornithine for the treatment of the neurological stage of
gHAT.11 More recently, the nitroimidazole derivative
fexinidazole was approved by the U.S. Food and Drug
Administration (FDA) for the treatment of both stages of
gHAT.12,13 At present, the enormous efforts made by the
World Health Organization (WHO), Drugs for Neglected
Diseases Initiative (DNDi), and charitable foundations have
led to a significant decrease in HAT cases and related deaths.14

Despite that, the data collected could be underestimated due
to the difficulty in reaching the most remote African regions.
Furthermore, the possibility to easily move worldwide could
spread the disease in nonendemic countries.15,16 Last but not
least, both Nifurtimox-Eflornithine Combination Therapy
(NECT) and fexinidazole were approved against gHAT,
while the most aggressive and lethal rHAT does not have a
drug of choice.11,12

Starting from these considerations, the efforts of medicinal
chemists were focused on the identification of novel
approaches for HAT treatment. For this purpose, several
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review articles report innovative and valid strategies useful for
the identification of novel targets and antitrypanosomal
agents.17−19 In this context, rhodesain, a cysteine protease of
T. b. rhodesiense, turned out to be one of the most promising
targets for the development of antitrypanosomal agents.20−22

Rhodesain is a cathepsin L-like peptidase, also known as
TbrCatL,23 which plays essential roles in the disease
progression. This protozoal cathepsin is involved in BBB
disruption, which promotes the progression of the disease to
the neurological stage, and in the immunoevasion process,
resulting in an ineffective host immune response.24,25 The
proteolytic activity mediated by rhodesain occurs through the
catalytic triad Cys/His/Asn, which is located in a cleft between
the right (R) and left (L) domains,26 once the enzyme’s
autoinhibitory pro-domain has undergone cleavage.27 Consid-
ering its key functions, several classes of rhodesain inhibitors
have been developed in recent years.22 The development of
K11777 and K11002 (Figure 1), two potent peptide-based
Michael acceptors with which rhodesain was cocrystallized
(Protein Data Bank (PDB) ID: 2P7U and 2P86 for K11777
and K11002, respectively),26,28 has paved the way toward
structure−activity relationship (SAR) studies of irreversible

rhodesain inhibitors.29−36 At the same time, molecules carrying
several electrophilic portions, such as the nitroalkene, nitrile, 3-
bromoisoxazoline, (het)arenes, and thiosemicarbazone groups,
were developed as reversible rhodesain inhibitors.37−46

In the last decades, we focused our efforts on the
development of irreversible rhodesain inhibitors. In particular,
the methyl vinyl ketone warhead was identified as the most
reactive moiety if compared with vinyl-ester, -sulfone, and
-cyano groups.34,35 The replacement of the methyl group with
bulkier substituents led to analogues with a lower binding
affinity toward rhodesain, and for this reason it was unchanged
in the subsequent investigations.31,33 Similarly to K11777 and
K11002, hPhe and Phe at the P1 and P2 positions,
respectively, fit well into the respective enzyme pockets,
leading to strong binding affinity and potency (Figure 1). At
the P3 position, a panel of chemically different substituents was
inserted and, with a few exceptions, inhibitors carrying phenyl
rings were demonstrated to be very potent rhodesain
inhibitors, endowed with single-digit micromolar activity
against the protozoa.31,33 Differently from the potent vinyl
sulfones K11002 and K11777, the concomitant presence of a
vinyl ketone warhead and methyl-piperazine and morpholine
ring at the P3 position led to poor inhibition.33 In light of this,
we assumed a strong interdependency between the methyl
vinyl ketone warhead and aromatic rings at the P3 position.
Considering the impressive binding activities shown by

Michael acceptors reported in Figure 1, in this new set of
molecules we decided to maintain the methyl vinyl ketone
warhead and the Phe-hPhe lead motif, which are well-fitted in
the S2−S1 rhodesain pockets. At the P3 position, a set of
variously substituted aromatic rings was inserted through an
urea bond (Figure 2). The replacement of the typical peptide

bond with the urea function could improve the affinity and the
antitrypanosomal activity. In fact, while very potent rhodesain
inhibitors have been reported to date, the antitrypanosomal
activity was shown to be in the micromolar or sub-micromolar
range. Furthermore, the urea bond could be considered as an
amide bond bioisostere, possessing more rigidity and
stability.47 In a SAR study carried out by Patrick et al., the
amide-urea bond substitution led to urea derivatives with
potent in vitro activity against T. b. rhodesiense, high metabolic
stability, and moderate brain penetration.48 Overall, variously
decorated aromatic rings were inserted at the P3 position. In
addition to the unsubstituted phenyl ring (1, SPR1), we
decided to explore the impact of electron-donating groups
(EDGs) at the para position (i.e., 2 (SPR2) and 3 (SPR3)
carrying -OMe and -Me, respectively). The introduction of
halogens led to relevant potency enhancement against
rhodesain,33 and for this reason halogen-containing phenyl
rings were inserted (4 (SPR4), 5 (SPR5), and 6 (SPR6)). To

Figure 1. Chemical structures of K11777, K11002, RK-52, and PS-1.
Acronyms: RD, rhodesain; BSF, bloodstream form.

Figure 2. Chemical structure of designed urea derivatives 1−9.
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further investigate the role played by halogens in the para
position, disubstituted 4-chloro-2-methyl- and 4-chloro-2-CF3-
phenyl rings were introduced (7 (SPR7) and 8 (SPR8)),
because the 4-chloro-2-CF3-phenyl ring resulted in being well-
tolerated in peptidomimetic rhodesain inhibitors.42,49 Lastly,
the aromatic region at the P3 position was further expanded
through the introduction of a 1-naphthyl ring (9, SPR9).
The synthesis of compounds 1−9 was carried out in batches

following the Boc-chemistry. With the aim to optimize our
synthetic pathway previously reported, in which the dipeptidyl
vinyl ketones were synthesized starting from the P1 synthon,50

followed by the coupling with P2−P3 fragments and warhead
incorporation by means of cross-metathesis,31,33,34 the new
urea derivatives were synthesized following a different

approach (Scheme 1). Initially, the commercially available
Boc-hPhe-OH 10 was coupled with N,O-dimethylhydroxyl-
amine hydrochloride 11 in the presence of TBTU and DIPEA,
affording the corresponding Weinreb amide 12 in high yields
(91%). After that, the peptide backbone P3−P2−P1 was
synthesized from the C-terminal to N-terminal portion: indeed,
the subsequent TFA treatment in DCM led to the deprotected
amine TFA salt 13, which was coupled with Boc-Phe-OH. The
obtained dipeptide 14 was newly treated with TFA, and the
subsequent reaction with the appropriate differently sub-
stituted phenyl isocyanates in alkaline conditions by Et3N
provided the urea derivatives 16−24. At this point, the
reduction of the Weinreb amide by LiAlH4 in dry THF led to
the corresponding aldehyde analogues, which serve as

Scheme 1. Synthesis of Compounds 1−9a

aReagents and conditions: (a) TBTU, DIPEA, DCM, 30 min, rt, then 11, rt, on; (b) TFA/DCM 1:1, rt, TLC monitoring; (c) Boc-Phe-OH,
TBTU, DIPEA, DCM, 10 min, rt, then 13, rt, on; (d) TEA, appropriate Ar-NCO, rt, on; (e) LiAlH4, dry THF, 0 °C, TLC monitoring; (f) DCM,
Ph3PCHCOCH3, rt, 2 h.

Table 1. Biological Activity of 1−9, 25, and 26 against Rhodesain and T. b. brucei

Rhodesain T. b. brucei

compd X or Ar kinact (min−1) Ki (nM) k2nd (×10
3 M−1 min−1) EC50 (μM, 24 h)

1 H 0.0021 ± 0.0001 0.15 ± 0.06 16 700 ± 6100 19.79 ± 2.67
2 4-OMe 0.0059 ± 0.0014 1.05 ± 0.33 5820 ± 490 2.08 ± 0.22
3 4-Me 0.0023 ± 0.0001 0.51 ± 0.38 10 400 ± 7800 1.39 ± 0.23
4 4-F 0.0021 ± 0.0002 0.85 ± 0.07 2480 ± 50 1.51 ± 0.08
5 2,6-F2 0.0022 ± 0.0003 1.13 ± 0.26 2030 ± 230 3.20 ± 0.28
6 4-Cl 0.0023 ± 0.0002 0.78 ± 0.13 2990 ± 300 1.50 ± 0.24
7 4-Cl,2-Me 0.0053 ± 0.0019 0.51 ± 0.36 14 700 ± 6400 1.65 ± 0.07
8 4-Cl,2-CF3 0.0060 ± 0.0011 1.04 ± 0.31 6050 ± 790 1.28 ± 0.04
9 C4H4 0.0084 ± 0.0029 2.51 ± 1.51 4170 ± 1360 2.28 ± 0.27
25 4-Me 0.0042 ± 0.0001 0.42 ± 0.08 10 360 ± 1590 1.54 ± 0.09
26 4-Cl,2-Me 0.0123 ± 0.0060 0.93 ± 0.52 13 980 ± 1320 1.12 ± 0.05
E6434 0.0090 ± 0.0004 35 ± 5 261 ± 27 -
K1177728 9000
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substrates for the introduction of vinyl methyl ketone warhead
by Wittig reaction with 1-(triphenylphosphoranylidene)-2-
propanone. All in all, the above-described approach resulted in
being widely feasible, and the final products were obtained in a
shorter time, with limited use of consumables and slightly
better overall yields with respect to the our previously reported
synthetic method.31,33,34

The biological activity of molecules 1−9 against rhodesain
was determined by fluorogenic assays in the presence of the
appropriate substrate (i.e., Cbz-Phe-Arg-AMC). The irrever-
sible inhibitors could be enzymatically characterized by three
kinetic parameters, namely, kinact, Ki, and k2nd, which mean the
maximum potential rate of covalent bond formation, binding
affinity toward the target, and potency of inhibitors,
respectively. In more detail, Ki represents the dissociation
constant of the noncovalent enzyme−inhibitor complex [E·I];
meanwhile, kinact, represents the inactivation rate constant,
which defines the covalent enzyme−inhibitor complex (E-I)
formation rate. Lastly, the kinact/Ki ratio provides the k2nd value,
which could be considered the best parameter to characterize
irreversible inhibitors. Initially, a preliminary screening at 0.1
μM was performed, and DMSO and E-6451 were used as the
negative and positive control, respectively. Considering the
great inhibition shown at the screening concentration (>80%),
all of the urea derivatives 1−9 were properly diluted and
assayed until the minimal percentage inhibition was observed.
All of the new Michael acceptors resulted in being very potent
rhodesain inhibitors with Ki values in the nanomolar and sub-
nanomolar range (Table 1), and 1, 3, and 7 exhibited slightly
better k2nd values than that of K11777 reported in the
literature.28 The unsubstituted analogue 1 showed the best
binding affinity and potency toward the target (Ki = 0.15 nM
and k2nd = 16700 × 103 M−1 min−1, respectively). Generally,
the presence of substituents on the phenyl ring at the P3
position resulted in a slight decrease in binding affinity. The
effect of the methyl group in 3 led to Ki and k2nd values that
were 2-fold better with respect to the corresponding OMe-
containing analogue 2, whereas 4, 5, and 6, which bear at least
a halogen atom, showed similar enzyme inhibitory properties.
With regard to the disubstituted analogues, while 7 exhibited a
k2nd value comparable to that of 1, the replacement of CH3

with CF3 in 8 was poorly tolerated. Lastly, the extension of the
aromatic region with the introduction of the 1-naphthyl ring in
9 was unproductive in terms of affinity and potency.
All the urea derivatives were tested against cultured T. b.

brucei, which expresses rhodesain similarly to T. b. rhodesiense.
Unexpectedly, the most potent rhodesain inhibitor 1 showed
an EC50 value of 19.79 μM (Table 1), whereas the remaining
tested compounds exhibited antitrypanosomal activity in the
low micromolar range (EC50 values ranging from 1.27 to 3.19
μM). Considering the fairly flat SAR concerning the target
inhibition, especially in terms of Ki values, comparable EC50
values against the protozoa were analogously expected. The
difference in terms of rhodesain inhibition and antitrypanoso-
mal activity observed for 1 could be due to its poor cell
membrane permeability. In fact, we assume that the presence
of substituents on the phenyl ring at the P3 position, as well as
the extension of the aromatic region, could influence the
crossing of cell membranes.
In order to validate the role and the importance played by

the urea bond and substituents at the P3 position, the Phe at
the P2 site was replaced with Leu, which is highly preferred by
rhodesain in this position. Considering the k2nd values and the
antitrypanosomal activity shown by Phe-containing Michael
acceptors 1−9, the 4-Me-phenyl and 4-Cl,2-Me-phenyl rings,
incorporated in compounds 3 and 7, respectively, were
inserted at position P3. The two new Michael acceptors 25
(SPR46) and 26 (SPR45) were synthesized with the same
procedure described in Scheme 1, using Boc-Leu-OH instead
of Boc-Phe-OH (Scheme 2). In the biological evaluation
(Table 1), Leu-containing analogues 25 and 26 exhibited
inhibitory properties comparable to those shown by Phe
derivatives 3 and 7 against both rhodesain and protozoa. The
introduction of Leu at the P2 site kept the activity toward the
enzyme target unchanged and did not influence the cell
membrane permeability. With the exception of compound 1,
the ureido derivatives herein reported showed EC50 values
against the protozoa in the same order of magnitude of lead
compounds RK-52 and PS-1,33,34 despite a lower inhibition
toward rhodesain. This well-known discrepancy in the drug
discovery process is generally ascribed to the cell permeability
properties.

Scheme 2. Synthesis of Compounds 25 and 26a

aReagents and conditions: (a) Boc-Leu-OH, TBTU, DIPEA, DCM, 30 min, rt, then 13, rt, on; (b) TFA/DCM 1:1, rt, TLC monitoring; (c) TEA,
appropriate Ar-NCO, rt, on; (d) LiAlH4, dry THF, 0 °C, TLC monitoring; (e) DCM, Ph3PCHCOCH3, rt, 2 h.
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Considering that some of our previously reported rhodesain
inhibitors also showed micromolar activity against the main
protease (Mpro) of SARS-CoV-2,52 the novel Michael acceptors
were assayed toward the viral protease. However, in the
preliminary screening carried out at 100 μM, 1−9 exhibited a
limited percentage of inhibition, ranging from 33% to 66%. In
light of this, dilution assays characterizing the mode of
inhibition were not performed. Since poor inhibition was
shown by the Phe-containing analogues, the Leu derivatives 25
and 26 were not tested against SARS-CoV-2 Mpro.
All of the new urea derivatives were tested against human

cathepsin L (hCatL), which shares a high percentage of
sequence identity with rhodesain (Table S1). With a few
exceptions, the new rhodesain inhibitors showed a marginal
selectivity toward rhodesain. In particular, while comparable Ki
values between rhodesain and hCatL were observed, in the
latter the kinact value was 1 order of magnitude less than those
displayed in the assays against rhodesain. Overall, the k2nd
values observed for hCatL inhibition were slightly lower with
respect to those against rhodesain. Even if the k2nd values
toward rhodesain and hCatL differ by only 1 order of
magnitude, the new urea derivatives could be well tolerated in
animals, due to high levels of mammalian cysteine protease and
relative gene expression.53,54

To gain major insight into the reasons for the rhodesain
inhibitory activity of the new urea derivatives, in silico
molecular docking calculations were performed on 1−9, 25,
and 26, and the obtained data of the most active compound 7
has been reported. This compound was subjected to molecular
modeling studies as it features the best compromise between in
vitro and in cellulo activity among the newly described
compounds. The ligand was covalently docked into rhodesain’s
active site using the C25 residue as an anchoring point and
employing the covalent docking protocol in AutoDock4
(AD4) software (see the Supporting Information). The same
technique was effectively used in other rhodesain inhibitors
carrying similar Michael acceptor warheads that form the
covalent bond with C25 in the rhodesain.31,33,34

Indeed, the predicted binding pose for 7 was similar to the
one adopted by the cocrystal K11002 ligand having the P1, P2,
and P3 regions gorged at their respective enzyme clefts S1, S2,
and S3 (Figure 3A) and by the other structural congeners
described by us.31,33,34 Notably, the presence of π−π and

lipophilic interactions in the S3 pocket (Figure 3B) engaged by
the 4-chloro-2-methyl-phenyl group could explain its higher
inhibitory potency if compared to K11002 that features a
morpholine ring in the same position. In the predicted binding
pose, the methyl vinyl ketone warhead is lodged in the polar
S1’ subpocket, making positive contacts with H162 (Figure
3B). Here, the backbone NH of the P1 (hPhe) is involved in a
H-bond interaction with the backbone CO of D161, and the
phenyl ring of the P1(hPhe) is solvent-exposed. The backbone
CO of the P2 residue (Phe) is accepting a H-bond from the
backbone NH of the W26 residue, while its side chain is
lodged inside the hydrophobic S2 cleft that includes various
hydrophobic residues such as M68, A138, A208, and L160.
The urea linker forms an additional H-bond with the G66
backbone NH and allows projection of the P3 4-chloro-2-
methyl-phenyl group into the S3 cleft. As already mentioned,
this latter group can establish π−π interaction with F61. This
contact should be reinforced by the electron-withdrawing
nature of the 4-chloro group, although this effect seems to be
counterbalanced by the unfavorable electrostatic interactions
established by the same group with the F61 π-electron cloud.
Interestingly, this should explain why compounds featuring
electron-donating groups (2 and 3, see Figure S13) and more
negatively charged substituents (4, Figure S13) are less potent
rhodesain inhibitors. On the contrary, the 2-methyl seems to
engage a positive van der Waals interaction with the L67
residue, thereby explaining why compounds featuring more
polar groups such as 5 and 8 (see Figure S13) are less potent
than 7. Moreover, the same methyl group seems to hamper the
planar conformation of the phenylurea moiety, thereby
allowing a proper fitting of the same group into the S3 cleft.
All in all, while the 2-methyl substituent in 7 seems to clearly
enhance the interactions with the rhodesain S3 pocket, the 4-
chloro group should have a mixed effect on the ligand binding.
This would explain why 1 (see Figure S11), which features

an unsubstituted phenyl ring at the P3 site, is the most
proficient rhodesain inhibitor of the newly presented series. To
gain further insights into the stability of the predicted binding
pose and of the described molecular interactions, the 7/
rhodesain complex resulting from the docking experiment was
subjected to 100 ns of a molecular dynamics (MD) simulation
using Desmond. In this inspection, the ligand of 7 (L-RMSD
and L-RMSF) was inspected. If compared to the docking

Figure 3. (A) Superimposition of the docked conformations of K11002 (pink) and 7 (orange) in the rhodesain binding site (blue). (B) Predicted
theoretical binding pose of 7/rhodesain and their interactions. The enzyme is depicted in blue ribbons and sticks, and the ligand in orange sticks.
Important residues are labeled. H-bonds are shown as red dashed lines. The images were rendered using UCSF Chimera.55
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results, the majority of the predicted ligand/protein
interactions were preserved during the course of MD (see
Figure S14) as 7 displayed fairly good low RMSD fluctuations
(see Figure S15). The average RMSD value is 1.36 Å with a
standard deviation of 0.34, whereas the average RMSF broken
down atom-by-atom value is 0.89 Å with a standard deviation
of 0.53, as shown in the Supporting Information (see Figure
S16).
In this SAR study, a small panel of Michael acceptors was

developed as potential rhodesain inhibitors and antitrypano-
somal agents. The novel analogues 1−9, 25, and 26 carry a
peptide backbone Phe/Leu-hPhe and the methyl vinyl ketone
warhead, which represent the lead motif and reactive
electrophilic portion, respectively. At the P3 position, differ-
ently decorated aromatic rings were anchored to the lead motif
through a urea bond. All the urea derivatives exhibited potent
inhibitory activity toward rhodesain, with Ki values in the
nanomolar and sub-nanomolar ranges, and 1, 3, 7, 25, and 26
showed comparable potency to that of K11777. The
substituent-containing analogues on the phenyl ring at the
P3 position displayed single-digit EC50 values against the
protozoa. No significant differences were observed when Leu
was incorporated at the P2 site instead of Phe. The best
compromise in terms of activity against both the enzyme and
protozoa was observed in 7, which showed potent rhodesain
inhibition and EC50 values in the low micromolar range. In the
future, compound 7 could represent an interesting lead
compound for further investigation of the S3 rhodesain pocket
and the development of rhodesain inhibitors and anti-HAT
agents.
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