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1. INTRODUCTION 

1.1 AI in Clinical Practice and Applied to Ophthalmology 

Radiology, dermatology, and ophthalmology are just a few of the medical specialties 

where AI is now used extensively. More specifically, deep learning (DL) algorithms 

have shown promise in detecting conditions like pulmonary tuberculosis using chest 

radiographs, differentiating melanomas from benign skin lesions in digital images, and 

detecting several diseases using fundus images or optical coherence tomography (OCT) 

scans. [1, 2] 

In ophthalmology, AI has shown effectiveness in recognizing several retinal pathologies 

from fundus photographs and OCT images. [3-7] Initial studies primarily focused on 

posterior segment pathologies, with DL algorithms later being applied to the anterior 

segment as well. [7] 

1.1.1 Anterior Segment 

Clinical anterior segment conditions requiring imaging for patient management can be 

studied using AI. [7] 

1.1.1.1 Cornea 

The cornea is one of the structures analyzed using AI algorithms. Particularly interesting 

areas include: 

o Keratoconus 

o Refractive Surgery 

o Infectious Keratitis 

o Corneal Transplantation 

o Pterygium 

Progressive bilateral corneal ectasia, which causes myopia, abnormal astigmatism, and 

visual impairment, is a key characteristic of the keratoconus. The implementation of 

targeted therapy intended to stop or delay the progression of the pathology is made 
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possible by prompt detection. The first study applying AI to keratoconus dates to 1997, 

the results highlighted a high capacity of the AI algorithm to identify keratoconus in a 

test set comprising 150 video keratographies. [8] The ability to distinguish between eyes 

that are healthy and those that have keratoconus has improved over time, with new 

algorithms and classification approaches obtaining accuracy, sensitivity, and specificity 

levels between 92% and 97%. [7] 

Additionally, artificial intelligence has found use in predicting the prognosis of patients 

following therapy, notably in estimating the quality of vision following surgical 

operations. [9] Machine learning has shown equivalent safety and predictability in the 

field of refractive surgery while exceeding the surgeons group in identifying patients 

with a higher risk of iatrogenic ectasia.[10] Identifying this category of patients during 

preoperative examinations is complex due to minimal alterations in corneal surface or 

thickness, but it is essential for predicting outcomes after any laser vision correction. 

[11] 

Infectious keratitis can result in corneal opacities. Currently, the gold standard for 

detecting the microorganisms causing infectious keratitis is corneal scraping combined 

with microscopy, staining, and culture. However, only 33% to 80% of the time does this 

strategy provide favorable results. [12] In a study a diagnostic accuracy in detecting 

infectious keratitis of 90.7% has been achieved through a DL system, in comparison to 

62.6% accuracy of clinically diagnoses. Additionally, the specificity rates for 

identifying bacterial and fungal keratitis from images of corneal ulcers were 100% and 

76.5%, respectively. [13] Moreover artificial intelligence can assist in identifying the 

cause as well as reducing discrepancies in corneal ulcer readings and monitoring the 

clinical response to therapy. [14] 

Another clinically detectable condition through AI algorithms is the corneal rejection of 

the transplanted graft after Descemet membrane endothelial keratoplasty (DMEK). 

However, distinguishing cases where rejection will resolve spontaneously from those 

requiring further surgery by injecting an additional air bubble into the anterior chamber 

is challenging. As described by Hayashi and colleague’s neural networks could facilitate 

the identification of individuals deserving additional treatment. [15] 

The ocular surface disease known as pterygium is characterized by abnormal 

conjunctival growth that encroaches into the cornea. Artificial intelligence has been 
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proposed in this situation to discriminate between eyes with pterygium and those that 

are normal. [16, 17, 18] 

1.1.1.2 Lens 

Cataract, which affects 12.6 million people globally and is the primary avoidable cause 

of blindness, is the principal lens-related condition. This number will increase because 

of the population's continued ageing and inadequate healthcare, particularly in low-

income countries, which causes a discrepancy between the demand for surgery and its 

availability and, as a result, in longer surgical waiting periods. [19, 20] 

The three main types of cataracts in adults are nuclear, cortical, and posterior 

subcapsular. Currently, slit-lamp examination is used for screening and diagnosis. The 

grading methods like the Lens Opacities Classification (LOCS) III and the Wisconsin 

Cataract Grading System are used to determine the cataract severity. [21, 22] 

With slit-lamp imaging and fundus photography, many research teams studied the 

potential use of AI technology to automatically diagnose and categorize cataract 

severity. [23] Initial studies, such as the one conducted by Wu et al., achieved an 

AUC>0.99 in differentiating between the presence of artificial lenses (IOL), normal 

lenses, and cataracts on slit-lamp images and an AUC>0.91 in staging the severity. [24] 

In addition to the aforementioned uses, AI can also be useful in areas related to cataract 

surgery, such as measuring corneal power after laser refractive operations and 

calculating IOL power using biometry. [25, 26] 

1.1.1.3 Irido-Corneal Angle and Associated Structures 

The iridocorneal angle is an important ocular structure, and if its width is reduced, it can 

lead to closed-angle glaucoma. In general, open-angle and closed-angle glaucoma rank 

as the third most prevalent cause of blindness worldwide. [19] Among the two types, 

the one that leads to greater and more severe vision loss is the latter. Patients are 

asymptomatic until an acute iridocorneal angle occlusion occurs. Therefore, it's critical 

to identify those who are at risk to stop the progression of glaucoma. [7] 

Clinical diagnosis is based on gonioscopy. [27] However, this method lacks reliable 

repeatability and is sensitive to subjectivity. Alternative methods are employed to create 
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a more impartial frame of reference, including UBM, anterior segment OCT, and 

tonometry employing Scheimpflug Technology (Pentacam). [28, 29] While gonioscopy 

records sensitivity within a range of 44.4% to 49.5% for the identification of closed 

angles, AS-OCT demonstrates levels of sensitivity ranging from 88.4% to 98.0%.  

However, AS-OCT has low specificity (12%-87%), leading to over-treatment and 

unnecessary follow-up controls. [30, 31] Compared to gonioscopy, OCT can identify 

the causative mechanisms of angle closure through retinal scans. The four main 

mechanisms leading to angle closure are: 

o Increase in the diameter of the lens 

o Pupillary block 

o Increase in peripheral iris thickness 

o Plateau iris 

Finding the exact mechanism is crucial for patient care since each mechanism demands 

a certain course of action. [32] 

AI has been applied in the screening of closed-angle glaucoma using images from OCT, 

demonstrating high accuracy in this task. [7] Xu et al. created an algorithm that correctly 

recognized angle closure in AS-OCT images with an AUC of 0.93 to 0.95. [33] In a 

second study, Fu et al. realized a VGG-16 DL system to distinguish between closed-

angle glaucoma and its absence using AS-OCT images. [34] According to their research, 

the AUC ranged from 0.90 to 0.96, the sensitivity from 79% to 93%, and the specificity 

from 87% to 91%. [34] 

1.1.2 Posterior Segment 

DL has been utilized by several researcher to identify early signs of retinal disorders in 

OCT images such as glaucoma, age-related macular degeneration (AMD), macular 

edema, and diabetic retinopathy (DR). [35-40]  

1.2 OCT 

Without any physical contact, OCT generates high-resolution cross-sectional images of 

the tissues under investigation. For organs like the human eye, where traditional 

microscopic tissue examination by biopsy is very tricky, this is very helpful. [41] The 
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fast signal processing and quick scanning of OCT enable real-time image visualization. 

[42] 

There are two primary OCT approaches: The two basic categories of OCT technology 

are Time-Domain (TD)-OCT and Frequency-Domain (FD)-OCT. The latter includes 

the subsets Spectral-Domain (SD)-OCT and Swept-Source (SS)-OCT. [43] 

TD-OCT requires depth scanning for each position, resulting in slow imaging speed 

acquisition and poor image quality. Due to these limitations, its use remains restricted. 

Conversely, FD-OCT acquires depth information, improving image quality and 

examination speed. Like TD-OCT, SD-OCT uses a broadband light source, but several 

photodetectors are used to increase sensitivity. Contrarily, Swept-Source (SS)-OCT 

uses a narrowband laser source to combine the sensitivity reached by SD-OCT with the 

hardware simplicity of TD-OCT. [42] 

Confocal scanning laser ophthalmoscopy (cSLO) and SD-OCT, two complementing 

imaging technologies, were combined to create the SPECTRALIS system, introduced 

by Heidelberg Engineering in 2006.  

A variety of laser sources that offer various illumination wavelengths and detection 

patterns make up the cSLO component of SPECTRALIS. These include infrared (IR), 

green, and blue cSLO reflectance imaging. It also offers fluorescein angiography (FA), 

indocyanine green angiography (ICGA), and autofluorescence (blue and IR 

angiography, or infrared angiography). 

 

OCT and confocal IR imaging are frequently combined, however alternative pairings 

are feasible. Confocal imaging generates a cross-sectional retinal image that lines up 

with the OCT's en-face plane, enabling flexible camera positioning to capture the 

desired retinal area. The smooth capture and quality control throughout the inspection 

are made easier with real-time image presentation. The cSLO image and the OCT image 

are simultaneously recorded. (Figure 1.1) 
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Figure 1.1: Example of an image acquired with Spectralis, left eye (OS). 

 

The ability to co-register OCT and cSLO images enables follow-up exams to be 

performed in the exact same spot on any subsequent visit. Active eye tracking 

(TruTrackTM), which continually detects movements inside the cSLO image and 

readjusts the OCT beam accordingly, is used to provide this capacity. The automatic 

tracking of motion and the overlay of images acquired on the same patient at different 

times allow monitoring of any alterations in the studied retinal portion. [42]  

Similar to ultrasound OCT can obtain three different types of images: A, B, and C-scan:  

o A-scan images, or one-dimensional scans, analyze the reflectivity and depth of 

structures along a single light beam. They are rarely used, mainly for accurately 

measuring eye length.  

o B-scan images, or two-dimensional scans, are obtained by juxtaposing around 

1600 A-scan scans along a line of approximately 6 mm length. They are the most 

frequently used representations in ophthalmology and closely resemble 

histological tissue sections.  

o C-scan images are three-dimensional reconstructions composed of many 

adjacent B-scan sections. 

1.3 OCT and Maculopathy Signs 

In posterior segment pathologies, various signs can be observed through OCT 

examination. 
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1.3.1 Drusen 

Histologically drusen are characterized by lipid, protein, and cellular debris 

aggregations and they are localized between the inner layer of Bruch's membrane (BM) 

and the basal lamina of the retinal pigment epithelium (RPE). At the fundus examination 

they appear as yellow patches. It's common for these subepithelial deposits to appear 

with ageing, albeit they might not always be a sign of disease. However, the likelihood 

of developing AMD might vary depending on their number, location, and type. [44-46] 

There are many types of drusen, and their sizes, consistency, and histological 

characteristics are useful to categorize them.  

o Hard drusen, which are often seen during the ageing process and are thought to 

be normal. They are tiny, rounded deposits having a diameter of less than 63 

microns.  

o Soft drusen are less distinct deposits with a diameter more than 125 microns. 

[45] The larger drusen are thought to obstruct the exchange of nutrients and 

waste materials between the choroidal blood veins and the retina. [47] This lack 

of metabolic exchange ultimately leads to retinal atrophy and degeneration, a 

degenerative condition connected to AMD. 

 

Cuticular drusen, sometimes referred to as punctate drusen, range in size from 25 to 75 

microns. They frequently group together and are typically numerous, gradually 

generating bigger deposits. The central and peripheral retinas both have drusen, both 

hard and cuticular. Nevertheless, they are localized mostly in the macular area.   

 

According to one idea, the division made by soft drusen between BM and the RPE may 

encourage the growth of macular neovascularization along this line. This may account 

for the increased risk of AMD developing from soft drusen. [45] 

 

Drusen are most frequently linked to AMD, however it's important to understand that 

they are not just related to AMD. More uncommon genetic diseases such Sorsby's 

dystrophy, Stargardt's disease, adult-onset vitelliform macular dystrophy and North 

Carolina macular dystrophy can also cause similar deposits that resemble drusen. [46] 
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Figure 1.2 OCT scan containing drusen, right eye (OD). 

 

1.3.2 Intraretinal and Subretinal Fluid 

The presence of fluid at the intraretinal and subretinal layers is linked to ocular illnesses 

such AMD, DR, and retinal venous occlusion. (Figures 1.3 and 1.4). OCT is used to 

monitor the distribution and amount of intraretinal and subretinal fluid, which manifests 

as areas with diminished reflectivity, in order to assess the severity and progression of 

these disorders. [47, 48] 

 

 

Figure 1.3: OCT scan containing subretinal fluid, left eye (OS). 



 

9 

 

 

Figure 1.4: OCT scan containing intraretinal fluid, left eye (OS). 

 

1.3.3 Macular Neovascularization  

Macular neovascularization (MNV) is characterized by the development of new blood 

vessels linked to the choroidal vessels. These vessels are located between BM and the 

RPE. [49] (Figure 1.5) The new vessels can involve both peripheral retinal portions and 

the sub foveal zone. Bressler et al. found that peripheral MNVs are more correlated with 

pathologies other than AMD, whereas sub foveal MNVs are mostly observed in subjects 

with AMD. [81] BM disruptions are a frequent sign of diseases associated with MNV 

in clinical practice. However, it is still unclear how exactly these disruptions contributed 

to the growth of neovascularization. [50] Due to BM discontinuities, the evolution of 

MNV involves fluid seeping beneath the RPE. This may lead to a disciform scar 

developing or a serous retinal detachment [51, 52]. 

 

Based on the anatomical position there are four MNV types: 

o Type 1: it’s characterized by neovascular proliferation under the RPE. 

o Polypoidal choroidal vasculopathy: presence of a network of branching 

choroidal vessels with small aneurysmal dilations or projections called polyps.  

o Type 2: neovessels developed in the subretinal space above the RPE are referred 

to as type 2 MNV.  

o Type 3: an anastomosis between the choroidal and retinal circulations develops 

when the retinal circulation is damaged; sometimes called retinal angiomatous 

growth. [53] 

 

The gold standard for MNV diagnosis is fluorescein angiography. In people who already 

have neovascular AMD in their other eye, studies have shown that both OCT and OCTA 
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showed a high level of accuracy and specificity in recognizing newly generated MNVs 

in the partner eye. [54, 55] 

1.3.4 Backscattering 

In physics, backscattering (BS) corresponds to retro diffusion, which is the backward 

scattering of matter, radiant energy, or particles, at a scattering angle of 180°. 

The light waves traveling through the ocular tissues can either be reflected, dispersed or 

absorbed when they reach different surfaces within the tissue while making OCT 

images. Each retinal layer has different reflective, diffusive, and absorptive properties. 

[56] 

The angle at which the backscattered light reaches the region of concern directly affects 

the quality of the illumination. Because of this, structures inside the retina with an 

oblique orientation, such as the layer of Henle's fibers, may not be clearly visible or may 

have different appearances in OCT images. [57] Reflectivity is represented in shades of 

gray: if it tends towards black, it means the tissue is less reflective, whereas if it tends 

towards white, it is hyper-reflective. [58] 

Going from the most surface-level to the deepest layer, these are the layers that are 

typically visible in an OCT image of a healthy patient: 

o Posterior hyaloid 

o Internal limiting membrane 

o Nerve fiber layer 

o Ganglion cell layer 

o Inner plexiform layer 

o Inner nuclear layer 

o Outer plexiform layer 

o Outer nuclear layer 

o External limiting membrane 

o Photoreceptor layer 

o Pigmented epithelium 

The choroid is divided into two layers: the Sattler layer, which houses medium-sized 

vessels, and the Haller layer, which houses bigger vessels. The choroid is located 

underneath the complex of pigmented epithelium and BM. [56] 
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The EPR abnormalities can be observed with OCT. For instance, focused areas with 

missing or depigmented epithelium have increased choroidal vessel reflectivity. This 

sign is referred to as BS. Additionally, pigment aggregation and migration, such as 

elevations of the pigmented epithelium caused by drusen, can be seen as foci of hyper-

reflectivity with underlying shadows.[59] 

The causes of loss or atrophy of the EPR are several. Dry AMD degeneration evolving 

into geographic atrophy (GA) gives rise to BS, but areas of atrophy of smaller extent 

are sufficient to observe this sign, such as those generated by laser photocoagulation. 

[56, 60] 

1.3.5 Epiretinal Membrane (ERM) 

A macular abnormality called epiretinal membrane (ERM), which appears on the 

retina's external limiting membrane, is rather prevalent. The incidence is between 7% 

and 11.8%, and the frequency rises with age. [62, 63] 

ERMs are classified into secondary to ocular diseases and primary, which are idiopathic. 

[63] The main causes of secondary forms are previous cataract surgery, DR, and retinal 

venous occlusion. 

In many cases, ERM is asymptomatic but depends on location and type of the 

membrane. When the macular or peri-macular area is damaged, it can result in additional 

abnormalities like macular edema and retinal traction, as well as blurred vision, 

decreased visual acuity, metamorphopsia, loss of stereopsis, and aniseikonia. [64] 

The clinical classification based on fundus examination was first proposed by Gass: 

Grade 0 corresponds to the presence of macular cellophane without retinal distortion; 

Grade 1 corresponds to the appearance of retinal distortion with wrinkling of the 

cellophane; Grade 2 is defined as macular pucker with denser ERM, grayish 

appearance, and marked retinal distortion. Grade 3 is represented by the formation of a 

pseudo hole, caused by the traction exerted by ERM. [65] Today, this classification has 

been surpassed by others based on OCT. 

Clinical observations and an OCT examination both contribute to the diagnosis of ERM. 

In OCT imaging, an amorphous, hyper-reflective layer on the internal limiting 



 

12 

 

membrane (ILM) identifies ERM. It typically coexists with hypo reflective zones 

between the ERM and ILM, as well as retinal radial folds. [66] 

1.3.6 Macular Hole  

Macular Hole (MH) is a defect in retinal tissue that extends through its full thickness 

and affects the fovea. The pathogenesis can be traumatic, but it has been observed that 

most are of idiopathic, without a clear etiopathogenic mechanism. [67] 

 

Gass's biomicroscopic classification comprises four stages: 

o Stage I.A and I.B: disappearance of the foveal depression and thickening of the 

retinal profile. No vitreous separation. 

o Stage II: Full-thickness MH with partial adherence of the retinal operculum.  No 

vitreous separation. 

o Stage III: Full-thickness MH without adherent operculum and diameter less than 

400 µm.  No vitreous separation. 

o Stage IV: Full-thickness MH without adherent operculum and diameter greater 

than 400 µm. Complete vitreous separation. [65] 

Lamellar MHs and pseudo-holes, which are brought on by an ERM, are the two 

disorders that most frequently resemble full-thickness MHs. 

Lamellar holes, which are limited to the macular area, are partial abnormalities in retinal 

thickness. They may be a side effect of cystoid macular edema or arise from a full-

thickness hole not fully formed. They show as flat, crimson, well-defined lesions at the 

fundus examination. [68,69]. 

The lamellar hole can sometimes be associated with an ERM, causing tangential traction 

on the retinal layers, interrupting them. [70] 
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Figure 1.5 OCT scan containing MNV, left eye (OS). 

1.4 Major retinal pathologies related to OCT signs 

1.4.1. Diabetic Retinopathy 

In many industrialized countries, DR continues to be the predominant cause of vision 

impairment due to the global growth in diabetes mellitus prevalence. [71] Although 

diabetes can have a variety of negative effects on the eyes, such as increasing the 

incidence of cataracts, DR emerges as the most common and serious disease, affecting 

around one-third of people with diabetes. [71, 72] The following are risk factors for DR: 

1. Non-modifiable: 

o Onset age 

o Duration of the disease 

o Genetics (family history and ethnicity) 

o Type 1 Diabetes 

2. Modifiable: 

o Hyperglycemia 

o Arterial hypertension 

o Lipid profile 

o Cataract surgery 

o Pregnancy 

Additionally, epidemiological research has shown that DR, especially in less severe 

presentations, is linked to an increased risk of systemic vascular conditions such as heart 

failure, coronary artery disease, and stroke. [73] Independently from traditional 

cardiovascular risk factors, this connection persists. [74–76] These results suggest that 

substantial microcirculatory damage in diabetics is signaled by the development of 

retinopathy, highlighting the significance of careful cardiovascular monitoring for 

patients with DR. [77] 
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The core of the pathogenesis is the hyperglycemia-induced retinal microangiopathy, 

leading to alterations in the capillary walls. On one hand, there's an increase in vascular 

permeability and fragility, leading to edema and tissue hemorrhages; on the other hand, 

there's a reduction in capillary diameter and capillary closure, leading to retinal ischemia 

and subsequent release of angiogenic substances and neovascularization. Anomalies in 

brain tissue, in addition to vascular alterations, contribute to the emergence of DR. 

Diabetes-related neural problems, such as axonal degeneration and neuronal cell death, 

are permanent and strongly associated with reduced eyesight. [78, 79] 

 

The most prevalent reason for diabetics' diminishing visual acuity is diabetic macular 

edema (DME), which can appear in any kind of DR. The main factor causing DME's 

complex and difficult pathophysiology is the blood-retinal barrier rupture. The 

intercellular gaps get clogged with macromolecules and fluids. [80] 

 

The Early Treatment Diabetic Retinopathy Study (ETDRS) and the International 

Clinical Diabetic Retinopathy (ICDR) are the two main clinical categorization systems 

used for DR classification. [81-82] These classifications include several types of DME 

and group them according to whether neovascular growth is present or not. 

1. Non-proliferative, further divided into mild and moderate 

2. Pre-proliferative 

3. Proliferative, distinguished as high-risk when significant vascular proliferation 

is present. 

Various diagnostic investigations are used to classify DR. The main are [83]: 

o Visual acuity examination: however, visual acuity is not initially compromised, 

so further investigations are necessary. 

o Ophthalmoscopy (fundus examination): this is the best way to prevent and 

diagnose diabetic retinopathy.  

o Retinal Fluorescein Angiography: Microaneurysms and increased capillary 

permeability are the first noticeable changes in DR. Macular ischemia is 

indicated by the growth of the avascular foveal area, whereas focal patches of 

capillary non-perfusion suggest retinal ischemia. The leaking of dye into the 

vitreous can be used to detect the existence of retinal neovascularization. The 

two main angiographic patterns for diabetic macular edema are localized (caused 
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by leaky microaneurysms) and diffuse (coming from a widespread breakdown 

of the blood-retinal barrier). 

o OCT: Used to study different retinal layers, particularly for detecting retinal 

edema, which is not easily visible through ophthalmoscopy. For tracking the 

progression and assessing the efficacy of treatment for diabetic macular edema, 

this approach offers precise and reliable measures of retinal thickness. It also 

helps in spotting structural changes (such vitreomacular traction or ERM). 

o Ultrasound: An advanced diagnostic examination used when the eye fundus 

cannot be visualized, usually due to significant bleeding or cataracts.  

o Iridography: An angiography of the iris vessels, useful as neovascularization 

involves both retinal vessels and those in the iris; 

 

 

Most lesions associated with DR are found in the posterior pole, within the vascular 

arcade, at the nasal side. Lesions can be linked to: 

o Consequences of increased vascular permeability: macular edema, hard 

exudates, retinal hemorrhages. 

o Consequences of ischemia and neovascularization: microaneurysms, venous and 

arterial alterations, abnormal neovascularization, preretinal and/or vitreal 

hemorrhages. 

o Consequences of infarction: cotton wool spots or soft exudates. 

1.4.1.1 Non-Proliferative Retinopathy 

Non-Proliferative Retinopathy is characterized by the absence of neovessels. This form 

might be further divided into mild and moderate. [81, 82] The first sign of the mild form 

is the presence of microaneurysms, which are sac-like dilations on the venous side of 

retinal capillaries. They are difficult to see during ophthalmoscopic examination, when 

visible, they appear as small red dots, sometimes indistinguishable from minor 

hemorrhages, but are clearly outlined during fluorescein angiography as they fill up with 

dye. Microaneurysms are the earliest sign but not pathognomonic, as they can also be 

found in other conditions like hypertension. [84] Microaneurysms form due to 

alterations in the retinal capillary walls; these capillaries become more fragile, 

increasing the risk of hemorrhages. [85] 
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Retinal hemorrhages can be superficial or deep. Superficial hemorrhages have a flame-

shaped appearance, while deeper ones tend to be rounder. [85] 

Non-proliferative retinopathy becomes moderate when hard exudates appear; they are 

well-defined yellow-white deposits of lipoproteins on the retina. [81, 82] They form due 

to retinal edema, where fluid and large molecules leak out of capillaries. The fluid is 

reabsorbed, while the molecules deposit and accumulate on the retina, forming hard 

exudates. These structures have a "circinate" arrangement, circular in shape, with the 

capillary at the center of the circle, followed by edema and deposits at the periphery. 

This element is always present as it arises from capillaropathy; it can appear at the 

beginning of the disease without microaneurysms (a very rare condition) or emerge in 

advanced stages. [81, 82] 

1.4.1.2 Pre-Proliferative Retinopathy 

Characterized by more significant alterations compared to the non-proliferative form, 

yet without neovascularization. These alterations include: 

o Venous caliber anomalies: venous vessels no longer have a straight shape but 

appear twisted, tortuous, dilated. 

o Intraretinal Microvascular Abnormalities (IRMA): Capillaries begin to deform 

and twist (localized capillary dilations, tortuous and ecstatic capillary segments). 

These aren't neovessels but rather pre-existing capillaries. They have an altered 

wall, allowing fluid to escape and form macular retinal edema. Arteriovenous 

shunts are formed, visible as fine and irregular red lines from arterioles to 

venules. 

o Microaneurysms, more numerous than in the non-proliferative form. 

o Deep and diffuse retinal hemorrhages. 

o Soft exudates, round or oval-shaped, more white and less defined compared to 

hard exudates, also known as "cotton wool spots", due to their indistinct margins. 

They are small infarcts (ischemic necrosis) of nerve fibers, mainly located at the 

edges of recent ischemic areas. 

o Retinal ischemia: This condition characterizes pre-proliferative retinopathy and 

precedes neovascular formation. The ischemic phase is hard to detect 

ophthalmoscopically, but it can be identified using fluorescein angiography by 

pinpointing occluded vessels that lead to ischemic damage. Capillary occlusion 
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can result in large completely ischemic areas, with dilated, anomalous, and 

frequently shunted capillaries at the margins. Ischemia triggers the release of 

angiogenic substances (VEGF, FGF, IL8, IGF1), preceding neovascular 

formation. Neoangiogenesis is visible as ectasis at the borders between perfused 

and ischemic zones. This mechanism is activated to compensate for the lack of 

perfusion. Neovascularization is uncoordinated and anarchic: a subpar attempt 

since the neovessels have thin and fragile walls, and instead of nourishing the 

ischemic area, they can rupture and cause hemorrhages. 40% of patients with 

pre-proliferative retinopathy (with ischemia) progress to proliferative 

retinopathy within 12 months. [81, 82] 

1.4.1.3 Proliferative Retinopathy 

Characterized by significant neovascular formation and growth, stimulated by ischemia. 

These neovessels have very thin walls, making them particularly fragile. They can easily 

rupture, causing bleeding, and induce the formation of fibrotic tissue around them. This 

process is called fibrovascular proliferation. Neovessels form on the retinal surface, both 

near the optic nerve and in the vitreal cortex, and then spread diffusely across the retinal 

surface, leading to an advanced pathological state. Neovessels can be seen in fluorescein 

angiography as light spots on capillaries, highlighting dye leakage. [73, 81] 

Fibrovascular proliferation is due to the marked permeability of the vessel walls, leading 

to the extravascular loss of proteins, fibronectin, and other substances, activating 

fibroblasts that start producing collagen, thus creating fibrotic tissue around neovessels. 

This tissue anchors neovessels to the vitreal cortex and retina, exerting traction on the 

surrounding retinal tissue. This condition can also lead to tractional retinal detachment, 

a typical complication of this form of retinopathy, with catastrophic visual 

consequences. [73] Another complication is bleeding caused by neovessel rupture. The 

resulting hemorrhages can take various forms, such as the "boat-shaped" hemorrhage 

located between the retina and the posterior hyaloid. [86] 

Neovascular glaucoma is the most severe consequence that can result from proliferative 

DR. Angiogenic factors don't remain confined to the vitreous but also reach the anterior 

chamber, stimulating neovessel growth there as well. They can develop on the iris and 

in the iridosclerocorneal angle, leading to angle-closure glaucoma. These are severe 

forms of glaucoma, often untreatable, ultimately causing blindness. [73] 
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As a result, the following are the primary reasons for significant vision loss in DR: 

o Diabetic maculopathy, namely macular edema 

o Vitreous hemorrhage 

o Neovascular glaucoma 

o Tractional retinal detachment 

However, the condition can be asymptomatic if it doesn't involve the macular area; for 

this reason, symptoms cannot be correlated with the stage of retinopathy. [87] 

1.4.1.5 Treatment 

The primary treatment for DR is prevention, achieved through metabolic and glycemic 

control. [88, 89] All diabetics should undergo screening to monitor various changes that 

may indicate the onset of the condition. Screening is conducted through fundus 

examination with a slit lamp (direct ophthalmoscopy) and retinal photography, which 

captures images of the eye's fundus. The screening intervals are determined based on 

risk factors and the stage of retinopathy. [90] 

For diabetic patients, controlling blood pressure is crucial in preventing retinopathy. 

There is a 10% to 15% increased risk of developing proliferative retinopathy for every 

10 mmHg increase in systolic blood pressure, as well as a 10% to 15% increased risk of 

developing early DR. [91, 92] 

Systemic agents promoting intensive glycemic control, dyslipidemia control, and renin-

angiotensin system antagonists (antihypertensives) have shown beneficial effects on 

DR. [93] 

There are targeted molecules for diabetic patients with DR; however, this systemic 

medical therapy is still under investigation and currently not a valid treatment. Drugs 

like protein kinase C inhibitors (like ruboxistaurin) or somatostatin analogues (like 

octreotide) either orally or intramuscularly have not produced the required results in 

controlled prospective trials. [94, 95] 

There are two types of laser photocoagulation: [96] 

 Focal laser photocoagulation: small burns are created on the retina to destroy 

the altered capillaries responsible for macular edema formation. This is used to 

treat macular edema. 
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 Panretinal laser photocoagulation: used for proliferative diabetic retinopathy 

treatment. The goal is to destroy ischemic areas to block the release of 

angiogenic substances, thus halting the development of new vessels. This 

treatment is still employed. If the ischemic areas are extensive and 

neovascularization is present at multiple points, the laser treatment is not focused 

solely on them, but a panretinal photocoagulation is performed. This treatment 

is less conservative as it significantly reduces the patient's visual field but 

prevents blindness caused by retinopathy. 

The current therapy used for macular edema treatment, alongside focal laser 

photocoagulation, is intravitreal injection therapy with anti-angiogenic drugs, inhibiting 

factors promoting angiogenesis. VEGF not only induces angiogenesis but also increases 

vascular permeability; therefore, these drugs avoid retinal angiogenesis and retinal 

edema. Intravitreal cortisone injection, used solely in macular edema treatment, is also 

an option. [96, 97] 

In advanced situations, surgical intervention is considered as a last approach. When 

proliferative retinopathy-related problems such recurrent vitreous hemorrhage or 

tractional retinal detachment occur, vitrectomy is required. Surgery can still be used to 

stop the disease's progression towards blindness even if the prospect for functional 

improvement may be limited at this point in the disease's course. [98] 

1.4.2 Age-related macular degeneration  

A macular disorder called AMD leads to deterioration of central vision. It is a significant 

factor in visual impairment, causing severe vision loss and blindness. [99] According to 

population-based study, among those aged 55 to 64, the prevalence of AMD is predicted 

to be 0.2% (10 out of 4797 participants). [100] For people 85 years old and older, this 

percentage dramatically increases to 13.1% (68 out of 521).  

Traditionally, the diagnosis of AMD was based on fundus examination with a slit lamp. 

Over the past two decades, advancements in technology and the development of new 

imaging modalities have supported diagnosis through OCT, fundus autofluorescence 

(FA) and angiography. MNV in neovascular AMD may still be found using contrast-

enhanced angiography, which also helps to locate it precisely and gauge its activity. On 

the other hand, a brand-new, non-invasive imaging technique called optical coherence 
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tomography angiography (OCTA) can produce volumetric angiographic images in few  

seconds.  Contrast agents are no longer necessary thanks to OCTA, a dye-free, non-

invasive alternative. However, it identifies the presence of macular neovascular 

networks but does not detect any leakage. [99, 101] 

1.4.2.1 Risk Factors 

Risk factors can be classified into two categories:  

 Non-modifiable: Age, ethnicity, family history, female gender, iris color (higher 

risk in light irides). Age is the strongest risk factor, particularly above 60 years 

of age. Caucasians are more affected compared to African and Asian 

populations. 

 Modifiable: The primary factor is retinal tissue oxidation, which can be 

counteracted with antioxidant agents taken as dietary supplements. Smoking and 

alcohol consumption are oxidative risk factors. The role of arterial hypertension, 

lipid profile, and obesity, which do not seem to be implicated in this condition, 

remains unclear. [102, 103] 

1.4.2.2 Pathogenesis 

The retina, an essential element of vision, lines the inside rear wall of the eye, it is 

constituted centrally by the macula which has the function of fine vision and color 

perception. The fovea, which is centrally placed inside the macula, is crucial in 

maintaining fundamental visual abilities required for daily tasks. The BM, the RPE and 

the underlying choroidal capillary and choroid layers all experience notable effects in 

the setting of AMD. RPE and choroidal capillaries are extensively impacted by AMD, 

particularly when neovascular lesions form. The photoreceptor layer, where rods and 

cones interact in the complex process of phototransduction, a crucial component of 

visual function, is nourished by the RPE in a crucial way. AMD is characterized by RPE 

dysfunction and atrophy, which negatively affect the health of the photoreceptor layer 

and interfere with phototransduction. Loss of vision is the end outcome of this 

dysfunctional process that prevents signals from the retina from reaching the brain. 

The vascularization of the choroid is thought to be impacted by the microvascular 

damage caused by some systemic diseases, including hypertension and hyperlipidemia.  

[104] The aberrant expression of certain VEGF subtypes is triggered by hypoxia, which 
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leads to the growth of new choroidal capillaries that are susceptible to the unique 

hemorrhaging and leaking seen in neovascular AMD. [105]  

 

In conclusion, there are essentially four elements that contribute to AMD  

1. Photoreceptors 

2. RPE 

3. BM 

4. Choroidal Capillary Layer 

Aging of retinal tissue, genetic factors, and certain environmental factors inducing 

oxidative processes result in alterations of the above-mentioned morpho-functional unit. 

1.4.2.3 Classification 

There are several classification techniques used to categorize AMD. AMD is often 

divided into early and late phases in epidemiological study. The Age-Related Eye 

Disease Study (AREDS) severity scale and its abbreviated form are commonly used in 

clinical and experimental studies. [99] 

The basic clinical classification distinguishes between:  

 “Early AMD: presence of drusen between 63 µm and 125 µm, without pigment 

abnormalities.” 

 “Intermediate AMD: presence of drusen > 125 µm or any pigment 

abnormality.” 

 “Late AMD: neovascular form or GA. [106]“ 

The simplified AREDS severity scale points are:  

1. No drusen > 125 µm or pigment abnormalities in both eyes. 

2. Large drusen or pigment abnormalities in one eye. 

3. Large drusen or pigment abnormalities in one eye; or large drusen or     pigment 

abnormalities in both eyes; or neovascular AMD or GA in one eye. 

4. Large drusen or pigment abnormalities in one eye and large drusen or pigment 

abnormalities in the other eye. 

5. Large drusen or pigment abnormalities in both eyes. [107] 
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AMD is categorized using additional morphological features, with a particular emphasis 

on the presence or absence of aberrant choroidal vascular growth or atrophy. [104]  

If the situation is stable, early, or intermediate dry AMD varieties may show a more 

encouraging prognosis. It is important that there is a 10% to 15% chance of exudative 

AMD developing during the illness for all kinds of dry AMD. [108] Additionally, wet 

AMD may progress to GA or vice versa. [109] 

1.4.2.3 Dry AMD 

Dry AMD is the most common type of AMD (90% of cases). Initially, visual acuity is 

normal, but over time and with increasing degenerative phenomena, it decreases. It is 

usually bilateral and asymmetric. 

Characteristic alterations of this form include: [104] 

o Drusen 

o RPE 

o GA 

o Drusenoid detachments of the RPE 

Drusen are areas of extracellular lipofuscin material that may be seen in OCT images 

and are located between BM and RPE. They appear to result from the accumulation of 

debris formed during phagocytosis by RPE cells of the outer segment of photoreceptors. 

[45] 

There are two types of drusen: 

 Hard drusen: small, yellowish dots, smaller lesions, pinpoint, well-defined edges. 

 Soft drusen: larger, with more diffuse edges, lighter in color, often confluent. 

Accumulating beneath the RPE, they can lead to a detachment called drusenoid 

detachment. This predisposes to the appearance of capillaries, indicative of 

progression toward the exudative form. [104] 

They can have different sizes, volumes, and numbers. These manifestations can be seen 

clearly with multimodal imaging, particularly when OCT is used to determine the size, 

location, and extent of drusen. [101] 
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Pigment abnormalities of the RPE result from cellular disorganization: some cells are 

lost while others proliferate, leading to a remodeling of the epithelium that no longer 

has a homogeneous coloration. [104] 

GA is so named due to irregular borders and is characterized by complete atrophy at the 

macular level involving the choroidal capillary, RPE cells, and overlying 

photoreceptors. It represents the final stage of dry maculopathy, resulting in 

significantly reduced visual capacity. The damaged central zone is approximately 4 mm 

in diameter, causing the patient to have a central scotoma while retaining the rest of the 

visual field. [110] 

The borders and extent of the lesion can be quantified more accurately using FA and 

OCT, allowing for the detection and monitoring of GA progression. [111] 

1.4.2.4 Wet AMD 

The most frequent advanced form of AMD is exudative or neovascular AMD, 

sometimes known as "wet" AMD. Without treatment, fibrosis and permanent vision loss 

ensue from hemorrhaging and fluid seepage caused by the formation of 

neovascularization into the retinal layers or subretinal space. [104] 

 

Neovessels originate from the choroidal capillary and first extend beneath the RPE and 

then, following RPE rupture, beneath the retina. Neovascular AMD can be classified 

into three types, as described earlier. In addition to visual acuity reduction, other 

symptoms associated with neovascularization and retinal edema include 

metamorphopsia, i.e., distorted vision of images, and the presence of macular scotoma. 

[104] 

The Amsler grid test (Figure 1.6) is used for diagnosing metamorphopsia, especially in 

patients with initial maculopathy, to promptly recognize the shift to the neovascular 

form. Therefore, it is important to identify even subtle metamorphopsia. The patient is 

instructed to fixate on the central point of the grid. If they begin to perceive the grid 

abnormally or notice changes from day to day, it would be a sign of metamorphopsia. 

[112] 
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Figure 1.6: Amsler Grid, used for the identification of metamorphopsia. 

 

1.4.2.5 Treatment 

Dry AMD is due to oxidative processes, thus, like other conditions, antioxidant-based 

supplements can be useful. This type of treatment, in the context of AMD, has been 

scientifically evaluated through studies lasting several years. 

Guidelines for vitamin supplementation were provided by the Age-Related Eye Disease 

Study (AREDS), which also showed a 25% decrease in the development of advanced 

AMD. Zinc, vitamin C, vitamin E, lutein, and zeaxanthin are among modern 

supplements. [113] The AREDS2 formulation replaced beta-carotene, which was 

previously included, with lutein and zeaxanthin owing to the increased risk of lung 

cancer in smokers. However, its efficacy has not been shown in individuals with early 

AMD in both eyes. It is advised to supplement for patients with intermediate or early 

AMD in one eye and advanced AMD in the other. For the goal of prevention, it is not 

advised. [113] 

A change in lifestyle is suggested for all patients. These adjustments include dietary 

modification that emphasize the consumption of foods high in antioxidants, omega-3 

fatty acids, and omega-6 fatty acids, particularly seafood. In addition, managing your 

weight and quitting smoking are advised behaviors. [104] Other modifiable risk factors 

must also be addressed, such as lowering cholesterol and blood pressure. 
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There is conflicting evidence about how UV exposure affects the onset of AMD. 

However, one lifestyle change you might think about is reducing your sun exposure. 

[114] 

For wet AMD, possible treatments include [104]: 

 Physical therapy: before the 2000s, laser photocoagulation was the cornerstone 

of wet AMD therapy. Targeted thermal energy was used on the neovascular 

membranes, inducing their scarring. The limitation of this technique is the 

occurrence of scotoma and permanent vision loss in the treated area. 

 Photodynamic therapy (PDT): Verteporfin is injected and exclusively binds to 

the neovascular endothelium. It is then irradiated with a low-intensity diode laser 

to achieve coagulation only at the level of neovascular membranes. This allowed 

for the first time the elimination of neovascular membranes without destroying 

the overlying retina.  

 Medical therapy: Involves intravitreal treatment with anti-VEGF drugs. The 

adverse effects of these medications, which are given as outpatient injections, 

are quite low. One of the first mediators to be linked to the formation of 

neovascular membranes was VEGF-A, which later emerged as the first 

therapeutic target. Along with additional angiogenic forms including VEGF-B 

and placental-like growth factor (PLGF), VEGF-A comes in a variety of 

isoforms. Ranibizumab, aflibercept, and bevacizumab are the three main 

intravitreal medications used to treat wet AMD. A recombinant monoclonal 

antibody fragment called ranibizumab is effective against all VEGF-A subtypes. 

Aflibercept, a fusion protein of the VEGF-trap and VEGF-A, binds to both 

growth factors. Bevacizumab, a monoclonal antibody used systemically to treat 

colon cancer, works by binding to all VEGF-A isoforms. While the FDA has 

approved the first two medications for exudative AMD, the third is used off-

label. Faricimab and brolucizumab are recent pharmaceuticals. 2019 saw the 

FDA's approval of brolucizumab, a humanized single-chain monoclonal 

antibody fragment with the ability to bind to all human VEGF-A isoforms. On 

the other hand, faricimab is a particular antibody that specifically targets VEGF-

A and angiopoietin-2 (Ang-2). Inhibiting Ang-2 is useful in lowering 

inflammation and edema development because it contributes to vascular 

endothelial stability and inflammation. [116] 
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Moreover, in the management of AMD, there are supportive systems, such as visual 

rehabilitation: these are optical systems that enlarge images, allowing for partial 

improvement of visual acuity, especially for close-up vision. [117] 

1.4.3 Venous Occlusions 

According to the site of occlusion there are two types of venous occlusions (VO): central 

retinal vein occlusion (CRVO) and branch retinal vein occlusion (BRVO) (superior, 

inferior, temporal, nasal). The two other categories of central retinal vein occlusions are 

non-ischemic and ischemic. [118] 

1.4.3.1 Epidemiology 

The worldwide prevalence of VO is estimated to be 0.4%, with equal distribution in 

both sexes and an increased risk with advanced age. [119] 

1.4.3.2 Etiology and Risk Factors 

The main risk factors are age, cardiovascular risk factors, arterial hypertension, diabetes 

mellitus, dyslipidemia, inflammatory conditions such as systemic lupus erythematosus, 

and coagulation disorders. [120-122] 

1.4.3.3 Pathogenesis 

In the retinal regions where arteries and veins cross, the adventitial layer is common. 

This implies that if the artery thickens, the vein, which has a thinner wall, is compressed. 

This occurs in the phenomenon of arteriosclerosis, where the arterial wall becomes 

thicker and consequently, at the crossroads, the adventitial layer cannot dilate, resulting 

in vein compression. Arteriovenous crossings are common in conditions such as arterial 

hypertension or diabetes. [123] 

There are several factors that lead to venous thrombosis and subsequent retinal 

occlusion: 

1. When the arteriolar/retinal artery thickens, the venule/retinal vein is compressed 

at the arteriovenous junction, resulting in turbulent flow and endothelial cell loss. 

2. Wall alteration: some conditions that lead to loss of endothelium or pericytes 

result in platelet aggregation and thrombus formation. 
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3. Blood component pathologies: hypercoagulability, hyperaggregability, etc. 

4. Slowing of blood velocity (often linked to decreased driving force in venous 

forms: if arterial supply is slowed, venous blood will also have reduced 

velocity). 

Thrombosis leads to increased pressure upstream of the obstruction, resulting in 

circulatory slowdown with consequent retinal ischemia, wall damage with increased 

permeability, and rupture of capillaries. This leads to the formation of edema, 

hemorrhages, and compensatory circulation to bypass the occlusion itself. [124] 

1.4.3.4 Clinical Presentation 

Symptoms vary based on the location of the thrombosis. Typically, patients report 

sudden, painless visual decline, visual field constriction, and sudden haziness due to 

macular edema and hemorrhages. Occlusion can also be asymptomatic if a peripheral 

venous branch is involved. Macular edema leads to photoreceptor displacement, causing 

metamorphopsia – distorted vision due to intraretinal fluid. [125] 

Fundus examination reveals: 

 Dilation and tortuosity of veins in the affected segment. 

 Flame, dot-like, or blot-shaped hemorrhages in the retinal area drained by the 

affected branch. 

 Cotton-wool spots: soft, poorly defined margin exudates are an expression of 

ischemia since in some area’s capillaries close, blood flow stops, leading to 

ischemic damage and formation of such exudates. 

 Intraretinal edema: often not easily visible, requiring instrumental investigations 

like OCT. 

 Collateral vessels: can form after several weeks in hypoperfused areas. They are 

a favorable prognostic factor as they spontaneously resolve the occlusion. After 

occlusion, the thrombus is remodeled, and there's some recovery of circulation 

patency. This initially occurs slowly, but there can be spontaneous bypass of the 

occlusion zone: new vessels form, connecting both sides of the occluded vein 

(upstream and downstream). These are neoformed but non-pathological vessels, 

unlike those resulting from ischemia. 
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 Retinal neovascularization: develops in 8% of eyes affected by retinal venous 

branch occlusion within 3 years; typically appearing 6-12 months after the event. 

Like diabetic retinopathy, neovascularization forms due to ischemia, leading to 

angiogenic factor production. 

 Iris Neovascularization (Iris Rubeosis) and Neovascular Glaucoma: more 

common in central occlusions compared to branch occlusions. When VEGF is 

produced in large amount, it can reach the anterior segment and promote 

neovascularization at this level. In summary, a branch occlusion has the 

possibility to restore good circulation after the event, neovascularization occurs 

in few cases, and iris neovascularization occurs in very few cases. 

 Chronic Macular Edema: It is the most common cause of long-term poor visual 

acuity. 

 Tractional Retinal Detachment 

1.4.3.5 Treatment 

 Laser treatment: in the case of neovascularization development (since VEGF is 

produced by ischemic retinal areas), ischemic retinal areas need to be 

photocoagulated. Peripheral sectoral retinal photocoagulation in ischemic areas 

is indicated in the development of retinal and iris neovascularization or 

neovascular glaucoma. 

 Intravitreal therapy: post-occlusion macular edema treatment is based on two 

molecules injected into the vitreous to reduce macular edema. These include 

slow-release steroids, particularly indicated in venous occlusions initially, and 

anti-VEGF agents secondarily. These treatments are often combined with laser 

therapy. 

 Macular microencapsulated laser: used in macular edema treatment, with or 

without anti-VEGF therapy; less frequently used than intravitreal injections. 

[126, 127] 
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2 STUDY OBJECTIVE 

The objective of the study was to create DL models capable of identifying key signs of 

retinal pathologies in fovea-centered OCT images. The models also aim to identify 

multiple retinal signs present in the same OCT scan. 

3 MATERIALS AND METHODS 

Patients were enrolled at the University Eye Clinic of Trieste. Every participant in this 

study gave their informed consent for the use of their data. The retrospective study was 

approved by the Ethics Committee with protocol number 17094/2022. 

3.1 Data collection 

Retrospective analysis was performed on fully anonymized OCT scans that used an A-

line scanning procedure with a length of 9.0 mm. The Spectralis OCT device 

(Heidelberg Engineering, Heidelberg, Germany) was used to take these images. It uses 

an 815 nm laser source with an image size of 768x496 pixels. 

The fovea was the focal point of both the horizontal and vertical line scans used in the 

study. These scans were taken from people who were both healthy and who had a variety 

of retinal disorders. Data was gathered for the study between January 2017 and 

September 2022, and participants' ages varied from 18 to 95. 

ERM, Intraretinal Fluid (IF), Subretinal Fluid (SF), Drusen (D), MNV, Vitreomacular 

Adhesion (VMA), MH, and BS were required as inclusion criteria for the pathological 

group. Healthy group had normal OCT scans and showed no aberrant retinal signs. 

Images with a Spectralis Quality value below 23 were deemed to be of poor quality, and 

they were thus omitted from the research. 
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3.2 Image Labeling and Preprocessing 

Two experienced retinal experts (LI, DM) examined and categorized each image in 

detail. Poor quality images, OCT scans not focused on the foveal region, and images for 

which the two experts could not concur were eliminated from the dataset. 

Figure 2 presents illustrative OCT images for each of the recognized signs. Each image 

was cropped to the scan's center for standardization, giving it a 621x445 pixel size. They 

were then downsized to the VGG-16 convolutional neural networks algorithm's default 

input image size of 224x224 pixels. The bicubic interpolation method was used to 

achieve this resizing. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

3.3 Datasets Population and Training Process 

Nine different predictive binary models were created using preprocessing on the labeled 

images. The first model was trained to differentiate between healthy and pathological 
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eyes. The following eight models were then created to distinguish between distinct 

retinal degeneration signs. Images of both healthy eyes and eyes with at least one sign 

were used in the initial model. The remaining eight models each focused on images 

either having a certain sign or not having that sign. An equal number of images were 

considered for each group in every model to provide a balanced dataset. 10% of the 

images from healthy eyes and 10% of the images for each sign were randomly selected 

to create a test set. A 5-fold cross-validation was carried out using the remaining 90% 

of the images. The images with one or more aberrant signs are shown in table 1. 

 

# of signs BS 

MN

V D IF SF 

M

H ERM 

VM

A 

Total 

image

s 

1 212 96 1091 964 265 145 880 1733 5386 

2 418 375 470 727 302 250 518 342 1701 

3 257 245 95 296 130 80 156 70 443 

4 83 88 37 88 52 12 27 33 105 

5 15 15 5 11 13 2 6 8 15 

Total 985 819 1698 2086 762 489 1587 2186 7650 

 

Table 1  

3.4 Modeling 

We chose the VGG-16 model for this study from among the three widely used CNN 

architectures. 

It is generally known that VGG is useful in medical diagnostic imaging. VGG 

consistently ranks among the top three CNN designs often used in the medical imaging 

area, according to an extended analysis spanning from 2012 to 2020. [128] Notably, 

VGG has proven to be incredibly accurate, obtaining an accuracy rate of almost 97.5% 

when making the diagnosis of Choroidal Neovascularization (CNV) using retinal OCT 

images. [129] A modified VGG16 architecture has also been presented for the 

categorization of diabetic retinopathy, outperforming state-of-the-art procedures in 

terms of accuracy while also optimizing the utilization of computational resources. 

[130] VGG16 has proven its adaptability in several fields outside of ophthalmology. It 

successfully classified breast cancer from mammography images, for example, earning 

a remarkable test score of 88%. [131] Moreover, VGG16 has demonstrated its ability in 
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the field of MRI-based brain tumor identification, claiming a remarkable accuracy rate 

of about 96.1%. Specifically, a UNet-VGG16 configuration with transfer learning was 

used to improve the segmentation of brain tumors in MRI images. [132] VGG16 was 

utilized as a pre-trained model in the field of breast histopathology image processing, 

enabling the extraction of complex characteristics to improve the categorization of 

breast cancer. [133] In addition, an improved iteration of the VGG16 model has been 

proposed for the classification of X-ray images connected to pneumonia demonstrating 

considerable performance improvements over other CNN. [134]  

Nine binary classifiers were trained using the improved VGG-16 model. (Figure 3) 

 

 

Figure 3 

 

For each of the nine binary models, we employed transfer learning and fine-tuning 

approaches using the pre-trained VGG-16 model. As seen on the right side of Fig. 3, we 

updated the top layers of VGG-16 while leaving the earlier levels frozen to build the 

model. To ensure compatibility with dense layers that need 1D vectors as input, we 

included a sigmoid dense layer for classification and included a flattened layer to 

transform data from 3D tensors into one-dimensional arrays. Taking use of the patterns 

discovered in the previous convolutional layers, these further layers were trained using 

the Adaptive Moment Estimation Algorithm (ADAM) with a very low learning rate of 

0.0001. [135] 

This method allowed the detection of retinal defects even without retraining our VGG-

16 model with our images. We used common data augmentation methods to resize and 

improve the images before training each model. We then started the training process by 

feeding the model batches of 32 of these images. There were two phases to the training 
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procedure. We used transfer learning in the first stage while keeping the convolutional 

layers frozen. In the second phase, we used the early stopping technique to halt training 

if the accuracy on the validation set did not increase after eight iterations. 

Maximum 70 epochs were used in our training routine for each model, with a batch size 

of 32 elements being used consistently. The training was split into two parts, with the 

transfer learning phase receiving 40 epochs and the fine-tuning phase receiving the 

remaining 30 epochs. The choice of the maximum epoch count was decided using 

empirical data and taking the model's convergence trends into account. To continually 

evaluate each model's correctness on the validation datasets at each epoch, we adopted 

the early stopping technique. If no more performance enhancements were seen, the 

training procedure was immediately ended. After training, we selected the model that 

performed best on the validation set and tested it on the test sets. 

We used a computer with a Ryzen 7 2700 CPU, an NVIDIA RTX 3070ti graphics card, 

and 16 GB of DDR4 RAM for the training procedure. For the training process, we used 

Python 3.10 and Keras, a high-level Tensorflow 2 API. 

3.5 Evaluation metrics 

We tested the model's performance by measuring accuracy, sensitivity, specificity, and 

the area under the ROC curve (AUC). We made use of confusion matrices to better 

explain misclassifications. To assess the consistency between the model's predictions 

and the actual labelling of the variables, we also computed Cohen's Kappa indices. The 

scikit-learn Python library was used for all these investigations.[136] 

3.6 Model visualization (GRAD-CAM) 

To get insight into the predictions, we employed the Gradient-weighted class activation 

mapping (Grad-CAM heatmap) technique for each CNN model. Grad-CAMs were 

utilized to determine the regions that had the most effect on the model's judgements just 

before the VGG16's final completely connected layer. We were able to visually locate 

the important characteristics or areas of interest in the input data that had a substantial 

impact on the model's judgement by creating heatmaps. This method helped to clarify 
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the reasoning behind the predictions made by the model. Grad-CAM heatmap samples 

are shown in Figure 4. 

 

 

Figure 4 

4 RESULTS  

We included a total of 21,500 OCT scans from 11,245 individuals (5,258 men and 5,987 

women), with an average age of 71.2 ± 16.5. The images were chosen randomly from 

Heidelberg Spectralis OCT database. After this first selection, 10,770 images were 

included tin the study. Of them, 7,650 were classified as pathological, whereas 3,120 

were categorised as normal. Images that had several signs were tallied more than once. 

Thus, a total of 10,612 images showing one or more signs were included in the study, 

including 1,587 images with ERM, 2,086 with IF, 762 with SF, 1,698 with D, 819 with 

MNV, 2,186 with VMA, 489 with MH, and 985 with BS. 
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Nine distinct CNN models were developed and trained to distinguish between normal 

and pathological images. Additionally, these models were tasked with differentiating 

between various pathological signs. Figure 5 illustrates a typical progression where the 

accuracy metric consistently improves while the loss metric decreases during the 

training phases.  

 

Figure 5 

 

For the test and validation sets, we generated nine confusion matrices. The results are 

displayed in Tables 2 and 3. In these matrices, columns represent examples in the 

expected classes, while rows represent occurrences in the actual classes.  
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HEALTH

Y 

PATHOLOGICA

L   ERM O.S.   IF O.S. 

HEALTHY 560 2  ERM 441 11  IF 350 7 

PATHOLOGICA

L 8 553  O.S. 16 445  O.S. 3 353 

           
           

 SF O.S.   D O.S.   MNV O.S. 

SF 118 8  D 281 12  
MN

V 107 9 

O.S. 1 118  O.S. 11 281  O.S. 3 107 

           
           

 VMA O.S.   MH O.S.   BS O.S. 

VMA 359 1  MH 85 3  BS 142 8 

O.S. 6 354  O.S. 1 87  O.S. 14 148 

 

Table 2 

 

 

 

 

 
HEALTH

Y 

PATHOLOGICA

L   ERM O.S.   IF O.S. 

HEALTHY 309 3  ERM 249 4  IF 193 5 

PATHOLOGICA

L 6 306  O.S. 5 248  O.S. 0 197 

           

           
 

 SF O.S.   D O.S.   MNV O.S. 

SF 68 2  D 154 8  
MN

V 58 6 

O.S. 1 69  O.S. 10 152  O.S. 3 61 

           

 
           

 VMA O.S.   MH O.S.   BS O.S. 

VMA 199 0  MH 46 2  BS 79 2 

O.S. 3 197  O.S. 0 48  O.S. 0 83 

 

Table 3 

 

For each of the nine CNN models, the accuracy, sensitivity, specificity, kappa value, 

and AUC are shown in Tables 4 and 5, individually computed for the test and validation 

sets.  
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 Accuracy Sensitivity Specificity Kappa AUC 

Healthy 0.99 1.00 0.99 0.98 0.99 

ERM 0.97 0.96 0.98 0.94 0.97 

IF 0.99 0.98 0.99 0.97 0.99 

SF 0.96 0.94 0.99 0.93 0.96 

D 0.96 0.96 0.96 0.92 0.96 

MNV 0.95 0.92 0.97 0.90 0.95 

VMA 0.99 1.00 0.98 0.98 0.99 

MH 0.98 0.96 0.99 0.95 0.98 

BS 0.93 0.91 0.95 0.86 0.93 

 

Table 4  

 

 

 

 

 Accuracy Sensitivity Specificity Kappa AUC 

Healthy 0.99 0.99 0.98 0.97 0.99 

ERM 0.98 0.98 0.98 0.96 0.98 

IF 0.99 0.97 1.00 0.97 0.99 

SF 0.98 0.97 0.99 0.96 0.98 

D 0.94 0.95 0.94 0.89 0.94 

MNV 0.93 0.91 0.95 0.86 0.93 

VMA 0.99 1.00 0.98 0.98 0.99 

MH 0.98 0.96 1.00 0.96 0.98 

BS 0.94 0.92 0.96 0.88 0.94 

 

Table 5  
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Figure 4 shows heatmaps for each pathological signs, which are useful for identifying 

and locating them as indicated by the algorithm. The Grad-CAM heatmaps example in 

Figure 6 illustrates how the system exhibited its capacity to recognize several signs 

inside a single OCT image. Figure 7 illustrates instances in which the CNNs produced 

inaccurate heatmaps. 

 

 

 

 

Figure 6 

Figure 7 
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5 DISCUSSION 

OCT is now a crucial diagnostic technique for several retinal diseases, including MH, 

ERM, AMD, and DR. Additional diagnostic techniques like fluorescein angiography 

and fundus images are used in conjunction. [137-141] 

Using OCT, several studies have investigated the use of DL algorithms to identify 

diabetic retinopathy (DR) and diabetic macular edema. [142, 143-145] The exceptional 

area under the curve (AUC) of 0.958, 100% sensitivity, and 91.1% specificity that Ting's 

training of a DL system to recognize DR produced is only one example of the 

outstanding results she was able to obtain. [142] A DL method for automated macular 

edema segmentation was developed in 2017 by Lee and colleagues, who outperformed 

retina specialists in terms of performance. [146] Using a dataset of 62,489 OCT images, 

Kermany created a CNN capable of differentiating between normal cases and DR, 

attaining outstanding accuracy of 98.2%, a sensitivity of 96.8%, and a specificity of 

99.6%. [147] In 2017, Schlegl and colleagues created an automated approach for 

detecting and quantifying intraretinal cystoid fluid, reaching an AUC of 0.94. [40] With 

an AUC of 0.98, a sensitivity of 96.8%, and a specificity of 87.0%, the CNN developed 

by Abràmoff et al. performed well in identifying DR on OCT images. [148] 

Burlina and colleagues' AI model shown remarkable skills in identifying AMD from 

OCT images, attaining notable accuracy ranging between around 92% and 95% across 

distinct groups. [149] Similar results were obtained by Ting and his colleagues, who 

created a DL system capable of identifying AMD in a multiethnic sample of diabetic 

patients. This system produced outstanding results, including an AUC of 0.93, a 

sensitivity of 93.2%, and a specificity of 88.7%. [142] The accuracy, sensitivity, and 

specificity of Kermany and colleagues' excellent diagnostic performance for AMD 

utilizing OCT images were 96.6%, 97.8%, and 97.4% [147]. Additionally, CNNs were 

trained by other authors to recognize certain biomarkers linked to the prognosis and 

development of AMD [150–156]. 

According to Yanagihara and colleagues [157], the application of much research is still 

limited in clinical practice in actual hospital settings. The restricted interpretability of 

DL models and the use of non-standard datasets are two of the many difficulties 

encountered. This situation frequently requires that every hospital create its own dataset. 
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To differentiate between pathological and normal OCT images, all the aforementioned 

research used binary classification approaches. By basing diagnoses on specific OCT 

images, they all functioned inside a black-box framework. Clinical diagnoses, however, 

rely on the detection of anomalies throughout a collection of OCT images acquired from 

the same patient, as a single scan could not include all the necessary data. The 

classification of retinal abnormality signs rather than the disorders themselves is one 

possible strategy for overcoming this difficulty. It is important to note that few research 

have documented the identification of such signs. Son and colleagues created a DL 

model that uses macula-centered fundus images to efficiently identify 15 aberrant retinal 

signs and offer diagnosis for 8 main eye diseases.  To clarify the diagnostic logic used 

by the system and throw light on the significance of each anomalous result to its 

prediction, they developed the idea of counterfactual attribution ratio (CAR). CAR 

enables interactive changes, quantitative and qualitative interpretations, and 

confirmation of the model's ability to recognize observations and disorders in a way like 

ophthalmologists. [158] A DL system that can distinguish between normal images and 

those showing cystoid macular edema, serous macular detachment, ERM and MH was 

proposed by Lu and colleagues in a research. The system achieved an accuracy of 97%, 

84%, 94%, 96%, and 98%, respectively. [159] Additionally, with 97% accuracy, 93% 

sensitivity, and 98% specificity, Rajagopalan et al. diagnosed CNV, D, and diabetic 

macular edema (DME). [160] Kurmann used a machine learning method in a separate 

work to recognize a variety of conditions in OCT B-scan images. These conditions 

included geographic atrophy (GA), outer retinal atrophy (ORA), SRF, IRF, intraretinal 

cysts (IRC), hyperreflective foci (HF), D, reticular pseudodrusen (RPD), ERM, and 

fibrovascular pigment epithelial detachment (FPED). Their DL system produced 

excellent results after being trained on a dataset made up of 23,030 OCT images. [161]  

Like Kurmann's method, we trained our DL models using simple datasets that were 

easily acquired from a single hospital environment. These models were created with the 

particular purpose of detecting different retinal abnormalities in a single OCT image. 

They mimic the logical method used by ophthalmologists to diagnose ocular disorders 

by identifying specific abnormality signs rather than depending exclusively on the 

results produced by a black-box DL model. Our goal was to closely resemble the clinical 

process, in which doctors use a variety of images to evaluate the existence of all nine 

signs. By reviewing the classifier output, which contains class probabilities, and 

examining the heatmaps, we wanted to acquire a thorough understanding of the sign 
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recognition procedure. Additionally, this method lessens the overall number of images 

generally required to distinguish between different diseases. The CNN architecture used 

by VGG-16 is quite simple and consists of a series of convolutional layers, followed by 

max-pooling and fully linked layers. Because of its simplicity, the VGG-16 model has 

fewer parameters than ResNet and Inception, which have more complex designs that 

include skip connections, residual blocks, and inception modules and can thus capture 

more complex information. 

CNN was successfully used by Lee et al. to distinguish between normal OCT images 

and those from AMD patients.[162] They gathered a sizable collection of several OCT 

images for their investigation from both healthy volunteers and AMD patients. Out of 

these, 20,163 images were set aside for validation purposes and 80,839 images were 

chosen for training a CNN model. AUCs of 92.78%, 93.83%, and 97.45% were obtained 

from the image level, macular level, and patient level ROC curves, respectively. In a 

work by Choi et al., they developed three CNNs and trained and validated them to 

classify OCT images into three categories: normal, high myopia, and various retinal 

disorders. [163] Their strategy includes building models for image categorization using 

three different architectural backbones: VGG-16, ResNet-50, and Inception-v3. The 

effectiveness of these models was evaluated, and the best AUCs were obtained for the 

following models: ResNet-50, 99.9% for VGG-16, and 96.1% for Inception-v3. 

In contrast to earlier research, our models were able to obtain a noticeably high degree 

of accuracy on both the training and test datasets, ranging from 93% to 99%, while using 

a more straightforward architecture. This precision applies to the detection of eight 

disease signs as well as healthy retinas. The robustness of our models is suggested by 

their consistent performance on both the validation and test datasets, which shows that 

they did not overfit during training and were good at capturing the underlying patterns 

associated with retinal abnormality signs. Therefore, as shown by the compelling 

findings, these models showed the ability to successfully categories such signs, whether 

single or multiple, in a single OCT image. 

We understand that VGG16 is not the most advanced architecture and might not achieve 

the highest levels of accuracy. However, it has proven that it can obtain clinically 

applicable findings when identifying signs of retinal degeneration.  



 

42 

 

The time it took to classify an image in our unique scenario with our computer was 

about 2.2 seconds. It's important to emphasize that, while getting extremely high 

accuracy rates (e.g., close to 100%) may not be feasible for some medical imaging 

activities, achieving accuracy levels that have therapeutic value should be the main goal. 

[164,165] 

The specific medical goal, potential effects on patient care, and special use-case 

situation can all have an impact on how variable these values are. [166]   

Notably, our approach enables ophthalmologists to evaluate every OCT image 

independently, acknowledging that not all signs may be seen in every scan. 

Additionally, because the system can identify distinct signs rather than being restricted 

to just one type of retinal pathology, it might serve as a diagnostic aid for a wider range 

of disorders that show different combinations of these signs. It's important to note that 

the classification of specific signs may be considered as a drawback because it still 

requires ophthalmologist involvement to diagnose a condition, which is frequently 

required in automated screening systems. 

6 CONCLUSIONS  

The effectiveness of adding more recent DL architectures into the diagnostic workflow 

should be improved further by examining the practicality of doing so and assessing their 

performance. Finally, our findings show that DL models have the potential to enhance 

ocular pathology diagnosis and clinical decision-making. 
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