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ABSTRACT

The present PhD thesis investigates the use of cost-effective strategies in combination
with advanced decomposition techniques for the modal characterization of existing
bridges. A usual strategy for the health condition assessment of existing structures
relies on vibration-based approaches; specifically, the most sought-after ones exploit
long-term continuous monitoring records under ambient vibrations, processed via op-
erational modal analysis techniques. However, the costs associated with the network
of sensors, its protection and maintenance as well as the time and effort required to
carry out the tests and to process large amounts of data make the application of this
strategy profitable only in the case of strategic structures. This PhD thesis presents
the results of several research studies with the main goal of proposing alternative ap-
proaches for the modal identification of existing bridges that mitigate the time and
cost-related limitations of current ambient vibration monitoring, making it affordable
also to monitor the health conditions of ordinary structures. In this regard, two pos-
sible solutions are studied. The first one is based on free vibration tests performed
with a limited number of sensors directly mounted on the bridge; the second one ex-
plores the possibility of providing an approximate estimation of modal parameters via
an indirect approach based on the dynamic response of moving vehicles. Aiming at
processing the recorded signals, identification strategies based on two advanced signal
decomposition techniques, namely the Variational Mode Decomposition (VMD) and
the Empirical Fourier Decomposition (EFD), are presented. The proposed approaches
are validated with numerical benchmark applications. Further, their performance is
also assessed and compared with other traditional approaches in real case-studies con-
cerning roadway and railway bridges.

Keywords: Bridge modal identification, Damping estimation, Free vibration tests,
Vehicle Scanning Method, Variational Mode Decomposition (VMD), Empirical Fourier
Decomposition (EFD).

ii



CONTENTS

Index iii

List of Figures v

List of Tables xiii

Publications xvi

Introduction 1

1 Background 5
1.1 Fundamentals of modal analysis . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Vibration-based dynamic tests . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Basics of signal pre-processing and validation . . . . . . . . . . . . . . 16

2 State of the art 25
2.1 Time Domain Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 The continuous-time state-space model . . . . . . . . . . . . . . 26
2.1.2 The discrete-time state-space model . . . . . . . . . . . . . . . 28
2.1.3 Stochastic Subspace Identification . . . . . . . . . . . . . . . . 30
2.1.4 Natural Excitation Technique . . . . . . . . . . . . . . . . . . . 37
2.1.5 Random Decrement Technique . . . . . . . . . . . . . . . . . . 40

2.2 Frequency Domain Methods . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 Peak-picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Frequency Domain Decomposition . . . . . . . . . . . . . . . . 44
2.2.3 Enhanced Frequency Domain Decomposition . . . . . . . . . . 46

2.3 Modal Identification through adaptive decomposition methods . . . . 48
2.3.1 Empirical Mode Decomposition (EMD) . . . . . . . . . . . . . 49
2.3.2 Variational Mode Decomposition (VMD) . . . . . . . . . . . . 54
2.3.3 Empirical Wavelet Transform (EWT) . . . . . . . . . . . . . . 59
2.3.4 Empirical Fourier Decomposition (EFD) . . . . . . . . . . . . . 62

2.4 Modal identification via Hilbert transform . . . . . . . . . . . . . . . . 64
2.5 Damping estimation from free vibration responses . . . . . . . . . . . 66

3 Bridges dynamic identification based on free vibration response
and variational mode decomposition technique 73
3.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Variational mode decomposition-based identification . . . . . . . . . . 77

iii



3.2.1 Automatic optimal tuning of the variational mode decomposi-
tion technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Robust damping identification . . . . . . . . . . . . . . . . . . 79
3.2.3 Mode shapes identification . . . . . . . . . . . . . . . . . . . . 80

3.3 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Experimental applications . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Prestressed concrete girder bridge decks of the
Longano viaduct . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Cable-stayed bridge over the Garigliano river . . . . . . . . . . 95
3.4.3 A 20 Highway overpasses . . . . . . . . . . . . . . . . . . . . . 110

4 An efficient modal identification method based on enhanced Em-
pirical Fourier Decomposition 125
4.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Automatic modal identification based on the EFD technique . . . . . . 126

4.2.1 Modal identification by means of the EFD technique . . . . . . 126
4.2.2 Improved segmentation based on smoothed frequency spectrum 127
4.2.3 Tuning of the number of frequency spectrum partitions . . . . 128

4.3 Validation on synthetic signals . . . . . . . . . . . . . . . . . . . . . . 132
4.3.1 Generation of synthetic signals . . . . . . . . . . . . . . . . . . 132
4.3.2 Synthetic signal with closely spaced modes . . . . . . . . . . . 134
4.3.3 Synthetic signal with minor mode . . . . . . . . . . . . . . . . 140

4.4 Experimental application on a roadway bridge . . . . . . . . . . . . . . 143
4.5 Experimental application on a railway bridge . . . . . . . . . . . . . . 149

5 Bridges Indirect modal identification based on the dynamic re-
sponse of moving vehicles 157
5.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2 Theoretical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.1 Vehicle-bridge dynamics . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 Contact point response estimation . . . . . . . . . . . . . . . . 162

5.3 Proposed modal identification procedure . . . . . . . . . . . . . . . . . 163
5.4 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.1 Case 1: Vehicle-bridge system neglecting vehicle damping and
road pavement roughness . . . . . . . . . . . . . . . . . . . . . 166

5.4.2 Case 2: Vehicle-bridge system considering vehicle damping and
neglecting road pavement roughness . . . . . . . . . . . . . . . 170

5.4.3 Case 3: Vehicle-bridge system considering road pavement rough-
ness and neglecting vehicle damping . . . . . . . . . . . . . . . 172

5.4.4 Case 4: Vehicle-bridge system considering both vehicle damping
and road pavement roughness . . . . . . . . . . . . . . . . . . . 177

6 Conclusions 181

iv



LIST OF FIGURES

Figure 1.1: Resultant displacement via modal superposition for a 3 DOF
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.2: Modal damping ratios for models with proportional damping. . 8
Figure 1.3: Magnification Factor for an SDOF oscillator subjected to har-

monic excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 1.4: Collapse of Tacoma Narrow Bridge (1940) due to resonance phe-

nomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 1.5: Classification of vibration-based tests used for dynamic identifi-

cation of structures [24]. . . . . . . . . . . . . . . . . . . . . . 10
Figure 1.6: Equipment to produce the excitation in forced vibration tests

[16]: (a) eccentric mass vibrator; (b) servo-hydraulic shaker; (c)
impact hammer tools. . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 1.7: Type of excitation in a free vibration test: (a) free falling mass
[42]; (b) hammer impulse excitation [43]. . . . . . . . . . . . . . 13

Figure 1.8: Free vibration test performed on Vasco da Gama cable-stayed
bridge [38]: (a) overview of the bridge; (b) eccentrically sus-
pended 60 ton barge; (c) starting cut of hanging Dywidag bar;
(d) release of the barge. . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.9: Dynamic test performed on the New Svinesund Bridge [44]: (a)
Passage of a truck on a road bump fixed on the deck; (b) close-up
of the rubber road bump. . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.10: Aliasing in the time domain. . . . . . . . . . . . . . . . . . . . 17
Figure 1.11: Aliasing in the frequency domain. . . . . . . . . . . . . . . . . 17
Figure 1.12: Principal data anomalies: (a) frequency spectrum of signal af-

fected by instrumental noise; (b) signal affected by digital noise;
(c) signal affected by clipping; (d) signal outliers and dropouts. 19

Figure 1.13: Gain for different types of ideal filters: (a) low-pass filter; (b)
high-pass filter; (c) band-pass filter; (d) stop-band filter. . . . 20

Figure 1.14: Gain behavior of ideal versus real low-pass filter. . . . . . . . . 21
Figure 1.15: Magnitude of the gain over frequencies for a low-pass Butter-

worth filter, with a cut-off frequency of 100 Hz, varying its order. 22
Figure 1.16: Magnitude of the gain over frequencies for a low-pass Chebyshev

type I filter, with a cut-off frequency of 100 Hz, varying its order. 22
Figure 1.17: Magnitude of the gain over frequencies for a low-pass Chebyshev

type II filter, with a cut-off frequency of 100 Hz, varying its order. 22
Figure 1.18: Magnitude of the gain over frequencies for a low-pass elliptic

filter, with a cut-off frequency of 100 Hz, varying its order. . . 23

v



Figure 2.1: Stabilization plot for SSI method applied to an existing bridge
vibration response. . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.2: Definition of trigger threshold ∆ and sample interval T . . . . . 42
Figure 2.3: Sampled responses (top) and free-decay response obtained after

processing by the RDT (bottom). . . . . . . . . . . . . . . . . . 43
Figure 2.4: Construction of envelopes via cubic spline interpolation. . . . . 51
Figure 2.5: Algorithm of Empirical Mode Decomposition. . . . . . . . . . 52
Figure 2.6: Algorithm of Variational Mode Decomposition . . . . . . . . . 57
Figure 2.7: Partitioning of the frequency domain (from [140]). . . . . . . . 59
Figure 2.8: Spectrum segmentation of a noisy non-stationary signal (from

[142]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 2.9: Zero-phase filter bank used in the EFD technique. . . . . . . . 63
Figure 2.10: The half-power bandwidth method for the estimation of the

damping ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 2.11: Schematic response of a two-DOF system with closely spaced

modes (from [152]). . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 2.12: Free vibration response for an SDOF system. . . . . . . . . . . 69
Figure 2.13: Damping ratio versus logarithmic decrement . . . . . . . . . . 69
Figure 2.14: Areas enclosed by the SDOF free vibration response. . . . . . . 70

Figure 3.1: Detection of the regions enclosed between the kth IMF and the
time axis for the application of the area ratio-based damping
identification technique. . . . . . . . . . . . . . . . . . . . . . . 79

Figure 3.2: Mode shape identification based on the kth IMFs extracted from
the free vibration responses recorded at different sensor positions. 80

Figure 3.3: Frequency spectrum of the considered synthetic signal (top-left),
stabilization diagram related to the automatic identification of
the number of IMFs (top-right) and automatic evaluation of the
optimal penalty factor (bottom). . . . . . . . . . . . . . . . . . 82

Figure 3.4: IMFs extracted from the synthetic signal compared to reference
components of the original multi-modal signal. . . . . . . . . . 83

Figure 3.5: Overview of the Longano viaduct. . . . . . . . . . . . . . . . . 84
Figure 3.6: Original design drawings of the Longano viaduct: horizontal

section of the bridge deck (top) and transverse section of the
bridge deck (bottom). . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.7: Position of the accelerometers S1,. . . ,S6 employed for the dy-
namic monitoring of the bridge deck (left) and rigid anchorage
of the accelerometer (right). . . . . . . . . . . . . . . . . . . . . 86

Figure 3.8: Application of an impulsive load by means of the transit of a
three-axle truck on a step. . . . . . . . . . . . . . . . . . . . . . 86

Figure 3.9: Accelerations recorded at midspan during free vibration test on
the deck of the roadway from Messina to Palermo and that of
the roadway from Palermo to Messina and their corresponding
frequency spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



Figure 3.10: Accelerations recorded at quarter span during free vibration test
on the deck of the roadway from Messina to Palermo and that of
the roadway from Palermo to Messina and their corresponding
frequency spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.11: Static load tests on the Longano viaduct deck: location of the
measurement points of displacement (A-H) and position of heavy
trucks in the three loading stages. . . . . . . . . . . . . . . . . 89

Figure 3.12: Extracted IMFs for the free vibration response recorded on the
deck at 1/2 (up) and 1/4 (down) of the span length before the
static loading test. . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 3.13: Numerical values of the modal damping ratios identified from the
free vibration response at different measurement points before
and after the static loading test. . . . . . . . . . . . . . . . . . 92

Figure 3.14: Comparison between numerical mode shapes (gray surface) and
modal displacements identified from the free vibration test (red
dots) on the deck of the roadway from Messina to Palermo before
the static loading test. . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 3.15: Comparison between numerical mode shapes (gray surface) and
modal displacements identified from the free vibration test (red
dots) on the deck of the roadway from Palermo to Messina before
the static loading test. . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 3.16: Overview of the cable-stayed bridge over the Garigliano river. . 95
Figure 3.17: Bridge geometry and sensors layout to monitor the dynamic re-

sponse of the stay-cables under impulse. . . . . . . . . . . . . . 95
Figure 3.18: Accelerations recorded for the shortest cable on the roadway

from Naples to Rome considering different impulse directions
and vertical sensor orientations together with corresponding fre-
quency spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 3.19: Accelerations recorded for the shortest cable on the roadway
from Naples to Rome considering different impulse directions
and horizontal sensor orientations together with corresponding
frequency spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.20: Extracted IMFs for the vertical response of the shortest cable
on the roadway from Naples to Rome under the vertical impulse. 98

Figure 3.21: Ratio between experimental and predicted natural frequency of
the stay-cables for the first vibrational mode. . . . . . . . . . . 101

Figure 3.22: Ratio between experimental and predicted natural frequency of
the stay-cables for higher vibrational modes (Rome direction). 102

Figure 3.23: Ratio between experimental and predicted natural frequency of
the stay-cables for higher vibrational modes (Naples direction). 103

Figure 3.24: Cable modal damping ratios identified under different dynamic
loading conditions by means of alternative techniques - Rome
direction (the dashed lines denote the average value). . . . . . 104

Figure 3.24: Cable modal damping ratios identified under different dynamic
loading conditions by means of alternative techniques - Rome
direction (the dashed lines denote the average value) (cont). . 105

vii



Figure 3.25: Cable modal damping ratios identified under different dynamic
loading conditions by means of alternative techniques - Naples
direction (the dashed lines denote the average value). . . . . . 105

Figure 3.25: Cable modal damping ratios identified under different dynamic
loading conditions by means of alternative techniques - Naples
direction (the dashed lines denote the average value) (cont). . 106

Figure 3.26: Estimated cable forces and corresponding design range account-
ing for the variations due to traffic load and thermal fluctuations
(cables force is normalized with respect to the reference design
value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 3.27: Estimated cable stresses and corresponding design values ac-
counting for the relaxation losses. . . . . . . . . . . . . . . . . . 108

Figure 3.28: Overview of one of the A20 road overpasses representative of the
series investigated in the present study. . . . . . . . . . . . . . 110

Figure 3.29: Original drawings of one of the investigated overpass (deck made
up of 5 girders): (a) plan view of the overpass, (b) longitudinal
section of 1/2 girder, (c)transverse sections of one girder at dif-
ferent abscissa and (d) transverse section of the bridge deck. . 111

Figure 3.30: Dapped end girders: (a) prestressing cables and (b) longitudinal
and transversal reinforcement. . . . . . . . . . . . . . . . . . . 111

Figure 3.31: Sensors layout on the investigated bridges. . . . . . . . . . . . . 112
Figure 3.32: Example of the recorded time series on the central span of the

overpass (left) and corresponding Fourier transform (right). . . 113
Figure 3.33: Comparison of the identified modal damping ratios, using the

VMD-based approach and SSI-COV method, before and after
the static tests performed on 5 girders deck overpasses . . . . . 114

Figure 3.34: Identified modal damping ratios, using the VMD-based approach
and SSI-COV method, for deck overpasses with a variable num-
ber of girders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 3.35: First five mode shapes identified via the VMD-based approach
(left) and SSI-COV method (right). . . . . . . . . . . . . . . . 116

Figure 3.36: FE model of the bridge deck using beam elements with collab-
orating portion of RC slab: standard view (top) and extruded
view (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 3.37: View of half of the FE model of the bridge deck modeled using
shell elements with joint offset for RC slab and beam elements
for longitudinal girders and transverse diaphragms: offset view
(top) and extruded view (bottom). . . . . . . . . . . . . . . . . 118

Figure 3.38: Detail of the Mesnager hinges and their positions at the abut-
ment (from the original drawings). . . . . . . . . . . . . . . . 118

Figure 3.39: Evaluation of concrete elastic modulus via probability transfor-
mation method (PTM): (a) evaluation of PDF for concrete com-
pressive strength fRc(Rc) based on experimental data, (b) evalu-
ation of PDF of elastic modulus fEc(Ec) based on the knowledge
of fRc

(Rc) and (c) determination of elastic modulus fractiles
based on the corresponding CDF FEc

(Ec). . . . . . . . . . . . . 119

viii



Figure 3.40: Comparison between experimental frequencies and the predicted
ones obtained from the FE models, depending on the bound-
ary conditions, for the first five modes. The model has been
calibrated using elastic moduli obtained from the experimental
measures of compressive strength from batch 7 via PTM. . . . 120

Figure 3.41: Comparison between experimental frequencies and the predicted
ones obtained from the FE models, depending on the bound-
ary conditions, for the first five modes. The model has been
calibrated using elastic moduli obtained from the experimental
measures of compressive strength from batch 9 via PTM. . . . 121

Figure 3.42: First five mode shapes obtained from the refined FE model. . . 122

Figure 4.1: Incorrect spectrum segmentation of a real signal (dashed vertical
lines denote the boundaries of the frequency segments). . . . . 127

Figure 4.2: Smoothing of the signal frequency spectrum: comparison be-
tween original and smoothed frequency spectrum (top); correct
segmentation of the frequency spectrum after zero-phase moving
average filtering (bottom). . . . . . . . . . . . . . . . . . . . . . 129

Figure 4.3: Flowchart of the proposed automatic selection procedure for the
number of the frequency partitions N . . . . . . . . . . . . . . . 131

Figure 4.4: Possible issues that can jeopardize the correct estimation of the
number of the frequency partitions N for a real signal: occur-
rence of high trivial peaks near the ones corresponding to the
real components of the actual frequency spectrum of the sig-
nal (top); ill-conditioned discrimination between trivial and real
peaks (both marked with dots) due to the flattening originated
by a preliminary smoothing of the signal frequency spectrum
(middle). Correct spectrum segmentation according to the pro-
posed automatic procedure (bottom). . . . . . . . . . . . . . . 133

Figure 4.5: Synthetic free vibration response with closely spaced modes:
free-noise synthetic signal (top); comparison between original
and smoothed frequency spectrum of the signal (middle); fre-
quency spectrum segmentation by means of the proposed auto-
matic implementation of the EFD technique (bottom). . . . . . 135

Figure 4.6: Synthetic free vibration response with closely spaced modes:
comparison between the reference analytical modes and the com-
ponents extracted using free-noise data by means of the proposed
automatic implementation of the EFD technique. . . . . . . . . 136

Figure 4.7: Synthetic free vibration response with closely spaced modes:
modal components extracted by means of the VMD technique
using free-noise data for the default value α = 103 (left) and
α = 5.7 · 105 as estimated automatically according to Mazzeo et
al. [30] (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



Figure 4.8: Synthetic free vibration response with closely spaced modes:
noisy synthetic signals for different values of the SNR (top); fre-
quency spectrum segmentation of the synthetic signal with the
highest SNR by means of the proposed automatic implementa-
tion of the EFD technique (bottom). . . . . . . . . . . . . . . . 138

Figure 4.9: Synthetic free vibration response with minor mode: noisy syn-
thetic signals for different values of the SNR (top); frequency
spectrum segmentation of the synthetic signal with the highest
SNR by means of the proposed automatic implementation of the
EFD technique (bottom). . . . . . . . . . . . . . . . . . . . . . 141

Figure 4.10: Dynamic response of the shortest bridge cable (Rome direction):
free vibration due to a vertical impulse load (top); frequency
spectrum of the considered signal (bottom). . . . . . . . . . . . 143

Figure 4.11: Dynamic response of the shortest bridge cable (Rome direction):
comparison between original and smoothed frequency spectrum
of the considered signal (top); frequency spectrum segmentation
of the considered signal (bottom). . . . . . . . . . . . . . . . . 144

Figure 4.12: Dynamic response of the shortest bridge cable (Rome direction):
components extracted from the considered signal via EFD tech-
nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 4.13: Ratio between the natural frequencies of the bridge cables (Rome
direction) estimated by means of the proposed identification pro-
cedure based on the EFD technique and the corresponding ref-
erence numerical values predicted by taking into account the
tension losses due to steel relaxation. . . . . . . . . . . . . . . . 145

Figure 4.14: Ratio between the natural frequencies of the bridge cables (Naples
direction) estimated by means of the proposed identification pro-
cedure based on the EFD technique and the corresponding ref-
erence numerical values predicted by taking into account the
tension losses due to steel relaxation. . . . . . . . . . . . . . . . 146

Figure 4.15: Comparison of the natural frequencies of the bridge cables esti-
mated by means of the VMD technique and EFD technique. . 147

Figure 4.16: Modal damping ratios for the first four vibration modes of the
bridge cables (Rome direction) estimated by means of the pro-
posed procedure based on the EFD technique and two alterna-
tive methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 4.17: Modal damping ratios for the first four vibration modes of the
bridge cables (Naples direction) estimated by means of the pro-
posed procedure based on the EFD technique and two alterna-
tive methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 4.18: Overview of steel railway bridge investigated in the present study.150
Figure 4.19: Layout of the steel railway bridge and details about the sensors

position for monitoring the dynamic response of one lateral span. 150
Figure 4.20: Free vibration part extracted from a recorded signal of the steel

railway bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 4.21: Natural frequencies of the railway bridge span estimated accord-

ing to different identification methods. . . . . . . . . . . . . . . 152

x



Figure 4.22: Estimated mode shapes of the railway bridge span: identification
by means of the proposed approach based on EFD technique
(left); identification by means of the SSI-COV technique (right). 153

Figure 4.23: Modal damping ratios of the railway bridge span estimated ac-
cording to different identification methods. . . . . . . . . . . . 154

Figure 5.1: Schematic of a SDOF moving oscillator (vehicle) crossing a sim-
ply supported beam (bridge). . . . . . . . . . . . . . . . . . . . 160

Figure 5.2: Flowchart of the proposed modal identification procedure. . . . 164
Figure 5.3: Displacement, velocity and acceleration time-histories for the

vehicle-bridge system in Figure 5.1 neglecting the vehicle damp-
ing and road pavement roughness (ξv = 0, r(x) = 0): (a)
bridge response displacement, (b) velocity and (c) acceleration
at midspan; (d) vehicle response displacement, (e) velocity and
(f) acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 5.4: Reference and back-calculated CP response functions (from (a)
to (c)) and corresponding frequency spectra (from (d) to (f))
for the vehicle-bridge system in Figure 5.1 neglecting vehicle
damping and road pavement roughness (ξv = 0, r(x) = 0): CP
displacement (top), CP velocity (middle) and CP acceleration
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 5.5: IMFs extracted via the VMD from the CP acceleration of the
vehicle-bridge system in Figure 5.1 neglecting vehicle damping
and road pavement roughness (ξv = 0, r(x) = 0): (a) first IMF,
(b) second IMF, (c) third IMF and (d) fourth IMF. . . . . . . 168

Figure 5.6: Comparison between theoretical and estimated mode shapes for
(a) the first and (b) second mode for the vehicle-bridge system
in Figure 5.1 neglecting vehicle damping and road pavement
roughness (ξv = 0, r(x) = 0). . . . . . . . . . . . . . . . . . . . 170

Figure 5.7: (a) Reference and back-calculated contact point acceleration and
(b) corresponding frequency spectrum for the vehicle-bridge sys-
tem in Figure 5.1 in presence of vehicle damping ξv = 5%, and
neglecting road pavement roughness (r(x) = 0). . . . . . . . . . 170

Figure 5.8: Comparison between theoretical and estimated mode shapes for
(a) the first and (b) second mode for the vehicle-bridge system
in Figure 5.1 assuming ξv = 5% and r(x) = 0. . . . . . . . . . . 171

Figure 5.9: Different classes of roughness profiles generated according to ISO
8608 with corrected PSD reference values according to [253]: (a)
class A - G∗

d(n0) = 0.001·10−6 m3; (b) class B - G∗
d(n0) = 8·10−6

m3; (c) class C - G∗
d(n0) = 16 · 10−6 m3. . . . . . . . . . . . . . 173

Figure 5.10: Class C roughness profile generation: (a) construction of the
envelope of local maximum points and (b) profile smoothing via
moving average filtering. . . . . . . . . . . . . . . . . . . . . . . 173

xi



Figure 5.11: Displacement and acceleration time-history for the vehicle-bridge
system in Figure 5.1 neglecting the vehicle’s damping (ξv = 0)
and considering a class C road pavement roughness profile: (a)
bridge response displacement and (b) acceleration at midspan;
(c) vehicle response displacement and (d) acceleration. . . . . . 174

Figure 5.12: Reference and back-calculated contact point response functions
(form (a) to (c)) and corresponding frequency spectra (from (d)
to (f)) considering the vehicle-bridge system in Figure 5.1 ne-
glecting the vehicle’s damping (ξv = 0) and considering a class
C road pavement roughness profile: CP displacement (top), CP
velocity (middle) and CP acceleration (bottom). . . . . . . . . 174

Figure 5.13: CP accelerations (from (a) to (c)) and corresponding frequency
spectra (from (d) to (f)) for the vehicle-bridge system in Figure
5.1 neglecting the vehicle’s damping (ξv = 0) and considering
three different roughness classes: Class A (top), Class B (middle)
and Class C (bottom). . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 5.14: IMFs extraction via VMD for the analyzed CP acceleration func-
tion considering a class C road pavement roughness class: (a)
first IMF, (b) second IMF, (c) third IMF. . . . . . . . . . . . . 175

Figure 5.15: Comparison between theoretical and estimated mode shapes for
the first mode for the vehicle-bridge system in Figure 5.1 assum-
ing a Class A road pavement roughness and: (a) ξv = 0%, (b)
ξv = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Figure 5.16: CP accelerations (from (a) to (c)) and corresponding frequency
spectra (from (d) to (f)) for the vehicle-bridge system in Fig-
ure 5.1 assuming ξv = 5% and considering different roughness
classes: Class A (top), Class B (middle) and Class C (bottom). 178

xii



LIST OF TABLES

Table 3.1: Comparison between estimated and reference values of frequen-
cies and damping ratios for the analyzed synthetic signal. . . . . 82

Table 3.2: Comparison between estimated and reference values of frequen-
cies and damping ratios for the analyzed synthetic signal. . . . . 83

Table 3.3: Identified natural frequencies and modal damping ratios for the
bridge deck along the roadway from Messina to Palermo. . . . . 90

Table 3.4: Identified natural frequencies and modal damping ratios for the
bridge deck along the roadway from Palermo to Messina. . . . . 90

Table 3.5: Comparison of identified modal parameters before static load test
in terms of frequencies (VMD vs peak-picking technique) and
modal damping ratio (area-based approach vs logarithmic decre-
ment method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 3.6: Comparison between numerical mode shapes obtained from a FE
model and corresponding modal displacements identified from the
free vibration test on the Longano bridge deck fro both roadway
direction before the static loading test . . . . . . . . . . . . . . . 92

Table 3.7: Identified natural frequencies and modal damping ratios for the
bridge deck along the roadway from Palermo to Messina. . . . . 100

Table 3.8: Identified natural frequencies and modal damping ratios for the
bridge deck along the roadway from Palermo to Messina. . . . . 100

Table 3.9: Identified natural frequencies, before and after (in brackets) the
execution of the static load tests and corresponding relative vari-
ations, using VMD-based identification method and SSI-COV for
the investigated overpasses. . . . . . . . . . . . . . . . . . . . . . 113

Table 3.10: Identified natural frequencies using VMD-based identification and
SSI-COV for the investigated overpasses. . . . . . . . . . . . . . 114

Table 3.11: MAC factors for quantitative assessment between identified mode
shapes via VMD and SSI-COV and predicted ones via the refined
FE model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table 3.12: Estimated fractiles of concrete elastic modulus using PTM (values
are expressed in GPa). . . . . . . . . . . . . . . . . . . . . . . . 123

Table 4.1: Synthetic free vibration response with closely spaced modes: iden-
tification of the natural frequencies using free-noise data by ap-
plying the VMD technique (with both default and optimal values
of α and K) and the EFD technique (with N calculated auto-
matically according to the proposed procedure). . . . . . . . . . 137

xiii



Table 4.2: Synthetic free vibration response with closely spaced modes: iden-
tification of the modal damping ratios using free-noise data by ap-
plying the VMD technique (with both default and optimal values
of α and K) and the EFD technique (with N calculated auto-
matically according to the proposed procedure). . . . . . . . . . 138

Table 4.3: Synthetic free vibration response with closely spaced modes: iden-
tification of the modal damping ratios using noisy data by apply-
ing the EFD technique (with N calculated automatically accord-
ing to the proposed procedure). Average value and standard devi-
ation of the estimated modal damping ratio are reported. More-
over, mean and maximum value (within brackets) of the relative
error are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Table 4.4: Synthetic free vibration response with closely spaced modes: iden-
tification of the modal damping ratios using noisy data by apply-
ing the VMD technique (with α and K calculated automatically
according to the procedure proposed by Mazzeo et al. [30]). Aver-
age value and standard deviation of the estimated modal damping
ratio are reported. Moreover, mean and maximum value (within
brackets) of the relative error are provided. . . . . . . . . . . . . 139

Table 4.5: Synthetic free vibration response with closely spaced modes: iden-
tification of the modal damping ratios using noisy data by apply-
ing the EFD technique (with N calculated automatically accord-
ing to the proposed procedure) in combination with the standard
decrement logarithmic method. Average value and standard devi-
ation of the estimated modal damping ratio are reported. More-
over, mean and maximum value (within brackets) of the relative
error are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Table 4.6: Synthetic free vibration response with minor mode: identification
of the modal damping ratios using noisy data by applying the
EFD technique (with N calculated automatically according to
the proposed procedure). Average value and standard deviation
of the estimated modal damping ratio are reported. Moreover,
mean and maximum value (within brackets) of the relative error
are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Table 4.7: Synthetic free vibration response with minor mode: identification
of the modal damping ratios using noisy data by applying the
VMD technique (with α and K calculated automatically accord-
ing to the procedure proposed by Mazzeo et al. [30]). Average
value and standard deviation of the estimated modal damping
ratio are reported. Moreover, mean and maximum value (within
brackets) of the relative error are provided. . . . . . . . . . . . . 142

Table 4.8: Natural frequencies for the first four vibration modes of the bridge
cables estimated by means of the proposed procedure based on
the EFD technique. . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table 4.9: Modal damping ratios for the first four vibration modes of the
bridge cables estimated by means of the proposed procedure based
on the EFD technique. . . . . . . . . . . . . . . . . . . . . . . . 148

xiv



Table 4.10: Lower limit of the modal damping ratio proposed in EC1 – Part
2 [208]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Table 4.11: Modal damping ratio value proposed in D5.2-S2 [209] . . . . . . 155

Table 5.1: Properties for the investigated vehicle-bridge system. . . . . . . 166
Table 5.2: Identification of the bridge natural frequencies from the vehicle-

bridge system in Figure 5.1 assuming ξv = 0 and r(x) = 0. Com-
parison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within
brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 5.3: Identification of bridge damping ratios from the vehicle-bridge
system in Figure 5.1 assuming ξv = 0 and r(x) = 0. Comparison
of the proposed method with HS-RDT and HS-NExT approaches.
The absolute value of relative error is given within brackets. . . 169

Table 5.4: Identification of bridge natural frequencies from the vehicle-bridge
system in Figure 5.1 assuming ξv = 5% and r(x) = 0. Com-
parison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within
brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Table 5.5: Identification of bridge damping ratios from the vehicle-bridge
system in Figure 5.1 assuming ξv = 5%, and r(x) = 0. Com-
parison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within
brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Table 5.6: Identification of bridge natural frequencies from the vehicle-bridge
system in Figure 5.1 assuming different classes of road pavement
roughness and ξv = 0. Comparison of the proposed method with
HS-RDT and HS-NExT approaches. The absolute value of rela-
tive error is given within brackets. . . . . . . . . . . . . . . . . . 176

Table 5.7: Identification of bridge damping ratios from the vehicle-bridge
system in Figure 5.1 assuming different classes of road pavement
roughness and ξv = 0. Comparison of the proposed method with
HS-RDT and HS-NExT approaches. The absolute value of rela-
tive error is given within brackets. . . . . . . . . . . . . . . . . . 176

Table 5.8: Identification of bridge natural frequencies from the vehicle-bridge
system in Figure 5.1 assuming ξv = 5% and different classes of
road pavement roughness. Comparison of the proposed method
with HS-RDT and HS-NExT approaches. The absolute value of
relative error is given within brackets. . . . . . . . . . . . . . . . 178

Table 5.9: Identification of bridge damping ratios from the vehicle-bridge
system in Figure 5.1 assuming ξv = 5% and different classes of
road pavement roughness. Comparison of the proposed method
with HS-RDT and HS-NExT approaches. The absolute value of
relative error is given within brackets. . . . . . . . . . . . . . . . 179

xv





PUBLICATIONS

This thesis is the outcome of the PhD course started three years ago. Part of this
thesis is based on papers (listed here below) already published or under review, in
scientific conferences, proceedings and journals. These papers are:

1. M. Mazzeo, R. Santoro and A. Di Matteo, "A novel indirect modal identifica-
tion procedure for bridges based on the dynamic response of moving vehicles",
Journal of Sound and Vibration (under review).

2. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “An efficient
automatic modal identification method based on free vibration response and
enhanced Empirical Fourier Decomposition technique”, Engineering Structures,
vol. 298, p. 117046, 2024.

3. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “Automatic modal
identification of bridges based on free vibration response and variational mode
decomposition technique”, Engineering Structures, vol. 280, p. 115665, 2023.

4. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “Automatic modal
identification of bridges based on free vibrations and advanced signal decompo-
sition techniques,” Vibroengineering Procedia, vol. 50, pp. 49–55, 09 2023.

5. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “Modal parameters
identification in existing bridges based on free vibration tests”, in Proceedings of
12th International Conference on Structural Dynamics - EURODYN 2023, 2023.

6. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “Informed assess-
ment of structural health conditions of bridges based on free-vibration tests”,
in Proceedings of 8th International Symposium on Life-Cycle Civil Engineering,
2023.

7. M. Mazzeo, D. De Domenico, G. Quaranta, and R. Santoro, “A novel procedure
for damping ratio identification from free vibration tests with application to
existing bridge decks”, in European Workshop on Structural Health Monitoring:
EWSHM 2022 - vol. 3, pp. 699–708, Springer, 2022.

Other relevant papers produced during the PhD years are the following:

8. De Domenico D., Mazzeo M., Messina D. and Recupero A., “Safety assessment
of corroded PC half-joint bridges through an advanced mechanochemical finite
element model”, in Proc. of the 3rd CACRCS Workshop Capacity Assessment of
Corroded Reinforced Concrete Structure, 2023.

9. De Domenico D., Maugeri N., Longo P., Mazzeo M., Ricciardi G., Quattroc-
chi A., Montanini R. and Calabrese L., “Shear deficient RC beams retrofitted
with inorganic matrix composites”, 9th International Conference on Computa-
tional Methods in Structural Dynamics and Earthquake Engineering - COMP-
DYN 2023, 2023.

xvii



10. Santoro R., Mazzeo M. and Failla G., “A computational framework for uncer-
tain locally resonant metamaterial structures”, Mechanical Systems and Signal
Processing Vol. 190, p.110094, 2023.

11. De Domenico D., Mazzeo M., Messina D. and Recupero A., “Experimental and
numerical investigation on PC beams with artificially corroded post-tensioned
tendons”, in Proc. of the 14th fib international PhD Symposium in Civil Engi-
neering, 2022.

12. Mazzeo M., Laudani R. and Santoro R., “Uncertainty effect on seismic capac-
ity assessment in the out-of-plane failure mechanisms of masonry structures by
probabilistic and non-probabilistic approaches”, Developments in the built envi-
ronment (under review).

xviii



INTRODUCTION

Aims and motivations

Bridges are strategic structures that play a key role in any infrastructure system,
allowing to cover significant distances, thus overcoming obstacles and height gradients
easily. Many of these structures, especially in Italy, were built between the 1950s and
1970s [1] and, since in most cases they are approaching their nominal service life, the
aspects related to structural aging and material degradation due to environmental
factors are becoming significant [2]. Further, some of the existing bridges may be
affected by fatigue phenomena that further reduce the service life because of traffic
loads significantly differing from design conditions [3–5]. In both cases, it becomes
necessary to plan and perform careful monitoring to check the actual state of health
and identify any significant possible discrepancy from design conditions. On the other
hand, it is not always possible to verify if design assumptions are truly respected in the
construction phase or immediately after its completion [6], especially for new bridges
with high structural complexity, often dependent on esthetic and architectonic factors.

Based on these considerations, a significant interest in controlling and preserving
strategic structures such as bridges contributed to the development of the vibration-
based structural health monitoring (SHM) field [7,8]. Structural dynamic identification
relies on the extraction of modal parameters that are closely related to the physical
properties of the monitored structure [9]: information about modal frequencies allows
to establish which conditions may trigger structural resonance phenomena, modal
damping ratios provide information on its energy dissipation capacity, whereas mode
shapes reflect the boundary conditions as well as its mass and stiffness distribution.

The main application of dynamic identification concerns monitoring the health
conditions of the structures [10]: specifically, once a first dynamic characterization of
the bridge is available, the corresponding identified modal parameters may be assumed
as a baseline for future tests to assess if any possible damage, related to relevant
fluctuations from reference values, is taking place [11]. Other significant applications
of dynamic identification via dynamic tests are the update of numerical models for
new structures [12] or the tuning of vibration control systems to retrofit the existing
ones.

The most commonly adopted strategy for dynamic identification of strategic struc-
tures like bridges is based on long-term monitoring via permanently installed sen-
sors [13], which records the structural response to ambient vibrations produced for ex-
ample by wind or vehicular traffic, and the application of Operational Modal Analysis
(OMA) methods to process the data and retrieve modal parameters [14,15]. However,
this approach presents some critical issues related to the economic impact associated
with the selection of performing sensors able to detect ambient vibration response
and their number [16, 17] as well as the costs related to their protection and main-
tenance [18]. Further, the manual analysis and processing of the enormous amount
of data continuously collected by dynamic monitoring are often not realistic since
it requires a lot of time [19] and can be only partially handled if automated OMA
procedures are adopted. Finally, estimations provided by OMA techniques are less

1



precise than the counterparts obtained by directly exciting the structure due to the
lower signal-to-noise ratio of ambient measurements [20] and not always reliable since
the assumptions on which OMA is based may not be entirely satisfied in real-case
situations. Therefore, a central problem is represented by the research of alternative,
cost-effective vibration-based SHM strategies to achieve reliable modal parameter esti-
mates with limited economic impact for both test setup and data management and to
reduce the time necessary to perform the tests and obtain the modal characterization
of the structure.

To this aim, this thesis focuses on the research of procedures that meet these
needs; two different approaches are investigated: the first one is based on a direct
identification strategy where the sensors are directly mounted on the structure and
exploit free vibration tests, whereas the second one is based on an indirect approach,
where dynamic parameters are deduced from the signals recorded by an instrumented
testing vehicle which travels along the bridge during the tests. In both cases, the
research is focused on the application of advanced decomposition techniques, which
are not limited by the assumptions of OMA methods, to extract the significant modal
contributions, in combination with novel methods to retrieve the modal parameters.

The cost-effectiveness of the proposed procedures is justified by some considera-
tions that can be made in comparison with traditional continuous health monitoring
based on ambient vibrations. Notably, the investigated approaches involve the sporadic
monitoring of the structure and the temporary installation of the sensors, therefore,
as opposed to traditional procedures, no additional costs are needed for the main-
tenance or weather protection of the measuring devices. Further, a network with a
limited number of sensors is required for the investigated test methodologies, thus
reducing even more the costs of the monitoring campaign: in this regard, it is noted
that, theoretically, the installation of a single accelerometer is necessary if only modal
frequencies and damping ratios have to be identified. Notably, more economic ac-
celerometers are typically adopted in free vibration tests since the required sensitivity
is smaller due to the magnitude of the excitation which is significantly higher than
the counterpart in ambient vibrations. It is also noted that no specific equipment is
required to produce the excitation, as opposed to forced vibration tests, since an un-
gauged hammer or a track passing over an artificial step suffice for this need. Finally,
the time and subsequently the cost associated with data processing are reduced due
to the significantly more compact volume of recordings in comparison with continuous
monitoring approaches.

Another significant problem in the dynamic characterization of structures is that
traditional modal identification requires the analyst expertise for the proper set of
control parameters to obtain reliable results [21]. To limit subjectiveness in the user’s
input parameters and provide more objective estimates, this research also aims to
propose suitable tuning procedures that allow to carry out the dynamic identification
in an automatic fashion maintaining reliable results.

Structure of the thesis

Chapter 1 provides general background on the topics of modal analysis, dynamic
vibration testing and signal pre-processing.

Chapter 2 offers an overview of the actual state of the art concerning structural
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dynamic identification: specifically, the most common procedures developed in the con-
text of OMA are described. Further, the state of the art on advanced decomposition
techniques is also presented. This choice is justified by the fact that the thesis deals
with novel dynamic identification approaches for bridges based on advanced decom-
position methods and their performance comparison with classical OMA approaches
to highlight similarities and limitations.

Chapter 3 introduces a novel modal identification approach for the dynamic charac-
terization of bridges from free vibration tests: it exploits the Variational Mode Decom-
position (VMD) to isolate all significant modal contributions and the corresponding
modal frequencies from a given signal; the modal damping ratios are identified via
a noise-robust area ratio-based approach; finally, mode shape vectors are assembled
comparing the amplitudes of the same mode contribution at fixed time instants ob-
tained from signal recorded at different locations on the structure. Further, a tuning
procedure for the automatic setting of control parameters is also introduced for the
proposed strategy.

Chapter 4 compares the performance of the VMD-based approach with an alter-
native decomposition technique, namely an enhanced version of the Empirical Fourier
Decomposition (EFD), in the context of free vibration-based dynamic identification.
Specifically, the EFD is improved by introducing an automatic procedure for the selec-
tion of the number of frequency partitions. Further, the robustness of the segmentation
procedure has been refined using a zero-phase moving average smoothing filtering of
the frequency spectrum that mitigates the detrimental effects of noise. The EFD-
based approach has the advantage that only one control parameter must be preset,
thus allowing easier tuning.

To show how the proposed identification approaches can be successfully applied
for the dynamic characterization of existing bridge structures, several diversified case
studies are analyzed in chapters 3 and 4, specifying from time to time the peculiarities
of each structure and the corresponding identification results in comparison with OMA
approaches.

Chapter 5 presents a numerical study on the dynamic identification of bridge struc-
tures exploiting an indirect approach based on the Vehicle Scanning Method (VSM).
Specifically, this chapter aims to extend and generalize the approach proposed in Chap-
ter 3 to VSM where the dynamic parameters are extracted from signals recorded from
an instrumented moving vehicle rather than from the structure itself.

Lastly, in Chapter 6, final considerations are made, critically discussing the main
results obtained from the research carried out in the context of this thesis.
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CHAPTER 1

BACKGROUND

This chapter provides a general overview of the fundamental concepts related to the
dynamic identification of existing structures. The classic models adopted in structural
dynamics are herein briefly introduced focusing on the definition of concepts such as
modal analysis and modal parameters. Next, the practical counterpart is addressed,
introducing different modal testing procedures and describing their pros and cons. Fi-
nally, the main aspects of signal validation and pre-processing are recalled, to properly
select the response from which modal parameters will be estimated.

1.1 Fundamentals of modal analysis
The models typically adopted to simulate the real behavior of a continuous structure
are usually obtained by operating a discretization process. The structure can thus
be modeled as a nm degrees of freedom (DOFs) system made up of lumped masses
connected through springs and dampers and its structural dynamic response may be
described by the following relation:

Mü(t) + Zu̇(t) +Ku(t) = f̃(t) (1.1)

where M, Z and K are respectively the mass, damping and stiffness matrix, u(t) is
the vector containing each DOF displacement, f̃(t) is the forcing vector and a dot over
a variable denotes differentiation with respect to time.

Modal analysis is a technique that allows to mathematically describe the dynamic
behavior of a structure by exploiting its inherent dynamic properties called modal pa-
rameters, i.e. modal frequencies, damping ratios, and mode shapes, which are related
to its physical parameters, namely mass, stiffness, and damping [22]. Modal frequen-
cies represent the frequencies at which a multi-degrees-of-freedom structure naturally
tends to vibrate when subjected to a small oscillation. The motion patterns followed by
the structure at the corresponding natural frequencies represent the associated mode
shapes. Consider the most simple case in which the free vibrations of an undamped
MDOF structure are studied; the equation of motion is:

Mü(t) +Ku(t) = 0 (1.2)

The solution of the system of differential equations in Eq.(1.2) may be expressed in
terms of frequency ωr and phase θr as a vector of harmonic functions:

u(t) = sin (ωrt+ θr)ϕr (1.3)
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Substituting Eq.(1.3) in Eq.(1.2) the following relation is obtained:

(K− ω2
rM)ϕr = 0 with r = 1, . . . , N (1.4)

which defines the eigenproblem of an undamped MDOF system. The nm solutions to
this problem, namely the eigenvalues and corresponding eigenvectors, are obtained by
solving the following:

det(K− ω2
rM) = 0 (1.5)

which is an algebraic equation with nm roots, namely the squared natural frequencies of
the structure ω2

r (r = 1, . . . , nm). The corresponding eigenvectors ϕr (r = 1, . . . , nm)
represent the unscaled deflections of the structure and are referred to as mode shapes.
Collecting all the mode shapes into the mode shape matrix Φ = [ϕ1, . . . ,ϕnm

] the
eigenproblem may be re-written as follows:

(K−Ω2M)Φ = 0 (1.6)

Even though the eigenvalues matrix is unique, the same is not true for the mode
shape matrix, which is subject to an indeterminate scaling factor that affects the
eigenvectors’ amplitude. The most common assumption for the mode shapes matrix
is to be normalized with respect to the mass matrix such that both mass and stiffness
matrices are diagonalized:

ΦTMΦ = I (1.7a)

ΦTKΦ = Ω2 (1.7b)

being I the identity matrix and Ω2 = diag[ω2
r ] with (r = 1, . . . , nm) the spectral

matrix.
Modal analysis is based on the assumption that, if the structure is linear and time-

invariant, the vibration response may be expressed as the superposition of nm modes
(see Fig. 1.1) as follows :

u(t) =

nm∑

r=1

ϕrqr(t) = Φq(t) (1.8)

being qr(t) the rth modal displacement.
Substituting in the equation of motion Eq.(1.8) and exploiting the aforementioned

normalization conditions it is possible to express the structural dynamic response as a
set of uncoupled second-order differential equations representative of nm modal SDOF
oscillators:

q̈r(t) + ω2
rqr(t) = 0 with (r = 1, . . . , nm) (1.9)

It is possible to follow the same approach considering the free vibration of a damped
structure, described by the following equation of motion:

Mü(t) + Zu̇(t) +Ku(t) = 0 (1.10)

In this case, by applying the modal projection, the modal damping matrix Ξ is intro-
duced:

Ξ = ΦTZΦ (1.11)
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Figure 1.1: Resultant displacement via modal superposition for a 3 DOF system

In general, Ξ is not diagonal, i.e. the modal projection does not diagonalize the damp-
ing matrix, therefore the system of differential equation of motion is not uncoupled.
However, for the most common case of classically-damped structure, in which the off-
diagonal terms are negligible compared to the ones in the main diagonal, the system
can be assumed as uncoupled and the equations of motion in the modal space describe
a set of nm independent SDOF modal oscillators :

q̈r(t) + Ξrr q̇r(t) + ω2
rqr(t) = 0 with (r = 1, . . . , nm) (1.12)

where Ξrr is the rth term on the main diagonal of Ξ. The most simple solution to
model the viscous damping matrix consists of adopting the following expression for
the modal damping matrix:

Ξ = ΦTZΦ =



2ξ1ω1

. . .
2ξnmωnm


 (1.13)

where ξr and ωr represent the rth modal damping ratio and modal frequency, respec-
tively. The viscous damping matrix is therefore expressed as:

Z = (ΦT)−1ΞΦ−1 = MΦΞΦTM (1.14)

In this case, the modal matrix Φ is also orthogonal to the damping matrix. The main
drawback is that the preventive evaluation of the modal matrix is required.

Another common solution is the Rayleigh damping model in which the damping
matrix is assumed proportional to the mass and stiffness matrices (see Fig. 1.2) in the
form:

Z = α0K+ β0M (1.15)

Under this assumption, the modal damping ratio can be expressed as follows:

ξr =
1

2

(
α0ωr +

β0
ωr

)
(1.16)
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where the two coefficients α0 and β0 are obtained imposing that the damping at
two modes i and j, whose frequencies define the frequency range of interest, are two
assigned values ξi and ξj respectively:

α0 =
2ωjωk(ξkωj − ξjωk)

ω2
j − ω2

k

(1.17a)

β0 =
2ξjωj − 2ξkωk

ω2
j − ω2

k

(1.17b)

ωi ωj

ξi

ξj

Frequency ω

D
am

p
in
g
ra
ti
o
ξ r

Rayleigh
Mass proportional

Stiffness proportional

Figure 1.2: Modal damping ratios for models with proportional damping.

It must be pointed out that natural frequencies are of great importance also in the
case of forced vibrations. When a damped structure is excited by an external force,
the structural response depends on both the modal damping ratios ξr and the damped
frequencies ωd,r with (r = 1, . . . , nm). The latter are functions of the natural frequen-
cies, i.e. ωd,r = ωr

√
1− ξ2r and for civil structures, which usually are underdamped

systems, it holds the assumption ωd,r ≃ ωr. Therefore, if the forcing input has a
high-frequency content close to at least one of the natural frequencies, the resonance
phenomenon might be triggered producing a response with much greater amplitude
than the one observed at other exciting frequencies distant from the natural ones.

This concept may be well visualized considering the case of a SDOF oscillator
subjected to harmonic excitation: it is possible to define the Magnification Factor as
the ratio between the dynamic deflection and the static deflection which would have
resulted from the static application of the external load (see Fig. 1.3): it may be
observed that approaching the natural frequencies, the amplitude of the response sig-
nificantly increase; further, the lower the damping ratio, the bigger the magnification
rate will be. This, in turn, may produce excessive stress in the structure, thus leading
to its collapse. In this regard, an emblematic case is the collapse of the Tacoma bridge
because of gusts of wind that blew with frequencies close to that of resonance (see
Fig. 1.4).
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Figure 1.3: Magnification Factor for an SDOF oscillator subjected to harmonic excitation.

Figure 1.4: Collapse of Tacoma Narrow Bridge (1940) due to resonance phenomenon.

1.2 Vibration-based dynamic tests
For both newly constructed and existing structures, it is advisable to measure dy-
namic properties, i.e. natural frequencies, damping ratios and mode shapes, to better
understand the dynamic behavior and ensure structural reliability under serviceability
conditions as well as for extreme load scenarios. A vibration-based dynamic test con-
sists of exciting and recording the response of a structure using a network of sensors:
the aim is to detect possible variations of dynamic parameters in an existing structure
considering at least two discrete points in time. The first one refers to an initial test
performed to establish a set of modal parameters assumed as a reference.

Successive test sessions, conducted after a certain period of time, aim at the de-
tection of possible modal parameters variations from the baseline. Therefore, for the
monitored structure, conclusions are drawn regarding its health condition according
to the observed fluctuations of the modal parameters. The dynamic parameters of a
structure are, in fact, functions of its physical properties: any alteration of the latter
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due to structural damage is reflected in the alteration of modal parameters. The vari-
ation of dynamic properties is thus considered a way to diagnose the structure health
condition and assess possible damages [23]. In this context, vibration-based monitoring
can complement traditional visual inspection procedures by providing supplementary
information especially if the structure is not easily accessible or the possible damage
is hidden and not detectable by visual inspections.

Another major application of vibration-based modal testing consists in the update
of structural models [12]: the FE model cannot replicate perfectly the real structure
behavior because in the modeling some simplifying hypotheses are commonly assumed
for both the geometry and the boundary conditions which may divert the analysis re-
sult from the real structural behavior. Moreover, the mesh selection and different
discretizations may still lead to different results due to possible numerical errors. In
this sense, the results from modal identification tests can be exploited to update the
FE model toward more realistic results.

Modal testing procedures in bridge SHM have been borrowed from mechanical
and aeronautical engineering where dynamic phenomena were researched first: the
main difference resides in construction material adopted in bridges, e.g. prestressed
concrete, masonry, and composite materials, which have more complex constitutive
behavior. Depending on the degree of control over the input excitation, modal param-
eters can be estimated via the dynamic response produced by ambient, forced or free
vibration tests (see Fig. 1.5).

Figure 1.5: Classification of vibration-based tests used for dynamic identification of structures [24].

Forced vibration tests

Forced vibration tests were typically adopted in the field of Experimental Modal Anal-
ysis (EMA) for the estimation of modal parameters. This type of testing is especially
suitable for stiff bridges that, due to their features, require a higher level of excitation
than the one produced by the transit of ordinary traffic or heavy trucks. Notably,
if a flexible system such as a footbridge is investigated, excitation may be produced
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simply by jumping pedestrians at a specific time pacing. On the other hand, in a
bigger or rigid structure, this dynamic load condition is not sufficient to excite the
structural modes and, therefore, specific equipment is required, thus making the test
more expensive.

The forced vibration test methodology is based on the concept of structural reso-
nance [25]: a harmonic load with a fixed frequency is generated to excite the structure;
this operation is repeated varying in small steps the exciting frequency in a fixed range
until the structural resonance frequencies are attained. In this case, the acceleration
response at the measurement point reaches the highest amplitudes and then starts to
decrease as the excitation frequency continues to increase.

The most common solutions to produce forced vibrations in a bridge are instru-
mented hammers, eccentric mass shakers and linear mass shakers [16]. The excitation
technique is highly dependent on the desired intensity of excitation and the bridge’s
slenderness. Linear mass shakers excite the structure with a combination of steady-

(a) (b) (c)

Figure 1.6: Equipment to produce the excitation in forced vibration tests [16]: (a) eccentric mass
vibrator; (b) servo-hydraulic shaker; (c) impact hammer tools.

state sinusoidal and transient waves, whereas eccentric mass shakers can only produce
harmonic excitation. Both shakers can be used for horizontal or vertical excitation of
the structure. Impact hammer usually produces lower excitation levels compared to
the shakers and can produce only an impulsive input, therefore it is also considered a
way to excite the structure in the context of free vibration tests.

Forced vibration tests allow the accurate control of the excitation features and
also achieve high signal-to-noise ratios in the response measurements in comparison
with other testing procedures, thus producing more accurate estimates. However, this
type of testing is time-consuming because it must be repeated varying the excitation
frequency for each mode of interest and, therefore, previous knowledge of structural
modal frequencies is required. Moreover, the structure usually must be closed to traf-
fic to allow the testing operation. Even though it is possible to easily excite high
frequencies with small shakers, the main limitation of forced vibration tests is due
to the difficulty of generating forces large enough to excite a large structure at low
frequencies in a controlled way [26]. A possible solution to this problem would be
low-frequency massive shakers, however, this choice is usually too expensive due to
construction, transport and in-site mounting operations.
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Free vibration test

The installation of large permanent sensor networks is becoming popular for the dy-
namic identification of major structures from the ambient response, however, there
exists a large number of constructions that can only be monitored sporadically and in
a short time because of budget and technical constraints. In such a case, free vibration
tests are especially attractive because they can be performed using a network consist-
ing of a few sensors temporarily installed on the structure in such a way as to limit
the duration and cost of the experimental campaign. A free vibration test is typically
performed on a civil structure by the application of an impulsive excitation. This
test is significantly easier to perform than the forced vibration counterpart and less
expensive. It may be carried out by inducing an impulsive response due to the impact
of a hammer or the drop of a suspended weight (see Fig. 1.7). An alternative is the
sudden release of an applied deflection (see Fig. 1.8): this excitation can be obtained
by using a tensioned cable with a fusible connection anchored to the soil and increas-
ing the corresponding tension to the limit or employing a suspended heavy mass that
is suddenly disconnected from the structure. In this case, a rough knowledge of the
mode shapes is useful because the mass must be hung in a proper location to excite
the significant modes [27]. Free vibrations can also be obtained from the passage of a
heavy truck on a fixed step in the case of road bridges (see Fig. 1.9) whereas, in the
case of railway bridges, the vibrations introduced by the passage of a train may be
exploited since at the end of its transit it is observed a residual free vibration response
component of the bridge [28,29].

Free vibration tests are usually performed by introducing an initial perturbation
that can induce a response significantly higher than the ambient response (reduced
signal-to-noise ratio in comparison with ambient vibrations). Therefore, the sensor
specifications for free vibration tests are usually less stringent in comparison with the
one adopted in monitoring under ambient excitation due to the higher vibration inten-
sity [30]. Furthermore, the sensors are temporarily installed on the structure resulting
in a lower cost in comparison to long-term sensors network exploited for ambient vi-
bration monitoring.

Since free vibration tests can provide accurate estimates of the modal parameters
while being rather cheap and easy to implement, they have been performed in many
applications. For instance, several free vibration tests have been performed to enable
the experimental dynamic characterization of base-isolated buildings [31–33], high-rise
buildings [34], masonry towers [35] and ancient tie-rods [36, 37]. The identification of
modal features from free vibrations is most popular for bridge monitoring. For ex-
ample, Cunha et al. [38] have performed free vibration tests to estimate the modal
properties of a cable-stayed bridge. The free vibrations for this test have been obtained
by releasing a barge attached through a cable. Similarly, Magalhães et al. [39] have
performed the dynamic identification of a bridge deck by exploiting its free vibrations
due to the sudden rupture of a cable with an attached heavy counterweight. The free
vibrations following the passage of a train have been often elaborated for the dynamic
identification of railway bridges [14, 29]. Ko et al. [40] have identified the equivalent
damping of bridge stay cables equipped with a magnetorheological damper from the
free vibration decay following a sinusoidal excitation. Van Nimmen et al. [41] esti-
mated the equivalent damping of a footbridge equipped with a tuned mass damper
from its free decay response induced by one person bobbing at the midspan.
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The results taken from the free decays of the structural response are generally
recognized to be more accurate because the noise influence is smaller and there is no
need to make assumptions about the loading conditions [27]. Therefore, when ambi-
ent vibration tests are adopted for dynamic identification purposes it is also common
to perform supplementary free vibration tests, especially when accurate estimates of
damping ratios are required: this depends on the high dispersion observed in literature
for damping ratios identified from ambient vibration time series. A limitation of free
vibration tests resides in the difficulty in the excitation control for test repeatability
purposes: however, this problem becomes less relevant if output-only approaches are
considered. The most traditional procedure to analyze the recorded data in free vibra-
tion tests consists of the application of band-pass filters to isolate the contributions
of the most important modes. Another possible problem when dealing with this type
of time series is, therefore, the separation of each modal contribution especially for
complex bridge structures with possible closely spaced modes.

(a) (b)

Figure 1.7: Type of excitation in a free vibration test: (a) free falling mass [42]; (b) hammer impulse
excitation [43].

(a) (b)

(c)

(d)

Figure 1.8: Free vibration test performed on Vasco da Gama cable-stayed bridge [38]: (a) overview
of the bridge; (b) eccentrically suspended 60 ton barge; (c) starting cut of hanging Dywidag bar; (d)
release of the barge.
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(a) (b)

Figure 1.9: Dynamic test performed on the New Svinesund Bridge [44]: (a) Passage of a truck on a
road bump fixed on the deck; (b) close-up of the rubber road bump.

Ambient vibration tests

When the dynamic identification of large bridges must be performed, it is usually dif-
ficult to excite them artificially using shakers and, therefore, it is preferable to exploit
ambient vibrations [45]. Ambient vibration tests do not require specific equipment
to excite the structure; different sources of excitation may be exploited such as wind,
waves and pedestrian or vehicular traffic. Considering the nature of the input forces,
it is not possible to measure or control the excitation which is thus assumed unknown.
Therefore, ambient vibration testing implicitly assumes that only response data can
be exploited for the estimation of dynamic parameters.

Due to the uncertainty of the input, hypotheses about its nature must be made;
ambient excitation is generally modeled as a white noise stationary random process,
i.e. the input has a power spectrum that is uniformly spread across the frequency
range of interest: any identified parameter associated with significant strong response
is representative of a structural mode. The main advantage of this testing approach is
that accurate estimations of the modal frequencies and mode shapes can be obtained
rapidly and with a reduced cost. Furthermore, the identification is carried out on time
series which are representative of the real state of serviceability of the investigated
structure. Since no heavy shaker installation is performed, it is not necessary to close
the bridge to traffic during the tests. However modal damping ratios identified via
ambient vibration tests are sometimes not accurate [14], and therefore complementary
tests must be carried out if higher accuracy is needed.

This testing procedure has also some drawbacks: because of the low level of excita-
tion, the accelerometers used for measuring must be highly sensitive, thus increasing
the economic impact on the monitoring campaign. An adequate frequency resolution
is difficult to obtain when time series with short time spans are used; on the other
hand, increasing the frequency resolution by exploiting long time series may reduce
the content of useful information due to the low signal-to-noise ratio contained in the
timespans characterized by a low-intensity wind or traffic [24]. Moreover, if the struc-
ture has an important horizontal mode, the traffic load that is directed in the vertical
direction may not be enough to excite it.
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Advantages and limitations of vibration-based tests and damage detection

Vibration-based dynamic tests can detect damage dependent on stiffness-related vari-
ations in the structure. The main advantage of this approach is that continuous infor-
mation on the state of the monitored structure is provided at a global level. Notably,
it does not require direct assessment of the damaged elements and therefore allows the
detection of possible hidden damage or not directly identifiable via visual inspection
due to not easily accessible structures. However, this approach has some drawbacks.
The main problem is that at least two different monitored states are required to pro-
duce a judgment on the structural health condition since a set of baseline values is
required: therefore, if the baseline is established on an already damaged structure,
only the progression of this deterioration can be captured by this approach. It follows
that vibration-based dynamic testing must always be coupled with other complemen-
tary SHM approaches as well as visual inspections to properly grasp any pre-existing
damage. Another relevant aspect related to vibration-based dynamic tests is that hu-
midity and temperature gradients may induce relevant seasonal variations of the modal
parameters. Finally, other drawbacks commonly widespread in the experimental mea-
surements are related to epistemic and aleatory uncertainties as well as systematic
errors related to the characteristics and implementation of the monitoring setup.

One of the most common classes of methodologies for damage detection is based
on modal frequencies. Specifically, when damage occurs in a structure, a variation of
the modal frequencies is expected due to the decrease in its global stiffness. Therefore,
a shift in modal frequencies of the monitored structure between two monitored states
may be symptomatic of anomalous structural behavior. The first documented attempts
to detect damage in structures using frequency shifts are dated to the 1970s [46, 47].
Detection via modal frequencies is limited in the case of low levels of damage due to
their poor sensitivity: local changes may be more accurately observed in higher modes
frequencies but it is usually not easy to excite them, especially in civil structures
[48, 49]. However, damage identification via modal frequencies has been successfully
carried out in the case of simple structures such as beams or arches [50,51]. Similarly
in [52] the applicability of modal frequency-based SHM is investigated for a steel
railway bridge monitored before and after being retrofitted, quantifying the effect on
frequency sensitivity. The use of vibration-based damage detection and monitoring
through shifts in natural frequencies is also documented in other relevant publications
[47, 53]. Nonetheless, modal frequencies are global parameters [54] and thus they
cannot provide any information about the localization of the damage, especially in the
case of complex structures [55].

Criteria based on damage identification via modal damping ratios are less common
since there is a higher degree of uncertainty on the damping mechanism as well as
the sources of damping influencing the structural behavior. Several studies show that
in PC and RC structures an increase in damping ratios is expected due to corrosion-
induced damage as well as due to the internal friction that is developed when cracks are
formed [56,57]. Other documented study damage assessment via modal damping ratios
are discussed in [58, 59]. However, it is also observed in the literature [60, 61]that the
modal damping ratios extracted from processed vibration data are usually not reliable
for damage detection due to the excessive dispersion of the estimates.

Several applications reported in the literature [48, 62] are based on mode shape
change because the latter are less influenced by environmental effects than frequen-
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cies [63] and can provide information about damage location in the structure. Ap-
proaches based on the shift of mode shapes rely on indices such as the Modal Assurance
Criterion (MAC) [64] which exploits the orthogonality property of the eigenvectors for
the damage assessment or its generalization, namely the Coordinate Modal Assurance
Criterion (COMAC) method [62] which also allows to locate the damage via modal
node displacements. Studies on the practical application of MAC and COMAC cri-
teria showed that structural changes and the corresponding locations were accurately
identified but sometimes false positives were also detected [65–68].

It is worth noting that the effect of small damage on the previously mentioned
modal properties is likely to be undetected due to the uncertainties in the experi-
mental procedures. Therefore, to enhance the detection sensitivity, criteria based on
higher-order derivatives of mode shapes have been proposed. In this context, one of the
most widespread approaches is based on modal curvatures [69]. However, this method
has some drawbacks such as the high number of sensors to accurately detect higher
modes and the dependency on the number of modes considered [70]. Another modal
parameter commonly used for damage assessment is modal flexibility [71]: the method
is based on the definition of the flexibility matrix as the inverse of the structural stiff-
ness matrix, which has higher damage sensitivity in comparison with other parameters
even if only lower modes are available due to their easy extraction. Applications of
this indicator for bridge damage identification purposes are discussed in [72].

1.3 Basics of signal pre-processing and validation
In this section, the main aspects related to the acquisition and validation of the signals
recorded during dynamic tests are analyzed.

Aliasing and signal decimation

One of the first settings to be decided in the dynamic testing design is the sampling
frequency at which the signals are acquired. The continuous signals obtained by sensors
have to be converted into a discrete digital counterpart to be further elaborated; this is
achieved by an analog-digital converter (ADC). The proper selection of the sampling
frequency influences the accuracy of the signal representation in its digital form. To
this aim, Shannon’s theorem states that a continuous-time signal may be properly
represented by its samples if the sampling frequency Fs is at least twice the highest
frequency component Fmax of the time signal:

Fs ≥ 2Fmax (1.18)

Therefore, the maximum observable frequency (Nyquist frequency) is:

FNyquist =
Fs

2
(1.19)

If the highest frequency in the band of the analyzed signal is higher than the Nyquist
frequency, the aliasing phenomenon occurs [73]: it causes the signal incorrect rep-
resentation after the digitization process of the continuous signal due to the under-
sampling in the time domain. Fig. 1.10 shows the case in which a harmonic input
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with frequency Fa, applied to ADC, does not satisfy Shannon’s theorem. The samples
produce an aliased sine wave that maintains the same values at the observation times
k∆t = k ·1/Fs but has a lower frequency equal to Fs−Fa. The energy of the frequency
components greater than the Nyquist frequency is forced into the frequency band of
the reconstructed signal; therefore, new frequencies, not present in the original signal,
appear in the sampled signal after reconstruction (see Fig. 1.11). This in turn makes
not distinguishable the actual low-frequency contribution from the aliased one.

Time [s]

A
m

p
li
tu

d
e

1
Fs

input signal
aliased signal

Figure 1.10: Aliasing in the time domain.

Figure 1.11: Aliasing in the frequency domain.

Aliasing can be minimized if the components above the Nyquist frequency are
removed before the analog-to-digital conversion. This theoretically may be achieved
by using a low pass filter with a sharp cut-off at Fs/2. However, real anti-aliasing
filters always have a transition band and, to consider that frequency in this band
may also produce aliasing, the cut-off frequency is usually assumed 0.4Fs. In most of
the practical cases, the adopted sampling frequency is much higher than the actual
required value, thus producing a large amount of recorded raw data to process. A
compression procedure called decimation or down-sampling is therefore exploited to
compact the data to be elaborated. The decimation consists of an approximation of the
time series that would have been obtained by sampling the signal at a lower rate. The
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most simple kind of decimation process is the integer one. First, the high-frequency
content is reduced by low pass filtering and subsequently the down-sampling of order Q
is carried out on the filtered signal keeping only Qth sample and its integer multiples.
Since the under-sampling reduces the sampling frequency, Shannon’s sampling theorem
likely is no longer satisfied, thus causing the aliasing phenomenon. Therefore, low-pass
filtering before the actual decimation process becomes necessary to prevent such an
eventuality.

Signals validation

The signal validation has a crucial role in checking if any anomaly affects the raw
recordings. This operation allows to check if the signal is suitable for modal identifi-
cation purposes. Several anomalies may affect the recorded data: the most common
ones are noise-related. In these cases, the noise becomes predominant in the signal
making it not possible to detect modal parameters. The noise-related phenomena
may commonly occur because of the improper setting of the data acquisition system
sensitivity, e.g. the sensor’s voltage is significantly low in comparison to the one of
the analog-digital converter. These anomalies can be easily detected by inspecting
the signal frequency spectrum whose peak frequencies are overshadowed by the noise
(see Fig. 1.12(a)). Similarly, digital noise effects are detectable by inspecting the time
series which may present a series of well-defined constant steps (see Fig. 1.12(b)). An-
other sensitivity-related problem in data recording is signal clipping (see Fig. 1.12(c));
in this case, the recorded signal saturates the ADC. This effect can be avoided if the
maximum input voltage is set high enough without being affected by the noise floor of
the converter or by its resolution [26]. Other significant problems that may affect the
data are outliers and dropouts; these effects are dependent on system malfunctions
and losses of power and can also be detected by signals inspection (see Fig. 1.12(d)).
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Figure 1.12: Principal data anomalies: (a) frequency spectrum of signal affected by instrumental
noise; (b) signal affected by digital noise; (c) signal affected by clipping; (d) signal outliers and
dropouts.

Filtering

Once the recorded signals are converted into digital form, they still could be affected by
unwanted frequency components which may be eliminated through a digital filtering
process. As opposed to the analog counterpart, digital filters are programmed by
software and have several advantages such as not being affected by drifting due to
temperature and humidity variations as well as not being influenced by manufacturing
errors or aging phenomena. An ideal filter typically alters the signal acting in the
frequency domain and retaining only the components in the frequency band of interest.
Based on the frequency range retained (see Fig. 1.13), the filters are classified in [74]:

• Low-pass filters: retain all the frequencies under a cut-off value and remove
higher frequencies;

• High-pass filters: retain all the frequencies higher than a cut-off value and remove
lower frequencies;

• Band-pass filters: retain the frequencies contained in a band specified by an
upper and a lower value of cut-off frequency;
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• Band-stop filters: remove the frequencies contained in a band specified by an
upper and a lower value of cut-off frequency.

Figure 1.13: Gain for different types of ideal filters: (a) low-pass filter; (b) high-pass filter; (c) band-
pass filter; (d) stop-band filter.

An ideal filter does not alter the retained frequency band, therefore its gain is unitary
(0 dB) in the pass band and zero (−∞ dB) in the stop band. However, ideal filtering
is not possible in practice because a real filter cannot satisfy at the same time all the
properties of an ideal one. Notably, a real filter may show variations of the gain in
frequency called ripples both in the pass band and stop band as well as a transition
band around the cut-off frequency instead of a sharp cut-off (see Fig. 1.14). The choice
of the filter is therefore influenced by:

• center frequency: the frequency value at which the filter causes a 3 dB amplitude
attenuation. In the case of band-pass and band-stop filters, the center frequency
is defined as the geometric mean of the 3 dB attenuation cut-offs;

• roll-off rate: the rate of change of the output of the filter versus frequency;

• the presence of ripple in the pass-band influenced by the filter order;

• phase non-linearity.

Digital filters may be classified based on their impulse response in Finite Impulse Re-
sponse (FIR) and Infinite Impulse Response (IIR). The former case is characterized
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Figure 1.14: Gain behavior of ideal versus real low-pass filter.

by a finite impulse response and the filter output depends only on the current and
past input values. In the second case, the impulse response never reaches zero and
it extends indefinitely; the filter output is dependent on the actual and past input
values as well as the actual and past output values. IIR filters are more efficient than
FIR ones due to the fewer coefficients number to reach the same attenuation level,
however, the former produces a linear-phase response whereas the latter produces a
nonlinear-phase response. In applications such as structural health monitoring where
the phase information is not crucial, the advantages of IIR filters may be exploited.
Digital IIR filter designs come from the classical analog designs and include the But-
terworth, Chebyshev and Elliptic filter types. The basic analog prototype form and
the corresponding main features are briefly summarized.

Butterworth filters allow the maximal flatness tending to the ideal case and the
3 dB down frequencies correspond to the cut-off frequencies. On the other hand, a
wide transition band characterizes the filter due to the slow roll-off rate. A possible
solution to tone down this effect is increasing the filter order since it is proportional
to the roll-off rate. The frequency response of this filter is monotonic and no ripples
are generated (see Fig. 1.15). Chebyshev Type I filters reach maximal flatness in the
stop-band similarly to Butterworth filters but the former achieves a steeper transition
between pass-band and stop band than the latter for the same filter order. However,
the sharper transition causes the appearance of ripples in the pass-band (see Fig. 1.16).
Similarly, Chebyshev Type II filters achieve maximal flatness in the band-pass and have
a steeper transition band than Butterworth filters; in this case, the sharper transition
causes the appearance of ripples in the stop-band (see Fig. 1.17). Elliptic filters provide
the fastest roll rate in the transition band, however, both the pass-band and stop-band
are affected by ripples (see Fig. 1.18).
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Figure 1.15: Magnitude of the gain over frequencies for a low-pass Butterworth filter, with a cut-off
frequency of 100 Hz, varying its order.
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Figure 1.16: Magnitude of the gain over frequencies for a low-pass Chebyshev type I filter, with a
cut-off frequency of 100 Hz, varying its order.
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Figure 1.17: Magnitude of the gain over frequencies for a low-pass Chebyshev type II filter, with a
cut-off frequency of 100 Hz, varying its order.
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Figure 1.18: Magnitude of the gain over frequencies for a low-pass elliptic filter, with a cut-off
frequency of 100 Hz, varying its order.
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CHAPTER 2

STATE OF THE ART

This chapter presents a review of the current state of the art in the field of modal iden-
tification. As already mentioned in the previous sections, when conducting a vibration-
based monitoring campaign, different types of tests can be performed depending on
the degree of control on the excitation and, accordingly, different approaches may
be followed for the modal parameters identification. When the exciting input on the
structure is known and measured, forced vibration tests are carried out and their inter-
pretation is attained using Experimental Modal Analysis (EMA) principles. The most
popular approaches are based on the modal identification from the knowledge of the
frequency response functions (FRFs), i.e. the relations between the input excitation
and the corresponding outputs recorded at the testing locations; a detailed overview
of these methods can be found in [75]. However, the application of EMA approaches
requires excitation levels that can be only obtained by specific equipment which is not
always available. Further, the base assumption that the investigated structure is forced
only by the prescribed excitation does not hold well since other actions such as traffic
or wind loads may act on it at the same time. These main limitations significantly
reduce the applicability of these methods.

On the other hand, when the input is not known or it is not easily measurable,
Operational Modal Analysis (OMA) is carried out. The OMA approaches are in part
derived from EMA methods by making some specific assumptions on the input exci-
tation.

This chapter will focus on the output-only techniques available in operational con-
ditions due to their high popularity in the context of monitoring large structures such
as bridges. When operational forces such as ordinary vehicular traffic, pedestrian loads
or wind pressure are considered, classic OMA techniques in the time or frequency do-
main are adopted. Due to the small magnitude of the excitation, long recordings are
usually required to discern the actual ambient vibrations from the noise. Moreover,
traditional OMA techniques make certain assumptions on the nature of the excita-
tion [26]:

• It has a wide frequency content, i.e. its frequency spectrum is almost flat in
a certain frequency range and therefore it can be assimilated to a white noise
input;

• It can be considered a stationary process.

When other sources of excitation are adopted in modal testing, not always these hy-
potheses are satisfied, thus requiring other approaches. A recent solution is based
on advanced decomposition-based strategies in which modal parameters are estimated

25



once each modal contribution is isolated exploiting a suitable decomposition technique.
This approach was originally introduced by Huang et al. [76] which combined the Em-
pirical Mode Decomposition to the Hilbert Spectrum for the time series analysis of
non-stationary data.

This chapter, therefore, also reviews the most popular advanced decomposition
methods, documented in the current scientific literature, to retrieve modal components
from a selected signal as well as suitable techniques for modal frequencies and dampings
estimation.

2.1 Time Domain Methods

2.1.1 The continuous-time state-space model
The dynamic behavior of a discretized complex structure with nm degrees of freedom,
forced by the vector f̃(t), is described by the equation of motion Eq.(1.1) previously
introduced and reported in the following for sake of clarity:

Mü(t) + Zu̇(t) +Ku(t) = f̃(t) (2.1)

where u, u̇ and ü represent the displacement, velocity and acceleration vectors, re-
spectively, whereas M, Z and K are the mass, damping and stiffness matrices (squared
matrices with dimensions equal to the number nm of DOF of the structure). A state
space model reduces the second-order differential equation of motion into an equiva-
lent set of two first-order differential equations. It follows that the equation of motion
can be expressed in terms of state variables by the introduction of the state vector:

x(t) =

{
u(t)
u̇(t)

}
(2.2)

Combining the equations of motion with the identity

Mu̇(t) = Mu̇(t) (2.3)

and expressing both of them in terms of the state vector introduced in Eq.(2.2), the
following set of 2N equations is obtained:

ẋ(t) = Acx(t) +Bcf(t) (2.4)

where:

• Ac is the state matrix of the system in the time-continuous domain with dimen-
sions 2nm × 2nm:

Ac =

[
0 I

−M−1K −M−1Z

]
(2.5)

• Bc is the input matrix with dimensions 2nm × nm:

Bc =

[
0

M−1

]
(2.6)
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• f(t) is the forcing vector:

f(t) =

[
0

f̃(t)

]
(2.7)

being 0 and I the zero and identity matrix, respectively. If the structural response mea-
surements are recorded from l sensors (accelerometers, velocimeters and displacement
transducers) at different locations, a set of l observability equations can be associated
with the equation of motion:

y(t) = Caü(t) +Cvu̇(t) +Cdu(t) (2.8)

where Ca, Cv and Cd are the l × nm output location matrices for accelerations, ve-
locities and displacements measured by the adopted sensors, respectively. The former
matrices may be exploited to combine couples of displacements to obtain strains, which
can be measured on the system using strain gauges. Combining Eqs.(2.1) and (2.8),
the second-order representation of an MDOF system in terms of state variables is
obtained:

y(t) = Ccx(t) +Dcf(t) (2.9)

where:

• Cc is the output influence matrix in the continuous-time domain and has dimen-
sions l × 2nm:

Cc =
[
Cd −CaM

−1K Cv −CaM
−1Cc

]
(2.10)

• Dc is the direct transmission matrix, which relates applied forces to measured
accelerations, with order l × nm:

Dc = CaM
−1 (2.11)

If the measures are only displacements and velocities, there is no direct trans-
mission being Dc = 0.

The set made up of the state space equations Eq.(2.4) and the observability equation
Eq.(2.9) defines the continuous-time state-space model. This model is characterized
by the existence of an infinite number of equivalent state-space representations for a
given system [77]: the experimental test allows establishing only one of these infinite
realizations. For each of these realizations, a set of modal parameters can be extracted
from the state matrix Ac [78]. The latter can be rewritten as follows:

Ac = ΨcΛcΨ
−1
c (2.12)

being Λc and Ψc the eigenvalues and eigenvectors matrices related to the state matrix
Ac respectively, which have the following form:

Λc =

[
Λ 0
0 Λ∗

]
,Ψc =

[
Θ Θ∗

ΘΛ Θ∗Λ∗

]
(2.13)

where the superscript * is the complex conjugate operator. Λ and Θ contain the nm
complex eigenvalues and eigenvectors of second order eigenproblem generated from
Eq.(2.1):

(MΛ2 + ZΛ+K)Θ = 0 (2.14)
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The damping ratios and circular frequencies are both contained in the complex eigen-
values:

λr, λ
∗
r = −ξrωr ± jωr

√
1− ξ2r (r = 1, . . . , nm) (2.15)

being j the imaginary unit. The imaginary part of λr represents the rth natural
frequency of the damped system. Because only one subset of the DOF is measured,
the observable mode shapes are expressed as:

Φc = CcΨc (2.16)

2.1.2 The discrete-time state-space model
The experimental test produces discretized recordings of the structural response of
each sensor at discrete time instants; it is thus necessary to convert the continuous-
time state-space model into an equivalent discrete model. The solution x(t) of the
system, made up of Eqs.(2.4) and (2.9), can be expressed as follows:

x(t) = eAc(t−t0) +

∫ t

t0

eAc(t−τ)Bcf(τ)dτ (2.17)

where t0 represents the initial time instant at which the force acts on the system.
Considering the discrete time instants tk = (k+1)∆t, Eq. (2.17) may be also evaluated
in the discrete form and the continuous-time state-space model is therefore converted
in the discrete-time state-space one which has the following expression:

{
xk+1 = Axk +Bfk

yk = Cxk +Dfk
(2.18)

where xk = x(k∆t) represents the discrete-time state vector containing displacements
and velocities, whereas yk and fk are the sampled input and output respectively.
Under the zero-order hold assumption (ZOH), i.e. time functions constant between
two consecutive samples, the continuous-time and discrete-time matrices are related
by the following expressions [77]:

A = eAc∆t

B =

∫ ∆t

t0

eAcdτBc = [A− I]A−1
c Bc

C = Cc

D = Dc

(2.19)

The model described by Eq.(2.18) is deterministic because, until now, a deterministic
force has been considered. To describe the real case based on the acquisition of exper-
imental data, a stochastic component must be added to the model. Considering that
in OMA the input represented by fk is not measured, i.e. the contributions related
to B and D matrices are neglected, the system response is only influenced by two
stochastic components modeled as zero-mean stationary white noise processes:

• wk is a 2nm × 1 vector containing the process noise due to the inaccuracy of
the model which in the absence of fk takes its role and becomes the input that
drives the dynamics of the system;
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• vk is a l× 1 vector containing the measurement noise due to sensor inaccuracies
and takes into account the direct disturbance of the response system.

Hence, the discrete-time stochastic state-space model (counterpart of the deterministic
model represented by Eq.(2.18)) takes the following expression:

{
xk+1 = Axk +wk

yk = Cxk + vk

(2.20)

In Eq.(2.20), A transforms the current state of the system xk in the following one
xk+1, whereas the product between the observation matrix C and the state vector
provides the observable part of the state. The aim is to determine the state matrix A
and the output matrix C to obtain the modal parameters of the system. Modal param-
eters of discrete and continuous-time state-space models are related by the following
expression:

A = eAc∆t = eΨΛcΨ
−1∆t = ΨeΛc∆tΨ−1 = ΨΛdΨ

−1 (2.21)

where:

• Λd = diag(µr), r = 1, ..., n (being n the model order) is the diagonal matrix
which contains the discrete-time complex eigenvalues of Ad obtained solving the
problem AΨ = ΨΛd;

• Ψ is a n × n squared matrix whose columns are the system eigenvectors ψr of
A.

The eigenvalues µr in the discrete-time domain are related to the eigenvalues λr in
the continuous-time domain by the following relationship:

µr = eλr∆t = e(−ξrωr+jωr

√
1−ξ2r)∆t (2.22)

The eigenvalues λr in the time-continuous domain represent the modal circular fre-
quencies ωr of the system and are therefore evaluated as follows:

λr =
ln(µr)

∆t
(2.23)

The modal damping ratios are evaluated according to the structural dynamics:

ξr = −Re(λr)
|λr|

(2.24)

The mode shapes of the system are the columns of the matrix Φ which may be eval-
uated as follows:

Φ = CΨ (2.25)

The state space model (Eq.(2.20)) is only applicable for linear systems that do not have
time-varying changes in their characteristics. Furthermore, the only way to obtain an
optimal estimate of a state space model based on measured system response is to
require that the system response is a realization of a zero-mean Gaussian distributed
stochastic process. In other words, in the applied stochastic framework, the system
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response is modeled by a stationary stochastic process xk, therefore the covariance
state matrix Σ is independent by the time instant k:

Σ = E[xkx
T
k ] (2.26)

where the superscript T indicates the transposition operator. Since the system re-
sponse of the linear state space model is a Gaussian stochastic process, this implies
that wk and vk are zero mean Gaussian stochastic processes as well:

E[xkw
T
k ] = 0

E[xkv
T
k ] = 0

(2.27)

Further, since the input processes wk and vk are unknown, the simplest assumption is
to consider two correlated zero-mean Gaussian white noise processes, defined by their
covariance matrices Q, R and S as:

E

[[
wp

vp

] [
wT

q vT
q

]]
=

[
Q S
ST R

]
δpq (2.28)

being δpq the Kronecker’s delta function. The outputs correlation matrix for a time
lag τ = i ·∆t is determined as follows [79]:

Ri = E[yk+iy
T
k ] (2.29)

Properly combining Eq.(2.20) with Eqs.(2.26)-(2.29), after some mathematical manip-
ulations, the following properties are achieved:

Σ = E[xkx
T
k ] = AΣAT +Q

G = E[xk+1y
T
k ] = AΣCT + S

(2.30)

where Σ is the covariance matrix of the state xk whereas G is the covariance matrix
between the system response yk and the updated state vector xk+1 called next-state
output covariance matrix. Furthermore, the output covariance matrix of yk for any
arbitrary time lag τ = i ·∆t can be expressed in terms of the system matrices as:

R0 = E[yky
T
k ] = CΣCT +R

Ri = E[yk+iy
T
k ] = CAi−1G

(2.31)

The model presented in this section represents the framework from which the subspace
identification approaches stem.

2.1.3 Stochastic Subspace Identification
The formulations based on the previously introduced state space model are usually
referred to as Stochastic Subspace Identification (SSI) methods. These parametric
models represent, nowadays, the most adopted solution in civil engineering for modal
identification purposes in the time domain. Depending on the way the system is
identified two main SSI methods may be distinguished: if output correlations are ex-
ploited in the model identification process, the Covariance Driven Stochastic Subspace
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Identification (SSI-COV) method is adopted; alternatively if recorded time series are
directly exploited using projections, Data-Driven Stochastic Subspace Identification
(SSI-Data) method is used. These techniques are closely related and if the former has
a lower computational cost in terms of time elapsed, the latter can provide additional
information if proper post-processing is carried out.

Covariance-Driven Stochastic Subspace Identification

The Covariance Driven Stochastic Subspace Identification (SSI-COV) method [78] is
based on the use of the outputs covariance matrix or equivalently of the outputs
correlation matrix (because the signals are assumed as zero-mean ones) to identify the
system defined as in Eq.(2.20). The time-discretized measured responses are organized
in the output matrix:

Y =
[
y(∆t) y(2∆t) ... y(nt∆t)

]
(2.32)

where nt is the number of points of the time series. Each term in Y is a column
vector that contains, at a given discrete time instant, the recorded response at each
sensor location. The first step in SSI-COV is the estimation of the output correlation
matrices; only a discrete number of samples are recorded in a dynamic test, therefore
only an estimate of each correlation matrix R̃ can be calculated. The estimated
correlation matrix R̃i, for a predefined ith time lag (i∆t), has the following expression:

R̃i =
1

nt − i
Y(1|nt−i)Y

T
(i|nt)

(2.33)

where Y(1|nt−i) is obtained from the l × nt data matrix Y by the elimination of the
last i columns whereas Y(i|nt) is obtained removing the first i columns from the data
matrix Y. Repeating this procedure for each time-lag the correlation matrices for all
the discrete frequencies are obtained. The estimated correlations are collected in the
following Toeplitz matrix:

T(1|i) =




R̃i R̃i−1 . . . R̃1

R̃i+1 R̃i . . . R̃2

...
...

. . .
...

R̃2i−1 R̃2i−2 . . . R̃i


 (2.34)

Under the assumption that all the l measured DOF are considered, each correlation
matrix has dimensions l × l. If the number of elements removed in each column to
calculate R̃i is equal to i, the Toeplitz matrix has dimensions l · i × l · i. For the
identification of a system of order n, the following condition must be satisfied:

l · i ≥ n (2.35)

It is possible to express each correlation block matrix R̃i by exploiting Eq.(2.31) as
the product of two matrices:

T(1|i) =




C
CA

...
CAi−1



[
Ai−1G . . . AG G

]
= OiΓi (2.36)
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where Oi is the observability matrix and has dimensions l · i × n whereas Γi is the
controllability matrix with dimensions n× l ·i. If the condition in Eq.(2.35) is satisfied,
the system is both observable and controllable and the rank of T1|i is equal to n
(which represents the order of the model to be identified). Further, to obtain the state
matrix A, another matrix decomposition is considered. Specifically, the singular value
decomposition (SVD) of the block Toeplitz matrix is expressed as follows:

T(1|i) = USVT =
[
U1 U2

] [S1 0
0 0

] [
VT

1

VT
2

]
(2.37)

where U and V represent the unitary matrices containing the left and right singular
vectors whereas S is the singular values matrix.

The rank of the decomposed matrix is equal to the number of non-zero singular
values: under the condition of Eq.(2.35), the rank is equal to n. Comparing Eq.(2.36)
to Eq. (2.37), the observability and controllability matrices can be expressed in terms
of the SVD output using the following partition:

Oi = U1S
1/2
1

Γi = S
1/2
1 VT

1

(2.38)

which implies that they can be directly derived once the covariance matrices of mea-
sured output signals are obtained. It is worth noticing that alternative formulations of
SSI-COV consider pre-multiplying and post-multiplying the Toeplitz matrix by some
weighting matrices modifying the state space basis in which the model is defined [79];
the above-discussed formulation assumes as weights the identity matrix. Once the
matrices defined in Eq.(2.38) are evaluated the model may be identified by calculating
the state space model matrices A and C. There are two possible ways to evaluate
the state matrix A: the first method is based on the decomposition property of the
shifted Toeplitz matrix whereas the second one is the observability matrix method. In
the first approach, the one-lag shifted Toeplitz matrix has the following expression:

T(2|i+2) =




R̃i+1 R̃i . . . R̃2

R̃i+2 R̃i+1 . . . R̃3

...
...

. . .
...

R̃2i R̃2i−1 . . . R̃i+1


 (2.39)

Applying the SVD decomposition to Eq.(2.39), the state matrix A is retrieved:

A = O+
i T(2|i+1)Γ

+
i = S

−1/2
1 UT

1 T(2|i+1)V1S
−1/2
1 (2.40)

where the superscript + is referred to the Moore-Penrose pseudo-inverse operation on
non-squared matrix [80]. The second method [81] exploits the shift in the observability
matrix. Introducing the matrices O↓

i and O↑
i obtained by removing the last and first

l rows respectively from Oi:

O↓
i =




C
CA

...
CAi−2


 ,O

↑
i =




CA

CA2

...
CAi−1


 (2.41)

32



it is possible to relate them according to the following expression:

A = (O↓
i )

+O↑
i (2.42)

The estimation of the output matrix C is also carried out following two possible
procedures. The first method is based on the consideration that the first block row of
the observability matrix Oi is precisely the matrix C. The second method is based on
considering the first block row of the Toeplitz matrix in Eq.(2.34); under the condition
expressed by Eq.(2.35) and applying the SVD, it holds:

C = T1
(1|i)V1S

−1/2
1 (2.43)

Once A and C are determined all the modal parameters can be evaluated according
to Eqs.(2.22) - (2.25). As previously mentioned the solution is not unique depending
on the system order.

Data-Driven Stochastic Subspace identification

SSI-COV algorithm assumes that covariance functions are known and raw output
data does not play any role irrespective of whether it is available or not. On the other
hand, SSI-Data explicitly requires the availability of raw data. The method exploits
numerical robust techniques such as QR-factorization, SVD and the least squares
method. In the Data-Driven SSI algorithm, instead of calculating the covariances
between outputs as in SSI-COV, the projections of the row space of future outputs
into the row space of past outputs are calculated to remove the noise. The state
vector estimation is carried out using Kalman filter [82], which provides the optimal
prediction of the state vector. It is this requirement that necessitates the availability
of raw output time data. The Kalman filter aims at producing an optimal prediction
x̂k of the state xk at the discrete-time tk by utilizing the observations of the outputs
up to time tk−1 and the available system matrices together with the known noise
covariances. Therefore, the initial problem defined by Eq.(2.20) may be rewritten in
the form: {

x̂k = Ax̂k−1 + κk−1ek−1

yk−1 = Cx̂k−1 + ek−1

(2.44)

where κ is the Kalman gain matrix which gives information about the noise on the
system due to the white noise excitation and e is a vector called innovation which
indicates the part of the measured response y which cannot be predicted by the one
step-ahead predictor ŷ. From Eq.(2.44), a recursive relation for the state estimation
is obtained:

x̂k = Ax̂k−1 + κk−1(yk−1 −Cxk−1) (2.45)

where the gain matrix is given by the following expression:

κk−1 = (G−APkC
T)(R0 −CPk−1C

T)−1 (2.46)

The gain matrix depends on R0 (see Eq.(2.31)), related to statistical variability of the
noise on the measured signal, and on Pk which is the Kalman state covariance matrix.
The latter can be evaluated from the resolution of the Riccati’s equation:

Pk = APk−1A
T + (G−APk−1C

T)(R0 −CPk−1C
T)−1(G−APk−1C

T)T (2.47)
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The Kalman filter state sequence X̂i is the matrix that contains the state estimates
obtained from the output data at the previous i time instants. Assuming that the
filter is started at j different time instants, it assumes the form:

X̂i =
[
x̂i x̂i+1 . . . x̂i+j−1

]
(2.48)

The idea at the basis of the technique is that the Kalman filter state estimates may
be expressed as a linear combination of the rows of certain block Hankel matrices
containing the raw data.

The data-driven algorithm starts from the construction of the block Hankel matrix
related to the discretized measurements; it is a rectangular block matrix expressed in
the following form:

Y(0|2i−1) =
1√
j




y0 y1 . . . yj−1

y1 y2 . . . yj

...
...

. . .
...

yi−1 yi . . . yi+j−2

yi yi+1 . . . yi+j−1

yi+1 yi+2 . . . yi+j

...
...

. . .
...

y2i−1 y2i . . . y2i+j−2




=

[
Y(0|i−1)

Y(i|2i−1)

]
=

[
Yp

Yf

]
(2.49)

The Henkel matrix Y has dimensions 2l · i× j, being i the considered number of time
lag, l the number of recording channels and it is assumed j → ∞ in the theoretical
formulation whereas j = nt−2i+1 in practice. The output data are scaled by a factor
1/
√
j to be consistent with the definition of correlation. The Henkel matrix can be

considered made up of two block matrices: Yp is the block matrix related to signals
acquired in the past whereas Yf is the block matrix related to signals acquired in
the future time. Another equivalent partition of the Henkel matrix can be considered
by switching the ith row of measurements from the future matrix to the past matrix
which are now labeled as Y−

f and Y+
p respectively:

Y(0|2i−1) =

[
Y(0|i)

Y(i+1|2i−1)

]
=

[
Y+

p

Y−
f

]
(2.50)

The method is based on the evaluation of the row space of the state X̂i and the column
space of the observability matrix Oi only from the knowledge of the output signal Y.
Once X̂i and Oi are known, the state matrices A and C can be evaluated, and the
identification process is completed. The projection may be seen as a conditional mean
which, for the Gaussian process, is described by its covariances. Considering that the
shifted data matrices also define covariances, the orthogonal projection of the row space
of future outputs on the row space of past outputs may be computed exploiting the
QR factorization of the data Hankel matrix and it may be expressed as follows [79,82]:

Pi =
Yf

Yp
= YfY

T
p (YpY

T
p )

+Yp (2.51)

Assuming that the system is both observable and controllable the main theorem of SSI
allows to write the projection matrix as the product between the observability matrix
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and the Kalman filter state sequence:

Pi = OiX̂i =




C
CA

...
CAi−1



[
x̂i x̂i+1 . . . x̂i+j−1

]
(2.52)

The orthogonal projection may also be decomposed by SVD after pre-multiplying for
the weighting matrix W1 with dimensions li×li and post-multiplying for the weighting
matrix W2 with dimensions j × j:

W1PiW2 =
[
U1 U2

] [S1 0
0 0

] [
VT

1

VT
2

]
= U1S1V

T
1 (2.53)

The number of non-zero singular values represents the model order n, which is also
correspondent to the dimension of the projected raw space. Depending on the selected
algorithm, different expressions can be adopted for the weighted matrices; the choice
allows writing the projection using a different basis. The Principal Component (PC)
algorithm assumes that the weighted matrices have the following form:

W1 = I

W2 = YT
p

(
1

j
YpY

T
p

)−1/2

Yp

(2.54)

In the Unweighted Principal Component (UPC) algorithm, the weight matrices are
assumed equal to the identity matrix:

W1 = W2 = I (2.55)

In the Canonical Variate Algorithm (CVA), the singular values of the weighted projec-
tion matrix represent the cosines of the principal angles between the row space of the
past outputs Yp and the row space of the future outputs Yf ; the selected weighted
matrices in the algorithm are:

W1 =

(
1

j
YpY

T
p

)−1/2

W2 = I

(2.56)

From Eq.(2.53) the following relations hold:

W1Oi = U1S
1/2
1

X̂iW2 = S
1/2
1 VT

1

(2.57)

The same procedure can be applied to define the orthogonal projection Pi−1 leading
to an estimate of the Kalman state sequence X̂i+1:

X̂i+1 = O+
i−1Pi−1 (2.58)
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Once the state sequence estimates are evaluated by SVD decomposition, the state
matrices A and C can be obtained. Specifically, the initial problem can be rewritten
in the following form [83]:

[
X̂i+1

Yi|i

]
=

[
A
C

]
X̂i +

[
ρw
ρv

]
(2.59)

where Yi|i is the ith block-row of the Hankel matrix whereas ρw and ρv are the Kalman
filter residuals which are uncorrelated with the state estimation X̂i. It is possible to
solve this set of equations by the least squares method obtaining an asymptotically
unbiased estimate of A and C in the form [84]:

[
A
C

]
=

[
X̂i+1

Yi|i

]
X̂+

i (2.60)

Once the state matrices are determined, the identification is completed by evaluating
the modal parameters using Eqs.(2.22) − (2.25).

System order estimation

Stochastic subspace methods require the knowledge of the order of the system n for the
identification of the modal parameters. When an order n for the system is established,
n eigenvectors will be retrieved from the state matrix A, but rarely all of them will
be real modes of the structure; in fact, purely numerical modes may also be identified.
These mathematical modes result from the overestimation of the model order; they
are created to allow the mathematical description of the measurements, which are
affected by biases due to several reasons such as measurement noise, computational
noise or modeling inaccuracies. The best way to discern real modes from numerical
ones consists in the evaluation of a stabilization plot (see Fig. 2.1). This procedure is
based on the fact that proper modes are related only to the features of the structure
and are not dependent on the numerical process, so they will be constantly identified
independently by the order assumed for the system. The stabilization diagram presents
modal frequencies identified for all the system modes varying the model order. The
frequencies that will be repeated consistently varying the model order give information
about the real modes and about a reasonable value to assume for the model order.
The approach is based on the over-specification of the order of the model, which is
set large enough to ensure the identification of all physical modes. The stability of
each mode is established considering the following three criteria associated with two
consecutive orders of the system:

1. The scatter between the identified frequencies of two consecutive model orders
must be under 1%:

|νn − νn+1|
fn

< 0.01 (2.61)

2. The scatter between damping ratios of two consecutive model orders must be
lower than 5%:

|ξn − ξn+1|
ξn

< 0.05 (2.62)
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Figure 2.1: Stabilization plot for SSI method applied to an existing bridge vibration response.

3. The comparison of the same mode shape at two consecutive model orders due
to Modal Assurance Criterion (MAC) must satisfy the following relationship:

1− MAC[ϕn,ϕn+1] < 0.02 (2.63)

If all the previous conditions are satisfied the mode is considered stable. Another pos-
sible criterion rests on the fact that civil structures are usually underdamped and the
frequencies that define their behavior must be in complex conjugate pairs: frequencies
that don’t have the conjugate must be excluded because related to spurious modes.

2.1.4 Natural Excitation Technique
The Natural Excitation Techniques (NExT) is a class of procedures developed in the
1990s for output-only modal identification [85]. These methods have importance from
a historical perspective because they revolutionized the OMA; the main applications
in OMA before NExT consisted in the analysis of PSD functions and the identification
of Operational Deflection Shapes (ODS) [26]. The ODS are generally a combination of
several mode contributions, and they can be assumed as an estimate of mode shapes
only if one mode is dominant at the considered frequencies. If the modes are closely
spaced the respective contributions cannot be neglected and the ODS becomes a su-
perposition of multiple modes. The introduction of NExT procedures allowed a more
accurate analysis for close frequencies and also the actual extraction of mode shapes
instead of operative deflection shapes. These methods were first developed in deter-
ministic input-output modal analysis and applied to the impulse response function
experimentally determined. Subsequently, the methodology was extended to OMA
considering the analysis of correlation functions due to ambient vibrations. One of the
first applications in the output-only case was the dynamic identification of vertical-
axis wind turbines in operating conditions [86] where the excitation could not be easily
measured and only the output response could be recorded. NExT procedures are based
on the common assumption that auto and cross-correlation functions of the output
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signals recorded from the operating structure can be expressed as sums of exponential
decaying harmonics. Each sinusoidal component corresponds to a structural mode
and its own frequency and damping ratio can be easily evaluated. The difference in
the approaches is related to the possible different choices of the adopted method to
analyze the correlation functions. The method consists of four phases:

1. Acquisition of data recorded from sensors mounted on the structure;

2. Evaluation of the autocorrelation and cross-correlation functions using standard
techniques;

3. Use of a time-domain method on the correlation functions for the estimation of
modal parameters; typically, three possible techniques can be alternatively used:
Polyreference Least Square Complex Exponential (LSCE) method [87], Ibrahim
Time Domain (ITD) method [88] and Eigensystem Realization Algorithm (ERA)
[89];

4. Estimation of the mode shapes from the knowledge of the other modal parame-
ters.

The result at the base assumption of the NExT procedure relies on the elaborations
of cross-correlation functions for a discretized system. Given a linear system with
nm degrees of freedom, the measured response functions y(t) may be written as the
superposition of the modal basis Φ (see Eq.(1.8)) as follows:

y(t) =

nm∑

r=1

ϕrqr = Φq(t) (2.64)

where q(t) is the vector of modal coordinates and Φ is a matrix collecting the nm
eigenmodes solution of the following eigenvalue problem:

(K− ωrM)ϕr = 0 (2.65)

Using the modal superposition relation, the equation of motion for the rth mode can
be expressed as follows:

q̈r(t) + 2ξrωr q̇r(t) + ω2
rqr(t) =

1

mr
ϕT

r f (2.66)

The measured response at the ith point due to the load applied at the kth point,
namely yik(t) can be expressed, through the Duhamel integral, in the following form:

yik(t) =

nm∑

r=1

ϕriϕrk

∫ t

−∞
fk(τ)gr(t− τ)dτ (2.67)

where ϕri is the ith component of the rth mode shape,

gr(t) =
1

mrωr

√
1− ξ2r

e−ξrωrt sin
(
ωr

√
1− ξ2r t

)
(2.68)

Assuming the load to be impulsive, i.e. the force f(τ) may be considered as a Dirac’s
Delta function at τ = 0, the measured response at the point i due to an input impulse

38



at the point k can be expressed as the summation of nm modal unitary impulse
responses:

yi,k(t) =

nm∑

r=1

ϕriϕrk

mrωr

√
1− ξ2r

e−ξrωrt sin
(
ωr

√
1− ξ2r t

)
(2.69)

The cross-correlation between two responses yi,k(t) and yj,k(t) with a time delay T
due to the white noise input in the point k is defined as follows:

Ryiyj ,k(T ) = E[yi,k(t+ T )yj,k(t)] (2.70)

where E[·] is the expectation operator. Substituting Eq.(2.69) into Eq.(2.70) the
correlation function assumes the following form:

Ryiyj ,k(T ) = E

nm∑
r=1

nm∑
s=1

ϕriϕrkϕsjϕsk

t∫
−∞

t+T∫
−∞

gr(t+ T − σ)gs(t− τ)fk(σ)fk(τ)dσdτ


(2.71)

being σ an integration variable. The previous equation can be re-written considering
the properties of the operator E[·] as follows:

Ryiyj ,k(T ) =

nm∑
r=1

nm∑
s=1

ϕriϕrkϕsjϕsk

t∫
−∞

t+T∫
−∞

gr(t+ T − σ)gs(t− τ)E[fk(σ)fk(τ)]dσdτ (2.72)

Assuming that white noise is exciting the system, it holds:

Rfkfk(τ − σ) = E[fk(σ)fk(τ)] = αkδ(τ − σ) (2.73)

where αk is a constant and δ is the Dirac Delta function. Exploiting the previous
equation and making a change on the integration variable, i.e., λ = t − σ, the cross-
correlation function assumes the following form:

Ryiyj ,k(T ) =

nm∑

r=1

nm∑

s=1

αkϕriϕrkϕsjϕsk

∫ ∞

0

gr(λ+ T )gs(λ)dλ (2.74)

After some mathematical manipulation, it follows:

Ryiyj ,k(T ) =

nm∑

r=1

Gijk,re
−ξrωrT cos

(
ωr

√
1− ξ2rT

)
+Hijk,re

−ξrωrT sin
(
ωr

√
1− ξ2rT

)

(2.75)
where Gijk,r and Hijk,r are functions independent by T and have the following ex-
pressions:

Gijk,r =

nm∑

s=1

αkϕriϕrkϕsjϕsk

mrms

√
1− ξ2rωr

(
Irs

J2
rs + I2rs

)

Hijk,r =

nm∑

s=1

αkϕriϕrkϕsjϕsk

mrms

√
1− ξ2rωr

(
Jrs

J2
rs + I2rs

) (2.76)
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where it is assumed:

Irs = 2
√
1− ξ2rωr(ξrωr + ξsωs)

Jrs = (1− ξ2s )ω
2
s − (1− ξ2r )ω

2
r + (ξrωr + ξsωs)

2
(2.77)

Eq.(2.75) highlights that cross-correlation functions can be expressed as a linear com-
bination of exponential decaying harmonics; the form of this equation is similar to the
unitary impulse response function of the initial system expressed by Eq.(2.69). This
result, therefore, implies that the cross-correlation functions can be processed by time
domain identification techniques for the estimation of modal features. Similar consid-
erations hold for auto-correlation functions. Even though NExT procedures provided
a significative improvement in the output-only identification, they have been progres-
sively replaced by more robust subspace methods because of certain limitations; for
instance, the ITD method produces spurious modes that are not real, due to the lack
of noise truncating mechanisms. Furthermore, the extraction of higher modes requires
a repeated application of filters to the data which can lead to a time-consuming pro-
cess [15].

2.1.5 Random Decrement Technique
The random decrement technique (RDT) is an alternative method for the estimation
of correlation functions used in combination with other time domain methods in OMA
for the identification of modal parameters [15]. The method was first introduced in
the 1960s as a procedure to estimate the correlation function from a signal while it was
being measured [90]. A mathematical formulation of RDT is proposed in [91] for the
case of a SDOF system excited by zero mean Gaussian white noise. In the beginning,
only auto random decrement (RD) signatures could be calculated, then Ibrahim [92]
presented a method to calculate also the cross RD signatures and the method was per-
fected by Asmussen [93]. The technique allows the identification from the evaluation
of Random Decrement (RD) signature functions. The structural response to a random
input is made up of a deterministic part and a random one: averaging enough samples
of the same random response, the deterministic component of the response can be
obtained. The resulting signal from the application of the RD signature technique to
a random response output of a structure can be interpreted as a free decay response
and, therefore, can be processed by any covariance-driven identification methods. The
RD signature is the average of a collection of segments extracted from the same time
history [91] that are characterized by the same initial condition. This is done to avoid
averaging out the deterministic part of the response. In this method, the initial condi-
tions are called triggering conditions and the discrete-time instants of the response in
which they are satisfied are defined triggering points. Different triggering conditions
can be considered such as the crossing level of a threshold or the sign of the slope
crossing; the amplitude and the slope of the response signal at each triggering point
represent the initial displacement and velocity of the system respectively; this implies
that a triggering condition can be seen as the application of a specific initial condi-
tion on the considered system. For a given measured response function y(t), the RD
signature can be expressed as follows:

Dyy(τ) = E[y(t+ τ)|Cy(t)] (2.78)
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where Cy(t) represents the triggering condition. The estimate of the RD signature for
a discretized signal, averaging Nb segments, has the following expression:

Dyy(τ) =
1

Nb

Nb∑

n=1

y(tn + τ)|Cy(tn) (2.79)

Similarly, the cross-signature between two signals yj(t) and yk(t) is:

Dyjyk
(τ) =

1

Nb

Nb∑

n=1

yj(tn + τ)|Cyk
(tn) (2.80)

The most general triggering condition is given as [94]:

Cy(t) = {a1 ≤ y(t) ≤ a2, b1 ≤ ẏ(t) ≤ b2} (2.81)

where a1, a2 and b1, b2 can be any value between the minimum and maximum values of
the signal and its derivative. In the most general case of triggering condition, under the
assumptions of a linear system excited by a stationary zero-mean Gaussian process the
RD signature is estimated as a linear combination of the correlation function Ryy(τ)

and its derivative Ṙyy(τ):

Dyy(τ) =
Ryy(τ)

σ2
y

ã− Ṙyy(τ)

σ2
y

b̃ (2.82)

where σ2
y is the variance of the triggering process whereas ã and b̃ are scaling con-

stants representing, respectively, the mean of the response function and the mean of
its derivative at all the triggering points. If the chosen triggering condition influences
only the triggering process, an RD signature proportional to the correlation function
is obtained whereas if the triggering condition is only related to the derivatives of the
triggering process, an RD signature proportional to the derivative of the correlation
function is obtained. The measured dynamic response of a structure may be expressed
as the sum of three contributions, namely a step response dependent on the displace-
ment, an impulse response dependent on velocity and a third term dependent on the
random external excitation as follows:

y(t) = y(0)d(t) + ẏ(0)ḋ(t) + h(t− τ)× f(τ) (2.83)

where d(t) is the free vibration response for the conditions y(0) = 1, ẏ(0) = 0; v(t) is
the free vibration response for u(0) = 0, u̇(0) = 1; h(t) is the unit impulse response
function and τ ∈ [0, t] the lower and upper limits for the convolution operator.
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Figure 2.2: Definition of trigger threshold ∆ and sample interval T .

Considering the signal in Fig. 2.2, for the simplest triggering condition, the steps
followed by RDT are listed below:

1. Select the sampling interval T and the triggering condition, e.g. the trigger
threshold ∆. At each time instant ti(i = 1, ..., Nb) when the threshold is crossed,
the corresponding responses of duration T , namely yi(ti + T ), can be retrieved.

2. Shift the sampled response to base time t = 0, obtaining the sampled responses
(see Fig 2.3). Under the assumption that both the excitation f(t) and the
response y(t) are zero-mean stationary stochastic processes, the expectation of
the sampled signal is the following:

E[yi(t)] = ∆ · d(t) (2.84)

Therefore, the free vibration response may be expressed as the expectation of
the sampled signal yi(t) for the initial conditions y(0) = ∆, ẏ(0) = 0.

3. The random-decrement free-vibration response Dyy(t) may be expressed as the
average of all sampled signals:

Dyy(t) ≃
1

Nb

Nb∑

i=1

yi(ti + T ) (2.85)
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Figure 2.3: Sampled responses (top) and free-decay response obtained after processing by the RDT
(bottom).

2.2 Frequency Domain Methods

2.2.1 Peak-picking
An early method for output-only modal identification purposes in the frequency do-
main is the Peak Picking (also called Basic Frequency Domain method - BFD) [95,96].
It assumes that the structural damping is low and also each mode influences the struc-
tural response in a narrow frequency band around the modal frequency, i.e. the vibra-
tional modes are well separated. This method is the most undemanding and allows to
identify only modal frequencies and modal shapes from the knowledge of the spectral
density matrix of the response. The identification of natural frequencies is carried
out manually picking the frequencies at each significative peak present in the spectral
density function associated with the response. Considering the hypothesis of a fre-
quency band in which only one mode is significative, e.g. the rth mode, the measured
response function is expressed as follows:

y(t) ≃ ϕrqr(t) (2.86)
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being qr(t) the modal coordinate of the rth mode. The correlation matrix associated
with the structural response is:

Ryy(τ) = E[y(t+ τ)y(t)T] = Rqrqrϕrϕ
T
r = E[qr(t+ τ)qr(t)]ϕrϕ

T
r (2.87)

where Rqrqr is the modal auto-correlation function for the rth mode. Once the corre-
lation matrix is known, the spectral density matrix is evaluated as:

Gyy(ω) =
1

2π

∫ ∞

−∞
Ryy(τ)e

−jωtdτ = Gqrqr (ω)ϕrϕ
H
r (2.88)

where Gqrqr (ω) is the auto spectral density function of the modal coordinate, and the
superscript H denotes the operations complex conjugate and transpose. Considering
the assumptions of the method and Eq.(2.88), the spectral density matrix Gyy(ω)
has a rank equal to one: this implies that at the resonance frequency, every column
gives an estimation of the modal shape. Each column differs by others by a scaling
factor because in OMA the input is not known. Subsequently, the trace of Gyy(ω)
is evaluated at each sampled frequency; the frequencies in correspondence with the
peaks of this function then must be selected as modal frequencies.

The main drawback of the method is the possible misleading results in the presence
of closely spaced modes [97] because it is not valid anymore the assumption of a single
dominant mode in each frequency band. Moreover, this approach cannot identify
modal damping ratios; in the past to overcome this limitation, the approach was used
in combination with the half-power bandwidth method but it has been shown in the
literature that damping estimation was inaccurate [98]. The problem of closely spaced
modes may be quite common for real structures, thus more accurate methodologies
were developed to achieve better modal identification performances in the frequency
domain.

2.2.2 Frequency Domain Decomposition
The Frequency Domain Decomposition technique (FDD) was introduced by Brincker et
al. [99] to overcome the drawbacks of the Peak-picking method in the presence of closely
spaced modes. The idea behind the method consists of performing an approximate
decomposition of the system response into a set of independent SDOF systems, one
for each mode. Let it be l the number of monitored degrees of freedom of the system
(equal to the number of sensors in the layout): for each one of them a discrete time
history made up of nt points, namely yi(t), i = 1, . . . , l, is recorded. It is possible to
evaluate for each discrete circular frequency, the spectral density matrix of the system
response functions which is a square matrix of order l and has the following expression:

GY Y (ω) =




PSD11(ω) . . . CPSD1l(ω)
...

. . .
...

CPSDl1(ω) . . . PSDll(ω)


 (2.89)

where PSDii(ω) represents the power spectral density function for the ith recorded
signals and CPSDij(ω) represents the cross power spectral density function between
the ith and jth signals. The unknown input signals are related to the measured output
signal by [73]:

GY Y (ω) = H∗(ω)GFF (ω)H
T(ω) (2.90)
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where H(ω) is the frequency response function (FRF) matrix, GFF(ω) is the input’s
PSD matrix and the superscript ∗ indicates the complex conjugate. The FRF matrix
can be also expressed in poles and residues form as:

H(ω) =

nm∑

r=1

(
Rr

jω − λr
+

R∗
r

jω − λ∗r

)
(2.91)

where nm is the number of modes, λr = −ξrωr + jωr

√
1− ξ2r is the rth pole (usually

present in complex conjugate pairs) which contains the information about both the
rth resonance frequency and damping ratio and Rr is the residue matrix which has
the following expression:

Rr = ϕrγ
T
r (2.92)

where ϕr is the rth mode shape and γr is the modal participation vector associated
with the rth mode. If all the measurement points are considered in the calculations,
H(ω) becomes a squared matrix and ϕr = γr. Considering Eqs.(2.90) - (2.92), and
under the assumption of Gaussian white noise as input for the system, the PSD matrix
of the output can be expressed as:

GY Y (ω) =

nm∑

r=1

nm∑

s=1

(
Rr

jω − λr
+

R∗
r

jω − λ∗r

)
GFF

(
Rs

jω − λs
+

R∗
s

jω − λ∗s

)H

(2.93)

Using the Heaviside partial fraction theorem and considering only the contribution of
dominant modes at the given frequency, the following expression for GY Y is obtained
[100]:

GY Y (ω) =

ñm∑

r=1

(
drϕrϕ

T
r

jω − λr
+
d∗rϕ

∗
rϕ

H
r

jω − λ∗r

)
(2.94)

In Eq.(2.94) the index ñm < nm highlights the fact that only dominant modes are
relevant at a given frequency, furthermore the equation gives a direct relationship
between measured data through GY Y (ω) and modal parameters ϕr and λr. The ex-
pression presented in Eq.(2.94) is equivalent to performing, for each discrete frequency,
a single-valued decomposition (SVD) on the response PSD matrix GY Y (ω). Consid-
ering that in the SVD, for a Hermitian and positive definite matrix, it holds U=V,
the decomposition can be written as follows:

GY Y (ω) = VΣVH (2.95)

where Σ is the l× l diagonal matrix collecting the singular values in descending order
and V is the matrix that collects in each column the singular vectors of GY Y (ω):

Σ =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σl




V =
[
v1 v2 . . . vl

]

(2.96)

This procedure is repeated for each discretized frequency line and each singular value
is plotted against each corresponding discretized frequency. In [99] it is shown that
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the singular values are estimates of the auto spectral density of the SDOF systems
in modal coordinates, and near the resonance peak the singular vectors provide an
estimate of the mode shape for each resonance frequency. Approaching a resonance
frequency, only one mode contributes to the response, thus the sum in Eq.(2.94) has
only one term; this implies that in the SVD there is only a dominant singular value
which is the first due to the descending order assumed in the construction of Σ and
the corresponding singular vector is an approximate estimation of the mode shape.
For the rth resonance frequency it holds ω → ωr and therefore:

GY Y (ω) = σ1v1v
H
1 (2.97)

and the mode shape vector is expressed as:

ϕ̃r = v1(ωr) (2.98)

where the superscript ∼ means, once again, that the modal shape is an estimate
and not the exact value. For repeated or coupled modes the peak selection must be
performed not only on the first singular value plot but also on the second one whereas
for closely spaced but not coincident modes is sufficient the peak selection on the first
singular value plot. For the practical application of the method, the main steps of the
FDD technique are summarized as follows:

1. Estimation of the spectral density matrices GY Y (ω) from the raw time series
data for each frequency line;

2. Singular value decomposition of the spectral density matrices;

3. If multiple test setups are available, average the first singular value of all test
setups and perform the same operation for the other singular values;

4. Peak picking on the average singular values. For well-separated modes, the peaks
must always be picked on the first singular value plot. For repeated modes, and
sometimes for closely spaced modes the peak picking is performed also on the
second singular value, the third singular value, etc. . . ;

5. The frequencies at each peak of the first singular value plot are the modal fre-
quencies and the corresponding first singular vectors are the modal shapes.

The FDD method allows accurate identification of both modal frequencies and modal
shapes even for closely spaced or repeated modes, however, its major limitation is
the impossibility of identifying modal damping ratios. Furthermore, the accuracy of
natural frequency estimates in FDD is related to the frequency resolution [15]: long
records of the structural response to ambient vibrations provide high-quality singular
value plots as a result of spectra characterized by a large number of averages and a
fine frequency resolution (in the order of 0.01 Hz).

2.2.3 Enhanced Frequency Domain Decomposition
The Enhanced Frequency Domain Decomposition (EFDD) is an extension of the FDD
procedure that allows better accuracy in the identification of modal frequency (inde-
pendent on the frequency resolution) and mode shapes as well as the identification
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of modal damping ratio which is not possible in the FDD [101, 102]. The method is
based on the conversion of the PSD function in the time domain at resonance frequen-
cies; modal damping ratios are evaluated performing the logarithmic decrement of
the corresponding normalized auto-correlation function. The first step in the method
consists of the application of the FDD procedure on the signals using the peak pick-
ing procedure to select the resonance frequencies ωr and mode shapes ϕ̃r. For each
peak frequency, the corresponding SDOF-spectral bell function must be evaluated in
order to identify the modal parameters: it represents the selection of the points of
the singular value spectra with similar singular vectors. For the generic rth mode,
the SDOF-spectral bell is evaluated by performing a correlation analysis, based on
the MAC [64]: the higher the similarity between the compared vectors, the higher the
MAC factor will be, tending to the unity if perfect correspondence is achieved. In
this specific case, the singular vector associated with the selected rth peak frequency
ϕ̃r = v1(ωr) is compared with the singular vectors vq at the nearby frequencies and
the MAC factor assumes the following form:

MAC(vq, ϕ̃r) =

∣∣∣vH
q ϕ̃r

∣∣∣
2

(vH
q vq)(ϕ̃

H
r ϕ̃r)

(2.99)

The rth SDOF Spectral Bell function will be made up of all the retained singular values
in the vicinity of the peak which satisfies the condition that the MAC between their
correspondent singular vectors and the one at the rth resonance peak is larger than a
fixed MAC rejection level. Typically, the MAC rejection level is assumed equal to 0.8.
The method produces a better estimate of the modal shape; in fact, the information
carried by the corresponding singular vector of each point of the SDOF spectral bell
function is combined and this is achieved by the calculation of a weighted average
multiplying the singular vectors with their corresponding singular values. This implies
that the closer the singular vectors are to the peak frequency of the SDOF spectral
bell, the more weight it has on the mode shape estimate. Once each SDOF spectral
bell function is evaluated, the corresponding approximated SDOF correlation functions
in the time domain are obtained by performing the Inverse Fourier Transform. The
SDOF correlation functions are windowed to exclude the initial and final parts because
they are affected by non-linearities induced by noise. The modal damping ratios can
be evaluated on the windowed signals by the application of the logarithmic decrement
method. For the rth mode, it holds [103]:

δr =
2

p
ln

(
r0r
|rpr|

)
(2.100)

where r0r is the initial value of the correlation function and rpr is the pth extrema.
The parameter δr can also be obtained by expressing the windowed function in a
logarithm plane where it will result in a straight line whose slope m̃ can be calculated
and consequently δr = m̃∆t being ∆t the time windows of the SDOF correlation
function. The kth modal damping ratio is:

ξr =
δr√

4π2 + δr
(2.101)
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The damped resonance frequency is simply obtained by the evaluation of the slope for
the straight line obtained in the graph which plots the number of times the correlation
function crosses the zero axis against the time in the considered time window. From
the knowledge of both damped frequencies and damping ratios it is possible to evaluate
the natural frequencies as follows:

νr =
νd,r√
1− ξ2r

(2.102)

where νr is the natural frequency and νd,r is the damped frequency for the rth mode.

2.3 Modal Identification through adaptive decompo-
sition methods

Classic OMA identification methods both in the time domain and frequency domain
are the most popular solution for modal identification, straightforward in implemen-
tation and easy to interpret. These conventional techniques allow the processing of
a given signal providing information about the frequency content and its time local-
ization with a certain degree of accuracy which depends on the specific assumptions
at the base of the considered method. However, the application of these methodolo-
gies is limited when systems with closely spaced modes or high damping ratios are
investigated. Another important limitation dwells in the assumptions at the base of
OMA such as the linear behavior of the structure and stationarity of the recorded
response. Decomposition techniques based on Fourier analysis or wavelet analysis are
usually referred to as “rigid methods” because they are expansion-based; the choice
of a proper set of basis functions becomes difficult without information about the
signal to be analyzed, especially for complex ones and can lead to subjective assump-
tions about their features. Usually, real signals recorded in vibrating MDOF struc-
ture are quite complex to analyze: this is mainly due to the noise, distortion effects
possibly related to existing damages (which can produce non-linearity) and also the
possible non-stationarity of the signal. The stationarity assumption loses its validity,
especially for aging structures under ambient or seismic excitation [104]. Huang et
al. [76, 105] highlight how the conventional Fourier-based approaches may yield dis-
torted, indirect, or incomplete information about nonlinear and non-stationary time
series. Furthermore, in problems like modal identification of large civil structures such
as tall buildings or long-span bridges, closely spaced modes can occur, and Fourier
transform-based methods are not applicable requiring linear lightly damped structure
with well-separated modal frequencies [106]. Therefore, the identification of modal
parameters requires a class of suitable decomposition algorithms that allows the de-
composition of an arbitrary multicomponent signal into its mono-component parts in
an accurate way. Modal parameter identification methods based on time-frequency
analysis have recently become a popular research topic because it is possible to obtain
information both in time and frequency simultaneously for a given signal and possi-
ble nonlinearities or non-stationarity can be handled. Hence, several adaptive mode
decomposition methods have been recently formulated; these techniques are “flexible”
in the description of an arbitrary signal, being not limited by the preliminary choice
of the set of basis functions. The good data adaptability is related to the way these
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methods are defined: usually, they are empirically based or exploit certain analytical
principles which support the way they operate. The domain in which the decom-
position occurs depends on the specifics of the technique and it may be the time,
frequency or time-frequency domain. The retrieved unimodal components should be
independent of each other and must recreate the initial signal via the superposition ef-
fect; they should also respect certain sparsity conditions that depend on the particular
method considered. The most well-known approaches among the many solutions pro-
posed in the scientific literature, are here briefly recalled and detailed in the following
sections. The most widespread adaptive method is the Empirical Mode Decomposi-
tion (EMD) used in combination with the Hilbert-Huang transform and it has been
extensively used for modal identification in engineering problems, however, some lim-
itations related to mode mixing phenomena and end effects limit its performance.
Another popular technique is the Empirical Wavelet Transform (EWT) which decom-
poses a multi-component signal on the base of the segmentation of the correspondent
frequency spectrum and the application of a wavelet filter bank. EWT also suffers
from mode-mixing problems in the case of signals with closely spaced modes due to
the nature of the transition phase of each filter of the bank. The Variational Mode
Decomposition is a method based on mathematical foundations and the generalization
of the concept of Wiener filter: it decomposes the signal non-recursively and extracts
the modes concurrently, overcoming limitations of EMD related to noise sensitivity
and mode-mixing effects. Another recent adaptive method is the Empirical Fourier
Decomposition (EFD) which overcomes the mode mixing and the trivial components
problems of EWT by the introduction of an improved segmentation technique of the
Fourier spectrum and the use of a zero-phase filter bank.

2.3.1 Empirical Mode Decomposition (EMD)
The Empirical Mode Decomposition (EMD) is one of the first algorithms able to handle
the isolation of mono-component contributions from a multi-component nonlinear and
non-stationary target signal. EMD has been exploited for a wide range of problems
in several fields: specifically, common applications in structural engineering concern
system identification, structural control and damage assessment. One of the most
rife applications deals with the modal identification of MDOF systems using EMD
and it has been addressed by different authors [107, 108]. Yu and Ren [109] applied
EMD to an arch bridge under ambient excitation to identify modal parameters and
compared the results with the ones obtained from typical methodologies used in OMA
showing good accordance. Similarly, He et al. [110] used EMD in combination with
RDT on a steel truss bridge under ambient vibrations. Chen [106] performed the
modal identification for a long-span bridge with closely spaced modes under wind
load exploiting EMD. Yang and Lee [111] identified modal frequencies using EMD
on indirect measurement done by sensors mounted on a vehicle moving along the
bridge and studied the effect of vehicle damping on the extracted signal. Dhakal and
Malla [112] used indirect measurements for modal frequency identification on a steel
railroad bridge and validated the results with a finite element model. In several studies
EMD is used for the evaluation of possible structural damage: Xu and Chen [113]
analyzed a three-story model under different kinds of excitation and exploited the
method for the identification of location and severity of the damage; Bradley et al. [114]
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studied the damage identification problem for beams under moving load; Lofrano et
al. [115] exploited EMD to assess the localized damage of a structure in free vibration
conditions; Bisheh et al. [116] studied the damage detection for a cable-stayed bridge
analyzing the IMFs extracted by this method.

The EMD was introduced by Huang et al. [76] and it is based on the decomposition
of the signal into a finite collection of amplitude and frequency modulated (AM-FM)
mono-component signals called Intrinsic Mode Functions (IMFs). The IMFs have not
an analytical formulation due to the empirical nature of the algorithm and preserve
the information about their variable instantaneous frequencies and amplitudes; the
same is not true for components obtained through Fourier transform-based methods.
The IMFs are defined in a way that must satisfy the two following conditions:

1. The number of extreme points (maxima and minima) must be equal or at most
differ by one with respect to the number of zero-crossing points in each IMF;

2. The mean between the upper and lower envelopes, called local mean, must be
equal to zero.

The procedure exploited in the EMD to identify the IMFs is composed of two loops:
the inner one necessary to obtain a residual part that satisfies IMFs properties and
the outer one which must be iterated on the updated signal until all the significant
IMFs are extracted from the signal. In detail, the inner loop is reported in its general
form for the kth IMF extraction and consists of the following steps:

1. Selection of the initial signal y(t), and setting of the index j = 1;

2. Detection of the extreme points (local maxima and minima) of the signal;

3. Evaluation of upper and lower envelopes of the signal using cubic splines to inter-
polate the extreme points, respectively labeled as Uj(t) and Lj(t) (see Fig. 2.4);

4. Evaluation of the local mean, i.e. mj(t) = [Uj(t) + Lj(t)]/2.

5. Construction of the prototype of IMF: cj(t) = y(t)−mj(t).

If stop criteria for IMF sifting are respected then the effective IMF is vk(t) = cj(t)
whereas if the conditions are not met the procedure is repeated from point 2 adopting
as the new signal the IMF prototype cj(t): the inner loop is iterated until the IMF
prototype is an actual IMF.

This process described in the inner loop is called sifting because it separates the
finest local mode from the data at each loop and it has two effects: smoothing of the
uneven amplitudes and elimination of riding waves. The sifting procedure can therefore
be regarded as an iterative way of removing the asymmetry between the upper and
lower envelopes to transform the original signal into an amplitude-modulated one [117].
Once an IMF is produced from the inner loop, the outer loop consists in:

1. Initialization of the signal;

2. Extraction of the kth IMF (inner loop);

3. Construction of the residual signal rk(t) = y(t)−∑K
k=1 vk(t);
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Figure 2.4: Construction of envelopes via cubic spline interpolation.

4. If rk(t) satisfies the stopping criteria for EMD (this is achieved when k = K),
then rK(t) is the final residual signal and the decomposition is over, otherwise
other IMFs must be extracted from the residue which will be used in the inner
loop as the new input signal.

In this way it is possible to decompose the signal as the sum of a finite number of
IMFs and a residue function:

y(t) =

K∑

k=1

vk(t) + rK(t) (2.103)

Usually, a common criterion adopted for terminating the sifting procedure is based on
the normalized standard deviation on two consecutive sifting results:

T∑

t=0

(yi(t)− yi(t+ 1))2

y2i (t)
< ε (2.104)

where ε is a tolerance threshold.
Figure 2.5 summarizes the steps followed by the method. Due to the way the

sifting process is defined, the IMFs are extracted following the order of frequency
content from the highest to the lowest one and finally the residue [118]. Another
possible interpretation of the EMD procedure is the result of a filter bank [119, 120]
made up of bandpass filters designed to isolate mono-component signals. The method
is relatively simple in the application, does not require prior knowledge of the source of
the analyzed signal and allows the analysis of classes of signals which other methods
cannot handle. EMD is therefore a data-driven technique and it can identify the
optimal mode number, without any external input, based on the local features of the
signal.

However, the method has also several issues which may significantly influence the
decomposition performance. One of the main problems resides in the fact that EMD
lacks a theoretical foundation: indeed it works according to an algorithm and the
performance is influenced by details in its implementation [117]. Another drawback
of the method is related to the mode mixing phenomenon [121, 122]: this can man-
ifest in an IMF consisting of oscillations at widely disparate frequency scales or, for
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Figure 2.5: Algorithm of Empirical Mode Decomposition.

closely spaced modes, in an IMF containing multiple components at close frequencies.
Specifically, in the latter case, the algorithm struggles to distinguish each mode con-
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tribution in a narrow-band frequency range and tends to unify them. This problem
leads to difficulty in the physical interpretation of the identified set of IMFs. The mode
mixing is also strictly related to the weak robustness of EMD against the noise [123];
notably, the latter may produce fictitious extreme points that will be considered in
the interpolation phase of the algorithm, thus spoiling the decomposition results: a
slight change of signal to noise ratio (SNR) may determine a whole different set of
IMFs. EMD, like every adaptive algorithm, is dependent on the frequency resolution
of the data. In fact, a real signal is a continuous function but is always acquired in
a discrete-time format [117]; depending on the setting of the sampling frequency, an
extreme point contained in the real signal may not be present in the actual discrete
recording thus undermining the decomposition performance in the envelopes evalua-
tion phase. A common solution to this aspect consists in over-sampling which improves
the decomposition performance limiting also possible over-sifting problems. EMD is
also significantly influenced by the choice of several settings [124] such as the adopted
stopping criterion, the kind of interpolation exploited in the envelope estimation and
the boundary conditions; therefore, it does not exist a unique decomposition for the
target signal. The envelopes are commonly determined via interpolation using cubic
splines with good results, although this choice is computationally burdensome: other
possible solutions are proposed in the literature to speed up the process however they
often produce over-sifting problems. The boundary conditions have a significant role
in the decomposition performance. Notably, the spline fitting leads to fluctuations
at the ends of the dataset; if the starting and ending points of the signal are consid-
ered as knots in the envelopes, swings of the spline interpolation in the current IMF
extraction may occur which propagates in the selection of all the following compo-
nents [124]. This problem is handled by padding procedures at the extremes or using
windowing functions. A possible solution to the problem of mode mixing in EMD
has been addressed by Wu and Huang [121] who proposed a noise-assisted procedure
called Ensemble Empirical Mode Decomposition (EEMD). This method consists of
considering several trials in each of which a white noise of fixed amplitude is added to
the initial signal. Due to this addition throughout the whole decomposition process,
mode mixing is effectively reduced. The EEMD repeatedly decomposes the signals
thus obtained into a series of IMFs for each trial, by applying the original EMD pro-
cess. Considering an adequate number of trials, the added noise is therefore eliminated
by averaging the ensemble of IMFs at the same position related to each trial leaving
only the real IMFs. The loop on which is based the algorithm is the following:

1. Generation of a new time series by adding the white noise to the signal yi(t) =
y(t) + wi(t);

2. Decomposition of this new signal yi(t) using EMD;

3. Repetition of steps 1-2 for the fixed number of trials considering different com-
ponents of white noise;

4. Evaluation of the ensemble mean corresponding to each IMF.

The accuracy of this procedure highly depends on the number of trials considered
for the ensemble mean and the amplitude of the white noise; theoretically an infinite
number of trials provides the exact evaluation for the IMFs, however considering a
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finite number the obtained IMFs are partially affected by the added noise and thus a
limited amplitude of the white noise must be considered. Suggested values for white
noise amplitude and number of trials are respectively 20% of the standard deviation
of the signal and a few hundred.

2.3.2 Variational Mode Decomposition (VMD)
The Variational Mode Decomposition (VMD) is a technique that allows isolating con-
currently and in a non-recursive way unimodal components, labeled as IMFs, from
a multicomponent target signal [125]. The method exploits the concepts of Hilbert
transform, Wiener filtering and harmonic mixing. This technique has been used mainly
in applications related to fault diagnosis in mechanical parts [126–128], however re-
cently it has also been exploited in the seismic field [129], in civil structures modal
identification [29, 130, 131]. An alternative definition of IMFs is formulated for this
technique: the requirements of the original definition still must be satisfied, however,
other conditions are enforced, thus providing a restrictive version of EMD’s IMFs. In
detail, recalling the IMF form as an AM-FM signal, i.e. vk = Ak(t) cos (ϕk(t)), the
following requirements must be met:

1. The envelope of instantaneous amplitudes Ak(t) must be non-negative: Ak(t) ≥
0;

2. The instantaneous phase ϕk(t) must be a non-decreasing function, therefore the
first order time derivative must be non-negative: ϕ

′

k(t) ≥ 0;

3. Both the envelope Ak(t) and the instantaneous frequency ϕ
′

k(t) must vary much
slower than the phase ϕk(t).

The last requirement implies that on a sufficiently long interval in the form [t−∆t, t+
∆t] with ∆t ≃ 2π/ϕ

′

k(t) the kth IMF can be considered as a harmonic function with
instantaneous amplitude Ak(t) and instantaneous frequency ϕ

′

k(t). This definition
ensures that the IMFs are well characterized in terms of sparsity property by their
bandwidths: they are assumed as narrow banded components mostly compact around
a center frequency. For this reason, the IMFs thus defined are also called Band Limited
Intrinsic Mode Functions (BLIMFs). This new definition satisfies the EMD require-
ments, however, the opposite is usually not true because EMD’s IMFs may have wide
support containing several frequency peaks. VMD algorithm achieves the adaptive
signal decomposition considering a variational framework in which the bandwidth as-
sociated with each component is assessed searching for the optimal solution of a con-
strained variational problem. The optimization process is performed in the frequency
domain. Each mode is iteratively evaluated as the result of a narrow-band Wiener
filter applied to the signal estimation residual of all other modes; the Wiener filter is
calculated considering the current value in the iteration of the center frequency and,
after the IMF estimation, the latter is re-estimated as the center of gravity of the IMF
power spectrum. Therefore, VMD produces a segmentation of the Fourier spectrum
to isolate all the modal components of the signal. In detail, the assessment of the
bandwidth for each mode is carried out through the following steps:
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1. The analytical signal is evaluated for each kth IMF using the Hilbert-Huang
transform operator H[·]:

vA
k (t) = vk(t) + jH[vk(t)] =

[
δ(t) +

j
πt

]
(2.105)

2. The frequency spectrum of the mode is shifted to the baseband, by mixing with
an exponential function tuned to the respective estimated central frequency:

vM
k (t) =

[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jωkt (2.106)

3. Each mode bandwidth BWk is estimated by computing the H1 Gaussian smooth-
ness of the demodulated signal (i.e., the squared L2-norm of the gradient):

BWk =

∣∣∣∣
∣∣∣∣∂
{[(

δ(t) +
j
πt

)
∗ vk(t)

]
e−jωkt

}∣∣∣∣
∣∣∣∣
2

2

(2.107)

Based on these steps, the following constrained variational problem is obtained:

min
v1(t),...,vK(t)

ω1,...,ωK

{
K∑

k=1

∥∥∥∥∂t
[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jωkt

∥∥∥∥
2

2

}

s.t.
K∑

k=1

vk(t) = v(t)

(2.108)

where ∂t is the gradient operator and ∥·∥2 is the L2-norm operator. Different methods
can be used to solve the optimization problem in Eq.(2.108). By using a quadratic
penalty term and the Lagrange multipliers technique to enforce the constraints, the
search for the solution to this variational problem leads to the following augmented
Lagrangian function:

L(v1(t), . . . vK(t), ω1 . . . ωK , λ) = α

K∑

k=1

∥∥∥∥∂t
[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jωkt

∥∥∥∥
2

2

+

∥∥∥∥∥v(t)−
K∑

k=1

vk(t)

∥∥∥∥∥

2

2

+

〈
λ, v(t)−

K∑

k=1

vk(t)

〉 (2.109)

where α is the quadratic penalty factor, λ is the Lagrangian multiplier and ⟨·⟩ is the L2-
inner product. The solution of the governing constrained problem is thus equivalent to
the evaluation of the saddle point of the augmented Lagrangian function. This can be
achieved using the Alternating Direction Method of Multipliers (ADMM), which solves
two sub-optimization problems. By minimizing the augmented Lagrangian function
and moving into the spectral domain, the following problem is obtained:

v̂n+1
k (ω) = argmin

v̂k(ω)

{
α ∥jω [(1 + sgn (ω + ωk) v̂k (ω + ωk))]∥22

+

∥∥∥∥∥v̂(ω)−
K∑

k=1

v̂k(ω) +
λ̂

2

∥∥∥∥∥

2

2

} (2.110)
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where the symbol ˆ hereinafter refers to the quantities expressed in the frequency
domain (ω being the pulsation variable) whereas n is the iteration counter. The
solution for this problem is:

v̂n+1
k (ω) =

v̂(ω)−∑k ̸=j v̂j(ω) +
λ̂

2
1 + 2α (ω − ωk)

2 (2.111)

The real component of the inverse Fourier transform finally yields the corresponding
version in the time domain. The same procedure for the evaluation of central pulsation
leads to the following problem:

ωn+1
k = argmin

ωk

{∫ ∞

0

(ω + ωk)
2 |v̂k(ω)|2 dω

}
(2.112)

which has the following solution:

ωn+1
k =

∫∞
0
ω |v̂k(ω)|2 dω

∫∞
0

|v̂k(ω)|2 dω
(2.113)

The Lagrangian multiplier is updated as follows:

λ̂n+1 = λ̂n + χ

[
v̂(ω)−

K∑

k=1

v̂n+1
k (ω)

]
(2.114)

where χ is a noise tolerance parameter. The procedure stops once the following con-
vergence criterion is satisfied:

K∑

k=1

∥∥v̂n+1
k (ω)− v̂nk (ω)

∥∥2
2

∥v̂nk (ω)∥
2
2

< ε (2.115)

where ε is the selected tolerance. The extracted component vk(t) corresponds to the
contribution to the free vibration response attributable to the kth mode of vibration
whereas ωk is the estimate of the associated natural frequency. The VMD algorithm is
summarized in Fig. 2.6. An advantage of VMD is that, unlike EMD-based methods, it
achieves a decomposition in a non-recursive way extracting the modes concurrently: in
this way, an error balancing among the IMFs can be taken into account during the sub-
optimization loop. VMD may be interpreted as a signal decomposition technique with
a wavelet-packet transform filter bank structure, significantly different from the EMD
filter bank interpretation. This implies that VMD is an adaptive method with more
refinement time-frequency divisions [132] and therefore it can better capture features
of closely spaced modes. As previously mentioned the IMFs extracted using EMD are
not bandlimited whereas, on the contrary, the ones obtained from VMD are limited
in bandwidth thus allowing a proper single-mode decomposition [125]. The major
drawback of the VMD method is that its performance is highly dependent on the
proper tuning of two main parameters, namely the number of IMFs to be extracted
K and the penalty factor α. The other involved parameters (i.e., the convergence
threshold ε and the noise tolerance parameter χ) have much less influence. On the
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Figure 2.6: Algorithm of Variational Mode Decomposition

one hand, the number of IMFs K is related to loss or redundancy of information:
it establishes how many modes can be retrieved from the initial signal. If K0 is
the (generally unknown) exact number of IMFs, three possibilities may occur when
assigning K:

• if K < K0 then mixed modes are produced (i.e., the identified IMFs have com-
ponents with different frequencies). In this case, each instantaneous central
frequency tends to fluctuate instead of being constant;

• if K > K0 then the signal is over-decomposed into redundant IMFs (i.e., the
contribution of one mode is split into several IMFs);

• K = K0 the exact number of modes are extracted from the signal.
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On the other hand, the penalty factor is a regularization term related to the fidelity
of the original signal reconstruction which influences the IMFs bandwidth [123,128] as
follows:

• if the value of α is too small, the bandwidth may be overestimated: the smaller
α is assumed, the wider the bandwidth of the filter will be. This, in turn,
causes the aliasing phenomenon. Further, more background noise and interfer-
ence components will be included in the frequency range defined by the filter
cut-off frequencies;

• if the value of α is too large, then the resulting modes are likely to be distorted
thus determining a loss of fidelity in signal reconstruction.

To overcome the VMD parameters selection problem, several studies have been con-
ducted to find the optimal value of these parameters by adopting different procedures.
The first attempts were based on finding the optimum value of K neglecting the influ-
ence of penalty factor on the decomposition performance: Yang et al. [133] proposed
a criterion based on cross-correlation coefficients to estimate adaptively the number
of IMFs. Lian et al. [134] estimated the optimal number of modes following an algo-
rithm that combines the effects of several parameters, namely energy loss coefficient,
kurtosis and permutation entropy. Similarly, Wang et al. [135] proposed an optimiza-
tion procedure for K which is based on permutation entropy. If the influence between
mode number K and the penalty factor α must be considered, a popular strategy
to determine them concurrently is based on metaheuristic optimization methods; the
effect of the parameters on VMD performance is taken into account considering a
suitable fitness function and obtaining the optimum as its extremal point. A meta-
heuristic optimization algorithm can provide a solution to an optimization problem,
especially, in the cases of imperfect information or limited computation capacity [136].
The metaheuristic methods consist of two parts, namely the exploration process, which
investigates promising parts of the domain in which the optimum may be reached, and
the exploitation process which builds the local search capability around the promising
regions. Metaheuristic algorithm can be divided into three classes:

• evolutionary inspired algorithms: these algorithms try to imitate the natural
evolution and the rules of the biological world. In the exploration stage, the
progress of the search process is started with a randomly generated population
which is then evolved over several successive generations. The optimizer of the
exploration stage revolves around design parameters that must be random to
globally explore the promising solution search space. The most popular examples
of this family are Genetic programming and Genetic algorithm [137];

• physics-based algorithms: these algorithms try to imitate real physical phenom-
ena; the most common example is the gravitational search algorithm;

• swarm intelligence algorithms: these algorithms are based on mimicking the
social behavior of swarms of creatures in nature. This is the most popular family
of algorithms used in metaheuristic optimization problems in recent years. A
typical example of this family is particle swarm optimization [138].
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However, the optimal couple of parameters obtained from these procedures is highly
influenced by the choice of the fitness function and the performance may vary signif-
icantly depending on the choice of the specific optimization algorithm. Notably, it is
unlikely to find a single algorithm that performs well on most optimization problems,
because of the specific circumstances, requirements, constraints and implementation
scenarios.

2.3.3 Empirical Wavelet Transform (EWT)
The Empirical Wavelet Transform (EWT) is an adaptive decomposition method pro-
posed by Gilles in 2013 [139]. The method exploits the interpretation of the wavelet
decomposition as the application of a filter bank to the signal to be analyzed. The
adaptability is attained considering that the filter cut-off frequencies may vary de-
pending on where the information contained in each signal’s component spectrum is
located in the frequency domain. The segmentation process starts normalizing the
signal frequency domain to [0, π] and consists of detecting the boundaries of each one
of the contiguous frequency partitions, i.e. [ωn−1, ωn] with n = 1, . . . , N , where the
assumptions ω0 = 0 and ωN = π are made. Moreover, a symmetric transition zone
centered in ωn with width 2τn is defined for each filter (see Fig. 2.7). Considering ω0

Figure 2.7: Partitioning of the frequency domain (from [140]).

and ωN fixed values, N − 1 frequency boundaries must be determined; to do so all the
local maxima in the frequency spectrum must be detected and subsequently sorted
in descending order. Assuming that M local maximum points are found two possible
cases can be considered:

• If M > N only the highest N−1 local maxima and the corresponding frequencies
[Ω1, . . . ,ΩN ] are kept.

• If M < N the signal has fewer modes than expected, all the maxima and the
correspondent frequencies are kept, therefore M +1 is assumed as the maximum
number of frequency partitions that can be obtained.

The boundaries of each frequency partition are therefore evaluated as follows:

ωn =
Ωn−1 +Ωn

2
∀n ∈ [1, N − 1] (2.116)

The next step in the procedure consists of the construction of a suitable family of
wavelets for the decomposition. The nth empirical wavelet may be interpreted as the
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band-pass filter defined on the nth frequency partition. Exploiting this interpretation
and following the generation method of Meyer’s wavelets [141], a set of piecewise-
defined functions is defined as follows: mutually orthogonal trigonometric functions
are considered in the transition phases where the boundary frequencies are located
and unitary constant value is assumed elsewhere.

The family of wavelets thus generated is made up of an empirical scaling function
ϕ1(ω) and a set of empirical wavelets ψn(ω) having the following analytical form in
the frequency domain (referred to as ϕ̂1(ω) and ψ̂n(ω), respectively):

ϕ̂1(ω) =


1 if |ω|≤ω1−τ1
cos

[
π

2
β(x)

(
1

2τ1
(τ1 + |ω| − ω1)

)]
if ω1−τ1≤|ω|≤ω1+τ1

0 otherwise

ψ̂n(ω) =



1 if ωn+τn≤ |ω|≤ωn+1+τn+1

cos

[
π

2
β(x)

(
1

2τn+1
(τn+1+|ω|−ωn+1)

)]
if ωn+1−τn+1≤|ω|≤ωn+1+τn+1

sin

[
π

2
β(x)

(
1

2τn
(τn + |ω| − ωn)

)]
if ωn−τn≤|ω|≤ωn+τn

0 otherwise
(2.117)

where β(x) is an arbitrary function that satisfies the following conditions:

β(x) =

{
1 if x < 0

0 if x > 1

β(x) + β(1− x) = 1 ∀x ∈ [0, 1]

(2.118)

The expression adopted for β(x) in this method ∀x ∈ [0, 1] is the following [141]:

β(x) = x4(35− 84x+ 70x2 − 20x3) (2.119)

The parameter τn is calculated as follows:

τn = γωn (2.120)

where γ is a term that avoids the overlap between boundaries of ϕ̂1(ω) and ψ̂n(ω) and
it is evaluated as:

γ =
R− 1

R
min
n

(
ωn+1 − ωn

ωn+1 + ωn

)
(2.121)

being R the number of discrete samples in the signal. The signal can be therefore
decomposed using as a basis the empirical wavelets as follows:

ỹ(t) =W ε
y (0, t) ∗ ϕ1(t) +

N−1∑

n=1

W ε
y (n, t) ∗ ψn(t) (2.122)

where * is the convolution operator and the coefficients W ε
y (0, t) and W ε

y (n, t) are
called approximation coefficient function and detail coefficient function respectively
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and are determined as follows:

W ε
y (0, t) = F−1

(
ŷ(ω)ϕ̂1(ω)

)
=

ω1+τ1∫

−ω1−τ1

f(τ)ϕ1(t− τ)dτ

W ε
y (n, t) =

τn−ωn∫

−ωn+1−τn+1

y(τ)ψn(t− τ)dτ +

ωn+1+τn+1∫

ωn−τn

y(τ)ψn(t− τ)dτ

(2.123)

being F−1[·] the Inverse Fourier Transform. The decomposed part of the signal may
be therefore expressed as follows:

y0(t) =W ε
y (0, t) ∗ ϕ1(t)

yn(t) =W ε
y (n, t) ∗ ψn(t)

(2.124)

The adaptive partitioning of the Fourier domain significantly influences the decompo-
sition performance; the main shortcoming of EWT is related to the difficult estimation
of proper frequency boundaries. This is due to a twofold reason:

1. If the signal to be decomposed is significantly disturbed, i.e. the signal has a
low signal-to-noise (SNR) ratio, trivial components may be extracted in the
process leading to errors in the detection of modes. Usually in this case, the first
decomposed component obtained via EWT is a trivial residue signal: because of
this inclusion in the set of modal components, it is difficult to determine without
prior knowledge of the signal the exact number of components to be considered
in the extraction process. This aspect is especially true in the case of noisy
and non-stationary signals [142]: local maximum points produced by the noise
and the non-stationary components may be mistakenly considered in the peak
selection, thus producing a wrong segmentation (see Fig. 2.8).

2. The transition phase related to each boundary frequency of the filter bank may
produce interference between contiguous components, especially in the case of
closely spaced modes thus originating mode-mixing phenomena.

A big research effort has been made in the literature to improve the performance of
this method. Several works [143, 144] dealt with the problem of noisy signals and
the possibility of removing the requirement of a high SNR for the signal to apply
EWT; other studies focused on improving the time-frequency representation for non-
stationary signals, e.g. by exploiting the Fourier-Bessel series expansion method [145].
Even though some improvements have been achieved, EWT still struggles to overcome
the previously mentioned drawbacks.
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Figure 2.8: Spectrum segmentation of a noisy non-stationary signal (from [142]).

2.3.4 Empirical Fourier Decomposition (EFD)
The EFD technique is an adaptive decomposition method introduced recently by Zhou
et al. [146] to overcome the limitations typically recognized in the other methods
based on Fourier Transform such as EWT [139] and Fourier Decomposition Method
(FDM) [147]. Notably, the EWT performance worsens in the case of noisy signals due
to an unexpected signal segmentation, which may affect the estimation of the instan-
taneous frequencies and select trivial components. Similarly, FDM results have shown
to be inconsistent when different frequency scan techniques are adopted to decompose
the signal. The EFD technique allows the decomposition of a multi-modal signal into
its uni-modal components and consists of two main steps, namely a spectrum segmen-
tation procedure and the construction of a zero-phase filter bank. The segmentation
procedure aims at producing N frequency partitions of the frequency spectrum of the
signal to be analyzed whereas the zero-phase filter bank is required to perform the
actual decomposition.

The segmentation process is carried out within a normalized frequency domain
[0, π]. Therefore, signal frequency lines must be also normalized. Initially, the bound-
aries of the N contiguous frequency partitions, namely [ωn−1, ωn], are detected. Unlike
other decomposition techniques that exploit the spectrum segmentation (e.g., EWT),
the frequencies ω0 and ωN that define the boundary of the first and last frequency
partition are not necessarily equal to 0 and π, respectively. Fourier spectrum magni-
tudes at 0 and π are evaluated through an adaptive process and are sorted together
with other local maxima in decreasing order. The first N frequencies corresponding
to the largest maximum magnitudes detected in the signal spectrum are sorted in
descending order and are denoted as {Ω1, ...,ΩN}. Furthermore, it is assumed Ω0 = 0
and ΩN+1 = π. For each pair of consecutive frequencies Ωn and Ωn+1, the partition is
determined by picking the frequency value ωn at which a global minimum is attained
as follows:

ωn =




argmin

ω
X̂n(ω) if 0 ≤ n ≤ N and Ωn ̸= Ωn+1

Ωn if 0 ≤ n ≤ N and Ωn = Ωn+1

(2.125)

where X̂n(ω) is the Fourier spectrum amplitude between Ωn and Ωn+1 whereas ω is
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Figure 2.9: Zero-phase filter bank used in the EFD technique.

the frequency variable.
The second step of the procedure consists of the construction of a filter bank to

perform the decomposition. Zero-phase filters are considered to avoid possible inter-
ference due to their transition phases, which can produce mode-mixing effects. The
zero-phase filter bank is designed based on the frequency partitions obtained after the
segmentation. Hence, the boundary frequencies of each partition identify the cut-off
frequencies. Each zero-phase filter is a bandpass filter with no transition phase operat-
ing on a given frequency partition [ωn−1, ωn] with unitary amplitude in the frequency
domain (Fig. 2.9):

µ̂n =

{
1 if ωn−1 ≤ |ω| ≤ ωn

0 otherwise
(2.126)

The zero-phase filter retains most of the Fourier spectrum contribution in the given
partition and remaining spectral components out of the cut-off frequency range are
eliminated. Let f̂(ω) be the Fourier transform of the signal to be analyzed, the generic
filtered component has the following expression:

ŷn(ω) = µ̂(ω)ŷ(ω) =

{
ŷ(ω) if ωn−1 ≤ |ω| ≤ ωn

0 otherwise
∀n ∈ [1, N ] (2.127)

The modal component can be expressed in the time domain using the inverse Fourier
Transform operator F−1[·] as follows:

yn(t) = F−1[ŷn(ω)] =

∫ −ωn+1

−ωn

ŷn(ω)e
jωtdω +

∫ ωn+1

ωn

ŷn(ω)e
jωtdω (2.128)

where t is the time variable. The reconstructed signal is obtained by simply summing
up the extracted components:

ỹ(t) =

N∑

n=1

yn(t) (2.129)

Central frequencies of all the segments are extracted as the frequency values in the
Fourier spectrum at which the first N highest local maxima are attained.
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2.4 Modal identification via Hilbert transform
The Hilbert transform [76] is a useful tool to gather information in terms of time-
frequency content from the modal components once they are extracted from the
recorded time series using one of the above-mentioned adaptive decomposition meth-
ods. Given a generic signal y(t), the operator Hilbert transform H[·] is defined as the
convolution between the signal and 1/πt with the following expression:

H[y(t)] = y(t) ∗ 1

πt
=

1

π
p.v.

∫ ∞

−∞

y(τ)

t− τ
dτ (2.130)

In Eq.(2.130) an improper integral is introduced: the integrand has a singularity
and the limits of integration are infinite. Therefore, the actual Hilbert transform is
defined considering the Cauchy principal value of the integral in Eq.( 2.130) and can
be rewritten as follows:

H[y(t)] =
1

π
lim

ε→0+

(∫ t−ε

t−1/ε

y(τ)

t− τ
dτ +

∫ t+1/ε

t+ε

y(τ)

t− τ
dτ

)
(2.131)

The Hilbert transform can be interpreted in the frequency domain as an operator which
imparts a phase shift of ±π/2 radians to every frequency component of a function,
the sign of the shift is dependent on the sign of the frequency. The Hilbert transform
has also a crucial role in the construction of the signal analytical representation. For
a given time series the analytic signal is defined as a complex-valued function with the
following form:

yA(t) = y(t) + jH[y(t)] = a(t)ejθ(t) (2.132)

The analytic signal is characterized by a unilateral spectrum with non-negative fre-
quencies only. The use of the analytic signal is based on the consideration that the
negative frequency components of the spectrum in a real-valued signal can be neglected
without loss of information since it holds the Hermitian symmetry property; moreover,
this choice allows easier mathematical manipulations on the signal. The complex ex-
ponential term ejθ(t) describes the rotation of the complex signal in time, being θ(t)
the phase, whereas the time-varying amplitude is described by the real envelope a(t).
Notably, if the change of signal amplitude in time is slow enough, for the Bedrosian’s
theorem the associated analytic signal possesses the same amplitude function a(t).
The instantaneous phase θ(t) is calculated as:

θ(t) = arctan
H[y(t)]

y(t)
(2.133)

The instantaneous frequency is expressed as follows:

ω =
dθ(t)

dt
(2.134)

whereas the envelope of the instantaneous amplitudes is:

ρ(t) =
√
y2(t) + (H[y(t)])2 (2.135)

The Hilbert-Huang transform is an effective method to study the dynamic character-
istics of a structure with linear behavior [148,149]. Let vk(t) be the kth SDOF modal
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component extracted using any adaptive decomposition method from the recorded
structural response. Assuming that the latter is the result of a free vibration test, the
extracted modal components vk(t) with k = 1, . . . ,K are also free vibration signals
which mathematically may be described as follows:

vk(t) = ρke
−ξkωn,kt cos (ωd,kt+ ϕk) (2.136)

By applying the Hilbert transform the corresponding analytic signal is:

vA
k = vk(t) + jH[vk(t)] = ak(t)e

jθk(t) (2.137)

where ak(t) and θk(t) denote the kth instantaneous amplitude and phase angle, re-
spectively, which have the following form:

ak(t) = ρke
−ξkωn,kt (2.138a)

θk(t) = ωd,kt+ ϕk (2.138b)

Taking the logarithm of Eq.(2.138a) it holds:

ln ak(t) = −ξkωn,kt+ ln ρk (2.139)

Taking the first derivative of Eq.(2.138b) it holds:

ωd,k =
dθk(t)

dt
(2.140)

Therefore, the kth modal damped frequency can be obtained from Eq.(2.140) as the
slope of the phase angle θk(t) versus the time t plot. Furthermore, the value −ξkωn,k

may be obtained from Eq.(2.139) as the slope of the decaying amplitude ln ak(t) versus
time t plot. Using the linear least-square method the above-mentioned slopes can be
computed as parameters that define the corresponding fitting curves. The kth natural
frequency ωn,k and damping ratio ξk may be evaluated as follows:

ωn,k =
√
s2θ,k + s2a,k (2.141a)

ξk =

√
s2a,k

s2θ,k + s2a,k
(2.141b)

where sθ,k and sa,k are the slopes of the phase angle θk(t) and decaying amplitude
ln ak(t) versus time plot, respectively. For each modal component, it is also possible to
represent both instantaneous frequency and amplitude as functions of time in a three-
dimensional plot, in which the amplitude can be contoured on the time-frequency
plane, providing the Hilbert amplitude spectrum. To plot the correspondent Hilbert
spectrum Hk(ω, t), which provides the localization of the density of energy both in
time and frequency, the instantaneous amplitude is replaced by its squared value.
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2.5 Damping estimation from free vibration responses
This section presents the most common methods currently available in the scientific
literature to estimate the modal damping ratios of a given structure considering that a
free vibration response recorded signal is available. The direct exploitation of the decay
curve is only valid for the estimation of the structural damping of a single vibration
mode, e.g. in the case of SDOF systems or for a structure where the excitation source
is strong enough to excite only the first mode. In general, when dealing with MDOF
systems, it is necessary an additional data processing step, i.e. filtering, to retrieve the
corresponding uni-modal components from the recorded time series. However, in the
case of closely spaced modes, a classic filtering process is not enough to extract the
correct modal contributions. In these cases, the structural damping must be estimated
by adaptive methods, able to handle simultaneously multiple vibration modes. All the
methods herein discussed are formulated for SDOF systems and may be subsequently
extended to MDOF structures once the uni-modal components are retrieved using the
above-mentioned decomposition techniques: the performance in damping estimation
is therefore influenced by the decomposition performance of the adopted method for
the signal processing.

Half-power bandwidth method

The half-power bandwidth method is one of the simplest procedures for the damp-
ing ratio estimation: it has been extensively used for both single-degree-of-freedom
(SDOF) and multi-degree-of-freedom (MDOF) structures with linear viscous damp-
ing. Consider an SDOF oscillator forced with a harmonic excitation: it is possible to
express the displacement response function ŷ(ω) in adimensional form as follows:

ŷ(ω) =
1√

(1− r2)2 + (2ξr)2
(2.142)

being r = ω/ωn the ratio between the generic frequency ω and the system natural
frequency ωn and ξ its damping ratio. The modulus of the response function attained
at resonance is |ŷ(ωr)| = 1/2ξ

√
1− ξ2; if ξ is small enough (i.e., ξ → 0), the as-

sumption r ≃ 1 is valid and it may be simplified as |ŷ(ωn)| = 1/2ξ. This condition
is coincident with the estimation of the response function at the natural frequency
i.e., ω = ωn. The half-power bandwidth method is based on finding two points called
half-power frequency points at two frequencies ω1 and ω2, close to the response peak
with ω1 < ωr < ω2, such that the following condition is satisfied (see Fig. 2.10):

|ŷ(ω1)| = |ŷ(ω2)| =
1√
2
· 1

2ξ
(2.143)

Enforcing this condition on the response function the following equation is obtained:

r4 − 2(1− 2ξ2)r2 + (1− 8ξ2) = 0 (2.144)

The solution of this equation provides two roots, namely r1 = ω1/ωn and r2 = ω2/ωn,
and therefore the two half-power frequency points may be obtained. The damping
ratio estimation may be carried out once ω1, ω2 and ωn are known, making proper
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Figure 2.10: The half-power bandwidth method for the estimation of the damping ratio.

assumptions. Depending on the latter, different approximate expressions for the damp-
ing ratio may be obtained. The solution of Eq.(2.144) under the conditions of positive
real roots, i.e., ξ < 1/2

√
2 = 0.353, is:

r2i =

(
ωi

ωn

)2

= (1− 2ξ2)± 2ξ
√
1 + ξ2 for i = 1, 2 (2.145)

If ξ ≪ 1 and neglecting higher order terms, the roots assume the following form:

r2i = 1± 2ξ (2.146)

Using binomial expansion for both roots and summing them up, it holds r2 − r1 = 2ξ
and therefore:

ξ ≃ ω2 − ω1

2ωn
(2.147)

When the frequency response function is experimentally or numerically obtained the
damping ratio can be calculated using the frequency peak ωr = ωn

√
1− 2ξ2. Similarly

to the previous case, the following relation holds:

ω2 − ω1

ωr
≃ 2ξ√

1− 2ξ2
(2.148)

and for small values of ξ it follows:

ξ ≃ ω2 − ω1

2ωr
(2.149)

Eq.(2.149) is the relation commonly adopted for the damping ratio estimation for the
SDOF system. In the case of the MDOF system this approach may be applied if
it is guaranteed that the modal frequencies are widely spaced, the structure has a
response dominant first mode and ξ < 0.20 (i.e., the assumption ωn ≃ ωr is valid).
The accuracy of the estimation provided by Eq.(2.149) decreases if an acceleration
frequency response function is adopted instead of a displacement one: in this case,
the damping estimations for an MDOF structure are reliable if ξ ≤ 0.15 [150]. If
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the structure presents closely spaced modes, the possible coupling causes the method
to fail to provide reliable estimates due to different values assumed by the peak and
half power frequencies between the global frequency response and each mode one (see
Fig. 2.11). The limitations of applicability of this method to MDOF structures are
investigated in [151,152].

Figure 2.11: Schematic response of a two-DOF system with closely spaced modes (from [152]).

Logarithmic decrement method

The logarithmic decrement method is based on the consideration that for an under-
damped linear SDOF system the time response (displacement, velocity or acceleration)
is expressed in the form:

y(t) = ρe−ξωtcos(ωdt+ θ) (2.150)

being ρ and θ the amplitude and phase, dependent on the initial conditions, ω is the
natural frequency and ωd = ω

√
1− ξ2 the corresponding damped frequency and ξ is

the damping ratio. The time interval between two adjacent response peaks can be
expressed as follows:

Td =
2π

ω
√
1− ξ2

(2.151)

and the logarithmic decrement δ may be defined as the natural logarithm of the ratio
between two consecutive response peaks (see Fig. 2.12):

δ = ln
yn
yn+1

= ξωTd (2.152)

Combining Eq.(2.151) and Eq.(2.152) the logarithmic decrement assumes the following
form:

δ =
2πξ√
1− ξ2

(2.153)
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Figure 2.12: Free vibration response for an SDOF system.

which for small values of ξ, i.e.,
√
1− ξ2 ≃ 1, may be approximated as follows:

δ = ln
y1
y2

≃ 2πξ (2.154)

If the first n + 1 local peaks are considered, the logarithmic decrement may be also
expressed as follows:

δ =
1

n
ln

y1
yn+1

(2.155)

where it is exploited the property:

y1
y2

=
y2
y3

= . . . =
yn
yn+1

= eδ (2.156)

For small values of the damping ratio the previous relations provide the same loga-
rithmic decrement (see Fig. 2.13).
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Figure 2.13: Damping ratio versus logarithmic decrement
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From Eq.(2.153) and Eq.(2.154) the exact and approximate expressions for the
damping ratio may be obtained:

ξ =
δ√

δ2 + 4π2
(2.157a)

ξ ≃ δ

2π
(2.157b)

Eq.(2.157) is valid also when a free vibration acceleration recording is considered for
the damping ratio estimation; this is particularly useful in the dynamic identification
context because the most common type of signal acquired from testing campaigns are
accelerations. For MDOF systems, the free response may be expressed as a finite sum
of damped modal harmonics functions:

y(t) =

N∑

r=1

ρre
−ξrωrt cos

(
ωr

√
1− ξ2r t+ θr

)
(2.158)

being ξr and ωr

√
1− ξ2r the damping ratio and damped modal frequency of the rth

mode and N the total number of modes. The logarithmic decrement method may be
therefore applied once each mode harmonic signal is isolated. The method becomes
less precise when the recorded response is affected by noise: the latter may produce sig-
nificant local distortion at the peaks thus inhibiting the correct logarithmic decrement
estimations.

Area-ratio based damping ratio estimation

This method was introduced by Huang et al. [153]. Consider the time history of the free
vibration response of the SDOF system which has the analytic form expressed in Eq.(
2.150): suppose that it has 2N + 1 zero-crossing points at the discrete time instants
t1, t2, . . . , t2N+1 and 2N areas enclosed by it and the time axis, namely A1, A2, . . . , AN

(see Fig. 2.14).

y(t)

t

A1

A2

A2N
A3

Ai

Figure 2.14: Areas enclosed by the SDOF free vibration response.

It is possible to express the first two areas A1 and A2 as follows:

A1 =

∫ Td
2

0

|u(t+ t1)|dt = ρe−ξωt1

∫ Td
2

0

|e−ξωt sin (ωdt+ θ + ωdt1)|dt (2.159a)
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A2 =

∫ Td
2

0

∣∣∣∣u(t+ t1 +
Td

2

)∣∣∣∣ dt = ρe−ξωt1e−ξω
Td
2

∫ Td
2

0

|e−ξωt sin (ωdt+ θ + ωdt1)|dt
(2.159b)

Combining Eq.(2.159a) and Eq.(2.159b) it holds:

A2 = A1e
−ξω

Td
2 (2.160)

and similarly:
A2N = A2N+1e

−ξω
Td
2 (2.161)

Therefore the following ratio between the sum of the N odd-numbered areas and the
sum of the N even-numbered areas can be written as follows:

R1 =
A1 +A3 + . . .+A2N−1

A2 +A4 + . . .+A2N
=

A1 +A3 + . . .+A2N−1

(A1 +A3 + . . .+A2N−1)e−ξω
Td
2

= eπξ/
√

1−ξ2

(2.162)
Taking natural logarithm to the base e to both sides of Eq.(2.162), the damping ratio
may be expressed as:

ξ =
1√

1 +

(
π

R1

)2
(2.163)

Alternatively, the following ratio between the sum of the first N areas and the sum of
the second N areas can be written as follows:

R2 =
A1 +A2 + . . .+AN

AN+1 +AN+2 + . . .+A2N
=

A1 +A2 + . . .+AN

(A1 +A2 + . . .+AN )e−ξωNTd
= e2Nπξ/

√
1−ξ2

(2.164)
The damping ratio can therefore be written as follows:

ξ =
1√

1 +

(
2Nπ

R2

)2
(2.165)

This area ratio-based damping identification method turns out to be very robust to
the noise as demonstrated in [30]. To extend this method to MDOF structures, it is
required the correct extraction of the SDOF modal contribution from the recorded
signal, which may be achieved using any decomposition technique.
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CHAPTER 3

BRIDGES DYNAMIC IDENTIFICATION BASED ON FREE
VIBRATION RESPONSE AND VARIATIONAL MODE

DECOMPOSITION TECHNIQUE

3.1 Introductory remarks
The easy access to sensing devices and data acquisition technologies facilitated the
large diffusion of dense monitoring systems that can permanently record the dynamic
response of critical buildings and infrastructures under serviceability conditions. The
processing of the recorded data allows to assess the structure integrity over time
through the estimation of the modal parameters in serviceability conditions. The
latter are closely related to the physical properties of the structure such as mass, stiff-
ness and energy dissipation, and their variation over time may be used as a tool for
damage detection. Further, the estimation of modal frequencies, damping ratios and
mode shapes play a crucial role in structural model updating [12] and diagnostic [23].

Specifically, when ambient vibrations are processed for output-only modal analysis,
operational modal analysis (OMA) techniques are adopted. The applicability of these
methodologies, already introduced in Chapter 2, is vastly documented in the litera-
ture for bridge dynamic identification purposes. In this context, in [154] and [155] is
discussed the performance of the most common OMA approaches for the modal iden-
tification of suspension and cable-stayed bridges, whereas similar considerations are
done in [156] for a PC post-tensioned bridge. A comparative analysis of OMA methods
with application to real structures is also carried out in [157] and [158]. Whelan et
al. [159] exploit OMA for the health monitoring of a highway bridge excited by vehic-
ular traffic and ambient conditions; a comparison between FDD and SSI techniques
is carried out showing that the latter allows the extraction of more mode shapes with
higher accuracy. Hong et al. [160] study the effect of the wind on the response of an
existing suspension bridge performing the identification of its dynamic characteristics
by processing field measurements with data-driven SSI; the information is used to
update a FE model that shows accurate predictions of the wind response. Ubertini
et al. [161] propose a robust automated modal identification procedure based on SSI
methods and clustering analysis and discuss its application for the dynamic identifi-
cation of a historic iron arch bridge and a long-span footbridge. In [102, 162, 163] the
application of EFDD to bridge structures for the estimation of modal damping ratios
is discussed, showing that the poor frequency resolution of the data as well as the
presence of closely spaced modes influence the performance of the method leading to
their overestimation. Castellanos-Toro et al. [164] estimate modal frequencies of a vast
variety of structures including vehicular, pedestrian and railway bridges using ambient
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vibration tests processed via OMA. Specifically, data are recorded using smartphones
and processed using NExT and SSI techniques, showing that these devices are suitable
systems for the modal identification of flexible structures. Lorenzoni et al. [14] ana-
lyze five different typologies of road and railway bridges, i.e. steel trusses, steel box,
multi-girder reinforced concrete, masonry and reinforced concrete arch bridges, using
ambient vibration recordings obtained during a continuous monitoring campaign. The
data is processed adopting different OMA identification techniques both in frequency
and time domain for the evaluation of the quality of the modal estimates. Further,
the influence of structural typologies, length of acquired time histories and ambient
noise, loading and environmental effects on the dynamic identification are addressed.
Rainieri et al. [10] discuss about dynamic identification of several bridge structures
highlighting the capability of vibration-based techniques in combination with OMA
in supporting the design and management of bridge structures. Specifically, SSI and
EFDD methods are adopted in this paper for the FE model validation, the formula-
tion of empirical relations for the fundamental frequency estimation of RC arch bridges
and for vibration serviceability assessment of pedestrian bridges. Further, automatic
OMA procedures for the bridge continuous monitoring are reviewed, remarking on
their attractiveness for full-scale bridge application. Zini et al. [165] analyze the sig-
nal recorded during a dynamic test campaign performed on a short-span RC bridge
with half-joints in Italy adopting SSI-COV and RD technique; the study specifically
aims at investigating the quality of modal damping ratio estimates accounting for the
minimum signal length to identify unbiased damping, the effects of the properties of
the signals and the dependency from the vibration amplitude.

However, continuous monitoring may not always be a feasible solution since the
installation and maintenance cost of the sensors is justified only in the case of large
structures. Nonetheless, the need to collect information on dynamic behavior also
exists in the case of less important structures that can only be monitored sporadically
due to economic, technical or practical limitations. In this sense, monitoring via free
vibration tests is a suitable solution since it can be carried out using a limited number
of sensors, temporarily installed on the examined structure, whose required sensitiv-
ity is lower in comparison with the case of environmental vibrations. These aspects,
combined with the limited amount of time required to perform the tests, make free
vibration tests an economic and rapid solution. Even though free vibration responses
tend to rapidly decay in most real cases, the measured response amplitude will be
higher than the ambient vibrations counterpart since an actual initial perturbation is
introduced in the structure; this allows obtaining more accurate estimates of the modal
parameters which are less affected by the noise. Depending on how the free response
is induced and/or which component of the bridge is tested, it might require a tem-
porary closure of the infrastructure and the corresponding authorization by deputed
authorities. To deal with these practical issues, free vibration tests can be arranged
together with other activities that require a temporary bridge closure, such as excep-
tional maintenance or retrofitting interventions, static tests, or inspections following
accidental extreme events.

There are numerous cases documented in the literature related to the dynamic
identification of structures by free vibration tests. In this regard, Clemente et al. [166]
as well as Tomaszkiewicz and Owerko [167] assess the modal parameters of cable-
stayed bridges exploiting the free vibrations produced by a heavy truck driving over a
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bar placed on the paving. Further, Huang et al. [168] use the impulsive excitation due
to the sudden braking of a truck traveling along an inclined direction to test under free
vibrations an arch bridge and identify its modal features. Miyashita and Nagai [169]
estimate the modal damping ratio of a glass footbridge via a single wireless accelerom-
eter mounted at the deck midspan. Li et al. [170] identify the modal damping ratios of
the cables within a cable-stayed bridge from their free vibration response. Quaranta
et al. [171] estimate the modal damping ratios of a prototype composite glubam-steel
truss bridge from the free vibration response induced by removing suddenly a mass
suspended at the midspan of the bottom chord.

Commonly, damping ratio estimation is one of the most complex tasks in the
dynamic characterization of structures since a significant scattering is generally ob-
served in its values if alternative testing methods and identification techniques are
adopted [27]. In this context, the logarithmic decrement technique results by far the
most common method currently used for damping identification when free vibration
responses are considered [167,169–171]. Despite the well-known limitations, improve-
ments to this method continue to be developed. For example, Tomaszkiewicz and
Owerko [167] exploit nonlinear regression methods to reduce the detrimental effect of
noise, whereas Little and Mann [172] propose an analytical relation for the optimal
selection of the number of periods to be used in the logarithmic decrement method.
Further, in the case of multi-modal signals, it is required the use of band-pass filters
to isolate all the detectable modes and subsequently apply to them the logarithmic
decrement technique [167,171,173]. In this regard, Nakutis and Kaškonas [174] high-
light that the construction of the filters is a non-trivial task that largely depends
on the filter parameters selected by the user, thus preventing the use of logarithmic
decrement in an automatic fashion. In addition, it is observed in [27] that this ap-
proach fails in the case of dynamic responses characterized by closely spaced modes.
An alternative approach for damping ratio estimation purposes has been developed
by Huang et al. [153] and it is based on the ratio of the areas enclosed by the free
response; the main feature of this damping identification approach is its high robust-
ness against noise. The same method has also been investigated by Santoshkumar and
Khasawneh [175], who numerically evaluate the optimal number of cycles to be used
to minimize the uncertainty in damping estimation. However, similar issues to the
logarithmic decrement technique are observed in the case of multi-modal signals since
the isolation of the unimodal contribution is still required. To cope with this issue,
advanced signal decomposition techniques may be exploited in place of traditional fil-
tering (and its inherent limitations).

Specifically, one of the most effective techniques is the Variational Mode Decom-
position (VMD) [125]. Recent studies adopted this method as an extraction tool for
signal modal components in the dynamic identification framework, both in experi-
mental models and real structures [130, 131, 176]. However, neither their feasibility
nor the impact of the involved control parameters has been ever investigated when es-
timating the multi-modal damping ratios by means of the area ratio-based method in
the framework of automatic modal identification of structures based on free vibration
response.

The content of this chapter is based on studies recently conducted by the Author
on this topic [30, 177, 178]. Specifically, in Section 3.2 it is presented the proposed
approach for the identification of natural frequencies, modal damping ratios and mode
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shapes of bridges from the free vibration response. The methodology is based on an
automatically tuned version of the variational mode decomposition technique in com-
bination with the area ratio-based damping identification approach. In Section 3.3
the proposed method is validated by assuming a synthetic benchmark signal which
includes two closely spaced modes. The performance of the presented approach is
critically examined through a comparison with the standard logarithmic decrement
technique. Finally, in Section 3.4, three real case studies are examined. The first case-
study deals with the complete modal identification of a prestressed concrete girder
bridge deck. The second case study is concerned with cables damping identification
of a cable-stayed bridge, by also presenting a comparison with damping estimates ob-
tained by alternative techniques based on ambient vibrations. Incidentally, the analysis
of the experimental data for this second case study also allowed the quantification of
relaxation losses of the stay-cables. Finally, the third case-study exploits the proposed
procedure for the dynamic characterization of a series of PC overpasses from an ex-
tensive monitoring campaign based on free vibration tests. The peculiarity of these
structures resides in the static configuration commonly adopted in the 1970s for over-
pass construction, which consists of decks with dapped-end girders (Gerber scheme)
connected at the abutments through Mesnager hinges. The experimental results are
critically compared with numerical previsions of two different FE models considering
the investigation of the effects of boundary conditions and material properties on the
result performance.
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3.2 Variational mode decomposition-based identifi-
cation

This Section illustrates all the steps of the proposed procedure for the output-only
modal identification of civil constructions based on their free vibration response. Al-
though the proposed procedure is general and can be applied to any construction type,
the present study is restricted to the dynamic characterization of bridges, where the
acquisition of the experimental free vibration response is most common. The method-
ology exploits a suitable decomposition technique to isolate the modal components
of the response and to estimate the corresponding modal frequencies, while the area
ratio-based approach is finally implemented to identify the modal damping ratios. The
mode shapes identification is also addressed. An important feature of the proposed
procedure is that it can be implemented in a fully automatic fashion (i.e., without
significant limitations regarding the characteristics of the structures and avoiding sub-
jectiveness in the user’s input parameters).

3.2.1 Automatic optimal tuning of the variational mode de-
composition technique

The generic structural response to be analyzed is first decomposed in order to extract
all embedded relevant components. Among the available techniques for this goal, the
Hilbert-Huang transform [76], also known as empirical mode decomposition (EMD),
is widely adopted in structural monitoring [179]. The EMD is not supported by a
rigorous mathematical derivation and several applications have demonstrated that it
is rather sensitive to noise and sampling. These issues motivated the development of
several variants of the original EMD technique over the years. An important issue
of the EMD technique is its poor reliability in separating close modes, which is a
significant limitation for automatic large-scale applications. Taking this into account,
in the present work the signal to be analyzed is decomposed by means of the VMD
technique [125]. Previous applications of the VMD technique have shown that it is able
to extract efficiently the embedded components, largely irrespective of their relative
amplitudes and how close they are.

The VMD technique extracts the relevant components from the selected signal v(t)
as amplitude-frequency-modulated functions called intrinsic mode functions (IMFs)
vk(t), and also provides the corresponding central frequency ωk (i.e., the frequency
value around which the frequency content of the IMF is concentrated).

An exhaustive description of VMD has been formerly presented in Chapter 2.
As already previously mentioned, the performance of the VMD technique is highly
dependent on the proper tuning of two main parameters, namely the number of IMFs
to be extracted K and the penalty factor α. The other involved parameters (i.e., the
convergence threshold ε and the noise tolerance parameter χ) have much less influence.

A rough estimate of the number of IMFs K can be readily achieved considering
the number of significant peaks in the Fourier transform of the signal. However, if
noise contamination is large or for closely spaced peaks, the choice of K becomes
more complex and subjective. Therefore, an automatic procedure for the optimal
tuning of K and α is implemented. Given a starting range of possible values for K,
i.e. [Kmin,Kmax], the implemented procedure is based on the consideration that the
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higher K is assumed, the narrower each mode bandwidth becomes. Consequently,
the central frequencies get closer and modes mixing can happen. Hence, the best
value of K is the one that maximizes the distance between each central frequency.
This condition can be quantified using the correlation measure. For each value of
K̃ ∈ [Kmin,Kmax], the correlation between two sampled IMFs vk(tp) and vk+1 (tp) (tp
being the sampling time instant) is calculated as follows:

ρk,k+1 =

∑P
p=1 (vk (tp)− µvk)

(
vk+1 (tp)− µvk+1

)
√∑P

p=1 (vk (tp)− µvk)
2
√∑P

p=1

(
vk+1 (tp)− µvk+1

)2 (3.1)

where µvk is the mean value of the kth IMF and P the total number of samples. For
each value of α within a starting range [αstart, αend], the corresponding optimal value
of K is determined as follows:

K = argmin
Kmin≤K̃≤Kmax





1

K̃ − 1

K̃−1∑

k=1

ρk,k+1



 (3.2)

and a stabilization diagram is thus obtained by collecting all the couples (α,K). So
doing, it is possible to observe that K will assume a stable value within the interval
[αmin, αmax] ⊆ [αstart, αend], which is the sought number of IMFs to adopt in the VMD
procedure. Once K is determined, the optimal penalty factor α must be selected. In
fact, such value is still unknown and the sensitivity of K with respect to α has been
only evaluated so far. Therefore, for each value of α̃ ∈ [αmin, αmax], two parameters are
evaluated for each kth IMF, namely the power spectrum information entropy PSIEk(α̃)
and the uncorrelation factor UCk(α̃). The first parameter is directly proportional
to the bandwidth whereas the latter is inversely proportional to the reconstruction
performance. These parameters are evaluated as follows [29]:

PSIEk(α̃) = −
L∑

ℓ=0

Svk (ωℓ)∑L
ℓ=0 Svk

(ωℓ)
ln

[
Svk (ωℓ)∑L
ℓ=0 Svk (ωℓ)

]
(3.3)

UCk(α̃) = 1−

∑L
ℓ=0 Sv (ωℓ)Svk (ωℓ)−

∑L
ℓ=0 Sv (ωℓ)

∑L
ℓ=0 Svk (ωℓ)

L+ 1√√√√∑L
ℓ=0 S

2
v (ωℓ)−

(∑L
ℓ=0 S

2
v (ωℓ)

)2

L+ 1

√√√√∑L
ℓ=0 S

2
v (ωℓ)−

(∑L
ℓ=0 S

2
vk

(ωℓ)
)2

L+ 1

(3.4)

where Sv and Svk are the power spectrum of the signal v and that of the kth IMF vk,
respectively (ωℓ being the spectral line and L the total number of spectral lines). An
average value for these parameters is then evaluated:

PSIE(α̃) =
∑K

k=1 PSIEk(α̃)

K
(3.5)

UC(α̃) =

∑K
k=1 UCk(α̃)

K
(3.6)

After the following normalization:

PSIE(α̃) =
PSIE(α̃)−min1≤k≤K PSIEk(α̃)

max1≤k≤K PSIEk(α̃)−min1≤k≤K PSIEk(α̃)
(3.7)
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UC(α̃) =
UC(α̃)−min1≤k≤K UCk(α̃)

max1≤k≤K UCk(α̃)−min1≤k≤K UCk(α̃)
(3.8)

the optimal value of α is evaluated as follows:

α = argmin
αmin≤α̃≤αmax

{
PSIE(α̃) + UC(α̃)

}
(3.9)

3.2.2 Robust damping identification
The modal damping ratio corresponding to each IMF vk is evaluated by means of the
area ratio-based method [153]. To this end, the best result is obtained by processing
only the part of the signal v that follows the largest absolute peak value, so as to
mitigate the effect of noise and to limit the influence of concurrent vibrations (i.e.,
ambient excitation). Although the method can be applied to all signals recorded by
means of a sensor network, for the same reasons, the best results are expected from
the signal that exhibits the largest peak value.

Therefore, assuming that vk has 2Nk+1 zero-crossing points, it is possible to detect
the 2Nk regions enclosed between vk and the time axis whose areas are denoted as
A1,k, . . . , Ai,k, . . . , A2N,k (see Fig. 3.1). So doing, the damping ratio corresponding to

Figure 3.1: Detection of the regions enclosed between the kth IMF and the time axis for the application
of the area ratio-based damping identification technique.

vk is obtained in closed form as follows [153]:

ξk =
1√

1 + (2Nkπ/Rk)
2

(3.10)

where

Rk = ln

[ ∑Nk

i=1Ai,k∑2Nk

i=Nk+1Ai,k

]
(3.11)
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It is noted that Rk can be numerically evaluated by applying any quadrature method
for the estimation of Ai,k.

This area ratio-based damping identification method turns out to be very robust
to the noise. Indeed, in the standard implementation of the logarithmic decrement
technique, the accuracy of the damping identification depends on local maxima and
minima values of the time history, which may be largely influenced by local fluctua-
tions due to the noise. By using the area values, the detrimental effect of the noise
is strongly mitigated. Furthermore, the number of cycles that minimizes the uncer-
tainty in damping estimation can be established following the recommendations by
Santoshkumar and Khasawneh [175].

3.2.3 Mode shapes identification
The identification of the mode shapes is based on the elaboration of the free vibration
response recorded from all the available sensors [130]. Let tpeak

p be the time instant
corresponding to a local (maximum or minimum) peak value of the kth IMFs extracted
by decomposing the free vibration response recorded from all the sensors in the network
(see Fig. 3.2). If v(s)k (tpeak

p ) is the local (maximum or minimum) peak value at tpeak
p

Figure 3.2: Mode shape identification based on the kth IMFs extracted from the free vibration
responses recorded at different sensor positions.

of the kth IMF obtained from the sth sensor (S being the total number of sensors in
the network), then the kth mode shape vector ϕk is expressed as follows:

ϕk =
{
v
(1)
k (tpeak

p ) v
(2)
k (tpeak

p ) . . . v
(s)
k (tpeak

p ) . . . v
(S)
k (tpeak

p )
}⊤

(3.12)

The normalized mode shape vector is thus obtained as follows:

ϕk =
{
v
(1)
k (tpeak

p ) v
(2)
k (tpeak

p ) . . . v
(s)
k (tpeak

p ) . . . v
(S)
k (tpeak

p )
}⊤

/ max
1≤s≤S

∣∣∣v(s)k (tmax
p )

∣∣∣
(3.13)
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Theoretically, the ratio between the peak values of the kth IMF obtained from a couple
of sensors is constant in time. However, noise and/or sampling may distort randomly
the peak value of the kth IMF. In order to alleviate this issue, the normalized mode
shape vector given by Eq.(3.13) is also calculated for all significant local (maximum
or minimum) peaks at . . . , tpeak

p−2 , t
peak
p−1 , t

peak
p , tpeak

p+1 , t
peak
p+2 , . . . (see Fig. 3.2), and each

component of the mode shape vector is then estimated as the average value of the
obtained results.

3.3 Numerical validation
While the robustness against the noise of the area ratio-based damping identification
method has been already pointed out for uni-modal applications, the effectiveness of
such a technique for multi-modal applications has to be investigated yet. In view
of large-scale applications, besides the impact of the automatic tuning of the control
parameters involved in the signals decomposition stage, such validation cannot neglect
that some resulting modes can be eventually close to each other. As a matter of
fact, close modes are not as common, but they sometimes occur in civil structural
monitoring applications [180]. Therefore, the present numerical application especially
aims at evaluating the effectiveness of the proposed computational framework to deal
with automatic modal identification even in the case of close modes.

To this end, the following (noise-free) synthetic signal is considered:

y(t) = y1(t) + y2(t) + y3(t) =10e−0.025·6πt sin
(
6πt+

π

2

)

+ 40e−0.040·34πt sin (34πt+ 1)

+ 45e−0.030·38πt sin (38πt+ 0.3π)

(3.14)

The adopted expression for the synthetic signal y(t) given by Eq.(3.14) as well as its
frequency spectrum in Fig. 3.3 highlight that it embeds three spectral components,
two of which are rather close to each other. The proposed computational framework
has been thus applied to this synthetic signal, assuming that the optimal values of
K and α fall in the ranges [2, 8] and

[
1, 105

]
, respectively, in agreement with general

previous applications of the VMD technique [29, 131, 136, 181–183] (the same ranges
will be adopted for the following experimental applications as well). The automatic
search for the optimal values of K and α is also reported in Fig. 3.3. The stabilization
diagram in Fig. 3.3 shows that the true number of IMFs K = 3 has been identified
whereas it results α = 1, 538. Figure 3.4 illustrates the IMFs automatically extracted
according to the implemented computational framework and compares them with the
theoretical harmonic counterpart yi(t) (with i = 1, .., 3) of the synthetic signal y(t).
Results in Tab. 3.1 demonstrate that frequencies and damping ratios associated with
the three components of the analyzed synthetic signal are well identified, thereby
confirming the correctness of the implemented procedure.

Table 3.2 compares the damping ratio values identified according to the proposed
procedure and the estimates obtained by means of the logarithmic decrement tech-
nique. According to common practice, band-pass filters are adopted in combination
with the logarithmic decrement technique in order to isolate each mode. Herein, But-
terworth band-pass filters are designed as follows: cut-off frequencies range equal to
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Figure 3.3: Frequency spectrum of the considered synthetic signal (top-left), stabilization diagram
related to the automatic identification of the number of IMFs (top-right) and automatic evaluation
of the optimal penalty factor (bottom).

Table 3.1: Comparison between estimated and reference values of frequencies and damping ratios for
the analyzed synthetic signal.

Mode Number Frequency [Hz] Damping [-]

Identified Theoretical Identified Theoretical

1 3.24 3 0.0251 0.025
2 16.33 17 0.0402 0.040
3 18.92 19 0.0302 0.030

1-6.5 Hz, 9.2-18 Hz and 18-30 Hz (Case 1); cut-off frequencies equal to ±1 Hz the
frequency values corresponding to the peaks in the signal frequency spectrum (Case
2); cut-off frequencies equal to ±2 Hz the frequency values corresponding to the peaks
in the signal frequency spectrum (Case 3). Results in Tab. 3.2 confirm that the stan-
dard application of the logarithmic decrement technique together with the band-pass
filtering for multi-modal damping identification is very sensitive to the filter parame-
ters, as already pointed out by Nakutis and Kaškonas [174]. Additionally, its accuracy
performance notably worsens when dealing with closely-spaced modes, as emphasized
in previous works [27]. Conversely, Tab. 3.2 demonstrates that the implemented ap-
proach leads to the accurate damping ratios identification from multi-modal signals
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Figure 3.4: IMFs extracted from the synthetic signal compared to reference components of the original
multi-modal signal.

even when close modes occur, without requiring any feedback by the user.

Table 3.2: Comparison between estimated and reference values of frequencies and damping ratios for
the analyzed synthetic signal.

Mode
Number

Logarithmic decrement This study
Case 1 Case 2 Case 3

1 0.025 (1.2%) 0.027 (6.8%) 0.018 (28.0%) 0.025 (0.4%)
2 0.021 (47.3%) 0.041 (3.5%) 0.016 (59.8%) 0.040 (0.5%)
3 0.048 (60.0%) 0.055 (82.0%) 0.029 (2.7%) 0.030 (0.7%)

In the proposed benchmark test, it seems that the identification of the damping ra-
tio is more accurate than the frequency estimation. The reason is twofold: 1) according
to the VMD technique, the frequencies are extracted from a numerical optimization
problem (in terms of central frequencies) and, consequently, are affected by numeri-
cal precision tolerances; 2) the damping affects the signal and represents a disturbing
factor of the IMFs’ frequency spectra, thus reducing the precision of its peak detec-
tion. However, these issues have limited influence on damping ratio identification if
the number of areas in the proposed approach is properly increased.
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3.4 Experimental applications
The effectiveness of the presented framework for the automatic modal identification of
bridges based on free vibration response is now discussed in the present Section with
reference to experimental case-studies. They deal with very common applications of
free vibration tests on bridges, namely the complete modal identification of bridge
decks, the identification of stress and damping of the cables in cable-stayed bridges
and the dynamic characterization of a series of overpasses with dapped-end girders.
For all the investigated cases, access to the raw data used in the analysis was granted
due to past and ongoing technical consultancies and research projects involving the
University of Messina and external bodies that deal with structural health monitoring.

3.4.1 Prestressed concrete girder bridge decks of the
Longano viaduct

The first case-study deals with the bridge deck of the Longano viaduct (Fig. 3.5). It
belongs to the A20 highway connecting the cities of Messina and Palermo in Sicily
(Italy), and it is made up of two separate roadways (one for each of the two traffic
directions).

Figure 3.5: Overview of the Longano viaduct.

The structural scheme of the bridge deck consists of three simply supported spans.
The lateral spans are 29 m long while the central one is 30 m long, thereby resulting
a total length equal to 88 m (Fig. 3.6). The deck of each roadway is composed by
4 prestressed concrete I-shaped girders. Their spacing is equal to 2.75 m while their
width and height are equal to 0.70 m and 1.65 m, respectively. The girders are struc-
turally collaborating by means of five transverse diaphragms (two near the supports
and three along the span) and by an overlying reinforced concrete slab (having thick
and width equal to 20 cm and 11 m, respectively). Each girder has 42 pretensioned
steel 0.6" strands, of which 10 are inclined through deviators placed 8 m far from the
supports whereas the remaining ones are located in the bottom flange (26), in the top
flange (4) and in the web (2). The girders are simply supported on neoprene bearings,
according to the most common structural scheme adopted in Italy for bridges built
in the 1960s-1970s. The abutments have heights equal to 6 m and 7 m, and they are
made of reinforced concrete. The piers have circular cross-section with radius equal to
1.10 m. They are 5.5 m and 6 m tall and are made of reinforced concrete with spiral
stirrups consisting of Dywidag prestressing bars with a diameter equal to 32 mm.
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Figure 3.6: Original design drawings of the Longano viaduct: horizontal section of the bridge deck
(top) and transverse section of the bridge deck (bottom).

Low-cost free vibration tests were performed on the bridge deck of the Longano
viaduct in order to identify its modal parameters [43]. The main goal of this rapid
dynamic monitoring campaign was the identification of the bridge damping as well as
the validation of a finite element (FE) model of the bridge through the comparison
between predicted and estimated natural frequencies and mode shapes. The sensors
layout for the tested span is reported in Fig. 3.7. It employs three couples of accelerom-
eters (sensitivity equal to 1 V/g) that were anchored at 1/4, 1/2 and 3/4 of the span
length in symmetric positions with respect to the roadway axis. Signal acquisition
was conducted with a sampling frequency equal to 1 kHz. Free vibration response
was induced by an impulsive load produced by the transit of a three-axle heavy truck
with gross weight equal to 347 kN passing on an artificial step having a height equal
to 12 cm (Figs. 3.7-3.8). The bridge was closed to vehicular traffic during the tests
and the heavy truck crossed multiple times the bridge deck in each road direction with
the aim of obtaining multiple recordings to extract reliable results. Figures 3.9 and
3.10 show a selection of the accelerations recorded during free vibration tests and their
corresponding frequency spectra in both road directions at different locations on the
bridge deck.
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Figure 3.7: Position of the accelerometers S1,. . . ,S6 employed for the dynamic monitoring of the
bridge deck (left) and rigid anchorage of the accelerometer (right).

Figure 3.8: Application of an impulsive load by means of the transit of a three-axle truck on a step.

Two distinct series of free vibration tests were performed on each roadway of the
structure, one before and another one after the application of a static load. Such static
loading test was required in order to check the load-bearing capacity of the bridge deck
under the maximum serviceability loads prescribed by the current Italian Technical
Code [184], which are different from those at the time of the bridge construction.
Specifically, six heavy trucks (with three or four axles), each designated by a unique
ID ranging from 1 to 6, were exploited to load the bridge deck during the static
testing. Notably, the loads were progressively applied in three stages following a
protocol determined prior to the test as shown in Fig. 3.11. The procedure aimed at
checking for any signs of cracking or other damage-related occurrences. Performing
the dynamic monitoring campaign before and after the static loading tests served to
confirm the lack of cracks or any other damage due to application of the static load.
Henceforth, the results obtained from the dynamic monitoring campaign performed
before and after the application of the static load will be referred to as "pre-static"
and "post-static", respectively.

The FE model of the bridge deck is realized with the software SAP2000 [185], us-
ing 1D beam elements (6 degrees of freedom per node) with linear material model to
describe both prestressed concrete longitudinal girders and transversal diaphragms in
serviceability loading conditions. According to previous literature studies [186, 187],
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Sensor at midspan - from Messina to Palermo

Sensor at quarter span - from Palermo to Messina

Sensor at quarter span - from Messina to Palermo

Figure 3.9: Accelerations recorded at midspan during free vibration test on the deck of the roadway
from Messina to Palermo and that of the roadway from Palermo to Messina and their corresponding
frequency spectra.

the collaborating portion of the overlying reinforced concrete slab (whose effective
width beff is computed according to Eurocode 4 provisions [188]) is included in the
cross-sectional characteristics of the girders. Considering the actual simply supported
conditions of the bridge deck, ideal pinned restraints are assumed at the two ends of the
bridge span, i.e., at the ends of each girder [43]. The membrane stiffening effect pro-
duced by transverse diaphragms and overlying slab is simulated through a diaphragm
constraint applied to all nodes of the deck. The cross-sectional characteristics of girders
and diaphragms are automatically generated through the Section Designer tool inte-
grated in SAP2000 [185]. Mass distribution on the bridge deck includes self-weight
of structural elements and dead loads due to road pavement and guardrails. No in-
formation about material characterization was available for this structure, therefore
design values for concrete of class C35/45 in terms of compressive strength and elastic
modulus, i.e. fc = 35 MPa and Ec = 34625 MPa, are adopted in the FE model.

The proposed computational framework has been applied to all free vibration re-
sponses recorded on the deck before and after the application of the static load. It
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Figure 3.10: Accelerations recorded at quarter span during free vibration test on the deck of the
roadway from Messina to Palermo and that of the roadway from Palermo to Messina and their
corresponding frequency spectra.

is assumed that the optimal values of K and α fall in the ranges [2, 8] and
[
1, 105

]
,

respectively. As an example, Fig. 3.12 shows the frequency spectra and the automati-
cally extracted IMFs for the free vibration responses recorded on the deck at 1/2 and
1/4 of the span length before the static loading test.

Natural frequencies and modal damping ratios identified from the signals recorded
by the accelerometers during the free vibration tests performed before and after the
static loading test on both roadways are listed in Tab. 3.3 and Tab. 3.4. Tables 3.3
and 3.4 show that the minimal experimental setup allowed the identification of two
modes only. The natural frequencies are almost constant, regardless of the considered
sensor position and the application of the static load. Specifically, fluctuations of
−2.05% and 6.84% are observed for the first two modal frequencies, respectively, from
the estimates at midspan following the execution of the static load test; similarly,
frequency fluctuations of 1.14% and 1.06% are observed from measurements at the
quarter of the span. Modal damping ratios are also fairly constant and their value
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Figure 3.11: Static load tests on the Longano viaduct deck: location of the measurement points of
displacement (A-H) and position of heavy trucks in the three loading stages.

is reasonably consistent with the hypothesis of uncracked prestressed concrete cross-
section.

Figure 3.12: Extracted IMFs for the free vibration response recorded on the deck at 1/2 (up) and 1/4
(down) of the span length before the static loading test.
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The identified modal damping ratios exhibit a reduced scattering among the dif-
ferent measurements (see also Fig. 3.13).

Table 3.3: Identified natural frequencies and modal damping ratios for the bridge deck along the
roadway from Messina to Palermo.

Pre-static Post-static

Sensor
position

Mode
number

Frequency
[Hz]

Damping
Ratio [%]

Frequency
[Hz]

Damping
Ratio [%]

Midspan 1 4.39 3.16 4.48 3.01
2 13.59 3.43 12.66 2.39

Quarter
span

1 4.37 2.85 4.32 3.72
2 13.17 3.32 13.03 3.59

Table 3.4: Identified natural frequencies and modal damping ratios for the bridge deck along the
roadway from Palermo to Messina.

Pre-static Post-static

Sensor
position

Mode
number

Frequency
[Hz]

Damping
Ratio [%]

Frequency
[Hz]

Damping
Ratio [%]

Midspan 1 4.69 2.61 4.49 2.4
2 13.02 2.67 12.88 2.93

Quarter span 1 4.29 2.86 4.38 2.52
2 13.55 2.56 12.66 2.36

The estimated modal frequencies are compared to those extracted by peak-picking
procedure on the Fourier Transform of the signal, whereas estimated modal damping
ratios are compared with the ones obtained with the classic procedure consisting in
logarithmic decrement method applied to user-defined band-pass filtered components
of the recordings. For this application a 5th order Butterworth band pass filter is
adopted. Results listed in Tab. 3.5 show that frequency and damping ratio estimations
are consistent with those obtained by means of classic procedures. Finally, Figs. 3.14
and 3.15 as well as Tab. 3.6 show a good agreement between the mode shapes obtained
from the numerical FE model of the bridge and the modal displacements identified
from the free vibration test before the static loading test.

An objective way to assess the consistency between theoretical and identified mode
shapes is the modal assurance criterion (MAC) defined as follows:

MAC =

∣∣∣
∑S

s=1 ϕth,sϕ
∗
exp,s

∣∣∣
2

∑S
s=1 ϕth,sϕ

∗
th,s

∑S
s=1 ϕexp,sϕ

∗
exp,s

(3.15)

where S is the total number of sensors in the network, ϕth,s and ϕexp,s are the sth
components of the theoretical and experimental mode shape vector, respectively. The
higher the similarity between theoretical and experimental mode shapes, the higher
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Table 3.5: Comparison of identified modal parameters before static load test in terms of frequencies
(VMD vs peak-picking technique) and modal damping ratio (area-based approach vs logarithmic
decrement method).

Frequency [Hz] Damping Ratio [%]

Roadway
Direction

Sensor
position

Mode
number

Proposed
method

Peak-
picking

FEM Proposed
method

Logarithmic
decrement

From
Messina

to
Palermo

Midspan 1 4.39 4.48 4.01 3.16 2.85
2 13.59 13.47 14.11 3.43 3.44

Quarter
span

1 4.37 4.47 4.01 2.85 2.74
2 13.17 13.11 14.11 3.32 3.41

From
Palermo

to
Messina

Midspan 1 4.69 4.72 4.01 2.61 2.72
2 13.02 13.10 14.11 2.67 2.57

Quarter
span

1 4.29 4.25 4.01 2.86 2.81
2 13.55 13.39 14.11 2.56 2.20

MAC factor, which tends to the unity if a perfect correspondence is achieved. Consid-
ering the roadway direction from Messina to Palermo, MAC factors of 0.994 and 0.993
are observed for the first and second mode, respectively. Likewise, for the opposite
roadway direction (from Palermo to Messina), MAC factors of 0.966 and 0.994 are ob-
served for the first and second mode respectively. Numerical and experimental values
of the natural frequencies are also in good agreement. It is noted that the dynamic
identification provides very similar results for the two decks of the Longano viaduct.
This is consistent with the fact that the bridges have identical structural scheme and
age, and also their current conditions are similar. This comparison substantiates the
general correctness of the FE model, and the residual difference between numerical
and experimental results can be further reduced after suitable model updating.
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Figure 3.13: Numerical values of the modal damping ratios identified from the free vibration response
at different measurement points before and after the static loading test.

Table 3.6: Comparison between numerical mode shapes obtained from a FE model and corresponding
modal displacements identified from the free vibration test on the Longano bridge deck fro both
roadway direction before the static loading test

1st mode (ϕ1,ID) 2nd mode (ϕ2,ID)

Sensor ID ME - PA
direction

PA - ME
direction

FEM ME - PA
direction

PA - ME
direction

FEM

S1 -0.66 -0.48 -0.73 0.76 0.72 0.74
S2 -0.89 -0.68 -1.00 0.90 0.92 1.00
S3 -0.73 -0.53 -0.73 0.77 0.79 0.70
S4 -0.58 -0.57 -0.71 0.61 0.63 0.72
S5 -1.00 -1.00 -0.97 1.00 1.00 1.00
S6 -0.70 -0.70 -0.71 0.72 0.74 0.73
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Figure 3.14: Comparison between numerical mode shapes (gray surface) and modal displacements
identified from the free vibration test (red dots) on the deck of the roadway from Messina to Palermo
before the static loading test.
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Figure 3.15: Comparison between numerical mode shapes (gray surface) and modal displacements
identified from the free vibration test (red dots) on the deck of the roadway from Palermo to Messina
before the static loading test.
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3.4.2 Cable-stayed bridge over the Garigliano river
The second case-study deals with the cable-stayed bridge over the Garigliano river
(Italy), which is part of the highway connecting the cities of Naples and Rome (Fig. 3.16).
The bridge was completed on 1993. Its structure has a total length equal to 180 m
and is made up of two equal spans. The bridge deck consists of precast, prestressed
reinforced concrete multicell block girders with height and width equal to 2.45 m and
26.1 m, respectively.

Figure 3.16: Overview of the cable-stayed bridge over the Garigliano river.

Figure 3.17: Bridge geometry and sensors layout to monitor the dynamic response of the stay-cables
under impulse.

The bridge deck includes four prestressing systems. Specifically, three prestress-
ing systems were realized in the longitudinal direction for structural reasons and for
assembling the sections, while the fourth one is applied to each precast section along
the transverse direction. Each span is simply supported at one end whereas it is con-
strained to the central pylon on the other end. Furthermore, each span is sustained by
9 couples of cables composed by two parallel elements spaced 1.7 m along the trans-
verse direction. The cables have a variable length (between 23 m and 87.5 m) and
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accommodate a variable number of 0.6" galvanized sheathed high-strength prestress-
ing steel strands (between 45 and 55). The pylon is composed of three parts. The first
5 m long segment is made of reinforced concrete and has a linearly variable transverse
cross-section (from 4.6 m × 2.5 m to 4 m × 2.5 m). Both second and third segments
of the pylon are made of steel. A linearly variable cross-section is adopted up to a
height equal to 10 m, where the cross-section has dimensions equal to 2.9 m × 2.5 m.
The cross-section is thus constant for the remaining part of the pylon height.
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Figure 3.18: Accelerations recorded for the shortest cable on the roadway from Naples to Rome
considering different impulse directions and vertical sensor orientations together with corresponding
frequency spectra.

This cable-stayed bridge was previously subjected to investigations that mainly
focused on the identification of the modal features of deck from its dynamic response
under ambient excitation [166,189]. The focus of the present experimental application
is on the bridge cables. Because of the large number of stay-cables to be inspected, a
campaign of free vibration tests was designed to monitor the cables’ condition at low
cost and in a short time, with minimal equipment and no inference with the normal
operation of the infrastructure. The dynamic response of each stay-cable is recorded
by positioning two uniaxial accelerometers (sensitivity 10 V/g) at an average height
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equal to 3.8 m from the bridge deck extrados. Each couple of sensors is mounted
on the two faces of an L-shaped steel element (Fig. 3.17) in order to acquire both
horizontal and vertical accelerations. The steel angle was secured to the stay-cable by
means of nylon tightening straps. The dynamic response was recorded with a sampling
frequency equal to 200 Hz along the two orthogonal directions under a vertical and
horizontal impulse (Fig. 3.17). Henceforth, the labels “V/V" and “V/H" will refer to
the results carried out from signals recorded in the vertical and horizontal direction,
respectively, under the vertical impulse. Similarly, the labels "H/V" and "H/H" will
denote the outputs carried out from signals recorded in the vertical and horizontal
direction, respectively, under the horizontal impulse.

Figures 3.18 and 3.19 show a typical set of signals recorded for a cable under differ-
ent impulse directions and sensor orientations as well as their corresponding frequency
spectra. For the sake of conciseness, the dynamic response of the cables on the west
side only (along both traffic directions) is discussed in the present study.
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Figure 3.19: Accelerations recorded for the shortest cable on the roadway from Naples to Rome
considering different impulse directions and horizontal sensor orientations together with corresponding
frequency spectra.
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Cables dynamic identification

The proposed computational framework for modal identification based on free vibra-
tion response has been applied to all selected signals. It is assumed that the optimal
values of K and α fall in the ranges [2, 8] and

[
1, 105

]
, respectively. As an example,

Fig. 3.20 shows the frequency spectrum and the automatically extracted IMFs for the
vertical response of the shortest cable on the roadway from Naples to Rome under the
vertical impulse.

Figure 3.20: Extracted IMFs for the vertical response of the shortest cable on the roadway from
Naples to Rome under the vertical impulse.

For each stay-cable, the identified natural frequencies νk corresponding to the ex-
tracted kth IMF are initially examined in order to estimate the tensile force T by
means of alternative formulations. The first relationship is derived from the classical
beam theory, and it is an improvement of the simplistic formulation based on the taut
string theory. It reads:

T = 4ml2
(νk
k

)2
− EJ

l2
(kπ)

2 (3.16)

where m and l are mass density and cable length, respectively, whereas EJ is the
flexural stiffness of the cable.

Since the underlying simplifications of the beam model may lead to significant
errors, two more sophisticated relationships are also considered. One of these more
refined formulation is proposed by Zui et al. [190], and it is based on the following two
dimensionless parameters:

ξ = l

√
T

EJ
(3.17a)

Γ =
0.31ξ + 0.5

0.31ξ − 0.5

√
wl

128EA∆3 cos5 ϑ
(3.17b)

where w is the cable weight per unit length, EA is the axial stiffness of the cable, ϑ is
the cable inclination and ∆ is the ratio between sag and cable length. The parameter
ξ rules the behavior of the cable: while it behaves like a string for large values of ξ, a
beam-like behavior is observed for small values of ξ. The parameter Γ also takes into
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account the sag effect: the cable force mainly depends on the first vibrational mode
and the effects due to cable sag and inclination are negligible for Γ ≥ 3 while second
or higher modes only must be considered otherwise. Therefore, taking ξ and Γ into
account, the following formulations apply for Γ ≥ 3:

T =





4w

g
(ν1l)

2

[
1− 2.20

C

ν1
− 0.550

(
C

ν1

)2
]

if ξ ≥ 17

4w

g
(ν1l)

2

[
0.865− 11.6

(
C

ν1

)2
]

if 6 ≤ ξ < 17

4w

g
(ν1l)

2

[
0.828− 10.5

(
C

ν1

)2
]

if 0 ≤ ξ < 6

(3.18)

while, for Γ < 3, the following relationships hold:

T =





w

g
(ν2l)

2

[
1− 4.40

C

ν2
− 1.10

(
C

ν2

)2
]

if ξ ≥ 60

w

g
(ν2l)

2

[
1.03− 6.33

C

ν2
− 1.58

(
C

ν2

)2
]

if 17 ≤ ξ < 60

w

g
(ν2l)

2

[
0.882− 85

(
C

ν2

)2
]

if 0 ≤ ξ < 17

(3.19)

where C =

√
EJg/ (wl)

2.
The second refined formulation here considered has been proposed more recently

by Fang et al. [191]. In such case, the cable force is related to the natural frequency
through the following relationship:

T = 4π2ml2
νk
γ2k

− EJ

l2
γ2k (3.20)

where γk = kπ +Aψk +Bψ2
k, with ψk =

√
EJ/ (mω2

kl
4), A = −18.9 + 26.2k + 15.1k2

and B = 290 for k = 1 while B = 0 for k ≥ 2. Cables force is calculated assuming an
elastic modulus of the prestressing steel equal to 198,000 MPa, whereas the inertia was
evaluated considering a quincunx strands configuration into PHED sheaths. The linear
weight for the cable was evaluated assuming a linear weight for strands and PHED
sheath equal to 1.305 kg/m and 5.68 kg/m, respectively. The density of the grout
filling is considered to be equal to 1,440 kg/m3, and a 95% filling rate is adopted. All
relevant cables data are listed in Tab. 3.7. Numerical values of the natural frequency of
the stay-cables calculated according to Zui et al. [190] νk,Zui et al. and Fang et al. [191]
νk,Fang et al. are listed in Tab. 3.8 (it is pointed out that the parameter Γ by Zui et
al. [190] is always much larger than 3, which implies that the cable dynamics mainly
depends on the first vibrational mode and the effects due to cable sag and inclination
are negligible). Table 3.8 demonstrates that the estimates of the first natural frequency
obtained according to Zui et al. [190] and Fang et al. [191] are very close each other.
For the first vibrational mode, Fig. 3.21 shows the ratio between the identified natural
frequency values νk,exp and those calculated according to Zui et al. [190] νk,Zui et al.
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Table 3.7: Identified natural frequencies and modal damping ratios for the bridge deck along the
roadway from Palermo to Messina.

Stay-
cable

Slope
[◦]

Diameter
[mm]

Length
[mm]

Area
[mm2]

Inertia
[mm4]

Weight
per unit
length

[N/mm]

Sag-to-
cable
length
ratio

A 50.448 30 17682 6750 15457797 0.979 0.0017
B 38.293 53 25797 6750 15457797 0.979 0.0021
C 30.818 62 34906 8250 19603252 1.071 0.0018
D 26.291 70 44296 8250 19603252 1.071 0.0016
E 24.262 90 51671 8250 19603252 1.071 0.0017
F 22.723 110 59022 8250 19603252 1.071 0.0019
G 21.492 130 66479 8250 19603252 1.071 0.002
H 20.508 155 73921 8250 19603252 1.071 0.0021
I 19.684 230 81456 7050 16839615 0.941 0.0028

and Fang et al. [191] νk,Fang et al.. Figures 3.22 and 3.23 show the numerical values
of the ratio νk,exp/νk,Fang et al. for higher modes. Missing outputs are due to the fact
that either the corresponding mode was not identified or the relevant file is corrupted.
It can be observed that there is a very good agreement between experimental and
predicted natural frequency values. In particular, predicted values of the natural
frequency of the stay-cables are slightly larger than the experimental ones, and the
maximum difference is less than 7%.

Table 3.8: Identified natural frequencies and modal damping ratios for the bridge deck along the
roadway from Palermo to Messina.

Stay-cable νk,Zui et al.
[Hz]

νk,Fang et al. [Hz]

k = 1 k = 1 k = 2 k = 3 k = 4

A 6.60 6.68 13.70 21.48 30.33
B 4.32 4.36 8.82 13.52 18.58
C 3.2 3.30 6.65 10.10 13.71
D 2.58 2.59 5.21 7.87 10.60
E 2.21 2.22 4.46 6.71 9.025
F 1.94 1.94 3.90 5.87 7.88
G 1.71 1.72 3.45 5.18 6.94
H 1.53 1.54 3.08 4.63 6.20
I 1.34 1.35 2.70 4.06 5.43

For each stay-cable, the application of the proposed computational framework has
allowed the identification of the modal damping ratios from the free vibration response.
The results are plotted in Figs. 3.24 and 3.25, where modal damping ratios estimated
for each measurement axis and direction of the applied impulsive loads are provided
for each stay-cable. Once again, missing results are due to the fact that either the
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corresponding mode was not identified or the relevant file is corrupted. For comparison
purposes, estimates of modal damping ratios obtained through ambient vibrations on
the same cables are reported in Figs. 3.24 and 3.25 by using two methods from the
literature, namely the Natural Excitation Technique (NExT) [86] and the Random
Decrement Technique (RDT) [92].
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Figure 3.21: Ratio between experimental and predicted natural frequency of the stay-cables for the
first vibrational mode.

Figures 3.24 - 3.25 demonstrate that the average value of the modal damping ratio
of the stay-cables is almost constant, regardless the mode number. The estimates
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obtained from ambient vibrations are slightly higher than those obtained from free
vibrations. However, a relatively limited scattering is observed among the different
estimates, which slightly increases in some sporadic cases close to the extreme cables
characterized by the minimum and maximum frequencies. All damping values fall
within the range 0-0.8% in good agreement with previous experimental estimations of
the modal damping ratio for the cables of cable-stayed bridges [192]. Based on the
results obtained in the two discussed real case-studies, it can be concluded that the
proposed method represents a reliable free-vibration-based modal identification tool
able to detect reasonable estimates of natural frequencies, mode shapes and damping
ratios, and lends itself to an automated implementation with minimal subjectiveness
on the parameters’ selection.
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Figure 3.22: Ratio between experimental and predicted natural frequency of the stay-cables for higher
vibrational modes (Rome direction).
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Figure 3.23: Ratio between experimental and predicted natural frequency of the stay-cables for higher
vibrational modes (Naples direction).
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Figure 3.24: Cable modal damping ratios identified under different dynamic loading conditions by
means of alternative techniques - Rome direction (the dashed lines denote the average value).
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Figure 3.24: Cable modal damping ratios identified under different dynamic loading conditions by
means of alternative techniques - Rome direction (the dashed lines denote the average value) (cont).

Figure 3.25: Cable modal damping ratios identified under different dynamic loading conditions by
means of alternative techniques - Naples direction (the dashed lines denote the average value).
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Figure 3.25: Cable modal damping ratios identified under different dynamic loading conditions by
means of alternative techniques - Naples direction (the dashed lines denote the average value) (cont).
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Cables stress relaxation analysis

Figure 3.26 shows the ratio between estimated cable forces using the above-mentioned
models available in the literature and the corresponding values provided in the original
design reports. The design range of the cable forces is also highlighted, and it is
obtained from the actual design cable force considering all the possible variations due
to traffic load and thermal fluctuations.

Figure 3.26: Estimated cable forces and corresponding design range accounting for the variations due
to traffic load and thermal fluctuations (cables force is normalized with respect to the reference design
value).

Specifically, in the original design report, it is considered a conventional fluctua-
tion of ±150 kg/cm2 on the actual stress of each cable due to the thermal gradients
as well as a fluctuation (different for each cable) ranging between -240 kg/cm2 and
710 kg/cm2 due to the traffic load. These values were determined in agreement with
the prescription of the Italian technical code available at the time of the bridge con-
struction. The upper and lower bounds of the design range were therefore obtained
by adding to the original cable strength the contribution due to the upper and lower
bound of the stress fluctuations. A close inspection of the results in Fig. 3.26 may
suggest that the beam model leads to estimates of the cable forces in better agreement
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with design values than the formulations by Zui et al. [190] and Fang et al. [191].
This, however, conflicts with the well-established evidence by which the beam model
is fairly inaccurate because of the simplifications it relies on. Furthermore, it is ob-
served in Fig. 3.26 that the results obtained according to Zui et al. [190] and Fang
et al. [191] are very close each other and do not fall within the design range, but are
regularly lower than the lower bound. This suggests the need of introducing a further
aspect to properly interpret the results in Fig. 3.26. In this sense, it is argued that
what is observed in Fig. 3.26 can be explained by taking into account the relaxation
phenomenon of the stay-cables.

In order to find a suitable evidence for that, the stress values of the stay-cables
are determined in compliance with Eurocode 2 provisions [193] accounting for the
relaxation losses.

Figure 3.27: Estimated cable stresses and corresponding design values accounting for the relaxation
losses.

Accordingly, the relaxation losses for ordinary tendons are calculated as follows:

∆σpr
σpi

= 5.39ϱ1000e6.7η
( τ

1000

)0.75(1−η)

10−5 (3.21)

where ∆σpr is the absolute value of the relaxation loss of the prestress, σpi is the
absolute value of the initial prestress, τ is the time after tensioning, η = σpi/fpk is the
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stress value normalized with respect to the characteristic value of the tensile strength
of the prestressing steel fpk. Finally, ϱ1000 is the relaxation loss at 1,000 hours after
tensioning for a mean temperature equal to 20 ◦C, which is equal to 8 for ordinary
tendons.

Assuming a tensile strength of the prestressing steel fpk = 1, 700 MPa, it is es-
timated from Eq. (3.21) that the relaxation losses are completed at τ∞ = 57 years.
Figure 3.27 shows the stress values of the stay-cables estimated according to the consid-
ered models by means of the corresponding experimental natural frequencies. Design
cable stress values calculated by subtracting the relaxation losses at τ∞ = 57 years
and τ = 29 years (i.e., the current bridge age) are also shown in Fig. 3.27.

Results in Fig. 3.27 demonstrate that the numerical models by Zui et al. [190] and
Fang et al. [191] lead to experimental cable stress values in excellent agreement with
design predictions, provided that relaxation losses are properly taken into account.
Conversely, the beam model overestimates the stress of the stay-cables and the shorter
is the cable, the larger is the error. Notably, the beam model leads to unacceptable
errors in force and tension prediction as the cables become shorter or stouter because
Eq.(3.16) is derived from an axially-tensioned beam with hinged end boundaries rather
than fixed ones.
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3.4.3 A 20 Highway overpasses
The third case study investigated in this chapter deals with a series of road overpasses
part of the A20 highway, which connects Messina to Palermo (Italy). Dating back to
the early 1970s, these bridges were built adopting the Niagara-type structural scheme
and consist of two symmetric precast lateral cantilevers of 29 m and a central sus-
pended span between the half joints of 31 m, both in prestressed concrete. Fig. 3.28
shows a representative case of the investigated structures. It’s worth noting that the
investigated overpasses, and thus the experimental measurements, were divided into
two different batches, hereinafter labeled as batch 7 and 9, according to their location
in the A20 highway (see Fig. 3.28): this depends also on the fact that the structures of
each batch have been realized at different times by two construction companies with
different equipment and concrete batching plants.

Figure 3.28: Overview of one of the A20 road overpasses representative of the series investigated in
the present study.

Depending on the specific overpass, the deck has a variable width between 6.5 m
and 17 m and, correspondingly, it is made up of a variable number of I-shaped post-
tensioned girders, ranging from 3 to 8, equally spaced at 2 m. The latter have a variable
height section ranging between 1.70 m at midspan and 1.30 m at the abutments and
are connected by rectangular-shaped transverse diaphragms and an overlying RC slab
with 0.16 m thickness. Figure 3.29 shows the geometry of the most common type
among the investigated overpasses, i.e. with a deck made up of 5 girders. Specifically,
each girder is reinforced with 6Ø10 longitudinal bars at the top flange and the web,
11Ø10 bars at the bottom flange, and Ø12/15 cm transverse web reinforcement. The
girders reinforcement also includes transverse web reinforcement Ø12/15 cm (for the
cantilevers) and Ø10/30 cm (for the central beams). Further, each girder is reinforced
with parabolic prestressing tendons made of cold-drawn Ø7 steel wires: in the lateral
spans, a total of 4 cables per girder are used, 3 of which (32 wires) are anchored at the
dapped end and the last one (42 wires) is anchored at the abutment, whereas central
span girders have 3 cables (32 wires) are, 2 of which anchored at the dapped end
(see Fig. 3.30(a)). The dapped ends (0.70 x 0.90 x 0.75 m) are reinforced with 2Ø24
hangers, 4Ø24 diagonal bars, 6Ø24 longitudinal steel bars (both at top and bottom)
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Figure 3.29: Original drawings of one of the investigated overpass (deck made up of 5 girders): (a)
plan view of the overpass, (b) longitudinal section of 1/2 girder, (c)transverse sections of one girder
at different abscissa and (d) transverse section of the bridge deck.

and stirrups Ø14/15 cm (see Fig. 3.30(b)). Finally, the RC slab is reinforced with
4Ø14 longitudinal bars in the zones above the girders, 6Ø8 longitudinal bars in the
remaining parts, and transverse Ø10/25 cm bars for the entire slab width.

(b)

(a)

Figure 3.30: Dapped end girders: (a) prestressing cables and (b) longitudinal and transversal rein-
forcement.
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Figure 3.31: Sensors layout on the investigated bridges.

Dynamic identification

Each one of the half-joint bridges has been monitored by performing a campaign
of low-cost free vibration tests to assess their actual health condition. Notably, it
has been possible to obtain estimates of the modal parameters representative of the
serviceability conditions of the structures, which in turn may be also exploited for
the indirect estimations of their physical properties. For each examined structure the
same test set-up is exploited: it consisted of 8 uniaxial sensors (CH1−CH8) with a
sensitivity of 1000 V/g, rigidly anchored to the bridge deck and connected to a 16-bit
control unit. The sensors have been arranged favoring the east lane of the overpasses
on which a total of five sensors were mounted (CH1−CH5), whereas the remaining
three sensors (CH6−CH8) have been placed on the west lane as shown in Fig. 3.31.
To perform the tests, the structure was dynamically excited by the transit of a vehicle
(gross weight of 35 kN) marching on the deck at an average speed of 50 km/h, and
free vibrations were recorded as the vehicle left the structure. The acquisition of the
signals was performed considering a sampling frequency of 1kHz. For some of the
investigated overpasses, two distinct series of free vibration tests have been carried
out, namely before and after the application of a static load. Such a test was carried
out to assess the bridge deck’s ability to support the load conditions specified by the
current Italian Technical Code [184], which differ from those assumed at the time
of construction. Notably, the dynamic tests performed between the aforementioned
static load application, aimed to assess any possible damage due to lack of bearing
capacity which shall be reflected in a fluctuation of the modal parameters. Recorded
time series (see Fig. 3.32) have been processed by means of a third-order Butterworth
filter to retain the frequency range of interest, i.e. (0.5−15) Hz.

The dynamic identification is carried out by comparing the results of two different
approaches, namely the proposed procedure and the Covariance Driven - Stochastic
Subspace Identification Method (SSI-COV). Adopting the aforementioned identifica-
tion procedures, it has been possible to successfully identify up to five modes for the
investigated structures. Tables 3.9 and 3.10 compare the identified modal frequencies
showing a nice agreement between the estimates obtained from the two identification
procedures. Specifically, Tab. 3.9 compares the frequencies before and after the exe-
cution of the static tests, showing that negligible frequency variations, under 1% for
the first three modes, are observed. Missing results for overpass n.18 are due to the
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Figure 3.32: Example of the recorded time series on the central span of the overpass (left) and
corresponding Fourier transform (right).

fact that the magnitude of the excitation exerted in the dynamic tests did not prop-
erly excite the second torsional mode making the estimations unreliable. Further, it
is noted from Tab. 3.10 that slightly lower natural frequencies are identified for the
overpasses with a higher number of deck girders, as well as that the most significant
contribution to the dynamic response falls in the range between 2.6−3.2 Hz, depending
on the actual material properties of the investigated structure.

Table 3.9: Identified natural frequencies, before and after (in brackets) the execution of the static load
tests and corresponding relative variations, using VMD-based identification method and SSI-COV for
the investigated overpasses.

Overpass n.18 (5 girders) Overpass n.19 (5 girders)

Mode VMD ∆ν[%] SSI-COV ∆ν[%] VMD ∆ν[%] SSI-COV ∆ν[%]

1 2.84 (2.86) 0.42 2.86 (2.84) 0.73 2.79 (2.78) 0.36 2.78 (2.76) 0.65
2 3.11 (3.12) 0.16 3.11 (3.08) 1.09 3.12 (3.10) 0.69 3.12 (3.11) 0.32
3 4.87 (4.83) 0.76 4.92 (4.79) 2.62 4.77 (4.78) 0.16 4.73 (4.74) 0.06
4 − − − − 5.79 (5.80) 0.28 5.72 (5.81) 1.66
5 6.54 (6.41) 2.12 6.56 (6.37) 2.92 6.49 (6.37) 1.92 6.47 (6.19) 4.32

It is worth noting that a single value of frequency is obtained for each mode via
SSI-COV since it elaborates concurrently all the information provided in the data set,
whereas the modal frequencies obtained via the VMD-based identification approach
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Table 3.10: Identified natural frequencies using VMD-based identification and SSI-COV for the in-
vestigated overpasses.

Overpass n.7 Overpass n.12 Overpass n.15 Overpass n.17
(8 girders) (5 girders) (7 girders) (5 girders)

Mode VMD SSI-COV VMD SSI-COV VMD SSI-COV VMD SSI-COV

1 2.66 2.71 2.64 2.64 2.74 2.81 2.83 2.85
2 2.85 2.92 3.05 3.06 3.14 3.08 3.41 3.36
3 4.77 4.75 4.56 4.67 4.74 4.66 4.83 4.77
4 5.31 5.27 5.36 5.32 5.27 5.28 5.44 5.76
5 6.61 6.86 6.33 6.41 6.34 6.36 6.47 6.60

are obtained by averaging all the available estimates (one for each signal in the data
set). The obtained results have been useful for the development of numerical FE
models of the bridge deck, which is addressed in the following subsection.

In addition to natural frequencies, dynamic tests have been also exploited to iden-
tify the inherent modal damping ratios. Once again it is pointed out that the estimates
obtained via the VMD-based approach are averaged out over the eight available mea-
sures (from CH1 to CH8). Specifically, the analysis of the recorded signals allows the
identification of modal damping ratios, up to the fifth mode, which are summarized in
Figs. 3.33 and 3.34; a reasonable agreement between the two adopted methodologies
is reached, even though a bigger scatter is observed if compared with the identified
frequencies. Nonetheless, the identified damping ratios are under 3% which is a reason-
able order of magnitude for PC structural elements in the elastic phase, thus suggesting
that, in serviceability conditions, no significant damage occurred in the bridge deck
before the test execution. Further, it is noted that for the overpasses for which pre-
static and post-static identification has been performed, the VMD-based identification
approach provides more accurate estimates since a limited scatter is observed between
the two scenarios if compared with the SSI-COV counterparts.
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Figure 3.33: Comparison of the identified modal damping ratios, using the VMD-based approach and
SSI-COV method, before and after the static tests performed on 5 girders deck overpasses

Finally, the mode shapes have been successfully identified. Even though the num-
ber of sensors is limited and it is also not symmetrically installed with respect to the
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Figure 3.34: Identified modal damping ratios, using the VMD-based approach and SSI-COV method,
for deck overpasses with a variable number of girders.

roadway direction, it is possible to assert that the first two modes are representa-
tive of the flexural and torsional behavior of the central suspended span, respectively,
whereas the successive ones reflect the flexural and torsional behavior at higher modes
of the overpass, in which also the cantilevered parts are significantly affected by any
dynamic excitation. Figure 3.35 shows the identified mode shapes from the test per-
formed on one of the overpasses; as can be noted, a nice agreement is achieved between
the estimated mode shapes with the two methods. To quantify the degree of similar-
ity between estimated modes, the Modal Assurance Criterion (MAC) is adopted (see
Eq.(3.15). For the investigated case MAC values equal to 0.999, 0.991, 0.993, 0.901
and 0.970 are observed for the five identified modes, respectively. It is pointed out
that negligible differences have been observed between estimated mode shapes before
and after the execution of the static loading test.
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Comparative analysis via numerical FE simulations

The identified frequencies and mode shapes of the most common type of overpass (i.e.,
with a bridge deck made up of 5 girders), estimated via the dynamic identification, are
compared with the predictions of simplified FE models. To this aim, two FE models
with different degrees of approximation have been realized with the structural analysis
program SAP2000 [185].

In the first model (see Fig. 3.37), both longitudinal beams and transverse di-
aphragms have been modeled using beam elements with six degrees of freedom per
node. The sectional properties of girders and diaphragms were automatically associ-
ated, once the corresponding sections were defined, through SAP 2000 Section Designer
tool [185]. In addition, it is worth noticing that the overlaying RC slab has been mod-
eled in a simplified way, associating each girder with the corresponding collaborating
part, whose width was calculated according to Eurocode 4 provisions [188]: this has
been attained by including the specific collaborating part in the cross-section param-
eters of the girders. Further, a diaphragm constraint has been adopted to account
for the membrane stiffening effect of the RC slab in the horizontal direction. A sec-

Figure 3.36: FE model of the bridge deck using beam elements with collaborating portion of RC slab:
standard view (top) and extruded view (bottom).

ond more refined model (see Fig. 3.36) has been generated using beam elements for
both girders and transverse diaphragm, as in the previous case, whereas shell elements
have been adopted to simulate the overlaying slab. Specifically, joint offsets have been
introduced to connect the latter to the girders: they simulate the actual height dif-
ference between the girder centroid and the mid-plane of the slab. In both models,
rigid pinned restraints have been assumed at the intermediate pier, thus neglecting
both their actual deformability and neoprene bearings one. Further, to simulate the
Niagara-type scheme, moment release conditions have been assigned to each beam
node at the RC corbels abscissas.

Finally, two different boundary conditions have been considered at the abutments,
namely pinned and clamped (rigid) constraints, to assess which one better describes the
behavior of the real structure. In that regard, the abutments of the real structure are
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connected with the terminal transverses by means of Mesnager hinges (see Fig. 3.38)
to avoid the lifting of the deck in the cantilevered spans for full load conditions.
Depending on the excitation that the structure has experienced during its life, this
constraint may behave as a cross between a clamp if the concrete at the hinge has
been cracked and a pin, otherwise.

Figure 3.37: View of half of the FE model of the bridge deck modeled using shell elements with joint
offset for RC slab and beam elements for longitudinal girders and transverse diaphragms: offset view
(top) and extruded view (bottom).

Figure 3.38: Detail of the Mesnager hinges and their positions at the abutment (from the original
drawings).
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In both models, mass distribution has been evaluated from the bridge deck load
analysis, which included the self-weight of structural elements and overloads produced
by road pavement and guardrails. A crucial parameter in the evaluation of the modal
response of the structure is the concrete elastic modulus Ec since it figures in the
stiffness matrix of the associated eigenproblem. Specifically, it can be related to the
concrete compressive strength by means of relations proposed by normative codes
such as the one proposed by EC2 [193]. Considering the variability of the cubic
compressive strength Rc observed in the experimental campaign, it appears reasonable
to evaluate modal parameters in the FE model by accounting for the corresponding
variability of Ec. Further, since the EC2 relation is both differentiable and invertible,
the probability density function (PDF) of the random variable Ec, labeled as fEc

(Ec),
may be obtained in closed-form once the corresponding compressive strength PDF
is known, i.e. fRc

(Rc), using the probability transform method (PTM) [194]. More
details are provided in the next subsection.
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Figure 3.39: Evaluation of concrete elastic modulus via probability transformation method (PTM):
(a) evaluation of PDF for concrete compressive strength fRc (Rc) based on experimental data, (b)
evaluation of PDF of elastic modulus fEc (Ec) based on the knowledge of fRc (Rc) and (c) determi-
nation of elastic modulus fractiles based on the corresponding CDF FEc (Ec).

Since the relation between Ec and fc is empirical, to properly consider both the
model uncertainty and the material variability, three different values of elastic modulus
have been considered in the analysis, namely the mean value Ecm, the 5% lower
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fractile Ec,5% and the 5% upper one Ec,95%. Notably, the fractile values have been
obtained by inverting the cumulative distribution function (CDF) of Ec, i.e. FEc

(Ec)
as summarized in Fig. 3.39.

Figs. 3.40 and 3.41 summarize the frequencies predicted for the first five modes by
the two analyzed models, depending on the specific constraints adopted at the ends
and the elastic modulus fractile chosen in the analysis.
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Figure 3.40: Comparison between experimental frequencies and the predicted ones obtained from
the FE models, depending on the boundary conditions, for the first five modes. The model has been
calibrated using elastic moduli obtained from the experimental measures of compressive strength from
batch 7 via PTM.

It is noted that the more refined method provides estimates closer to the experi-
mental results; specifically, the model with clamped ends predicts the closest modal
frequencies to the experimental counterpart, thus implying that the Mesnager hinges
have not been cracked during the structure life, since they behave similarly to a clamp
constraint. Moreover, Fig. 3.42 shows the estimated mode shapes obtained with the
more refined method highlighting that a nice agreement with the experimental counter-
part is reached. The degree of similarity with the ones obtained with the VMD-based
approach is quantified by means of MAC: Tab 3.11 lists the MAC factors observed for
the first five modes. It is pointed out that no significant variations in the mode shapes
are observed between the two investigated models.
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Figure 3.41: Comparison between experimental frequencies and the predicted ones obtained from
the FE models, depending on the boundary conditions, for the first five modes. The model has been
calibrated using elastic moduli obtained from the experimental measures of compressive strength from
batch 9 via PTM.

Table 3.11: MAC factors for quantitative assessment between identified mode shapes via VMD and
SSI-COV and predicted ones via the refined FE model.

MAC factor [-]

Mode VMD vs
FEM

SSI-COV
vs FEM

1 0.992 0.993
2 0.992 0.993
3 0.993 0.986
4 0.938 0.916
5 0.927 0.934
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AP2000 24.0.0 Deformed Shape (MODAL) - Mode 1; T = 0.37615;  f = 2.65849 KN, m, 

1st Mode - Flexural (suspended span) - n1=2.66 Hz 

2nd Mode - Torsional (suspended span) - n2=2.85 Hz 

3rd Mode - Flexural (cantilever spans) - n3=4.89 Hz 

4th Mode - Torsional (semi-continuous scheme) - n4=5.44 Hz 

5th Mode - Flexural (semi-continuous scheme) - n5=7.01 Hz 

Figure 3.42: First five mode shapes obtained from the refined FE model.

On the evaluation of concrete elastic modulus PDF via PTM

The concrete elastic modulus Ec can be related to its cylindrical compressive strength
fc via the following relation proposed by Eurocode 2 [193]:

Ec = 22000

(
fc
10

)0.3

(3.22)

where fc can be expressed in terms of cubic compressive strength Rc as follows:

fc = 0.83Rc (3.23)

Eq.(3.22) is a power-law function, differentiable and invertible, in the form Ec = aRb
c

where a = 10426.7 and b = 0.3. Further, the inverse relation which expresses Rc in
terms of Ec is:

Rc = g(Ec) =

(
Ec

a

)1/b

(3.24)

Since Eq.(3.24) is monotonous it is possible to apply the PTM in the form:
∫ Ec2

Ec1

fEc
(ec)dec =

∫ Rc2

Rc1

fRc
(g(Ec)) · g′(ec)dec (3.25)

where fX(x) represents the PDF of the considered random variable (i.e, Ec or Rc).
Therefore, by exploiting Eq.(3.25), the PDF of the elastic modulus is derived once the
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PDF of the cubic compressive strength is known. The latter is determined by fitting
the log-normal distribution to the available experimental data once the samples’ mean
and standard deviation are evaluated. Specifically, the analytical form of the PDF of
the elastic modulus has the following form:

fEc
(Ec) = fRc

(g(Ec)) · g′(Ec) = fRc

[(
Ec

a

)1/b
]
·

(
Ec

a

)−1+a/b

ab
(3.26)

From the knowledge of fEc
(Ec), it is possible to calculate the corresponding CDF, i.e.

FEc
(Ec), and therefore the 5% and 95% fractiles of the elastic modulus. On the other

hand, the mean elastic modulus Ecm is evaluated as follows:

Ecm = E[Ec] =

∫ ∞

−∞
ecfEc

(ec)dec (3.27)

where E[·] is the expected value operator. Using the above-mentioned procedure the
elastic moduli of girders and RC slab have been calculated for both the investigated
batches and are listed in Tab. 3.12.

Table 3.12: Estimated fractiles of concrete elastic modulus using PTM (values are expressed in GPa).

Girders Slab and transverses

Batch E5% Ecm E95% E5% Ecm E95%

7 27.39 29.67 32.07 21.53 24.84 28.45
9 28.16 30.77 33.52 25.81 28.41 31.17
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CHAPTER 4

AN EFFICIENT MODAL IDENTIFICATION METHOD
BASED ON ENHANCED EMPIRICAL FOURIER

DECOMPOSITION

4.1 Introductory remarks
In the previous chapter, the performance of the VMD was discussed in the context
of the dynamic identification of existing bridges. However, it has been noted that
the correct tuning of this method is not always straightforward, thus requiring fur-
ther investigations into possible alternatives. Further, a very recent decomposition
method called the Empirical Fourier Decomposition (EFD) technique [146], showed
nice performances when addressing theoretical signals. It operates the extraction of
the uni-modal components through an improved segmentation of the frequency spec-
trum and a zero-phase filter bank.

Both the VMD and the EFD techniques are among the approaches that are rapidly
attracting attention in the field of dynamic identification via advanced decomposition
methods. In this regard, Civera and Surace [195] have analyzed the performance of
different decomposition methods concluding that the VMD technique is most suit-
able for structural monitoring applications. On the other hand, few applications of
the EFD technique are already available in structural monitoring literature and are
limited to signal features extraction. [196]. The available evidence suggests that both
these techniques can attain very accurate results. Specifically, their performance is
influenced by the correct selection of the involved control parameters, which should
be possibly set in an automatic fashion, thus not relying on any feedback from the
analyst. The feasibility of the VMD technique for the dynamic identification of the
modal parameters of bridge structures has been demonstrated by Yang et al. [29] and
Mazzeo et al. [30, 177], who also developed suitable strategies towards the automatic
optimal tuning of its control parameters. Currently, there is a lack of documented
comparative evaluations related to the modal parameters estimation of real structural
systems by means of the EFD technique, which is an impediment to understanding its
accuracy and reliability in automatic dynamic identification.

This chapter presents the recent results provided by the author on this topic
[197, 198]. Specifically in Section 4.2 an enhanced implementation of the EFD tech-
nique for automatic dynamic identification purposes is presented. The novel contri-
butions are: i) a smoothing-based improved segmentation of the frequency spectrum;
ii) an iterative automatic process for the optimal tuning of the number of frequency
spectrum partitions. The whole identification procedure is completed by implementing
an area-based approach for modal damping ratios estimation, whereas a time-domain
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method based on the phase shift of the free vibration response peaks is employed
to identify the mode shapes. Section 4.3 addresses the performance of the proposed
framework via synthetic benchmark signals with specific attention to the case of closely
spaced modes and minor modes. Further, the precision of the estimates is assessed via
a statistical analysis considering the effect of noise. Finally, in Section 4.4 experimen-
tal applications are discussed. Specifically, the first case-study deals with the dynamic
characterization of the cables in the same stay-cabled bridge analyzed in Chapter 3,
comparing the performances of VMD and EFD. The second case-study is concerned
with the modal identification of a steel railway bridge deck.

4.2 Automatic modal identification based on the EFD
technique

4.2.1 Modal identification by means of the EFD technique
The proposed identification procedure is based on the detection and extraction of the
uni-modal components from the free vibrations of a structural system. This is accom-
plished by means of the EFD technique, which is an adaptive decomposition method
introduced recently by Zhou et al. [146] in order to overcome the limitations typically
recognized in the other methods based on Fourier transform such as EWT [139] and
FDM [147]. The EFD technique allows the decomposition of a multi-modal signal into
its uni-modal components via a spectrum segmentation procedure combined with the
construction of a zero-phase filter bank. The segmentation procedure aims at pro-
ducing N frequency partitions of the frequency spectrum of the signal to be analyzed
whereas the zero-phase filter bank is required to perform the actual decomposition.
Central frequencies of all the segments are extracted as the frequency values in the
Fourier spectrum at which the first N highest local maxima are attained. There-
fore, the decomposition of the free vibrations allows the identification of all relevant
modal parameters of the structure according to the approach described by Mazzeo
et al. [30, 177]. Particularly, the component central frequencies are taken as modal
frequencies of the structural system whereas modal damping ratios and mode shapes
are retrieved according to Eqs.(3.10) and (3.13), respectively.

Although the application of the EFD technique is appealing for modal identification
of structures from free vibrations, there are two significant shortcomings that prevent
its automatic and robust implementation:

• If the Fourier transform of the signal is noisy, especially close to the peaks, a
wrong segmentation is likely to occur. This is due to the fact that trivial peaks
not related to modal frequencies occur, which might be wrongly picked up as
suitable values of Ωn. Consequently, trivial local minima points are generated
in each frequency partition, thereby misleading the identification of ωn based on
Eq.(2.125).

• The number of frequency partitions N and, as a consequence, the number of
components to be extracted must be assigned before the identification starts. If
there is not any a priori information, then the proper setting of this parameter
might be an issue for automatic applications. This, in turn, might jeopardize
the correctness of the decomposition procedure.
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Efficient strategies are proposed hereafter in order to cope with both these issues.

4.2.2 Improved segmentation based on smoothed frequency
spectrum

Even though the signal might be pre-processed by band-pass filtering to retain only the
frequencies falling within the range of interest, the accurate estimation of the frequency
spectrum might become challenging due to the residual noise, thereby leading to an in-
correct identification of the modal components. This turns out to negatively affect the
search for the boundaries of the frequency partitions in the EFD technique according
to Eq.(2.125). In order to figure out the detrimental consequences of this issue, a real
signal is considered in Fig. 4.1 with N = 3 (herein, it is considered the experimental
cable response of a cable-stayed bridge that will be thoroughly examined later). It
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Figure 4.1: Incorrect spectrum segmentation of a real signal (dashed vertical lines denote the bound-
aries of the frequency segments).

is evident in Fig. 4.1 that the original segmentation process of the signal spectrum
wrongly sets a partition boundary at the peak that corresponds to a system frequency
representative of a vibration mode. As a result, the first two frequency peaks (i.e.,
the first two vibration modes) are not separated, and mode-mixing occurs. Spectral
smoothing approaches have been adopted previously to mitigate the effect of the noise
in other decomposition methods and to assist the proper setting of the boundaries
of the frequency partitions. Smoothing approaches based on signal spectrum enve-
lope [199, 200], moving average filters [201] and Savitzky-Golay filter [202, 203] have
been adopted in the attempt to improve the spectral representation of the signals.

The proposed solution to improve the segmentation process in the frequency do-
main for the EFD technique consists of the application of a zero-phase moving average
filter in order to smooth the signal spectrum. The moving average filtering operator
can be expressed in the following general form:

ŷ∗[i] =
1

n∗

n∗−1∑

j=0

ŷ[i+ j] (4.1)

where ŷ[i] is the sampled input spectrum, ŷ∗[i] is the corresponding sampled output
(smoothed spectrum) and n∗ is the number of samples used in the moving average.
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The motivation for using this filter lies in its simplicity of implementation and the
minimum number of control parameters. Actually, the only control parameter is the
number of samples n∗ in the moving average. It is advisable to use a small number
of samples n∗ in order to avoid too large distortions (i.e., excessive flattening) in the
frequency spectrum of the signal. Therefore, the numerical value of this parameter
must be related to the frequency resolution adopted for the Fourier transform, which
implies that it must depend on the considered number of frequency lines nFT (this
latter is usually defined taking into account the recorded signal duration, and it is
settled a priori based on the imposed excitation level as well as the expected structural
damping). The following rule is thus implemented:

n∗ = round[ln(nFT)/2] (4.2)

where round[·] is the rounding operation to the nearest integer. It must be pointed
out that the moving average filter in Eq.(4.1) produces a delay between the original
and filtered output such that the higher n∗, the larger the delay. In order to remove
the delay between input and output, the zero-phase requirement is invoked in the
filter construction (in MATLAB programming language, this result can be obtained
by means of the built-in function “filtfilt"). Figure 4.2 shows the comparison between
the frequency spectrum presented in Fig. 4.1 and its filtered version obtained by means
of Eq. (4.1): it is evident that the frequency partitions are properly recognized after
smoothing, and mode-mixing is now prevented.

It is important to highlight that the construction of the smoothed frequency spec-
trum only serves at detecting the frequency boundaries for each partition. This means
that, once the number of partitions N has been defined, the zero-phase filter bank
involved in the EFD technique is applied on the actual frequency spectrum of the
signal using the cut-off frequencies recognized from its smoothed frequency spectrum
according to Eq.(2.125).

4.2.3 Tuning of the number of frequency spectrum partitions
The correct choice of the number of frequency segments N is a critical requisite for the
EFD technique because it also defines the number of the extracted uni-modal compo-
nents. A small value of N will cause mode-mixing (i.e., under-decomposition) whereas
a large value will split the contribution of a single mode into several components
(i.e., over-decomposition). A rough estimate of this parameter might be obtained by
counting the number of peaks in the Fourier transform of the signal. However, if resid-
ual noise remains after the filtering process and/or the signal exhibits closely spaced
modes, then this criterion becomes too subjective and, ultimately, it is not suitable
for automatic applications.

In order to overcome this further limitation of the original EFD technique, an auto-
matic three-steps procedure is here proposed for the optimal tuning of the parameter
N . Initially, the Fourier Transform is applied to the considered signal and the result-
ing frequency spectrum is smoothed by means of the moving average filtering as per
Eq.(4.1), being the filter order defined according to Eq.(4.2). A few large peaks in the
smoothed frequency spectrum will have a physical meaning since they are associated
with real modes, whereas the others are small trivial peaks due to the noise. It is
evident that the prominence of the peaks plays a major role in this regard: in fact,
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Figure 4.2: Smoothing of the signal frequency spectrum: comparison between original and smoothed
frequency spectrum (top); correct segmentation of the frequency spectrum after zero-phase moving
average filtering (bottom).

only the peaks whose prominence is larger than a given threshold count towards N
while they are trivial peaks otherwise. Keeping this in mind, a tentative value of N is
initially established in the first step as the number of peaks of the smoothed frequency
spectrum whose amplitude F̂ ∗ fulfills the following condition:

F̂ ∗ ≥ s1 (4.3)

where s1 is a threshold parameter. A rational probabilistic criterion is proposed to
set the threshold parameter s1. Let F̂ ∗ be a random variable with non-zero variance
σF̂∗ and non-zero mean µF̂∗ . Regardless the probabilistic distribution of F̂ ∗, the
Chebyshev’s inequality [194] states that:

Pr(|F̂ ∗ − µF̂∗ | ≥ kσF̂∗) ≤
1

k2
(4.4)

where k ∈ R. Since most of the peaks in the frequency spectrum are due to the noise,
those corresponding to real modes are in the tail of the probabilistic distribution of
F̂ ∗. For a target probability of exceedance equal to 0.90, it follows from Eq.(4.4)
that s1 = µF̂∗ + kσF̂∗ with k = 3.162. It is not recommended to assume a lower
target probability of exceedance (i.e., a lower value of k) since this will significantly
increase the chance of counting trivial peaks towards N . Conversely, a larger target
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probability of exceedance (i.e., a larger value of k) will reduce excessively the number
of identifiable modes N . It is highlighted, however, that this first step provides a
preliminary estimation of N , whose value can be subjected to adjustments in the
further steps of the proposed procedure.

The energy lost in the reconstruction process is evaluated in the second step. To
this end, a performance reconstruction factor (PRF) is introduced as follows:

PRF =

∣∣∣
∣∣∣y(t)−

∑N
n=1 yn(t)

∣∣∣
∣∣∣
2

||y(t)||2 (4.5)

where || · || is a suitable norm operator (e.g., Euclidean norm). This parameter is a
measure of the accuracy in the reconstruction of the initial signal through the extracted
components. The smaller the PRF is, the closer the reconstructed signal ỹ(t) given
by Eq.(2.129) is to the original one y(t). Having so done, the following condition is
checked:

PRF ≤ s2 (4.6)

where s2 is a threshold parameter. The definition of the threshold parameter s2
depends on the target fidelity level of the signal reconstruction. A satisfactory trade-
off for practical applications is a maximum loss of energy equal to 1%, which implies
that s2 = 10−2. If the condition given by Eq.(4.6) is not fulfilled, this means that
the signal is under-decomposed and mode-mixing occurs. Therefore, the number of
segments must be at least one unit higher than the final value obtained previously
(i.e., it must be assumed N 7→ N + 1).

The last step of the proposed procedure aims at checking whether the obtained
value of N produces an over-decomposed signal (i.e., the mode-splitting phenomenon
occurs). To this end, the signal is decomposed into a number of components equal to
N , as it was obtained in the previous step. Hence, the distance between the central
frequencies for each couple of consecutive mode functions is evaluated as ∆ωn,n+1 =
ωn+1 − ωn ∀n ∈ [1, N − 1]. Next, it is counted the number of times θ for which the
following condition is fulfilled:

∆ωn,n+1 ≤ sn,3 ∀n ∈ [1, N − 1] (4.7)

Following such a check, the number of frequency partitions is updated as N 7→ N − θ.
The definition of the threshold parameter sn,3 is related to the frequency resolution
of the EFD technique, that is the minimum distance between two consecutive central
frequencies that allows the correct extraction of the corresponding components. Taking
into account the available studies [204], it is set as sn,3 = 5ωn/100.

The flowchart in Fig. 4.3 illustrates the proposed original procedure for the auto-
matic tuning of the number of frequency partitions N . Once the optimal value of N
is obtained at the end of the procedure detailed in Fig. 4.3, the cut-off frequencies
are recognized from the smoothed frequency spectrum of the signal as per Eq.(2.125).
Finally, the zero-phase filter bank involved in the EFD technique is performed on the
actual frequency spectrum of the signal to retrieve the N components.

The proposed procedure for the automatic tuning of N basically looks for its op-
timal trade-off by preventing both under-decomposition (i.e., mode-mixing) and over-
decomposition (i.e., mode-splitting) of the analyzed signal. If the frequency spectrum
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Figure 4.3: Flowchart of the proposed automatic selection procedure for the number of the frequency
partitions N .

of the considered signal is smooth enough by itself, then the procedure is likely to
converge to the right value of N at the end of the first step whereas the second and
the third step holds no influence. This condition, however, is not the most common in
practical applications. Consequently, if the frequency spectrum of the signal is rather
noisy, then the first step of the procedure will converge to an improper value of N .
Unfortunately, the preliminary smoothing of the signal frequency spectrum does not
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always fix such a problem. In order to better clarify the existing issues, a real sig-
nal with N = 3 is investigated in Fig. 4.4 (herein, it is considered the experimental
cable response of a cable-stayed bridge that will be thoroughly examined later). On
the one hand, if the actual signal frequency spectrum is considered, then the high
trivial (i.e., non-physical) peaks near the ones corresponding to the real components
will lead to an incorrect estimation of the number of frequency segments N . On the
other hand, the selection of the value of N from the smoothed frequency spectrum of
the signal only can also produce a wrong spectrum segmentation. In fact, since the
application of the smoothing technique on the frequency spectrum makes it more flat,
the difference between peaks corresponding to trivial and real modes is reduced and
both are wrongly counted towards N , thereby overestimating its value and causing
the over-decomposition of the signal. By considering the actual frequency spectrum
of the signal, the proposed procedure prevents all these issues taking into account si-
multaneously the peaks prominence as well as the fidelity of the signal reconstruction
and the allowable frequency resolution of the EFD technique. So doing, the number
of frequency partitions N and the corresponding boundaries are settled correctly as
shown in Fig. 4.4.

4.3 Validation on synthetic signals

4.3.1 Generation of synthetic signals
The proposed improved automatic implementation of the EFD technique is validated
against synthetic signals in such a way to quantify objectively its accuracy and robust-
ness. Furthermore, since the reference results are known a priori in case of synthetic
signals, the results obtained via the proposed method based on the EFD technique
are compared with those carried out by means of the VMD technique [30] in order to
assess objectively its performance. To this end, the typical free vibration response of a
multi-degree-of-freedom civil structure is considered, which can be generally expressed
as follows:

y(t) =

N∑

n=1

Ane
−ξnωnt cos(ω̄nt− φn) + w(t) (4.8)

where An is the nth component amplitude, ξn is the nth modal damping ratio,
ωn = 2πνn is the nth modal circular frequency (νn being the modal frequency),
ω̄n = ωn

√
1− ξ2n is the corresponding nth circular damped frequency, φn is the nth

component phase and w(t) is the measurement noise.
Free-noise data are considered to evaluate the accuracy under reference conditions.

Noisy data are taken into account in order to test and evaluate the robustness of the
identification under more realistic monitoring conditions. The measurement noise w(t)
in Eq.(4.8) is generated as white Gaussian noise with an assigned signal-to-noise ratio
(SNR), which is defined as follows:

SNR = 10 log10

(
Ps

Pn

)
(4.9)

where Ps and Pn denote the signal and noise average power, respectively. The lower the
SNR, the noisier the signal will be. Noisy signals are thus simulated according to the
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Figure 4.4: Possible issues that can jeopardize the correct estimation of the number of the frequency
partitions N for a real signal: occurrence of high trivial peaks near the ones corresponding to the
real components of the actual frequency spectrum of the signal (top); ill-conditioned discrimination
between trivial and real peaks (both marked with dots) due to the flattening originated by a prelimi-
nary smoothing of the signal frequency spectrum (middle). Correct spectrum segmentation according
to the proposed automatic procedure (bottom).
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targeted SNR level by assuming an additive-type randomly generated white Gaussian
noise w(t) as per Eq.(4.8). Three noise levels are considered, namely 0 dB, 5 dB and
15 dB (it is pointed out that the resulting synthetic noisy signals are not subjected
to preliminary denoising). Because of the inherent randomness of the noise, a set of
100 independent noisy signals is produced for each noise level to allow a statistical
appraisal of the final results. It is remarked that modal frequency and damping ratio
maintain their nominal value in each noisy signal simulation whereas the randomness
is only related to the additive Gaussian white noise w(t), which is fleshly generated
for each run.

4.3.2 Synthetic signal with closely spaced modes
It is considered the free response of a multi-degree-of-freedom system simulated ac-
cording to Eq.(4.8) and consisting of four superimposed vibrations modes (i.e., N = 4).
The natural frequency values are taken equal to ν1 = 1.5 Hz, ν2 = 3.2 Hz, ν3 = 3.6 Hz
and ν4 = 10 Hz. It can be observed that the second and the third natural frequency
are rather close to each other (i.e., ∆ω2,3/ω3 about 10%) in order to assess the per-
formance of the proposed approach in detecting closely spaced modes. This condition
sometimes occurs when dealing with civil structures, even though it is not very com-
mon [180]. The modal damping ratio values are ξ1 = 3%, ξ2 = 1.2%, ξ3 = 0.8% and
ξ4 = 2%. The amplitudes of the modal components are assumed as A1 = 3, A2 = 1.8,
A3 = 1.6 and A4 = 5. All components are in phase (i.e., φn = 0 ∀n) and a sampling
frequency Fs = 1 kHz is adopted.

To begin with, the case of a free-noise signal is analyzed and thus the measurement
noise w(t) in Eq.(4.8) is initially null. Figure 4.5 shows the considered signal and the
corresponding frequency spectrum.

It can be inferred from Fig. 4.5 that the proposed algorithm for the selection of N
(see Fig. 4.3) enables the extraction of the right number of frequency partitions through
the EMD technique. Taking into account the Nyquist-Shannon sampling theorem, the
following frequency boundaries are obtained: νA = 0, νB = 2.5 Hz, νC = 3.4 Hz,
νD = 7.7 Hz and νE = 499.9 Hz. Figure 4.6 shows that there exists an almost perfect
match between the automatically extracted components of the considered free-noise
synthetic signal and the corresponding reference analytical modes.

The same free-noise synthetic signal is now decomposed by means of the VMD
technique. To this end, some control parameters must be set in advance to perform
the decomposition [125]. Particularly, the two key control parameters governing the
performance of the VMD technique, here recalled for clarity’s sake, are the number of
expected modesK and the quadratic penalty factor α [123,128]. The control parameter
K defines the number of uni-modal components to be extracted from the signal. Once
again, therefore, an over-decomposition of the signal is obtained for a high value of
K while a low value of K can produce mode-mixing effects. The control parameter
α rules the amplitude of the bandwidth. If α is small, then the bandwidths will be
overestimated and closely spaced modes might be grouped by causing mode-mixing
effects. Conversely, a too-high value of α can produce distortions that will compromise
the fidelity of the signal reconstruction. The main advantage of the EFD technique
over the VMD technique is thus related to the lower number of control parameters to
be tuned: while N only must be determined within the EFD technique, K and α must
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Figure 4.5: Synthetic free vibration response with closely spaced modes: free-noise synthetic sig-
nal (top); comparison between original and smoothed frequency spectrum of the signal (middle);
frequency spectrum segmentation by means of the proposed automatic implementation of the EFD
technique (bottom).

be defined to perform the VMD technique. It must be also remarked that, even if the
correct value of K is singled out, the results of the VMD technique are very sensitive to
variations of the value of α. Additionally, in view of automatic applications, the proper
selection of the parameterN in the EFD technique by means of the proposed procedure
is rather straightforward as compared to the optimal tuning of the parameters K and
α involved in the VMD technique. In this regard, the optimal tuning of K in the
VMD technique according to the procedure proposed by Mazzeo et al. [30] needs the
calculation of a stabilization diagram based on the concept of minimum correlation
between mode functions. Such a stabilization diagram then provides a feasible set of
values for α, from which the optimum is determined taking into account the power
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Figure 4.6: Synthetic free vibration response with closely spaced modes: comparison between the
reference analytical modes and the components extracted using free-noise data by means of the
proposed automatic implementation of the EFD technique.

spectrum of the processed signal and each mode function extracted iteratively by
means of the VMD technique. More details about the automatic optimal tuning
procedure for the control parameters of the VMD technique are provided in Chapter
3.

Figure 4.7 illustrates the results carried out by applying the VMD technique. The
decomposition is initially performed by assuming K = 4 and the default value α = 103.
Lastly, the automatic tuning procedure presented by Mazzeo et al. [30] is applied,
which provides K = 4 and α = 5.7 · 105. The comparison between the extracted
components and the corresponding reference analytical modes demonstrates the cor-
rectness of the VMD technique, provided that the numerical values of both K and α
are properly selected.

Tables 4.1-4.2 provide the results obtained by implementing the VMD technique
with default value of α (i.e., α = 103, given K = 4) and the optimal value of the
control parameters estimated according to the results in Chapter 3 and published in
Mazzeo et al. [30] (i.e., α = 5.7 · 105,K = 4). The results obtained by means of the
proposed implementation of the EFD technique are also reported.

The analysis of the results listed in Tab. 4.1 demonstrates that the VMD technique
as well as the EFD technique are able to identify accurately the natural frequencies of
the considered free-noise synthetic signal when they are properly implemented. The
exact value of the natural frequencies is retrieved by applying the EFD technique. A
negligible error is obtained by estimating the natural frequencies through the VMD
technique, provided that the value of α is properly optimized (very large errors can oc-
cur for lower modes otherwise). Remarkably, Table 4.2 also demonstrates that the way
by which the signal is decomposed has significant effects on the accuracy of the modal
damping ratio identification, even though noiseless data are considered. As regards
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Figure 4.7: Synthetic free vibration response with closely spaced modes: modal components extracted
by means of the VMD technique using free-noise data for the default value α = 103 (left) and
α = 5.7 · 105 as estimated automatically according to Mazzeo et al. [30] (right).

Table 4.1: Synthetic free vibration response with closely spaced modes: identification of the natural
frequencies using free-noise data by applying the VMD technique (with both default and optimal
values of α and K) and the EFD technique (with N calculated automatically according to the proposed
procedure).

VMD (default α) VMD (α = 5.7 · 105) EFD (proposed)

Mode Estimated
frequency

[Hz]

Relative
error
[%]

Estimated
frequency

[Hz]

Relative
error
[%]

Estimated
frequency

[Hz]

Relative
error
[%]

1 1.76 17.33 1.4988 0.08 1.5 0
2 2.54 20.63 3.1988 0.04 3.2 0
3 3.57 0.83 3.5993 0.02 3.6 0
4 9.98 0.20 9.9882 0.12 10 0

the application of the VMD technique, average and maximum value of the relative er-
ror in modal damping ratios identification are equal to 2.33% and 7.5%, respectively,
after a suitable calibration of α (unacceptable errors are obtained otherwise). Average
and maximum value of the relative error in modal damping ratios identification are
equal to 0.20% and 0.83% when the EFD technique is applied. The maximum error in
modal damping ratio identification is achieved when closely spaced signal components
are processed, regardless of the way by which the free-noise signal is decomposed.
Hence, although the identification of the modal damping ratios from free-noise data
via the VMD technique is still very good, the corresponding average and maximum
value of the relative error are about ten times those obtained by applying the EFD,
which thus results more accurate.

The robustness against the noise of the identification is now assessed. Figure 4.8
shows some sample noisy signals generated according to different noise levels as well as
the frequency spectrum corresponding to the sample noisy signal with the lowest SNR
value. Figure 4.8 confirms the feasibility of the proposed procedure (see Fig. 4.3) for
the automatic definition of the N components to be extracted by means of the EFD
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Table 4.2: Synthetic free vibration response with closely spaced modes: identification of the modal
damping ratios using free-noise data by applying the VMD technique (with both default and optimal
values of α and K) and the EFD technique (with N calculated automatically according to the proposed
procedure).

VMD (default α) VMD (α = 5.7 · 105) EFD (proposed)

Mode Estimated
damping

[%]

Relative
error
[%]

Estimated
damping

[%]

Relative
error
[%]

Estimated
damping

[%]

Relative
error
[%]

1 3.4 13.33 3 0 3 0
2 1.7 41.67 1.19 0.83 1.21 0.83
3 0.43 46.25 0.86 7.5 0.8 0
4 2 0 1.98 1 2 0

technique even in case of noisy data. It is noted that the segmentation procedure
detects and removes most of the noise from the partitions in the high-frequency region
of the signal spectrum. The comparison between Fig. 4.8 and Fig. 4.5 highlights that
the segmentation process reduces the width of the last partition.
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Figure 4.8: Synthetic free vibration response with closely spaced modes: noisy synthetic signals for
different values of the SNR (top); frequency spectrum segmentation of the synthetic signal with the
highest SNR by means of the proposed automatic implementation of the EFD technique (bottom).

It has been found that the identification of the natural frequencies is not influenced
significantly by the decomposition technique even in case of external disturbances.
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Therefore, natural frequencies can be properly identified from noisy data for all values
of the SNR by using either the VMD technique or the EFD technique. The estimation
of the modal damping ratio is instead more sensitive to the measurement noise, as it
emerges from the results listed in Tabs. 4.3-4.4.

Table 4.3: Synthetic free vibration response with closely spaced modes: identification of the modal
damping ratios using noisy data by applying the EFD technique (with N calculated automatically
according to the proposed procedure). Average value and standard deviation of the estimated modal
damping ratio are reported. Moreover, mean and maximum value (within brackets) of the relative
error are provided.

SNR=15 dB SNR=5 dB SNR=0 dB

Mode Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

1 2.99 1.96E−2 0.08
(2.11)

2.98 6.08E−2 0.50
(6.51)

2.97 1.22E−1 0.77
(9.37)

2 1.21 1.17E−2 0.56
(3.82)

1.22 3.81E−2 1.56
(10.21)

1.24 6.83E−2 3.15
(15.77)

3 0.82 9.36E−3 2.55
(5.67)

0.84 3.13E−2 4.89
(15.08)

0.85 5.78E−2 5.80
(23.45)

4 2.01 1.89E−2 0.50
(3.10)

2.04 3.34E−1 2.21
(17.66)

1.94 4.59E−1 3.00
(38.40)

Table 4.4: Synthetic free vibration response with closely spaced modes: identification of the modal
damping ratios using noisy data by applying the VMD technique (with α and K calculated auto-
matically according to the procedure proposed by Mazzeo et al. [30]). Average value and standard
deviation of the estimated modal damping ratio are reported. Moreover, mean and maximum value
(within brackets) of the relative error are provided.

SNR=15 dB SNR=5 dB SNR=0 dB

Mode Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

1 2.99 2.20E−2 0.33
(2.20)

2.98 8.31E−2 0.60
(9.26)

2.93 1.51E−1 2.33
(15.88)

2 1.17 2.13E−2 2.41
(6.61)

1.16 6.74E−2 2.50
(15.78)

1.15 1.46E−1 4.17
(35.02)

3 0.85 1.32E−2 6.29
(9.49)

0.84 4.18E−2 5.59
(15.66)

0.75 7.42E−2 6.25
(21.99)

4 1.95 2.58E−2 2.79
(6.33)

1.94 8.17E−2 2.86
(14.01)

1.93 4.70E−1 3.50
(40.01)

The results in Tab. 4.3 demonstrate that the application of the EFD technique
based on the proposed automatic segmentation of the signal spectrum provides very
good estimates of the modal damping ratios even in case of noisy signals. As expected,
the smaller is the SNR value, the larger is the error. This confirms that the proposed
automatic implementation of the EFD technique provides a very good and robust
frequency spectrum decomposition for modal damping ratio identification. Once again,
the accuracy of the automatic procedure based on the VMD technique proposed in
Chapter 3 is satisfactory, but slightly larger errors are found. In fact, the highest
average and maximum value of the relative errors in damping ratios identification by
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means of the EFD technique are equal to 5.80% and 38.40%, respectively, for the
highest noise level. The corresponding values of the relative errors obtained via the
VMD technique are 6.25% and 40.01%, respectively.

The use of the area-based approach for modal damping ratios as proposed in the
present study also plays an important role in this regard. In fact, if the standard
logarithmic decrement method is applied after signal decomposition as proposed by
He et al. [110], then the accuracy of the modal damping ratios identification reduces
significantly. It can be noted in Tab. 4.5 that, if the EFD technique is employed in
combination with the standard decrement logarithmic method to identify the relevant
modes, then the highest relative error for the highest noise level is about 12.93%
whereas the maximum relative error is 81.28%. This confirms that the EFD technique
should be implemented together with a suitable modal damping ratio identification
procedure in order to obtain the best estimates of the modal characteristics of the
structures.

Table 4.5: Synthetic free vibration response with closely spaced modes: identification of the modal
damping ratios using noisy data by applying the EFD technique (with N calculated automatically ac-
cording to the proposed procedure) in combination with the standard decrement logarithmic method.
Average value and standard deviation of the estimated modal damping ratio are reported. Moreover,
mean and maximum value (within brackets) of the relative error are provided.

SNR=15 dB SNR=5 dB SNR=0 dB

Mode Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

1 2.94 4.71E−2 1.85
(5.87)

2.96 1.50E−1 1.16
(13.63)

3.14 2.73E−1 4.66
(22.55)

2 1.33 1.81E−2 11.05
(15.00)

1.32 5.81E−2 10.35
(23.77)

1.33 1.07E−1 10.71
(47.53)

3 0.89 3.47E−2 11.49
(21.72)

0.88 1.04E−1 10.05
(43.98)

0.90 2.26E−1 12.93
(81.28)

4 2.05 3.38E−2 2.25
(5.77)

2.11 2.78E−1 5.29
(18.13)

2.16 9.58E−1 8.18
(57.94)

4.3.3 Synthetic signal with minor mode
It is now considered the free response of a multi-degree-of-freedom system simulated
according to Eq.(4.8) and consisting of three superimposed vibrations modes (i.e.,
N = 3). The natural frequencies are equal to ν1 = 1.5 Hz, ν2 = 3.5 Hz and ν3 = 7 Hz
whereas modal damping ratios are equal to ξ1 = 3%, ξ2 = 5%, ξ3 = 3%. The
amplitudes of the three signal components are equal to A1 = 1.5, A2 = 0.95 and
A3 = 4. All components are in phase (i.e., φn = 0 ∀n). Different noise levels are
considered, and a sampling frequency Fs = 1 kHz is adopted. Figure 4.9 shows
some sample noisy signals generated according to different noise levels as well as the
frequency spectrum corresponding to the sample noisy signal with the lowest SNR
value. The dynamic identification in the case of a minor vibration mode is the main
issue that the present benchmark aims at dealing with. In fact, it is evident from
the frequency spectrum in Fig. 4.9 that the peak corresponding to the second mode
is much lower than the peaks related to the first and third mode. This condition can

140



occur when the free vibrations are due to a force or displacement applied close to a
nodal point of a highly damped vibration mode. As a consequence, such vibration
mode is lowly excited and its accurate identification can be challenging.
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Figure 4.9: Synthetic free vibration response with minor mode: noisy synthetic signals for different
values of the SNR (top); frequency spectrum segmentation of the synthetic signal with the highest
SNR by means of the proposed automatic implementation of the EFD technique (bottom).

Once again, natural frequencies are well identified by means of either the EFD
technique or the VMD technique. The performances of the two approaches diverge
significantly when the modal damping ratios identification is examined, as can be ob-
served by comparing the results listed in Tables 4.6-4.7. On average, Tables 4.6-4.7
demonstrate that the implemented identification approaches based on the EFD tech-
nique and the VMD technique exhibit almost similar performance in terms of modal
damping ratio identification for a low noise level. The accuracy of the VMD technique
is still satisfactory on average for mid-high noise levels, but a significant degradation
is evidently noted. In fact, the largest value of the average relative error is less than
2% for both signal decomposition techniques at SNR=15 dB, but it is almost equal
15% for SNR=0 dB if the modal damping ratios are obtained through the VMD tech-
nique while is still less than 2% if the EFD technique is employed instead. The critical
analysis of the results in Tables 4.6-4.7 especially highlights the different robustness
between the two approaches. Standard deviations of the modal damping ratios esti-
mated according to the proposed automatic implementation of the EFD technique are
lower than the corresponding values obtained through the VMD technique. Further-
more, a deeper inspection of the maximum relative errors demonstrates that the VMD
technique sometimes fails to provide satisfactory estimates of the modal damping ra-
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Table 4.6: Synthetic free vibration response with minor mode: identification of the modal damping
ratios using noisy data by applying the EFD technique (with N calculated automatically according
to the proposed procedure). Average value and standard deviation of the estimated modal damping
ratio are reported. Moreover, mean and maximum value (within brackets) of the relative error are
provided.

SNR=15 dB SNR=5 dB SNR=0 dB

Mode Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

1 2.99 2.27E−2 0.03
(1.86)

2.98 7.15E−2 0.31
(5.55)

2.97 1.25E−1 0.81
(9.64)

2 5.03 1.08E−1 0.59
(6.38)

5.09 3.09E−1 1.77
(14.17)

4.90 5.41E−1 1.99
(25.10)

3 3.00 1.78E−2 0.08
(1.44)

3.01 5.08E−2 0.36
(4.48)

2.98 9.37E−2 0.55
(7.92)

Table 4.7: Synthetic free vibration response with minor mode: identification of the modal damping
ratios using noisy data by applying the VMD technique (with α and K calculated automatically
according to the procedure proposed by Mazzeo et al. [30]). Average value and standard deviation
of the estimated modal damping ratio are reported. Moreover, mean and maximum value (within
brackets) of the relative error are provided.

SNR=15 dB SNR=5 dB SNR=0 dB

Mode Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

Estimated
damping

[%]

Standard
Deviation

[-]

Relative
error
[%]

1 2.99 3.05E−2 0.08
(3.24)

2.94 1.07E−1 1.95
(12.60)

2.89 2.04E−1 3.63
(17.80)

2 5.10 9.40E−2 1.94
(16.14)

4.83 8.54E−1 3.46
(47.39)

4.43 12.49E−1 11.47
(54.04)

3 2.97 1.84E−2 0.89
(12.38)

2.84 4.51E−1 5.36
(53.83)

2.55 6.89E−1 14.92
(55.75)

tios (i.e., a relative error larger than 25% occurred for the second and the third modal
damping ratio in 1%, 5% and 18% of the simulations at SNR=15 dB, SNR=5 dB
and SNR=0 dB, respectively). Conversely, the automatic implementation of the EFD
technique presented in the current study dramatically reduces the number of failed
identifications and is really effective in alleviating the maximum value of the relative
error, thereby ensuring a more consistent estimation of the modal damping ratios than
the VMD technique. The identification of the minor mode is especially challenging
for both signal decomposition techniques. It can be deduced from Tab. 4.7 that the
inaccurate identification of the minor mode can affect, to a large extent, the reliable
identification of higher modes if the VMD technique is employed. Indeed, it can be
inferred from Tab. 4.7 that the identification of the vibration mode following the mi-
nor mode is less accurate than the first vibration mode when the VMD technique is
adopted. Conversely, it is noteworthy to observe that the proposed implementation of
the EFD technique does not facilitate the propagation of the larger errors associated
with the identification of the minor mode. This is deduced from the results in Tab. 4.6,
which show that the first and the third modal damping ratios are identified with a
similar accuracy level when the EFD technique is adopted.
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4.4 Experimental application on a roadway bridge
The first experimental application herein addressed deals with the roadway bridge over
the Garigliano river which has been already discussed in the previous chapter. The
data recorded at the cables (which were tested under free vibrations and previously an-
alyzed in the context of the VMD-based identification approach) have been once again
processed adopting the alternative EFD-based approach to compare its performance
with respect to a reliable identification approach. The dynamic response has been
monitored by means of a couple of uniaxial accelerometers with sensitivity equal to 10
V/g, which were mounted on the two faces of a steel angular element in such a way to
record both vertical and horizontal accelerations with respect to the longitudinal axis
of each cable. This angular element has been fixed to the bridge cable at an average
height equal to 3.8 m by means of nylon straps. The excitation on the cables was
induced by applying an impulsive load along two distinct directions (i.e., longitudinal
and transversal directions with respect to the longitudinal axis of the cables). Natural
frequencies and damping ratios have been identified from the free vibration response
of each cable by means of the EFD technique assisted by the proposed procedure for
the optimal automatic tuning of the control parameter N . As an example, Fig. 4.10
shows the free vibration response of the shortest bridge cable (Rome direction) due to
a vertical impulse load and the corresponding frequency spectrum. The proposed pro-
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Figure 4.10: Dynamic response of the shortest bridge cable (Rome direction): free vibration due to a
vertical impulse load (top); frequency spectrum of the considered signal (bottom).

cedure illustrated in Fig. 4.3 provides the correct value of N for the analyzed signal, as
it is shown in Fig. 4.11. A total of N = 4 frequency partitions has been identified and
the corresponding extracted modes are plotted in Fig. 4.12. For the considered signal,
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the estimated natural frequencies are ν1 = 6.42 Hz, ν2 = 13.16 Hz, ν3 = 20.52 Hz, and
ν4 = 28.52 Hz, while the modal damping ratios are equal to ξ1 = 0.12%, ξ2 = 0.16%,
ξ3 = 0.22%, ξ4 = 0.29%.
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Figure 4.11: Dynamic response of the shortest bridge cable (Rome direction): comparison between
original and smoothed frequency spectrum of the considered signal (top); frequency spectrum seg-
mentation of the considered signal (bottom).

The proposed identification procedure has been applied automatically (i.e., with-
out any external feedback) to all the available experimental data. The identified modal
frequencies for the first four modes of the bridge cables are listed in Tab. 4.8 (natural
frequency values are averaged over all the available signals for the examined cable).
It can be observed in Tab. 4.8 that the natural frequencies of the higher modes are
approximately integer multiples of the fundamental frequency, in agreement with clas-
sical theoretical results about the cable dynamics. These results are also in agreement
with previous studies that have exploited ambient vibrations [166,189].

The natural frequencies of the cables have been also calculated numerically in order
to evaluate the general correctness of the experimental estimates obtained by means
of the proposed identification procedure; to this aim the Eq.(3.20) proposed by Fang
et al. [191] has been adopted, being known the cables tensile force T . Specifically, T
is determined according to the original design and includes possible variations due to
traffic loads and thermal gradients. Moreover, the actual tensile force of the cables is
properly reduced (as compared to the initial value) to also account for tension losses
due to steel relaxation according to Eurocode 2 formulation (see Eq.(3.21)) [205]. Fig-
ures 4.13-4.14 show the ratio between the natural frequency of the cables estimated by
means of the proposed identification procedure νn,EFD and the corresponding reference
numerical values νn,num predicted by means of Eqs. 3.20-3.21. These plots demon-
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Figure 4.12: Dynamic response of the shortest bridge cable (Rome direction): components extracted
from the considered signal via EFD technique.

strate a very good agreement between experimental values and numerical predictions.
The maximum relative difference is about 5%, and a small scattering is observed by
processing different records. For almost all the cables, numerical predictions of the
natural frequencies are slightly larger than the experimental values.
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Figure 4.13: Ratio between the natural frequencies of the bridge cables (Rome direction) estimated
by means of the proposed identification procedure based on the EFD technique and the corresponding
reference numerical values predicted by taking into account the tension losses due to steel relaxation.
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Table 4.8: Natural frequencies for the first four vibration modes of the bridge cables estimated by
means of the proposed procedure based on the EFD technique.

Cable Rome direction Naples direction

ν1 [Hz] ν2 [Hz] ν3 [Hz] ν4 [Hz] ν1 [Hz] ν2 [Hz] ν3 [Hz] ν4 [Hz]

A 6.41 13.14 20.48 28.54 6.13 12.57 19.60 -
B 4.21 8.52 13.04 - 4.19 8.48 13.00 17.81
C 3.23 6.51 9.88 13.38 3.21 6.48 9.83 13.32
D - - - - 2.53 5.06 7.66 10.33
E 2.16 4.34 6.55 8.79 2.16 4.34 6.54 8.78
F 1.87 3.76 5.68 7.61 1.90 3.80 5.72 7.69
G 1.65 3.32 5.00 6.70 1.67 3.37 5.05 6.77
H 1.50 3.00 4.51 6.03 1.49 2.99 4.50 6.02
I 1.26 2.51 3.78 5.06 1.28 2.54 3.83 5.14
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Figure 4.14: Ratio between the natural frequencies of the bridge cables (Naples direction) estimated
by means of the proposed identification procedure based on the EFD technique and the corresponding
reference numerical values predicted by taking into account the tension losses due to steel relaxation.

To further confirm the accuracy of the identified natural frequency values, all
records have been also processed through the VMD technique by implementing the
procedure proposed in Chapter 3 (the corresponding natural frequency values are de-
noted as νn,VMD). Results in Fig. 4.15 demonstrate that there exists an excellent
agreement on average between the two approaches, as the points settle down close to
the quadrant bisector line for both roadway directions and for all the cables. Nonethe-
less, a more comprehensive statistical analysis performed on the natural frequencies
obtained for each cable from all available records confirms that the proposed identifi-
cation approach based on the EFD technique is more robust. In fact, the maximum
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coefficient of variation of the natural frequencies identified by means of the EMD tech-
nique and the VMD technique is equal to 7.72 · 10−3 and 6.47 · 10−2, respectively.
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Figure 4.15: Comparison of the natural frequencies of the bridge cables estimated by means of the
VMD technique and EFD technique.

The application of the proposed identification approach on the free vibration re-
sponse of the bridge cables also allowed the modal damping ratios identification up
to the fourth vibration mode. The estimated values of the modal damping ratios are
listed in Tab. 4.9 (modal damping ratio values are averaged over all the available sig-
nals for the examined cable), and they are in line with typical values found in other
studies about stay-cabled structures [192].

Two alternative approaches are implemented in the attempt to validate the exper-
imental estimates of the modal damping ratios obtained by means of the proposed
procedure. Particularly, free vibration responses are elaborated by means of the VMD
technique following the procedure proposed in Chapter 3. Moreover, the cables re-
sponses due to ambient vibrations are also considered to estimate their modal damp-
ing ratios using the Natural Excitation Technique (NExT) [86] combined with the
area-based approach. Figures 4.16-4.17 illustrate the modal damping ratios estimated
by means of all these methods. It is remarked that it would be ideal to compare
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the results obtained by means of the proposed approach with those carried out from
forced vibrations induced by gauged impact hammers or shakers. However, it was
not possible to perform none of such vibration tests. Since the ground truth of the
modal parameters is not known in real structures, the comparison of alternative ap-
proaches makes it possible to evaluate qualitatively the confidence level about the final
estimates.

Table 4.9: Modal damping ratios for the first four vibration modes of the bridge cables estimated by
means of the proposed procedure based on the EFD technique.

Cable Rome direction Naples direction

ξ1 [%] ξ2 [%] ξ3 [%] ξ4 [%] ξ1 [%] ξ2 [%] ξ3 [%] ξ4 [%]

A 0.12 0.15 0.21 0.22 0.23 0.27 0.30 -
B 0.19 0.17 0.23 - 0.16 0.33 0.28 0.32
C 0.12 0.14 0.12 0.18 0.19 0.11 0.10 0.13
D - - - - 0.28 0.11 0.10 0.13
E 0.26 0.14 0.14 0.13 0.1 0.08 0.09 0.08
F 0.22 0.08 0.07 0.17 0.29 0.17 0.13 0.14
G 0.22 0.09 0.14 0.11 0.12 0.13 0.11 0.09
H 0.11 0.21 0.15 0.12 0.12 0.60 0.07 0.15
I 0.17 0.18 0.09 0.1 0.09 0.09 0.14 0.10
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Figure 4.16: Modal damping ratios for the first four vibration modes of the bridge cables (Rome
direction) estimated by means of the proposed procedure based on the EFD technique and two
alternative methods.
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Figure 4.17: Modal damping ratios for the first four vibration modes of the bridge cables (Naples
direction) estimated by means of the proposed procedure based on the EFD technique and two
alternative methods.

The reasonable agreement among the modal damping ratio values that can be
inferred from Figs. 4.16-4.17 substantiates the general correctness of the proposed
procedure based on the EFD technique. Furthermore, it can be noted that the experi-
mental estimates of the modal damping ratios obtained under ambient vibrations are,
in most cases, slightly larger than those calculated from free vibration tests (both us-
ing the EFD technique or the VMD technique). The variability of the modal damping
ratios estimated for each cable from all available records further confirms the supe-
rior robustness of the proposed identification approach based on the EFD technique
for free vibrations-based dynamic identification. In fact, the maximum coefficient of
variation of the modal damping ratios estimated by means of the EMD technique and
the VMD technique is equal to 0.40 and 0.70, respectively.

4.5 Experimental application on a railway bridge
The last experimental application of the proposed identification framework deals with
a typical steel bridge of the Italian railway network (Fig. 4.18). It is a symmetric
simply supported truss bridge made up of two lateral spans, each one having length
of 28.54 m, and a central span whose length is 34.72 m. The bridge consists of two
longitudinal truss girders spaced at 5 m, with transverse frame at the deck. Each
truss girder consists of riveted longitudinal parallel top and bottom chords, struts and
diagonals. Lower chords are inverse T-shaped sections, diagonals and upper chords are
C-shaped built-up elements with stiffening brackets, while the struts have I-section. At
the lower chords, the trusses are connected by transverse elements and cross-bracing
systems.
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Figure 4.18: Overview of steel railway bridge investigated in the present study.

This experimental application aims at identifying natural frequencies, modal damp-
ing ratios and mode shapes of one of the lateral spans of the investigated railway bridge
from its dynamic response. Six triaxial accelerometers with sensitivity of 1000 mV/g
have been installed on the deck. The accelerometers have been placed on both sides
of the deck at 1/4, 1/2 and 3/4 of the span (Fig. 4.19). The signal acquisition was
performed considering a sampling frequency Fs = 1.6 kHz.

Figure 4.19: Layout of the steel railway bridge and details about the sensors position for monitoring
the dynamic response of one lateral span.

The dynamic identification of the bridge is performed by exploiting its free vibra-
tions after the passage of the train. Notably, one dataset consisting of six recordings,
one for each sensor installed on the bridge deck, has been exploited to carry out the
dynamic identification of the deck. Furthermore, the excitation for the present ex-
perimental application has been produced by a high-speed Frecciarossa train with a
total length of 317.84 m and a gross weight of 6086.6 kN marching at an average
speed equal to 163 km/h. Each recorded signal has been filtered by means of a 3rd or-
der Butterworth band-pass filter in order to limit the analysis of the frequency range
of interest, namely 3-30 Hz. The free vibration part of each signal is employed for
the present analysis (Fig. 4.20), and it is extracted automatically according to the
guidelines proposed by Yang et al. [29].
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Figure 4.20: Free vibration part extracted from a recorded signal of the steel railway bridge.

The modal characteristics of the monitored span of the railway bridge have been
estimated by means of the proposed procedure based on the EFD technique. For the
validation of these results, two further methods have been adopted to estimate the
modal properties of the railway bridge. Once again, the VMD technique has been em-
ployed following the procedure described in Chapter 3. Moreover, the covariance-based
stochastic subspace identification (SSI-COV) is adopted1 [79, 83] since the free vibra-
tion responses are proportional to the correlations of the responses to a white noise
excitation [206]. Three vibration modes have been identified using all the considered
techniques. The natural frequencies (average values over all the available signals) are
shown Fig. 4.21 and demonstrate a very good agreement among the considered tech-
niques. The statistical analysis performed on the natural frequencies obtained from
each measurement point demonstrates that the proposed identification approach based
on the EFD technique turns out to be more robust than that based on the VMD tech-
nique. In fact, the maximum coefficient of variation of the natural frequencies identified
by means of the EMD technique and the VMD technique is 4.2 · 10−3 and 1.3 · 10−2,
respectively. It is worth noting that the first and the second natural frequency are
close to each other. This is an impediment to an accurate modal identification based
on signal components extraction through a bank of band-pass filters with user-defined
cut-off frequencies, as usual in common practice. The identified mode shapes are il-
lustrated in Fig. 4.22. First and third vibration modes are representative of vertical
flexural mode shapes (first and second bending mode, respectively) whereas the second
vibration mode corresponds to a torsional mode shape. Figure 4.22 also provides a
comparison between the mode shapes identified through the proposed approach based
on the EFD technique and those obtained through the SSI-COV method. MAC can
be again employed to assess quantitatively the agreement between the mode shapes
carried out by means of these two alternative approaches (i.e., the closer MAC is to
1, the higher the similarity between the mode shapes carried out via EFD technique
and the SSI-COV method). As regards the considered railway bridge deck, a MAC
value equal to 0.95, 0.97 and 0.94 for the first, second and third mode has been found,
respectively. Therefore, the mode shapes obtained by means of the procedure pro-
posed in the present study agree very well with those estimated through the SSI-COV

1The identification by means of the SSI-COV technique is performed using the open-source toolkit
available at https://code.vt.edu/vibes-lab/modal-analysis.
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Figure 4.21: Natural frequencies of the railway bridge span estimated according to different identifi-
cation methods.

technique. This confirms that the proposed procedure based on the EFD technique
identifies accurately the mode shapes, with a much lower computational effort than
the SSI-COV technique. Indeed, some operations invoked into the SSI-COV technique
(such as the preparation of the block Toeplitz matrix of covariances and the singular
value decomposition) need a high elaboration time and a large memory usage while the
implementation of the proposed approach requires basic operations and a minimum
computational effort.

Figure 4.23 is meant at comparing the modal damping ratios obtained by means
of the considered alternative identification methods. The results in Fig. 4.23 demon-
strate a general good agreement between the estimates obtained by means of the
proposed approach and those carried out via the VMD technique. There is, however,
a rather significant difference about the modal damping ratio value for the third vi-
bration mode, as estimated at some measurement points. The statistical elaboration
of the modal damping ratios obtained from different measurement points further con-
firms the large robustness of the dynamic identification performed according to the
approach presented in the current study. While the maximum coefficient of variation
of the modal damping ratios identified by means of the proposed approach is 0.36, the
corresponding value obtained via the VMD technique is equal to 0.42.

For the sake of completeness, it is pointed out that the modal damping ratios es-
timated via the SSI-COV technique are ξ1 = 2.3%, ξ2 = 2.5% and ξ3 = 1.4%. Hence,
the first and the third modal damping ratio values differ significantly from those cal-
culated through the EFD technique and the VMD technique. Actually, this difference
is attributable to the fact that SSI methods are not able to identify accurately the
damping ratios in case of strongly non-stationary signals [207].

For a critical examination of the obtained estimates of the modal damping ratios,
reference values from relevant technical codes and reports are considered. In this
regard, Eurocode 1- Part 2 §6.4.6.3.1 [208] provides the lower bound value of the
modal damping ratio, which is assumed constant for all modes and is based on the
construction material of the bridge as well as on the span length, as reported in
Tab. 4.10. Another estimation of the damping ratio is provided by the European
Commission in the "Guideline for estimating structural damping of railway bridges"
D5.2-S2 [209]. In this case, the constant modal damping ratio can be calculated as
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Figure 4.22: Estimated mode shapes of the railway bridge span: identification by means of the
proposed approach based on EFD technique (left); identification by means of the SSI-COV technique
(right).

the sum of three different contributions depending on the specifics of the structure,
namely material, structural type and bearings type. Table 4.11 lists the contributions
as named in such guidelines for this specific case. For the examined case study, a
constant minimum value of the modal damping ratio equal to ξ = 0.5% is recommended
by Eurocode 1 – Part 2 [208] while a constant modal damping ratio ξ = 0.64% is
calculated following the guidelines into D5.2-S2 [209]. It can be thus concluded that
the lower bound recommended by Eurocode 1 – Part 2 as well as the constant modal
damping ratio value suggested by D5.2-S2 agree well with the minimum estimates
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Figure 4.23: Modal damping ratios of the railway bridge span estimated according to different iden-
tification methods.

Table 4.10: Lower limit of the modal damping ratio proposed in EC1 – Part 2 [208].

Bridge type Lower limit of percentage of critical damping [%]

Span L < 20 m Span L > 20 m

Steel and composite ξ = 0.5 + 0.125(20− L) ξ = 0.5
Prestressed concrete ξ = 1 + 0.07(20− L) ξ = 1

Filler beam and reinforced concrete ξ = 1.5 + 0.07(20− L) ξ = 1.5

of the modal damping ratio found in the present study, which occurs for the third
vibration mode as shown in Fig. 4.23. These reference values underestimate the modal
damping ratios for the first and the second vibration mode as plotted in Fig. 4.23, being
conservative towards the actual overall dissipation capacity of the structure. Finally,
it is pointed out that the estimated modal damping ratios are in reasonable agreement
with the values reported in other studies [210–212] on steel truss railway bridges with
similar materials and static configuration.
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Table 4.11: Modal damping ratio value proposed in D5.2-S2 [209]

Damping ratio [%]

Material damping: steel 0.08
Nonmaterial structural damping: steel riveted bridge 0.32

Interaction damping: standard sliding bearings 0.24
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CHAPTER 5

BRIDGES INDIRECT MODAL IDENTIFICATION BASED
ON THE DYNAMIC RESPONSE OF MOVING VEHICLES

5.1 Introductory remarks
In the last decades, the development of vibration-based techniques for structural identi-
fication has become a relevant area among researchers in the civil and mechanical engi-
neering community, especially for structural health monitoring (SHM) purposes [213].
Vibration-based testing relies on the concept that structural modal parameters depend
on several physical characteristics of the structure and change when deterioration or
damaging mechanism occurs [214]. Notably, classical direct monitoring approaches
typically require the permanent installation of a large network of sensors on the struc-
ture. In this manner, the recorded responses due to ambient excitation are processed,
and classic methods of Operational Modal Analysis (OMA) are used to estimate the
modal parameters. However, due to the large number of sensors generally required
for each structure, this strategy is not always feasible. Particularly for medium or
short-span bridges, direct vibration monitoring becomes uneconomical to be used con-
sistently, limiting its application only to specific critical infrastructures. In this regard,
significant limitations of the direct monitoring approach include the high installation
and maintenance costs, the conspicuous volume of raw data to be processed, and the
different durability timespan between the monitored structure and monitoring sys-
tem [215].

On this basis, several research efforts have been focused on the development of
different and more economical vibration-based procedures that may lead to the assess-
ment of the conditions of a large number of bridges. In this framework, an indirect
approach generally referred to as vehicle scanning method (VSM) has recently gained
increasing attention among researchers in the field, due to its ability to possibly over-
come classical direct approach main limitations. This procedure, firstly introduced by
Yang et al. [216], is based on a drive-by approach where a testing vehicle moves over
the bridge, while its vertical acceleration response is recorded via few sensors directly
mounted on the car body or its axle. Notably, although both lab-scaled models [217]
and in situ testing [218–222] have shown the validity of the VSM in estimating the
fundamental frequency of the bridge, some issues may arise when dealing with this
procedure. Generally, for instance, the recorded response is affected by the vehicle-
related frequency content. In this case, the associated frequency spectrum usually
shows a peak related to the vehicle’s natural frequency whose magnitude may be
significantly higher than the structural ones, thus making it difficult to identify the
bridge frequencies. To cope with this issue, the possible use of the acceleration re-
sponse at the contact point between the vehicle tyre and the surface has been used
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and proved to be particularly suitable to identify the bridge dynamic parameters [223].
Further, an additional issue may be represented by the effect of pavement roughness
on the quality of the estimated parameters, since the introduced high-frequency noise
components can overshadow higher modes frequencies. In this regard, possible solu-
tions have been based on the use of the residual signal from the measurements of two
connected vehicles [224] or the vehicle front and rear tyre [225,226].

It is also worth making some considerations about the effect of the vehicle weight
in comparison with the bridge mass as well as the influence of the structural scheme.
Specifically, it has been found in [227] that the instantaneous frequencies significantly
change as the weight of the moving mass increases whereas are almost invariant if
the vehicle mass is negligible. On the one hand, if the vehicle is light in compari-
son with the bridge, the bridge modal frequencies are the first to be identified since
vehicle modal contribution is shifted on high frequencies and mode shapes can be
obtained by filtering the vehicle acceleration response and evaluating the envelope of
each response modal contribution. On the other hand, if the mass of the vehicle is
not negligible time-varying coupled frequencies of the vehicle-beam interaction system
are first detected and in this case mode shapes are evaluated considering their rela-
tionship with the instantaneous frequencies. Several real case applications of modal
frequencies identification considering different vehicle-bridge mass ratios may be found
in [218, 228, 229]. Further, it has been observed in [230] that if the vehicle scanning
is performed with ongoing traffic, the additional mass exciting the bridge produces
a positive effect that balances the noise induced by the pavement roughness helping
to identify bridge modal frequencies. With regard to the structural scheme, it is ob-
served that almost all the available literature on VSM considers the typical simply
supported boundary condition, however a few studies have investigated alternative
support conditions. In this context, Sitton et al. [231] propose a closed-form solution
for the identification of modal frequencies of a two-span continuous bridge using the
responses of passing vehicles. Demirlioglu et al. [232] compare the performance of
three VSM approaches for the estimation of mode shapes of bridges that are seated
on elastic supports. It has been found that, using a half-car model, the presence of
elastic supports leads to a significant decrease in the mode shape estimates: specif-
ically, the variation of the total load carried by the bridge at the instant of an axle
entering or leaving a bridge produces sudden variation in the displacement profile and
amplifications in the CP acceleration that leads to inaccurate mode shape estimates
at the bridge ends.

Clearly, the performance of both direct and indirect identification approaches is sig-
nificantly dependent on the adopted signal processing techniques and a crucial role is
attributed to the decomposition techniques chosen to retrieve the modal contributions
from the multi-modal analyzed signal. To this aim, one of the most adopted meth-
ods is the Empirical Mode Decomposition (EMD) [233] which employs an iterative
sifting process to extract modal components, generally referred to as Intrinsic Mode
Functions (IMFs). The theoretical foundations of this method have been extensively
addressed in Chapter 2 showing its inherent strengths and limitations. Specifically, it
is recalled that this method suffers from mode mixing problems and weakness against
the noise and, thus, improved variants of the EMD have been successively proposed
such as Ensemble Empirical Mode Decomposition (EEMD) [121]. In the context of
VSM-based monitoring, in [234] the EMD has been used in combination with Fourier
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transform to estimate the bridge frequencies from data of a passing vehicle, whereas
in [235] an EMD-based damage index has been proposed to assess the bridge health
condition. Further, in [236–238] EEMD has been applied to obtain improved bridge
modal parameters estimations from drive-by measurements and to capture sudden
stiffness changes.

As already mentioned in Chapter 2, in the last decades, several other decomposi-
tion methods have been proposed and applied for SHM purposes, among which the
Variational Mode Decomposition (VMD) [125] has proved to achieve high decom-
position quality in standard direct bridges dynamic identification procedures [123].
As previously seen, this method is based on a variational formulation that yields an
adaptive extraction of relevant modal components from a given time series and their
corresponding central frequencies. In this context, in Chapter 3 a tuned version of
VMD in combination with an area ratio-based approach and a time domain technique
was exploited to successfully identify frequencies, damping ratios and mode shapes
from different existing bridge typologies.

Notably, the applicability of VMD to the field of indirect dynamic identification
has been analyzed to a lesser degree. For instance, in [239] both numerical and ex-
perimental studies have assessed the efficiency of the VMD for the modal frequencies
estimations and no mode mixing effects have been observed. Further, recently Yang et
al. [18] introduced an identification approach combining VMD for the mode extraction
with RDT [92] for the free vibration responses generation and Hilbert spectrum (HS)
based method for the estimations of both natural frequencies and damping ratios. In
this regard, while high accuracy has been achieved in terms of natural frequencies,
some discrepancies have been observed in the estimation of damping ratios.

On this basis, it may be argued that further investigations should be carried out
for the modal parameters estimation combining the VSM and the VMD approaches.
Specifically, note that the free vibrations signals used for the modal parameters esti-
mations may be generated using different techniques once the decomposition is per-
formed, as for instance the RDT and NExT. However, there are no studies comparing
the quality of the identified modal parameters varying the free vibration generation
technique. Further, there are few applications in the literature regarding modal damp-
ing ratios identification, and their estimation is usually imprecise due to the pavement
roughness-related noise. Clearly, the use of novel noise-robust methods may be de-
sirable to improve the accuracy of the results. Finally, no studies in the literature
have applied the VMD for mode shapes identification. These points will be addressed
within the present study.

On the basis of the preceding conspectus, it is evident that further investigation is
required for the development of more suitable procedures for the identification of mode
shapes and modal damping ratios, in the context of VSM with a single-axis vehicle. To
this aim, in this chapter, an enhanced VMD-based procedure is proposed for the ac-
curate modal identification of bridges employing a single-axis vehicle. Specifically, the
VMD technique is applied to estimate the IMFs, and the associated central frequen-
cies, directly retrieved via the decomposition procedure, are assumed as the sought
structural natural frequencies. Each IMF is then converted into free vibration-like
signals using NExT. Further, the procedure involves proceeding to estimate pertinent
modal damping ratios from these signals by employing an appropriately developed
noise-robust area ratio-based approach. Finally, mode shapes are captured by using
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the instantaneous amplitudes of the IMFs, appropriately corrected to account for the
influence of the modal damping ratios.

The accuracy of the proposed approach is assessed using several numerical appli-
cations that consider the effect of both vehicle damping and pavement roughness, and
the estimated modal parameters are compared with the classic Hilbert spectrum-based
approach combined with both NExT and RDT for free vibration response generation.
The content of this chapter is based on one paper currently under review [240].

5.2 Theoretical formulation

5.2.1 Vehicle-bridge dynamics
For mathematical description purposes, the vehicle-bridge interaction problem is treated
by adopting a well-established simplified model which consists of a simply supported
Euler-Bernoulli beam (bridge girder) and a Single-Degree-Of-Freedom (SDOF) oscil-
lator (vehicle) moving over the beam with constant velocity v. The simply-supported
beam (see Fig. 5.1) has span length L, constant bending stiffness EI, mass per-unit-
length µ and damping c. The actual road pavement effect is considered by the def-
inition of a roughness profile r(x) with variable amplitude along the span length,
superimposed on the beam smooth surface. The equation of motion for the beam can
be therefore written as [241]:

EIw
′′′′
(x, t) + µẅ(x, t) + cẇ(x, t) = f(x, t) (5.1)

where w(x, t) is the beam vertical displacement while f(x, t) is the interaction force
between the moving oscillator and the beam at the contact point. Further, note that
in Eq.(5.1) the over-dot and the prime over a variable indicate the partial derivatives
with respect to time t and abscissa x, respectively.

Figure 5.1: Schematic of a SDOF moving oscillator (vehicle) crossing a simply supported beam
(bridge).

The moving oscillator is described as a discrete mass-spring-damper system with
mass mv, spring stiffness kv and damping coefficient cv, which takes into account
the effect of vehicle real suspension system. Under the assumption that the SDOF
oscillator crosses the beam with constant velocity v, and its vertical motion is described
by the following equation:

mv ÿ(t) + cv(ẏ(t) + ẇ(x̄, t) + vr′(x̄)) + kv(y(t)− w(x̄, t) + r(x̄)) = 0 (5.2)
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where y(t) is the absolute vertical displacement of the oscillator with respect to the
static equilibrium position ys = mvg/kv and r(x̄) is the amplitude of the roughness
profile evaluated at the contact point position x̄. In this manner, the contact force
f(x, t) between the oscillator and the bridge may be expressed as follows:

f(x, t) = [mvg−cv(ẏ(t)+ẇ(x̄, t)+vr′(x̄))−kv(y(t)−w(x̄, t)+r(x̄))]χ(t)δ(x−x̄) (5.3)

where δ(x− x̄) is the Dirac’s delta function centered at the contact point x̄ and χ(t)
is the window function defined as:

χ(t) =

{
1 for 0 ≤ t ≤ L/v

0 otherwise
(5.4)

By combining Eq.(5.2) and Eq.(5.3) the contact force may be expressed in the following
compact form:

f(x, t) = [mvg −mv ÿ(t)]χ(t)δ(x− x̄) (5.5)

According to the modal analysis procedure [22], it is possible to use the modal super-
position principle to approximate the beam vertical displacement w(x, t) as the sum
of its first nm modes:

w(x, t) ≃
nm∑

k=1

qk(t)ϕk(x) (5.6)

where ϕk(x) is the kth mode shape function of the beam and qk(t) the kth modal dis-
placement. In Eq.(5.6) the mode shape functions ϕk(x) with k ∈ [1, nm] are obtained
from the solution of the following eigenproblem:

ϕ
′′′′

k (x) = λ4kϕk(x) with k ∈ [1, nm] (5.7)

where λ4k = µω2
k/EI, and ωk is the circular frequency for the kth mode. Further,

considering the orthogonality conditions:
∫ L

0

ϕk(x)ϕj(x)dx = 0 ∀k ̸= j (5.8)

substituting Eq.(5.6) into Eq.(5.1), pre-multiplying both sides by ϕj(x), and integrat-
ing with respect to x over the length of the beam L, the equations of motion of the
beam in modal coordinates are:

q̈k(t) + 2ξkωkq̇k(t) + ω2
kqk(t) = χ(t)

ϕk(x̄)

µ
∫ L

0
ϕ2k(x)dx

[mvg −mv ÿ(t)] ∀k ∈ [1, N ] (5.9)

where ξk is the kth modal damping ratio under the assumption that the proportionality
to the masses condition [242] is respected. Note that, if the following normalization
condition is assumed: ∫ L

0

ϕ2k(x)dx = L (5.10)

Eq.(5.9) can be rewritten in the following form [243]:

q̈k(t) + 2ξkωkq̇k(t) + ω2
kqk(t) = εχ(t)ϕk(x̄)[g − ÿ(t)] (5.11)
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where ε = mv/(µL).
Similarly, substituting Eq.(5.6) into Eq.(5.2) and dividing by the mass mv, the

equation of motion of the oscillator can be expressed as:

ÿ(t) + 2ξvωv ẏ(t) + ω2
vy(t) = 2ξvωv

[
nm∑

k=1

q̇k(t)ϕk(x̄) + v

nm∑

k=1

qk(t)ϕ
′
k(x̄)− vr′(x̄)

]

+ ω2
v

[
nm∑

k=1

qk(t)ϕk(x̄)− r(x̄)

]

(5.12)

where ξv = cv/(2mvωv) is the vehicle damping ratio, ω2
v = kv/mv is the circular

frequency of the vehicle and the following relation is exploited:

ϕ̇k(x̄(t)) =
dϕk(x̄)

dx̄

dx̄(t)

dt
= vϕ′k(x̄) (5.13)

It is pointed out that Eq.(5.11) and Eq.(5.12) constitute a system of N + 1 coupled
differential equations which governs the dynamic response of the considered system,
taking into account the damping in both the bridge and the vehicle, as well as the
effect of the road pavement roughness.

5.2.2 Contact point response estimation
Indirect dynamic identification approaches are usually carried out by elaborating the
data recorded by sensors directly mounted on the vehicle body or its axle. However,
several studies in the literature [244, 245] have shown that the vehicle frequency may
significantly affect the recording spectra, overshadowing higher bridge modes, thus
limiting the identification to the first structural mode at most. To overcome this
limitation, Yang et al. [244] suggested the use of the contact point (CP) response as
a more suitable function for dynamic identification purposes. Specifically, considering
Eq.(5.6) the CP displacement dCP(t) can be expressed as:

dCP(t) = w(x̄, t) =

nm∑

k=1

qk(t)ϕk(x̄) (5.14)

Differentiating Eq.(5.14) with respect to time, the CP velocity vCP(t) assumes the
following expression:

vCP(t) = ẇ(x̄, t) =

nm∑

k=1

(q̇k(t)ϕk(x̄) + vqk(t)ϕ
′
k(x̄)) (5.15)

Finally, differentiating once more Eq.(5.15) with respect to time, the CP acceleration
aCP(t) is obtained as:

aCP(t) = ẅ(x̄, t) =

nm∑

k=1

(q̈k(t)ϕk(x̄) + 2vq̇k(t)ϕ
′
k(x̄) + v2qk(t)ϕ

′′
k(x̄)) (5.16)
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Notably, the CP acceleration is generally adopted in the dynamic identification pro-
cedures, due to the higher magnitude of frequency peaks in the Fourier domain in
comparison to the other CP response functions. Clearly, however, the contact re-
sponse cannot be easily measured in practical applications and, therefore, has to be
estimated based on the recorded vehicle vertical acceleration ÿ(t). In this regard, it is
possible to back-calculate the CP acceleration exploiting the dynamic vertical equilib-
rium equation of the vehicle once its acceleration ÿ(t) is known [230], as follows:

aCP(t) =
1

2ξvωv
e−

ωv
2ξv

t

∫ t

0

F (τ)e
ωv
2ξv

τdτ (5.17)

where it is assumed that:

F (t) =
d2ÿ(t)

dt2
+ 2ξvωv

dÿ(t)

dt
+ ω2

v ÿ(t) (5.18)

Note that, if the vehicle damping is neglected in Eq. (5.17), the CP acceleration
simplifies in:

aCP(t) = ÿ(t) +
1

ω2
v

d2ÿ(t)

dt2
(5.19)

In experimental applications, the surface on which the vehicle moves is always not
smooth and the recorded vehicle acceleration ÿ(t) implicitly takes into account the
effect of surface roughness, thus Eq.(5.17) can be efficiently adopted to determine the
CP acceleration. However, when calculating the CP acceleration in the numerical
simulations, Eq.(5.17) must be appropriately modified considering the explicit effect
of the roughness profile r(x). Specifically, differentiating twice with respect to time
Eq.(5.2) the following differential equation is obtained:

2ξvωv
dẅ(x̄, t)

dt
+ ω2

vẅ(x̄, t) =
d2ÿ(t)

dt2
+ 2ξvωv

d2ẏ(t)

dt2
+ ω2

v

d2y(t)

dt2

+ 2ξvωvv
3r′′′(x̄) + ω2

vv
2r′′(x̄)

(5.20)

which, for the initial condition ẅ(x̄, t)|t=0 = 0, has the following solution:

aCP(t) = ẅ(x̄, t) =
1

2ξvωv
e−

ωv
2ξv

t

∫ t

0

F ∗(τ)e
ωv
2ξv

τdτ (5.21)

where

F ∗(t) =
d2ÿ(t)

dt2
+ 2ξvωv

dÿ(t)

dt
+ ω2

v ÿ(t) + 2ξvωvv
3r′′′(x̄) + ω2

vv
2r′′(x̄) (5.22)

Finally, if the vehicle damping is neglected in Eq.(5.2), the CP acceleration simplifies
in

aCP(t) = ẅ(x̄, t) = ÿ(t) +
1

ω2
v

d2ÿ(t)

dt2
+ v2r′′(x̄) (5.23)

5.3 Proposed modal identification procedure
In this section, a novel modal identification procedure that uses vehicle indirect mea-
surements is introduced. The proposed modal identification approach is based on the

163



use of the contact response which contains the contributions of the K modes consid-
ered in the modal superposition. In this regard, the VMD [125] is exploited to retrieve
the uni-modal components. This method also allows the estimation of the central fre-
quency associated with each uni-modal component, which are assumed as the sought
modal frequencies in the proposed approach. Subsequently, the NExT [86] method
is adopted to convert the extracted uni-modal components into free-decay vibration
responses. Further, an area ratio-based procedure is considered for the estimation of
modal damping ratios, employing the aforementioned free-decay responses. Finally,
mode shapes are constructed by properly correcting the instantaneous amplitudes of
the isolated mode functions exploiting the estimated damping ratios. The flowchart
in Fig. 5.2 schematically summarizes the proposed identification approach.

Start

Acquisition
of the vehicle

acceleration ÿ(t)

Back-calculation of CP
acceleration response
aCP(t) using Eq.(5.19)

Selection of the
IMFs via VMD:
vk(t), k ∈ [1, N ]

Generation of free-decay
responses from

IMFs using NExT:
uk(t), k ∈ [1, N ]

Mode shapes estimation
as corrected IMFs

instantaneous amplitudes
via identified damping

ratios ξk using Eq.(5.25):
ϕk(t), k ∈ [1, N ]

End

Extraction of the modal
frequencies from VMD

using Eq.(2.112):
ωk, k ∈ [1, N ]

Estimation of modal
damping ratios via
the area ratio-based

approach using Eq.(3.10):
ξk, k ∈ [1, N ]

Figure 5.2: Flowchart of the proposed modal identification procedure.

Notably, once each IMF vk(t) is retrieved by means of the VMD, it is possible to as-
sociate the corresponding free-decay response, hereinafter labeled as uk(t), exploiting
the NExT properties [85,86]. Specifically, this method allows to generate impulse-like
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response functions for the analyzed system, based on measured structural responses
to white noise excitation. The generated free-decay functions are therefore exploited
for the evaluation of the modal damping ratios ξk following an approach based on
the evaluation of the areas under the system time history response, as originally for-
mulated for a single-degree-of-freedom (SDOF) system by Huang et al. [153]. The
main advantage of this approach consists in a strong anti-noise property which leads
to more accurate damping estimations. This methodology proved to be effective in
direct identification problems as in Mazzeo et al. [30], where the modal damping ratios
in existing bridges have been identified exploiting free vibration responses recorded by
sensors directly attached to the structure. This study aims to extend the aforemen-
tioned procedure to vehicle scanning indirect identification problems under ambient
excitation and prove its reliability. In this regard, consider the kth free-decay response
function uk(t) associated with the kth IMF vk(t); the damping ratio corresponding to
the kth mode can be calculated exploiting Eqs.(3.10) and (3.11). This procedure is
therefore repeated for all the selected modes, i.e. for each uk(t) with k ∈ [1, N ], to
complete the damping ratios identification process. Once the IMFs vk(t) and damping
ratios ξk have been evaluated, a procedure may be followed to estimate mode shapes,
appropriately extending an approach firstly introduced in [246]. Specifically, by ap-
plying the Hilbert transform operator to each IMF vk(t), the associated signal can be
defined as:

ṽk(t) = vk(t) + jH[vk(t)] = Āk(t)e
jθ(t) with k ∈ [1,K] (5.24)

where H[·] is the Hilbert transform operator, Āk(t) is the instantaneous amplitude
function associated with the kth IMF and θ(t) the corresponding instantaneous phase.

As shown in [246], the instantaneous amplitude function Āk(t) which is, by the
Hilbert transform properties, the envelope of vk(t), may represent a first estimate, in
absolute value, of the corresponding mode shape function associated with the instan-
taneous frequency ωk.

On the other hand, as discussed in [247], the bridge damping ratios effect produces
a combined shifting and scaling of the IMFs instantaneous amplitude if compared with
the undamped case.

However, it is possible to account for the damping ratio effect on each mode shape
estimation by properly correcting it as in [247]. Thus, the estimated mode shapes (in
absolute value) can be given as:

ϕk(x) =
Āk (x/v)

e−ξkωkx/v
with k ∈ [1,K] (5.25)

Notably, the estimated mode shapes according to Eq.(5.25), should be normalized
with respect to their corresponding maximum to be compared with their theoretical
counterpart.

5.4 Numerical Applications
In this section the proposed dynamic identification procedure is validated on numerical
applications, investigating the effects of vehicle damping ratio and pavement rough-
ness. The reliability of the proposed method in estimating the modal parameters is
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assessed by comparing different identification approaches: specifically, two procedures
for the free vibration response extraction are considered, namely NExT and RDT.
Modal frequencies and damping ratios, calculated according to the above-mentioned
procedure, are compared to the estimates obtained by Hilbert Spectrum (HS) based
identification method.

In this regard, note that the numerical applications presented in the following are
based on a vehicle-bridge system whose properties are listed in Table 5.1.

Table 5.1: Properties for the investigated vehicle-bridge system.

Bridge

Young’s modulus E 2.8 · 1010 [N/m2]
Moment of inertia I 0.2 [m4]

Mass-per-unit-length µ 5400 [kg/m]
Length L 30 [m]

ω1 1.78 [Hz]
Modal circular ω2 7.11 [Hz]

frequency ω3 16.00 [Hz]
ω4 28.44 [Hz]

Modal damping ratio
ξk 2 [%](equal for all the modes)

Vehicle

Mass mv 1000 [kg]
Spring stiffness kv 8 · 105 [N/m]

Velocity v 4 [m/s]

Circular frequency ωv 4.50 [Hz]
Damping ratio ξv 5 [%]

5.4.1 Case 1: Vehicle-bridge system neglecting vehicle damp-
ing and road pavement roughness

The first numerical application deals with the most simple-vehicle bridge system; that
is a sprung mass moving at a constant velocity v on a simply supported Euler-Bernoulli
beam. Further, both the effects of the vehicle damping ξv and pavement roughness
are neglected (ξv = 0, r(x) = 0), while the bridge damping ratio ξk with k ∈ [1,K] is
assumed constant for each mode. Note that a small velocity value in the simulations
is employed to avoid the so-called camel hump effect [248], i.e. the splitting in the
frequency spectrum of higher modes frequencies into left and right shifted components.

In this regard, the equations of motion (5.11) and (5.12) are solved, evaluating
the bridge and vehicle responses in terms of displacement, velocity and acceleration
(see Figs. 5.3(a)−(f)). Next, using the approach described in Section 2.2, the contact
point response function in terms of displacement, velocity and acceleration, and the
corresponding frequency spectra, are determined (see Figs. 5.4).

As it can be seen in Figs. 5.4(a)−(c), the proposed indirect approach (red line)
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Figure 5.3: Displacement, velocity and acceleration time-histories for the vehicle-bridge system in
Figure 5.1 neglecting the vehicle damping and road pavement roughness (ξv = 0, r(x) = 0): (a)
bridge response displacement, (b) velocity and (c) acceleration at midspan; (d) vehicle response
displacement, (e) velocity and (f) acceleration.
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Figure 5.4: Reference and back-calculated CP response functions (from (a) to (c)) and corresponding
frequency spectra (from (d) to (f)) for the vehicle-bridge system in Figure 5.1 neglecting vehicle
damping and road pavement roughness (ξv = 0, r(x) = 0): CP displacement (top), CP velocity
(middle) and CP acceleration (bottom).

yields response functions that perfectly match those obtained using classical modal su-
perposition (blue dashed line), thus underlining the reliability of the back-calculation
method. Moreover, it is observed that the contact point acceleration (see Fig. 5.4(f))
is the most suitable response function for indirect dynamic identification purposes due
to the highest level of peaks amplitude found for higher modes in comparison with the
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CP displacement and CP velocity functions (see Figs. 5.4(d) and 5.4(e)). Therefore,
hereinafter the CP acceleration is chosen for the application of the proposed dynamic
identification approach. In this manner, applying the VMD procedure, the first four
IMFs (see Figs. 5.5(a)−(d)) have been identified, whereas the vehicle frequency was
neither observable in the frequency spectrum nor retrieved in the decomposition pro-
cess. The identified modal frequencies obtained via VMD are listed in Tab. 5.2.
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Figure 5.5: IMFs extracted via the VMD from the CP acceleration of the vehicle-bridge system in
Figure 5.1 neglecting vehicle damping and road pavement roughness (ξv = 0, r(x) = 0): (a) first
IMF, (b) second IMF, (c) third IMF and (d) fourth IMF.
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The free vibrations associated with the IMFs have been extracted by means of
both NExT and RDT. For further comparison, the natural frequencies have been also
estimated from the free vibrations using the HS approach. The identified frequencies
obtained with the different approaches and their corresponding relative errors are
summarized in Table 5.2. It is observed that the estimated frequencies obtained as
VMD central frequencies are overall the most accurate ones with errors of less than
1%.

Table 5.2: Identification of the bridge natural frequencies from the vehicle-bridge system in Figure
5.1 assuming ξv = 0 and r(x) = 0. Comparison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within brackets.

Identified frequencies [Hz]

Mode Expected Proposed HS-based approach
number [Hz] VMD NExT RDT

1 1.777 1.782 (0.26%) 1.791 (1.11%) 1.783 (0.36%)
2 7.109 7.147 (0.51%) 7.150 (0.58%) 7.152 (0.53%)
3 15.996 16.023 (0.17%) 16.023 (0.17%) 15.94 (0.33%)
4 28.438 28.479 (0.15%) 28.419 (0.06%) 28.283 (0.54%)

Similarly, a comparison between damping ratios estimates is carried out as shown
in Tab. 5.3. Specifically, for the free-decay functions extracted via NExT and RDT,
both the area-ratio based approach and the HS one are considered. As it can be seen,
for the free vibrations functions extracted by both NExT and RDT, the proposed
area-ratio based approach is preferable, leading to significantly lower errors (less than
5%) in comparison to the HS-based approach.

Table 5.3: Identification of bridge damping ratios from the vehicle-bridge system in Figure 5.1 as-
suming ξv = 0 and r(x) = 0. Comparison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within brackets.

Identified damping ratios [%]

Mode Expected Area-based approach HS- based approach
number [%] NExT RDT NExT RDT

1 2 2.06 (2.94%) 2.01 (0.64%) 3.63 (81.40%) 2.79 (39.35%)
2 2 2.04 (1.95%) 2.10 (4.91%) 2.09 (4.33%) 2.42 (20.88%)
3 2 2.03 (1.28%) 2.06 (2.85%) 1.96 (2.02%) 2.10 (5.17%)
4 2 2.02 (1.00%) 2.02 (0.98%) 1.97 (1.65%) 2.05 (2.71%)

Finally, the first two mode shapes of the examined system have been correctly
identified through the proposed approach while higher modes have not been estimated
satisfactorily due to the lower level of excitation obtainable in indirect identification
approaches. Notably, Figs. 5.6(a) and 5.6(b) show that estimated mode shapes are
in good agreement with the theoretical counterparts. However, it is also observed a
sharp edge effect in both Figs. 5.6, which accentuates as the bridge damping ratios
increase: this, in turn, has a detrimental impact on the exploited technique accuracy
in constructing mode shapes.
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Figure 5.6: Comparison between theoretical and estimated mode shapes for (a) the first and (b)
second mode for the vehicle-bridge system in Figure 5.1 neglecting vehicle damping and road pavement
roughness (ξv = 0, r(x) = 0).

5.4.2 Case 2: Vehicle-bridge system considering vehicle damp-
ing and neglecting road pavement roughness

In the present application, the same vehicle-bridge system properties of the previous
case are adopted. However, since vehicle damping cannot be usually neglected when
considering the features of the testing vehicle due to the actual suspensions system, a
reasonable damping ratio value, i.e. ξv = 5%, is here adopted following other litera-
ture studies [249]. For this case study the road pavement roughness is still neglected
(r(x) = 0). As in the previous case, for dynamic identification purposes, the CP
acceleration is here employed (see Figs. 5.7(a) and 5.7(b)). It is observed that the
vehicle damping effect slightly alters the CP acceleration response amplitude as well
as the peaks magnitude of the frequency spectrum in comparison with the previous
case. However, for dynamic identification purposes, no significant alterations have
been shown and the first four modes have been accurately determined. The proposed
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Figure 5.7: (a) Reference and back-calculated contact point acceleration and (b) corresponding fre-
quency spectrum for the vehicle-bridge system in Figure 5.1 in presence of vehicle damping ξv = 5%,
and neglecting road pavement roughness (r(x) = 0).

identification procedure has been therefore applied to the extracted mode functions
leading to the estimations of modal frequencies (see Tab. 5.4) and damping ratios (see
Tab. 5.5). It may be observed that the slight variations in CP response and its corre-
sponding frequency spectrum are reflected on the estimated modal parameters which
show, in general, small discrepancies compared to the results in Section 4.1. Further,
it is also observed that damping ratios estimates with all the examined procedures are
more sensitive to this effect than the natural frequencies. Notably, again the proposed
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area ratio-based approach leads to the most accurate results.

Table 5.4: Identification of bridge natural frequencies from the vehicle-bridge system in Figure 5.1
assuming ξv = 5% and r(x) = 0. Comparison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within brackets.

Identified frequencies [Hz]

Mode Expected Proposed Hilbert spectrum based approach
number [Hz] VMD NExT RDT

1 1.777 1.782 (0.27%) 1.791 (0.79%) 1.782 (0.28%)
2 7.109 7.147 (0.53%) 7.151 (0.58%) 7.153 (0.609%)
3 15.996 16.023 (0.17%) 16.024 (0.17%) 15.943 (0.33%)
4 28.437 28.479 (0.15%) 28.419 (0.06%) 28.285 (0.54%)

Table 5.5: Identification of bridge damping ratios from the vehicle-bridge system in Figure 5.1 as-
suming ξv = 5%, and r(x) = 0. Comparison of the proposed method with HS-RDT and HS-NExT
approaches. The absolute value of relative error is given within brackets.

Identified damping ratios [%]

Mode Expected Area-based approach HS-based approach
number [%] NExT RDT NExT RDT

1 2 2.06 (3.06%) 1.89 (5.65%) 3.07 (53.61%) 2.54 (27.33%)
2 2 2.08 (4.31%) 2.07 (3.78%) 2.13 (6.28%) 2.56 (28.44%)
3 2 2.04 (2.33%) 2.01 (0.12%) 1.98 (0.92%) 2.35 (17.56%)
4 2 2.03 (1.84%) 1.98 (0.72%) 1.99 (0.75%) 2.09 (4.341%)

Similarly to the previous case, the first two mode shapes have been reliably evalu-
ated and compared with theoretical previsions (see Figs. 5.8(a) and 5.8(b)). Further,
comparing these results with Figs. 5.6(a) and 5.6(b), slight variations in estimated
mode shapes can be observed, proving that a higher accuracy can be reached in ap-
praisals if the vehicle damping is taken into account.
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Figure 5.8: Comparison between theoretical and estimated mode shapes for (a) the first and (b)
second mode for the vehicle-bridge system in Figure 5.1 assuming ξv = 5% and r(x) = 0.
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5.4.3 Case 3: Vehicle-bridge system considering road pave-
ment roughness and neglecting vehicle damping

In this section, the vehicle damping is neglected (ξv = 0) whereas the effect of pave-
ment roughness (r(x) ̸= 0) is investigated on the vehicle-bridge system responses and
the performance of the proposed modal identification procedure is assessed. The con-
struction of the longitudinal road profile can be carried out by exploiting a set of
harmonic waves with different amplitudes and phases. The road profile is therefore
generated by its spectral description according to the method proposed by Shinozuka
et al. [250, 251]; the one-sided PSD spectrum is discretized in bands and for each
one of them a fixed number of harmonic samples is generated assuming a uniformly
distributed random phase angle θi:

r(x) =

N∗∑

i=0

√
2Gd(ni)∆n cos (2πni + θi) (5.26)

where N∗ is the number of harmonics chosen to simulate the profile, ni is the ith
spatial frequency, ∆n is the sampling interval of the spatial frequency and θi is the
random phase angle for the ith harmonic. A possible formulation for the PSD function
Gd(ni) is the one proposed in the ISO 8608 standard [252] as:

Gd(ni) = Gd(n0)

(
ni
n0

)w

(5.27)

where w = 2 is a waviness coefficient, n0 = 0.1 cycle/m is the reference spatial
frequency, Gd(n0) is the PSD function value at the reference spatial frequency and
ni is the ith spatial frequency calculated as ni = nl + (i − 0.5)∆n with ∆n = (nu −
nl)/N

∗, being nu and nl the spatial frequency upper and lower bounds. On this
base, different roughness classes can be defined, depending on the surface quality, by
properly selecting the PSD value Gd(n0), where higher values correspond to worse
pavement roughness conditions.

In that regard the PSD function values proposed in ISO 8608 were derived from
data collected on roads: it is neither considered that bridge pavements are usually in
much better conditions than road ones nor that this model was developed for trans-
portation engineering applications rather than for vehicle indirect dynamic identifi-
cation. For these reasons, the PSD function value at the reference spatial frequency
Gd(n0) is properly corrected from the geometric mean provided by ISO 8608 as de-
scribed in [253] and is therein labeled as G∗

d(n0). Specifically, three roughness classes
are considered assuming three different values of Gd(n0) to simulate different surface
quality, namely G∗

d(n0) = 0.001 · 10−6 m3 (class A), G∗
d(n0) = 8 · 10−6 m3 (class B)

and G∗
d(n0) = 16 · 10−6 m3 (class C). The roughness profiles adopted in this study are

generated assuming N∗ = 2500, nu = 10 cycles/m, nl = 0.01 cycles/m, and samples
of the generated profiles are shown in Figs. 5.9(a)−(c).
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Figure 5.9: Different classes of roughness profiles generated according to ISO 8608 with corrected
PSD reference values according to [253]: (a) class A - G∗

d(n0) = 0.001 · 10−6 m3; (b) class B -
G∗

d(n0) = 8 · 10−6 m3; (c) class C - G∗
d(n0) = 16 · 10−6 m3.

The contact point response is highly sensitive to the irregularities in the pavement
and the use of the generated road profiles leads to highly noisy results. However the
tyre, during the passage on the pavement, touches only the point of the surface with
higher elevation [223] and the real vehicle-bridge contact is a surface rather than a
point. Thus, a moving average filter may be used to smooth the profile [230] and in
place of the roughness profile, the smoothed envelope of its local maxima is employed
(see Figs. 5.10(a) and 5.10(b)).
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Figure 5.10: Class C roughness profile generation: (a) construction of the envelope of local maximum
points and (b) profile smoothing via moving average filtering.

Figures 5.11(a)−(d) show the system response functions considering the high-
est level of roughness: it is observed that the effect of roughness significantly af-
fects the theoretical response functions of both vehicle and bridge if compared to
Figs. 5.3(a)−(f). Further, Figs. 5.12(a)−(f) show the CP responses and their corre-
sponding frequency spectrum considering the roughness profile effect. In this regard,
it may be observed that also in this scenario it is preferable to choose the CP ac-
celeration response for identification purposes. As opposed to the previous cases,
considering the roughness effect on the CP response, the vehicle frequency appears
with significant magnitude in the frequency spectrum. This, however, does not pre-
clude the identification of the first few structural frequencies, which are still easily
distinguishable. Further, Figs. 5.13(a)−(f) show how the CP acceleration and the
corresponding frequency spectrum change as the roughness class varies. It is observed
that, increasing the value of G∗

d(n0), a wide range of spatial frequencies at increas-
ing magnitudes is introduced in the CP spectrum, thus overshadowing higher order
modes (e.g., the fourth mode cannot be detected when higher roughness classes pro-
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Figure 5.11: Displacement and acceleration time-history for the vehicle-bridge system in Figure 5.1
neglecting the vehicle’s damping (ξv = 0) and considering a class C road pavement roughness profile:
(a) bridge response displacement and (b) acceleration at midspan; (c) vehicle response displacement
and (d) acceleration.

files are considered). Next, applying the proposed VMD, up to four modes have

0 1 2 3 4 5 6 7
t [s]

0

0.5

1

1.5

d
C
P

[m
]

#10-3

Reference
Back calculated

0 2 4 6 8 10
Frequency [Hz]

10-8
10-6
10-4
10-2
100

A
m

p
li
tu

d
e

0 1 2 3 4 5 6 7
t [s]

-4
-2
0
2
4
6
8

v C
P

[m
/
s]

#10-3

Reference
Back calculated

0 2 4 6 8 10
Frequency [Hz]

10-8
10-6
10-4
10-2
100

A
m

p
li
tu

d
e

0 1 2 3 4 5 6 7
t [s]

-0.1

0

0.1

0.2

a
C
P

[m
/
s2

] Reference
Back calculated

0 5 10 15 20
Frequency [Hz]

10-6
10-4
10-2
100
102

A
m

p
li
tu

d
e

!v
!1

!2

!2!v!1

!1
!v !2

!3

(d)

(f)

(e)

(a)

(c)

(b)

Figure 5.12: Reference and back-calculated contact point response functions (form (a) to (c)) and
corresponding frequency spectra (from (d) to (f)) considering the vehicle-bridge system in Figure 5.1
neglecting the vehicle’s damping (ξv = 0) and considering a class C road pavement roughness profile:
CP displacement (top), CP velocity (middle) and CP acceleration (bottom).

been identified when a Class A roughness profile has been adopted and up to three in
the remaining cases. As an example of the decomposition results, Figs. 5.14(a)−(c)
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Figure 5.13: CP accelerations (from (a) to (c)) and corresponding frequency spectra (from (d) to (f))
for the vehicle-bridge system in Figure 5.1 neglecting the vehicle’s damping (ξv = 0) and considering
three different roughness classes: Class A (top), Class B (middle) and Class C (bottom).

show the three IMFs extracted for class C roughness. The application of the proposed
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Figure 5.14: IMFs extraction via VMD for the analyzed CP acceleration function considering a class
C road pavement roughness class: (a) first IMF, (b) second IMF, (c) third IMF.

procedure led to the natural frequencies and damping ratio estimates summarized in
Tables 5.6 and 5.7. Notably, again the natural frequency estimations obtained via the
proposed VMD are in general more accurate than the counterpart estimated via the
HS approach, with relative errors in most of the cases less than 1%, regardless of the
adopted roughness class profile. Further, it may be noted how, for the damping ratios
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estimation, the area ratio-based approach yields significantly better results compared
to the HS-based approach independently of the technique adopted for the free vibra-
tion extraction from the IMFs. This depends on the fact that the area ratio-based
approach is a robust method against noise as observed in Section 2.6. In particular, it
is noted that the combination of NExT and area-ratio based approach yields the most
precise estimates. It is also observed that the quality of estimations for both natural
frequencies and damping ratios tends to get worse for increasing roughness classes.

Table 5.6: Identification of bridge natural frequencies from the vehicle-bridge system in Figure 5.1
assuming different classes of road pavement roughness and ξv = 0. Comparison of the proposed
method with HS-RDT and HS-NExT approaches. The absolute value of relative error is given within
brackets.

Identified frequencies [Hz]

Roughness Mode Expected Proposed HS-based approach
class number [Hz] VMD NExT RDT

A 1 1.777 1.782 (0.245%) 1.784 (0.35%) 1.775 (0.13%)
2 7.109 6.795 (4.42%) 7.094 (0.21%) 7.117 (0.10%)
3 15.996 16.028 (0.20%) 15.929 (0.42%) 16.053 (0.35%)
4 28.437 28.45 (0.06%) 28.311 (0.44%) 28.316 (0.43%)

B 1 1.777 1.867 (5.04%) 1.841 (3.59%) 1.794 (0.96%)
2 7.109 7.147 (0.53%) 7.167 (0.80%) 7.185 (1.06%)
3 15.996 15.916 (0.50%) 16.767 (4.82%) 16.840 (5.26%)

C 1 1.777 1.863 (4.84%) 1.842 (3.62%) 1.817 (2.21%)
2 7.109 7.145 (0.50%) 7.180 (0.99%) 7.134 (0.34%)
3 15.996 15.913 (0.52%) 16.31 (1.97%) 16.84 (5.26%)

Table 5.7: Identification of bridge damping ratios from the vehicle-bridge system in Figure 5.1 assum-
ing different classes of road pavement roughness and ξv = 0. Comparison of the proposed method
with HS-RDT and HS-NExT approaches. The absolute value of relative error is given within brackets.

Identified damping ratios [%]

Roughness Mode Expected Area-based approach HS-based approach
class number [%] NExT RDT NExT RDT

A 1 2 2.13 (6.34%) 1.94 (2.95%) 2.29 (14.67%) 2.65 (32.52%)
2 2 1.97 (1.31%) 1.73 (13.43%) 1.76 (12.06%) 1.73 (13.66%)
3 2 1.93 (3.30%) 2.08 (4.44%) 1.94 (3.15%) 2.33 (16.39%)
4 2 1.96 (1.84%) 1.94 (2.94%) 2.03 (1.60%) 2.14 (7.28%)

B 1 2 2.19 (9.75%) 3.11 (55.99%) 2.81 (40.91%) 2.96 (48.06%)
2 2 2.11 (5.43%) 2.41 (20.49%) 2.81 (40.68%) 2.76 (38.03%)
3 2 2.65 (32.94%) 1.83 (8.67%) 3.39 (69.36%) 4.00 (99.20%)

C 1 2 2.23 (11.57%) 3.93 (96.78%) 3.30 (65.21%) 4.70 (137.0%)
2 2 2.11 (5.60%) 2.38 (19.13%) 2.81 (40.66%) 3.08 (54.40%)
3 2 2.65 (32.69%) 1.85 (7.23%) 3.43 (71.92%) 3.98 (98.88%)

Further, Fig. 5.15(a) shows the estimated mode shape for the first mode considering
the Class A roughness profile. It is noted, however, that for higher roughness and
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higher modes, unreliable mode shapes estimations have been obtained and for this
reason not represented in the graphics.
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Figure 5.15: Comparison between theoretical and estimated mode shapes for the first mode for the
vehicle-bridge system in Figure 5.1 assuming a Class A road pavement roughness and: (a) ξv = 0%,
(b) ξv = 5%.

5.4.4 Case 4: Vehicle-bridge system considering both vehicle
damping and road pavement roughness

The last application considered in this study deals with the most general case of
vehicle-bridge systems in which neither the vehicle damping nor the road roughness
profile is neglected (ξv ̸= 0, r(x) ̸= 0). The mechanical and geometrical properties
are assumed as in Section 4.1, the vehicle damping ratio is assumed ξv = 5% and the
same three roughness class profiles are considered as in Section 4.3. Figures 5.16(a)−(f)
display the CP acceleration and the corresponding frequency spectrum for different
roughness classes. Even though the CP accelerations present only slight differences
in their local response peaks if compared to their counterparts in Figs. 5.13(a)−(f),
the main differences are observed in the frequency spectra since the magnitude of the
peak frequency related to the vehicle in the frequency spectrum significantly reduced
regardless of the roughness profile class. This result is consistent with the numerical
studies conducted by Yang and Lee [111] where it has been shown that the assumption
of a high vehicle damping ratio both reduces the surface roughness-related noise and
limits the vehicle frequency peak.

The application of the proposed procedure leads to the identification of the first
four modes for a Class A roughness profile, whereas for higher roughness classes the
fourth mode was overshadowed and only the first three have been retrieved. Tables 5.8
and 5.9 summarize the identified natural frequencies and damping ratios, respectively,
for each corresponding roughness class. It is noted that, consistently with the results
of the previous cases, the proposed procedure provides the most accurate estimates.
It is also consistently observed that the quality of the estimates tends to worsen as
the roughness class increases due to the rising level of noise introduced in the CP
response-related frequency spectrum. Once again, a reliable estimation of the first
mode shape has been obtained and compared with the theoretical counterpart (see
Fig. 5.15(b)). Further, from the comparison with Fig. 5.15(a) it is noted that, for
fixed roughness class, the effect of vehicle damping mitigates its detrimental effect
improving the precision of the estimated mode shape.
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Figure 5.16: CP accelerations (from (a) to (c)) and corresponding frequency spectra (from (d) to (f))
for the vehicle-bridge system in Figure 5.1 assuming ξv = 5% and considering different roughness
classes: Class A (top), Class B (middle) and Class C (bottom).

Table 5.8: Identification of bridge natural frequencies from the vehicle-bridge system in Figure 5.1
assuming ξv = 5% and different classes of road pavement roughness. Comparison of the proposed
method with HS-RDT and HS-NExT approaches. The absolute value of relative error is given within
brackets.

Identified frequencies [Hz]

Roughness Mode Expected Proposed HS-based approach
class number [Hz] VMD NExT RDT

A 1 1.777 1.784 (0.38%) 1.786 (0.47%) 1.780 (0.19%)
2 7.109 7.150 (0.56%) 7.074 (0.49%) 7.129 (0.27%)
3 15.996 16.029 (0.20%) 15.949 (0.29%) 16.136 (0.87%)
4 28.437 28.404 (0.12%) 28.269 (0.59%) 28.24 (0.69%)

B 1 1.777 1.868 (5.09%) 1.841 (3.57%) 1.818 (2.32%)
2 7.109 7.139 (0.41%) 7.166 (0.79%) 7.163 (0.75%)
3 15.996 15.949 (0.30%) 16.769 (4.83%) 16.864 (5.42%)

C 1 1.777 1.877 (5.63%) 1.841 (3.61%) 1.787 (0.54%)
2 7.109 7.139 (0.41%) 7.166 (0.80%) 7.147 (0.53%)
3 15.996 15.934 (0.39%) 16.77 (4.84%) 16.96 (6.05%)
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Table 5.9: Identification of bridge damping ratios from the vehicle-bridge system in Figure 5.1 assum-
ing ξv = 5% and different classes of road pavement roughness. Comparison of the proposed method
with HS-RDT and HS-NExT approaches. The absolute value of relative error is given within brackets.

Identified damping ratios [%]

Roughness Mode Expected Area-based approach HS-based approach
class number [%] NExT RDT NExT RDT

A 1 2 1.90 (5.24%) 1.83 (8.35%) 2.36 (18.07%) 3.71 (85.39%)
2 2 1.82 (8.78%) 1.96 (2.24%) 1.59 (20.50%) 2.17 (8.53%)
3 2 1.94 (3.21%) 1.98 (0.93%) 2.02 (0.79%) 1.91 (4.46%)
4 2 2.00 (0.24%) 2.03 (1.82%) 2.03 (1.55%) 2.14 (7.19%)

B 1 2 2.17 (8.73%) 2.10 (5.15%) 2.83 (41.56%) 1.42 (28.78%)
2 2 2.03 (1.52%) 2.69 (34.50%) 2.91 (45.46%) 2.87 (43.38%)
3 2 2.48 (24.08%) 2.03 (1.52%) 3.34 (66.94%) 3.91 (95.80%)

C 1 2 2.19 (9.99%) 2.52 (26.13%) 3.31 (65.51%) 3.44 (71.87%)
2 2 2.03 (1.40%) 2.18 (9.34%) 2.91 (45.48%) 3.24 (62.22%)
3 2 2.62 (31.23%) 2.24 (12.01%) 3.39 (69.28%) 1.79 (10.54%)
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CHAPTER 6

CONCLUSIONS

In this PhD thesis, the use of advanced decomposition techniques was explored to
formulate cost-effective strategies that could be adopted for bridge modal identification
and monitoring purposes.

A brief description of the fundamental concepts related to the dynamic charac-
terization of structures and the state of the art on this topic were presented in the
introductory chapters, with a focus on operational modal analysis classic approaches
and advanced decomposition techniques. Further, the main body of this thesis ad-
dressed the formulation of systematic computational strategies for bridge dynamic
characterization exploiting cost-effective procedures.

In this context, it was explored the possible applicability of a Variational Mode
Decomposition (VMD) based method to identify the significant modal contributions
(IMFs) contained in a recorded time series, focusing on its automatization in the tun-
ing procedure phase to facilitate its efficient application at large-scale. Specifically, the
latter aimed at selecting the involved control parameters without any subjective user
choice, and showed a nice performance even in the case of signal peculiarities such
as the occurrence of closely spaced modes. Further, the use of an area ratio-based
approach for the identification of modal damping ratios proved to be an accurate tool
for the reduction of noise detrimental effect on the measures. Notably, both bench-
mark validations and experimental applications showed the versatility and reliability
of the proposed approach, thus proving that it is a suitable tool for road bridge dy-
namic characterization. Even though the proposed approach showed a nice accuracy
of the estimates, it was observed that the appropriate selection of VMD control pa-
rameters was not always straightforward. Therefore, the applicability of dynamic
characterization via Empirical Fourier Decomposition (EFD), which depends only on
one key parameter, was discussed and its performance was compared with VMD-based
one. The original EFD method was improved in two aspects: automatization and ro-
bustness. Specifically, a statistical thresholds-based procedure was proposed for the
correct setting of the control parameter and the segmentation procedure was improved
by adopting a zero-phase moving average smoothing filter to limit the noise effect on
the signal frequency spectrum. Statistical comparative analysis on benchmark signals
between the EFD and the VMD technique showed that both methods can accurately
identify closely spaced modes. However, significantly different results were observed
between the two methods when dealing with a lowly excited mode since the VMD
technique is affected by error propagation. In contrast, the EFD technique provided
much more robust performances. Further, the proposed automatic tuning procedure
developed for the EFD technique proved to be more straightforward than the one
adopted for the VMD technique. In addition, the analysis of synthetic signals af-
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fected by noise proved that the use of traditional approaches, such as the logarithmic
decrement method, seldom allows the accurate estimation of the modal damping ra-
tios as opposed to the robust area-based approach. The EFD-based procedure was
successfully exploited for the dynamic characterization of two existing bridges, further
showing more consistent estimates of the modal parameters in comparison with the
VMD-based approach.

Therefore, it is clear that the proposed approach could represent a competitive
alternative to ambient vibration tests, where SNR is usually low and amplitude-
dependent modal properties cannot be identified. Further, the framework proposed
in this thesis, alternatively considering VMD and EFD, could be easily adopted by
administration bodies to perform a prompt assessment of bridge health conditions, es-
pecially in the case of batches of structures that present similar geometry, static scheme
and material properties as shown in Chapter 3. This choice could thus optimize the
life cycle management of an infrastructure network.

Finally, in the last part of the dissertation, a theoretical study dealing with the
indirect identification of modal parameters was carried out in the context of the Ve-
hicle Scanning Method (VSM). Specifically, the vehicle-bridge system response was
obtained in an approximate closed form accounting for the effects of both systems’
damping and the road pavement roughness. In addition, the contact-point (CP) ac-
celeration function was adopted for identification purposes due to its enhanced ability
to capture higher structural modes. The approach presented in Chapter 3 was ex-
tended for dynamic characterization via the CP response. The VMD method was
once again adopted to isolate the IMFs and identify the corresponding modal frequen-
cies. In this case, the equivalent free-decay response functions, associated with the
VMD’s extracted modal components, were generated using the Natural Excitation
Technique (NExT). Further, the damping ratios estimation was carried out using the
above-mentioned area ratio-based approach. Lastly, mode shapes were obtained from
the extracted IMF instantaneous amplitude functions adopting a correction to prop-
erly address the effect of the damping ratios. The performance of this identification
approach was assessed by comparing NExT and RDT for the generation of the free-
decay responses as well as the proposed technique with the Hilbert-based approach for
the estimation of modal frequencies and damping ratios. In numerical applications,
the roles of both vehicle damping and pavement road roughness were investigated in
the CP response function frequency spectrum, as well as in the modal identification
performance. Specifically, it was noted that the identification performance worsens
as the roughness class increases and that if the vehicle damping is considered, the
overshadowing effect due to the vehicle frequency on higher modes in the frequency
domain was considerably reduced regardless of the pavement road roughness. Once
again, the proposed area ratio-based approach combined with NExT proved to be more
accurate in estimating modal damping ratios. It was also noted that the estimated
mode shapes are in good agreement with theoretical previsions, highlighting how the
effect of vehicle damping improves their estimates.

To sum up, the main contributions of this thesis to the SHM research field are:

• The formulation of an identification framework, which exploits economic free
vibration tests, based on the combination of advanced decomposition techniques
(i.e., VMD and EFD) for the extraction of modal contribution, a noise-robust
area-based approach for the modal damping ratios identification, and a phase-
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shift time domain approach for mode shapes construction;

• The proposal of original tuning procedures for both VMD and EFD to automate
the extraction of modal components from the investigated signals;

• The extension of the proposed identification approach to the case of indirect
monitoring based on VSM also accounting for the effect of vehicle damping and
road pavement roughness.

Potential developments for future research, related to the topics addressed through-
out this thesis, concern further investigations on the techniques described in Chapters
3 and 4, considering their possible application on highly flexible structures, such as
suspended bridges, or on very rigid ones, such as masonry arch bridges, to verify their
reliability in the context of a wider range of cases. The real case applications presented
throughout this thesis deal only with bridge structure: since the presented approaches,
based on free vibration tests, are thought to represent a competitive solution in com-
parison with traditional OMA approaches, it would be interesting to further extend
the investigations to other constructive materials as in the case of composite, masonry
or wooden structures as well as to explore their performance for other kinds of civil
structures such as buildings, dams and suspended roofs. Another interesting line of
research would be the investigation of temperature effects on dynamic identification
performance: notably, a limited number of studies are available on this topic and are
mainly focused on data recorded in continuous monitoring whereas, to the best knowl-
edge of the author, no investigations have been made considering multiple set of data
obtained from periodic and sporadic testing.

With regard to the topic investigated in Chapter 5, the available literature mainly
consists of theoretical studies with limited practical application, most of which are
based on scaled laboratory models. More research is therefore required to translate this
approach into experimental applications concerning the dynamic identifications of full-
scale bridges through real signals recorded in situ via instrumented vehicles traveling
along the investigated bridge. In this regard, it would be interesting to extend the
limited state of the art on how some practical issues may influence the measures such
as the ratio of the involved masses in the vehicle-bridge system as well as the influence
of the structural scheme, since most of the studies assumes simply supported boundary
conditions, neglecting the actual compliance of the supports, whereas continuous and
Gerber schemes are rarely investigated. Another interesting aspect to be investigated
involves how the sensitivity and accuracy of sensors adopted in the vehicle scanning
influence the measure, since it has been shown in the literature how smartphones may
also be adopted as measuring devices to retrieve limited information about the modal
behavior of bridges.
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