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Abstract: We report the ability of the crude biosurfactant (BS B3-15), produced by the marine,
thermotolerant Bacillus licheniformis B3-15, to hinder the adhesion and biofilm formation of Pseu-
domonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 to polystyrene and human
cells. First, we attempted to increase the BS yield, optimizing the culture conditions, and evaluated
the surface-active properties of cell-free supernatants. Under phosphate deprivation (0.06 mM) and
5% saccharose, the yield of BS (1.5 g/L) increased by 37%, which could be explained by the earlier
(12 h) increase in lchAA expression compared to the non-optimized condition (48 h). Without exerting
any anti-bacterial activity, BS (300 µg/mL) prevented the adhesion of P. aeruginosa and S. aureus to
polystyrene (47% and 36%, respectively) and disrupted the preformed biofilms, being more efficient
against S. aureus (47%) than P. aeruginosa (26%). When added to human cells, the BS reduced the
adhesion of P. aeruginosa and S. aureus (10× and 100,000× CFU/mL, respectively) without altering
the epithelial cells’ viability. As it is not cytotoxic, BS B3-15 could be useful to prevent or remove
bacterial biofilms in several medical and non-medical applications.

Keywords: antiadhesive; antibiofilm; Bacillus; biosurfactant; bioemulsifier; human cell viability

1. Introduction

Surface-active molecules (SAMs) are produced by a large variety of microorganisms
to increase the bioavailability of hydrophobic compounds as potential carbon and energy
sources [1]. Bacterial SAMs can be distinguished into two different classes according to their
molecular weight: biosurfactants (BSs) and bioemulsifiers (BEs). BSs, including lipopep-
tides, glycolipids, and phospholipids, are compounds characterized by low molecular
weight and efficiently reduce both surface and interfacial tension [2–4]. Unlike BSs, BEs
are able to efficiently emulsify hydrophobic substrates, and they have higher molecular
weight, since they are constituted by a mixture of biopolymers (such as polysaccharides,
lipopolysaccharides, lipoproteins, and proteins) [4–6]. Due to the marked differences
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between biosurfactants and bioemulsifiers, their roles in nature and biotechnological appli-
cations are different [4,5].

Different microorganisms produce lipopeptide biosurfactants, which are secondary
metabolites with important applications in the oil industry and the agricultural and med-
ical fields. Based on their structural components (i.e., amino acid chain and fatty acids),
cyclic lipopeptides produced by Bacillus species have in five distinct families, which exhibit
notable surface activity with important biological effects [7,8]. Iturin (produced by Bacillus
subtilis, B. amyloliquefaciens, B. licheniformis, B. thuringiensis and B. methyltrophicus) [9–17],
fengycin (B. cereus [18] and B. thuringiensis [19], in addition to B. subtilis [20] and B. amy-
loliquefaciens [21]), kurstakin (B. thuringiensis [22]), locillomycin (B. subtilis 916 [23]), and
surfactin, including pumilacidin and lichenysin (isolated from B. coagulans [24], B. pumilus
and B. licheniformis [25]), are well-recognized antimicrobial compounds that are used in
biotechnological and biopharmaceutical applications [26].

The lipopeptide lichenysin differs from surfactin in terms of a change in the first
amino acid residue, glutamine (Gln), instead of glutamic acid. Based on the molecular
weight and structures, the lichenysins have been distinguished into different types (A, B,
C, D, and G and the surfactant BL86), and they are reported to have similar surface-active
properties, with good solubilizing, foaming, emulsifying, and detergent activity, which
are useful in a broad range of applications [27–30]. Lichenysin production is frequently
observed in Bacillus licheniformis, a nonpathogenic bacterium that is unable to penetrate
the skin or mucous membranes of the body in the absence of pre-existing lesions. The
lichenysin peptide biosynthesis is carried out by non-ribosomal peptide synthetases, and
proteins are encoded by the lchAA-AB-AC-TE gene cluster, also annotated as licA-TE [31].
The presence of the lchAA gene in B. licheniformis appears to be very common since it was
detected in all the strains studied by Madslien et al. [25]. However, lichenysin production
depends on the level of transcription and enzyme (lichenysin synthetase) activity [32], and
it is strongly influenced by culture conditions, such as the type of carbon, nitrogen, or
phosphate sources [33].

Other than exhibiting several bioactive properties (antitumor, antimicrobial, and
antioxidant properties) ([34] and references therein], lichenysin was found to possess
noteworthy antiadhesion activity, being able to prevent the formation of and eradicate the
bacterial biofilm [27,33]. Bacterial biofilms on abiotic and biotic surfaces are important in
different fields, such as food spoilage, biofouling, and human health [34–39], principally
due to the high tolerance and persistence of biofilms with respect to disinfectants and
antimicrobial agents [37,40]. Biofilm formation is a dynamic and complex process, starting
with the adhesion of bacterial cells to surfaces and evolving into biofilm maturation and cell
dispersion in order to contaminate other surfaces [4,41]. To contrast with the development
of bacterial biofilm, it could be useful to know the phases involved in its formation. The
first stage of bacterial attachment to surfaces is considered a critical step for the successful
formation of biofilms, since environmental conditions (temperature, pH, salinity, etc.),
surface properties (substrate type, surface roughness, and chemical composition), cell-
surfaces charges, and hydrophobicity may affect the establishment of biofilms [42–44].

The inhibition of bacterial adhesion and biofilm formation represents a pivotal ap-
proach to contrast with diseases related to persistent microbial infection. Previously, we
have reported that B. licheniformis B3-15 was able to produce a surfactin-like lipopeptide
(BS B3-15), with specific activity in emulsifying and removing hydrocarbons and vegetable
oils [45]. Due to its properties, this biosurfactant was suggested to be an environmentally
friendly compound that is useful in different fields of applications.

The aim of this work was to investigate the effects of BS B3-15 addition on the first
adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus
aureus ATCC 29213 on a polystyrene surface and in human nasal epithelial cells. First,
we attempted to enhance the BS B3-15 production yield, optimizing the culture medium,
using the Response Surface Methodology (RSM). Biosurfactant production was verified
using both the surface-active properties of the cell-free supernatant and the expression
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of the lichenysin synthetase A gene (lchAA) at different times of bacterial growth (12 h,
24 h, and 48 h). To evaluate the effects of P. aeruginosa and S. aureus on biofilm formation,
crude BS B3-15 was added to polystyrene surfaces at different times, corresponding to
the different phases of biofilm formation (i.e., initial attachment, reversible attachment,
irreversible attachment) and after the biofilm was established. In order to address the BS
B3-15 use in different medical and non-medical applications, the effects of the crude BS
were evaluated on the adhesion of P. aeruginosa and S. aureus to human nasal epithelial
cells, constituting the first targets of air-mediated bacterial infections.

2. Materials and Methods
2.1. Bacillus licheniformis Strain B3-15

The Bacillus licheniformis strain B3-15 has been previously reported as capable of
producing BS B3-15 [45]. Briefly, strain B3-15 was isolated from thermal water emitted from
a shallow hydrothermal vent near the Vulcano-Island Porto di Levante (Aeolian Islands,
Italy), characterized by a depth of 5 m, and from temperature and pH water of 65 ◦C and
5.2, respectively [45]. The strain grew aerobically, with the lower-limit temperature of
25 ◦C and the upper-limit temperature of 60 ◦C. The pH range for growth was 5.5–9, with
an optimal value of 7, and the strain grew in NaCl concentration ranging from 0 to 7%
(w/v), with the optimum occurring at 2% (w/v). Furthermore, a partial 16S rRNA gene of
the strain was sequenced, and the following accession number was assigned KC485000. To
maintain the strain, B3-15 Tryptic Soy Agar (TSA, Sigma Aldrich, Burlington, MA, USA)
plates, supplemented with 1% NaCl (1.5% NaCl final concentration), were used. The BS
B3-15 was produced in Marine Broth supplemented with 3% of saccharose, and, after acid
precipitation, its yield was 910 mg/L. The BS B3-15 was spectroscopically characterized as
a surfactin-like lipopeptide.

2.2. Optimization of Culture Conditions for BS B3-15 Production

To evaluate the effects of the saccharose or glucose and phosphate content on the strain
growth and BS production, the strain B3-15 (OD600nm = 0.1, corresponding to 1.7 × 108

CFU/mL, as experimentally evaluated) was inoculated in the novel medium, named MGV,
containing different concentrations of saccharose or glucose (0, 3, 5, 7% w/v), and K2HPO4
(0.008–8 g/L) and KH2PO4 (0.002–2 g/L) and incubated at optimal growth temperature of
45 ◦C for 48 h on rotating shakers (250 rpm) (Table 1).

Table 1. Composition of the novel medium MGV.

Nutrient Concentration (g/L)

NaCl 20
(NH4)2SO4 10

MgSO4 7H2O 0.5
Meat Extract 3

Peptone 5
Yeast extract 3

K2HPO4 0.008–8
KH2PO4 0.002–2

Saccharose or glucose 0–70

The cell-free supernatant (CFS) was obtained using centrifugation at 8000 rpm for
10 min and filtration through a 0.2 µm pore size membrane (Biogenerica, Catania, Italy) of
the culture. Aliquot (100 µL) of the filtrated supernatant was placed onto plates of TSA and
incubated at a temperature of 45 ◦C for 24 h to verify that no bacterial cells were present.
The CFSs were used for surface property assays.



Microorganisms 2023, 11, 1842 4 of 20

2.2.1. Surface-Active Properties of Cell-Free Supernatant (CFS)

The CFS’s surface-active properties were evaluated through the oil’s drop-collapse
and emulsification assays. To perform the oil’s drop-collapse assay, a drop (100 µL) of each
CFS was spotted on the polystyrene lid of a 96-microwell plate (Thermo-Fisher, Milan,
Italy), and then mineral oil (5 µL) (Sigma Aldrich) was added. The CFS containing BS gave
a flat drop.

The emulsification assay of each CFS was carried out as described by Tuleva et al. [46].
Briefly, each CFS or uninoculated sterile medium, used as negative controls, was mixed
in a glass tube (10 cm high and 1 cm in diameter) with an equal volume of kerosene
(Sigma Aldrich), vortexed vigorously, and left to stand for 24 h. The tubes were incubated
at room temperature for 24 h, and the emulsion index was calculated according to the
following formula:

E24 =
High of emulsion

High of the whole solution
× 100

2.2.2. Response Surface Methodology

The effect of the carbohydrate content (0–7%) and the phosphate (K2HPO4 and
KH2PO4) concentration (from 0.06 to 60 mM) in the phosphate buffer on the overall
biosurfactant production (evaluated by E24 of CFS) was analyzed in a set of 13 experiments
using the Response Surface Methodology—the Central Composite Design (RSM-CCD) tool
of Minitab (version 21.0) statistical software. The interaction was expressed as the quadratic
model equation to predict the optimized composition medium named MGV-op.

2.3. BS B3-15 Extraction, Characterization, and Surface Activity
2.3.1. BS B3-15 Extraction

To extract the BS, each CFS was acidified at pH 2.0 using 2N HCl and kept overnight to
allow precipitation [42,47]. An equal volume of a chloroform: methanol (2: 1 v/v) mixture
was added to the acidified CFS, and the organic layer (extract) was separated from the
aqueous phase (solvent). The BS dissolved in the organic phase was recovered using a
rotary vapor treatment (Rotavapor® R-300, BUCHI Italia S.r.l, Cornaredo, Italy) and a
desiccation process (45 ◦C, overnight). The obtained BSs were finally weighed and stored
at 4 ◦C.

2.3.2. Characterization of BS B3-15 using ATR-FTIR

To identify the functional groups of the crude BS, which was obtained under opti-
mized conditions, the attenuated total reflectance Fourier Transform Infrared (ATR-FTIR)
technique was used. VERTEX 70v FT-IR Spectrometer (Bruker Optics GmbH & Co. KG,
Ettlingen, Germany) equipped with the platinum diamond was employed to obtain the
spectra in the wavenumber range of 4000 to 400 cm−1 with a resolution of 4 cm−1. Finally,
OMNIC software version 7.3 (Origin Lab Co., Northampton, MA, USA) was employed to
analyze the peaks of the BS spectrum.

2.3.3. BS B3-15 Surface-Active Properties

To assess the ability of the crude BS B3-15 to modify the hydrophobic surfaces at
increasing concentrations (from 0 to 1600 µg/mL), the contact angle (θ) in the water
solution was measured using the sessile-drop technique. Briefly, 5 µL of each BS B3-15
solution were spotted onto a lid of a 96-well microtiter plate (Thermo Fisher Scientific,
Waltham, MA, USA), incubated at room temperature for 15 min, and photographed with
a high-resolution camera, as previously reported [48]. To measure the angle (θ) on the
sessile drop images, the images were analyzed (in triplicate) using the software ImageJ
1.54d (ImageJ, National Institutes of Health, Bethesda, MD, USA). Drop Snake plugin, and
the average value and standard deviation were calculated.
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2.4. Expression of Lichenysin and Surfactin Synthetase
2.4.1. Gene Expression Analysis

Genes related to the production of lichenysin and surfactin, detected during the growth
of B. licheniformis B3-15 in MGV and MGV-op, are reported in Table 2.

Table 2. qRT-PCR primer sequences used in this work.

Gene Function Primer Temperature
Annealing (◦C) Reference

lchAA Lichenysin synthetase F: 5′-ACTGAAGCGATTCGCAAGTT-3′
56 [30]R: 5′–TCGCTTCATATTGTGCGTTC-3′

srf A Surfactine synthetase F:5′- ATGAGCCAACTCTTCAAATCATTTGAT-3′
52 [48]R: 5′-TCACGGTTGAATGATCGGATGCTGATT-3′

tuf GP Elongation factor-Tu
(housekeeping gene)

F: 5′-ACGTTGACTGCCCAGGACAC-3′
55 [49]R: 5′GATACCAGTTACGTCAGTTGTACGGA-3′

To determine the primer characteristics, the Multiple Primer Analyzer online tool
(Thermo Fisher Scientific) was used. DNA from B. licheniformis DSM13 and B. licheniformis
B3-15 was used to validate primers and PCR conditions.

2.4.2. RNA Isolation and Reverse Transcription

Aliquots (1 mL) from B. licheniformis B3-15 cultures in MGV or MGV-op, incubated at
45 ◦C, were collected at different times (12, 24, and 48 h) and centrifuged at 8000 rpm× 10 min.
To obtain RNAs, the cells were treated with Trizol Reagent (Life Technologies, Carlsbad,
CA, USA). To remove the traces of DNA, the samples were treated for 30 min at 37 ◦C with
1 U of RNase-free DNase (Promega Corporation, Madison, WI, USA). An RQ1 DNase stop
solution (1 µL) was used to stop the reaction, and the sample was incubated at 65 ◦C for
10 min. A total of 1 µg of RNA, spectrophotometrically quantized, was used for the reverse
transcription of complementary DNA (cDNA). An equal amount of RNA for each sample
was reverse-transcribed into cDNA using Improm II reverse transcriptase (RT) (Promega
Corporation, USA). The RT reaction was carried out at 25 ◦C for 5 min, then at 37 ◦C for
60 min and 70 ◦C for 15 min.

2.4.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

To evaluate the gene expression of bacterial cells in the different conditions, the qRT-
PCR was performed as reported previously [50] using a 7500 Fast Real-Time PCR System.
The reaction was carried out with the Sso Advanced universal SYBR1 Green supermix
(BioRad, Laboratories, Heracles, CA, USA), and the following operating conditions were
selected: 3 min at 95 ◦C, followed by 35 cycles of 15 s at 95 ◦C and 45 s at the suitable
melting temperatures for each primer, as reported in Table 2. Each sample was tested in
triplicate, and data are expressed using the 2−∆∆Ct (Ct) method. The differences in the
expression were indicated as fold changes with respect to MGV and normalized to the
levels of the elongation factor-Tu.

2.5. Antibiofilm Activity of BS B3-15
2.5.1. Pathogenic Bacterial Strains

The strains used in this study (Pseudomonas aeruginosa ATCC 27853 and Staphylococcus
aureus ATCC 29213) were acquired from the American Type Culture Collection (LGC
Promochem, Teddington, UK). The P. aeruginosa was maintained in Luria Bertani broth (LB,
Sigma Aldrich) and LB agarized with 2% Bacto agar (Difco, Baltimore, MD, USA), whereas,
to maintain the S. aureus, Tryptic Soy Broth or Tryptic Soy Agar (TSB, TSA) was used.
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2.5.2. Antibiofilm Activity of BS B3-15 on Polystyrene Surfaces at Increasing Concentrations

To assess the effect of the BS B3-15 on the biofilm formation of P. aeruginosa and S.
aureus in 96-well polystyrene microplates (Thermo-Fisher Scientific, Milan, Italy), the assay
previously reported by O’Toole et al. [51] was performed. Each well of the microplate (six
replicates) was filled with 180 µL of P. aeruginosa or S. aureus culture (OD600nm = 0.1), grown
overnight in LB or TSB, respectively. BS B3-15 (20 µL) at the final concentrations of 50,
100, 200 or 300 µg/mL was added to each well, and Phosphate Buffer Saline (sPBS, Sigma
Aldrich) was used as control.

2.5.3. Antibiofilm Activity Assay on Polystyrene Surfaces of BS B3-15 at Different Times

BS B3-15’s ability to hinder the P. aeruginosa and S. aureus biofilm formation was
evaluated as previously reported [50]. Briefly, an aliquot (20 µL) of the BS B3-15 solution
(300 µg/mL) or PBS (used as control) was added to each well, containing 180 µL of each
culture as reported above, at different times of bacterial growth (0, 2, 4, 8, and 24 or 48 h).
The BS B3-15 was added at different times corresponding to the phases of adhesion (0),
reversible attachment (2 h), irreversible attachment (4 and 8 h), and mature biofilm (48 h
for P. aeruginosa or 24 h for S. aureus) of the pathogenic strains. After incubation at 37 ◦C for
48 h (for P. aeruginosa) or 24 h (for S. aureus) in a static condition, the cultures were gently
taken from each well; to remove non-adherent bacteria, each well was washed with distilled
water three times, and biofilms were stained with 0.1% (w/v) crystal violet solution and
incubated at room temperature for 20 min. To eliminate the excess stain, the plates were
washed with distilled water (5 times) and air-dried (for 45 min). Aliquots (200 µL) of
absolute ethanol were added to each well to dissolve crystal violet from the stained biofilm.
The biofilm mass was determined using the absorbance (OD585 nm) of the de-staining
solution measured using a microtiter plate reader (Multiskan GO, Thermo Scientific,
Waltham, MA, USA). The reduction in biofilm formation was expressed by applying the
following formula:

Reduction in biofilm formation (%) = (OD (585 nm control) − OD (585 nm sample))/OD (585 nm control) × 100

Each data point was averaged from six replicated microwells, and the standard devia-
tion (SD) was calculated. Statistical significance (** p ≤ 0.01 or * p ≤ 0.05) was determined
using one-way ANOVA.

The multicellular structures of the biofilms onto the polystyrene surface, not treated
or treated with the BS B3-15, were observed using confocal Laser Scanning Microscopy,
with the TCS SP2 microscope (Leica Microsystems Heidemberg, Mannheim, Germany),
equipped with Ar/Kr laser, and coupled to a microscope (Leica DMIRB). Sterile polystyrene
strips (0.5 cm × 1 cm) were placed into each well of 96-well microplates containing
180 µL of overnight cultures (OD600nm = 0.1) of P. aeruginosa in LB or S. aureus in TSB and BS
(20 µL) at a final concentration of 300 µg/mL or sterile PBS (used as control). The mi-
croplates were incubated at 37 ◦C for 24 h (for S. aureus) or 48 h (for P. aeruginosa). The
strips were removed from the wells and washed five times with sterile PBS to take out
non-adherent bacteria; then, SYTO9 (20 µg/mL) (LIVE/DEAD Bac-light Thermo Fisher
Scientific) was added to each strip to stain adherent cells, and after dark incubation (30 ◦C
for 5 min), the biofilm on the strips was observed. The 3D images were elaborated using
COMSTAT ImageJ software1.54d [52].

2.5.4. BS B3-15 Antibacterial Activity

To determine the minimum inhibitory concentration (MIC) values of the BS, the serial
dilution assay was carried out in microplates as previously reported [53]. Briefly, the BS
B3-15 was serially diluted (1000, 500, 400, 300, 200, and 100 µg/mL) in Mueller Hinton Broth
(MHB, Sigma-Aldrich, Milan, Italy) using microplates. After that, each well, containing
different concentrations of BS B3-15, was inoculated with suitable aliquots of each strain
suspension (OD600nm = 0.1) in MHB. The microplates were placed at 37 ◦C overnight, and
the growth of the strain was evaluated by measuring the optical absorbance (OD600nm).
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The inhibitory activity of BS B3-15 was confirmed by inoculating suitable aliquots (100 µL)
from each well without visible growth onto LB or TSA plates for P. aeruginosa and S. aureus,
respectively, and incubating them overnight at 37 ◦C.

To evaluate the antibacterial activity, the standard disk diffusion method (Kirby Bauer
test) was used as reported by the National Committee for Clinical Laboratory Standard
(NCCLS 2000). Suspensions (OD600nm = 0.1) of each strain were prepared in 3 mL of
0.9%NaCl from an overnight culture in LA or TSA, and aliquots of each suspension (100 µL)
were inoculated onto triplicate plates of Mueller Hinton agar (Sigma-Aldrich, Milan, Italy).
Sterile filter paper disks (6 mm in diameter, Oxoid) loaded with 300 µg of BS B3-15 were
placed onto inoculated plates and incubated overnight at 37 ◦C. The size of the complete
inhibition zone of each disk was determined, and the mean and standard deviation (n = 3)
were calculated.

2.5.5. Bioluminescence Inhibition Assay

A bioluminescence inhibition assay was used to evaluate the potential interference of
BS B3-15 in the bacterial quorum-sensing mechanism involved in the biofilm formation.
Moreover, the test was used to detect the BS’s toxic effects. Briefly, 20 mL of the stan-
dard medium Sea Water Complete (tryptone 5 g/L, yeast extract 3 g/L, glycerol 3 mL/L,
750 mL/L of seawater, and 250 mL/L of distilled water) in a flask was inoculated with
Vibrio harveyi strain G5 and incubated at 28 ◦C overnight. Each well of a 96-well microtiter
plate was filled with aliquots (80 µL) of the V. harveyi overnight culture (OD600nm = 0.5,
equivalent to 5 × 108 bacteria/mL). An aliquot (20 µL) of BS B3-15 solution, dissolved in
2%NaCl, or sterile 2%NaCl solution as control, was added to each well to reach a final BS
concentration ranging from 125 to 1000 µg/mL. After 15 min of incubation at 25 ◦C, the
luminescence of the bacterial cell suspension was evaluated and expressed as the relative
luminescence unit (RLU), calculated as follows: RLU = luminescence/OD600nm. The Ef-
fective Concentration (EC50), as 50% of the RLU reduction, was used to indicate the BS’s
toxicity relative to the control.

2.6. Antibiofilm Activity Assay on Human Nasal Epithelial Cells of BS B3-15
2.6.1. Human Nasal Epithelial Cells Culture

The Human Nasal Epithelial Cells (HNEpC) were obtained from the PromoCell (Cat.
Num. C-12620, Heidelberg, Germany). HNEpC was cultured in RPMI 1640 (Invitro-
gen Cergy Pontoise, France), complemented with penicillin/streptomycin/amphotericin
(Sigma Aldrich, Saint Louis, MO, USA) and 10% Fetal Bovine Serum (Sigma Aldrich,
USA origin), in a 75 cm2 flask and placed in the incubator at 37 ◦C with 5% CO2 [54]. To
form confluent monolayers, cells from cell monolayers treated with 5 mL Trypsin EDTA
(Euroclone, Milan, Italy) were resuspended at a concentration of 2.5 × 105 cells/mL in
culture medium and poured into each of the 96-well cell culture plates and incubated at
suitable conditions.

2.6.2. Antibiofilm Activity Assay on Human Nasal Epithelial Cells of BS B3-15 with
Increasing Concentrations of BS B3-15

To evaluate the effect of BS B3-15 on the adhesion of P. aeruginosa and S. aureus to
HNEpC, the procedure proposed by Fernandes de Oliveira [55] was used. The RPMI was
removed through careful aspiration, and HNEpC was washed three times with RPMI
1640 deprived of antibiotics and serum (RPMI-1). To infect the human cells, suspensions
(100 µL) in RPMI-1 of P. aeruginosa or S. aureus (1 × 106 CFU/mL) were added to each
well. BS, dissolved in RPMI-1 at different final concentrations (from 50 to 300 µg/mL), or
RPMI-1, used as control, was added to HNEpC, and the microplates were incubated for 2 h
(37 ◦C, 5% of CO2). The cells were washed with RPMI-1 (two times) and PBS (one time) to
remove the non-adherent bacterial cells. After that, cold, distilled, sterile water (100 µL)
was poured into each well to induce the lysis of the HNEpC, and non-adherent bacterial
cells were recovered. The suspensions of non-adherent bacterial cells were serially diluted
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ten-fold in PBS and plated onto cetrimide agar (Oxoid) for P. aeruginosa or onto mannitol
salt agar (Oxoid) for S. aureus. The plates were incubated at 37 ◦C for 18–24 h, and the
Colony-Forming Units (CFUs) were counted.

2.6.3. BS B3-15 Cytotoxicity

HNEpC, treated or not treated with BS B3-15 at different concentrations (100, 200, 300,
400, 500 µg/mL), was incubated at 37 ◦C for 24 h and 4 days, with 5% CO2. To evaluate the
HNEpC’s viability, the cells were stained with a diluted solution (1:2000, v/v) of TO-PRO3
(Thermo Fisher Scientifics). Then, the microplates were incubated at 4 ◦C for 15 min in the
dark and analyzed using flow cytometry (FACS Canto II).

2.7. Statistical Analysis

Averages and standard deviations (SDs) were calculated in all the experiments (in
triplicate). Statistically significant differences among the groups were calculated using
two-way ANOVA followed by Tukey’s multiple comparisons tests (** p ≤ 0.01, * p ≤ 0.05)
using GraphPad Prism (version 9.0; GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Optimization of Culture Conditions for BS B3-15 Production

The effects of glucose (GLU) or saccharose (SAC) at different concentrations (from 0 to
7%, w/v) in the MGV medium on the growth and biosurfactant production, estimated as the
emulsifying index (E24) of Bacillus licheniformis B3-15 (BS B3-15), are shown in Table 3. The
presence of GLU or SAC at 5% showed the highest values of bacterial growth (OD600nm = 6)
after 48 h incubation at 45 ◦C. However, the CFS obtained with SAC 5% was surface-active
(oil drop-collapse assay) and exhibited the highest emulsifying activity (E24 = 60%).

Table 3. Final biomass (OD600nm), surface activity (oil drop-collapse assay), and emulsifying ac-
tivity (E24) of CFS obtained from MGV in the presence of glucose (MGV + GLU) or saccharose
(MGV + SAC) at different concentrations (from 0 to 7% w/v) after 48 h incubation.

Glucose or
Saccharose (%) Growth (OD600nm) E24 (%) Oil Drop-Collapse Assay

MGV + GLU MGV + SAC MGV + GLU MGV + SAC MGV + GLU MGV + SAC

0 3.6 ± 0.1 3.2 ± 0.2 0 ± 0.3 0 ± 0.1 − −
3 4.3 ± 0.3 4.1 ± 0.3 20 ± 1.1 5 ± 0.1 + −
5 6.0 ± 0.2 5.9 ± 0.3 0 ± 0.1 60 ± 1.9 − +
7 5.0 ± 0.3 5.3 ± 0.3 0 ± 0.1 30 ± 1.1 − +

The RSM-CCD, employed for multiple regression analysis to optimize the culture
conditions, elucidated the effects of different concentrations of saccharose (SAC) (0–7%) and
phosphate (0.06–0.60 mM) in the MGV medium on the biosurfactant production (evaluated
as E24), which were analyzed in a set of 13 experiments designed by Minitab 21.0, and
the predicted value and actual value are listed in Table 4. The emulsifying activity (E24)
was used as a response, and the obtained interaction was fitted as a quadratic model
(Equation (1)) to predict the optimized conditions via ANOVA using Minitab 21.
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Table 4. Factorial designs via RSM-CCD with predicted and obtained responses (E24).

Run x1 x2
Saccharose

(%)
Phosphate

(mM)
E24 (%)

(Predicted)

E24 (%)
(Actual)

1 0 0 2.5 30 34 41
2 0 1.414 2.5 84 28 27
3 −1 −1 0 0.06 12 15
4 0 −1.414 2.5 0.084 18 17
5 −1 1 0 60 15 14
6 1 −1 5 0.06 69 71
7 0 0 2.5 30 43 46
8 0 0 2.5 30 39 41
9 0 0 2.5 30 49 48

10 1 1 5 60 62 51
11 0 0 2.5 30 32 32
12 −1.414 0 0 30 14 15
13 1.414 0 7.0 30 52 55

The derived equation can predict the E24 as a function of SAC (%) and phosphate
concentrations, P (mM), in the ranges investigated.

E24 = 5.29 + 16.34 SAC + 0.071 P − 1.169 SAC × SAC (1)

The response surface plot for the parameters and selection of the best conditions for
the BS production (evaluated as E24) as the response are shown in Figure 1.
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 Figure 1. Effect of the saccharose (%) and phosphate (mM) concentrations on the emulsifying activity,
expressed as E24 (%) of the B3-15 cell-free supernatant. The different colors on the surface plot
represent the gradient range, from the lowest (green) to the greatest (light-red), for the BS production.

According to ANOVA, the quadratic model of the present study was proven to
be significant (p < 0.0001). The model’s R2 and F values were found to be 0.917 and
15.6, respectively, which further supports the significance of the model. Both saccharose
and phosphate concentrations influenced the biosurfactant production. Overall, the pre-
dicted conditions for the highest E24 (71%) were saccharose 5% and phosphate (0.06 mM)
(p ≤ 0.05).
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3.2. BS B3-15 Production

The growth curves of B. licheniformis B3-15 (OD600nm), the emulsification activity of its
CFS (E24%), and the crude BS B3-15-yield (mg/L) in non-optimized (MGV) and optimized
(MGV-op) cultural conditions are reported in Figure 2.
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Figure 2. Comparison of the B. licheniformis B3-15 (a) growth (OD600nm) and the emulsifying index
(E24%) of cell-free supernatants (1:1 kerosene) and (b) the crude biosurfactant yield (mg/L) at up to
48 h of incubation in non-optimized (MGV) and optimized media (MGV-op). Data are expressed as
averages and standard deviations (n = 3). * Significantly different (p ≤ 0.05) or ** p ≤ 0.01.

The final growth (48 h) in MGV-op was lower (OD600nm = 4.1) than in MGV (OD600nm = 5.9);
however, the emulsification activity (E24%) of CFS from MGV-op was often greater
(Figure 2a). The production of BS B3-15 was higher in MGV-op (1.51 g/L), with an early
start to production (12 h incubation), than in MGV (24 h).

3.3. BS B3-15 Extraction, Characterization, and Surface Activity
3.3.1. BS Characterization by ATR-FTIR

To better characterize the chemical structure of the BS B3-15, ATR-FTIR analysis was
performed. The wavenumbers and their assignment to the different functional groups of
the crude BS are reported in Table 5. Spectra obtained using ATR-FTIR analysis, used to
compare the structural features of the crude BS produced in MGV or MGV-op, overlapped,
and therefore, the spectrum of BS B3-15 produced in the MGV-op condition is shown in
Figure 3.

Table 5. ATR-FTIR wavenumber values (cm−1) and band assignment to functional groups.

Wavenumber Values (cm −1) Band Assignment References

3300–3200 OH-stretching and NH-stretching [56,57]
3000–2800 CH2 and CH3 of lipids [58]
1600–1700 Amide A [59]
1690–1618 Amide I, C-O-peptidic conformation [56,59]
1548–1530 Amide II N-O peptidic conformation [57]
1456–1453 -CH2 of lipids [58]

1400–1380 CH2 and CH3 of lipids, dipicolinic
acid, amide III [58]

~1250 CH-NH stretching [56–58]
1055–1050 Phosphate groups [56–58]

1035–1030 Stretching vibrations of the C–O group
in esters [60]
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Figure 3. ATR-FTIR spectrum of the crude BS B3-15 produced by B. licheniformis B3-15 in optimized
conditions (MGV-op) after 48 h incubation at 45 ◦C.

The peak observed at 3323 cm−1 was assigned to the OH- or NH-stretching mode.
The peaks observed at 2967, 2924, and 2852 cm−1 and those at 1448 and 1386 cm−1 were
attributed to the aliphatic (-CH3 and -CH2) stretching vibrations of lipids, indicating the
presence of alkyl chains. The characteristics of the stretching frequencies of amides in the
region 3300–3250 (Amide A) and the peaks at 1650 cm−1 (assigned to CO-N group) and at
1532 cm−1 (N-H bending of amide) were specific to surfactin-like lipopeptides.

3.3.2. BS B3-15 Surface Properties

To determine the ability of BS B3-15 to modify the surface properties of hydrophobic
surfaces, the contact angle assay was performed. The contact angle of water on polystyrene
decreased in the presence of BS B3-15 in a dose-dependent manner. At the highest BS
concentration (1600 µg/mL), the contact angle was reduced from 89◦ to 47.03◦, indicating
that BS increased the interaction between the water and the hydrophobic surface due to the
reduction in surface hydrophobicity (Figure 4).
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Figure 4. Surface properties, measured as contact angle (θ) values, with or without the BS B3-15
at different concentrations (0, 100, 200, 400, 800, and 1600 µg/mL). The bars represent the data
mean ± SD for three replicates (n = 3). Statistical differences were evaluated using two-way ANOVA
with Tukey’s multiple comparisons test. Significantly different, * p ≤ 0.05 and ** p ≤ 0.01, compared
with untreated controls. Different lowercase letters above the bar graph indicate significant statistical
differences (p < 0.01).
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3.4. Expression of Lichenysin Synthetase

The surfactin gene (srf A) was not detected in the DNA extracted from B. licheniformis
B3-15, nor in that extracted from its closest phylogenetically related (99.87% similarity)
B. licheniformis ATCC 9789. The lichenysin (lchAA) expression by B3-15 was evaluated in
MGV and MGV-op over the time of incubation (Figure 5). The gene expression was the
highest after 24 h of incubation in MGV-op. However, the overexpression of the lchAA
gene was observed after 12 h of incubation in MGV-op, rather than in the not-deprived
phosphate condition (48 h).
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Figure 5. Relative quantitation (RQ) of lchAA at different incubation times (12, 24, and 48 h) of B3-15
in MGV or MGV-op. The bars represent mean ± SD for three replicates (n = 3). Statistical differences
were evaluated using two-way ANOVA with Tukey’s multiple comparisons tests. Significantly
different ** p ≤ 0.01 compared with untreated controls. Different lowercase letters above the bar
graph indicate significant statistical differences (p < 0.01).

3.5. Antibiofilm Activity of BS B3-15
3.5.1. Addition of BS B3-15 on Polystyrene Surfaces with Increasing Concentrations

The inhibitory effect on the biofilm formation of P. aeruginosa and S. aureus of the BS is
dose-dependent (Figure 6). BS B3-15 reduced the biofilm formation of P. aeruginosa (47.1%)
more than S. aureus (35.9%) at the highest concentration (300 µg/mL).
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Figure 6. Pseudomonas aeruginosa ATCC 27853 (a) and Staphylococcus aureus ATCC 29213 (b) biofilm
formation (%) on polystyrene microplate without (C) or with the BS B3-15 at different concentrations
(50, 100, 200, and 300 µg/mL). The bars represent the mean ± standard deviation for six replicates
(n = 6). * p ≤ 0.05 and ** p ≤ 0.01 show significant differences compared with untreated controls. Data
on biofilm reduction (%) are reported in brackets.
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3.5.2. BS B3-15 Addition on Polystyrene Surfaces at Different Times from the Inoculum

The BS B3-15 (300 µg/mL) was shown to inhibit the biofilm formation at different
times after the inoculum (0, 2, 4 and 8 h) and after 24 h for S. aureus or 48 h for P. aeruginosa,
when the biofilm was completely established, as shown in Figure 7.
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Figure 7. Pseudomonas aeruginosa ATCC 27853 (a) and Staphylococcus aureus ATCC 29213 (b) biofilm
formation (%) on polystyrene microplate without (Control) or after the addition of the BS B3-15
(300 µg/mL) at different bacterial growth times (T0, T2, T4, T8) and after T48 for P. aeruginosa and
T24 for S. aureus, when the biofilms were completely established. The bars represent mean ± SD for
six replicates (n = 6) * p ≤ 0.05 and ** p ≤ 0.01 show significant differences compared with untreated
controls. Data on biofilm reduction (%) are reported in brackets.

BS B3-15 added at 0 h and after 2 h strongly inhibited the adhesion and reversible
attachment of P. aeruginosa (47.1 and 47.3% inhibition, respectively) and S. aureus (35.9
and 31.7% inhibition, respectively). BS B3-15 addition at 4 h and 8 h was also active with
respect to the irreversible adhesion of P. aeruginosa (32.8 and 31.9% inhibition, respectively)
and S. aureus (27.2 and 31.9% of inhibition, respectively). The BS was able to disrupt the
preformed biofilms, being more efficient against S. aureus (47.2%) than P. aeruginosa (26.3%)
(Figure 7), as also microscopically confirmed (Figure 8).
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Figure 8. Confocal laser images (×600) of preformed biofilms from (a) Pseudomonas aeruginosa ATCC
27853 and (b) Staphylococcus aureus ATCC 29213 on polystyrene surfaces, not treated or treated with
BS B3-15 (300 µg/mL).
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As calculated by the imaging analysis (ImageJ 1.54d), in the presence of BS B3-15, the
mean thickness of the preformed biofilm of P. aeruginosa was reduced by 24%, and that of S.
aureus was reduced by 45.9%.

3.5.3. Antibacterial Activity

The BS (from 100 to 1000 µg/mL) did not influence the growth of P. aeruginosa or S.
aureus (Figure S1). No inhibition haloes were observed using the agar diffusion assay in the
presence of BS B3-15, indicating that the biopolymer did not exert any antibacterial activity
at the concentrations used.

3.5.4. Bioluminescent Assay

The evaluation of the possible interference of BS B3-15 on the bacterial quorum sensing
and the toxicity effects were performed by bioluminescent inhibition assay [61]. The effects
of BS B3-15 at different concentrations (from 0 to 1000 µg/mL) on the luminescence of V.
harveyi G5 are reported in Figure S2. The luminescence (expressed as RLU) was constant
in the presence of BS up to 500 µg/mL, and it decreased significantly in the presence of
750 µg/mL. The concentration of BS at which there was a 50% reduction in light emission
was 966 ± 21.3 µg/mL (EC50).

3.6. Effects of BS B3-15 Addition to Human Nasal Epithelial Cells

The BS B3-15 (from 50 to 300 µg/mL) added to HNEpC hindered the adhesion of P.
aeruginosa and S. aureus (Figure 9) after 2 h of incubation at 37 ◦C. BS (300 µg/mL) reduced
the adhesion of P. aeruginosa to more than one log scale, while the S. aureus was reduced to
five log scales (Figure 9).
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Figure 9. Adherence of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 to
human nasal epithelial cells (HNEpCs), expressed on a logarithmic scale of CFU/mL, in the presence
of BS B3-15, after 2 h of incubation at 37 ◦C. The bars represent the mean ± standard deviation for
three replicates (n = 3). Statistical differences were evaluated using ANOVA coupled with two-way
Tukey’s multiple-comparison tests. * p ≤ 0.05 and ** p ≤ 0.01: significant differences compared with
untreated controls.

The viability of HNEpC exposed to different BS B3-15 concentrations (from 50 to
500 µg/mL) after 24 h and 48 h is reported in Figure 10. The presence of crude BS at
300 µg/mL did not significantly alter the viability of HNEpC after 24 h and 48 h of exposure
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compared to the control. At the highest concentration (500 µg/mL), the cell viability was
reduced by 33%, indicating a cytotoxic effect of BS B3-15.
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4. Discussion

Lipopeptide surfactants (LPs), including iturin, surfactin, and lichenysins, exhibit
powerful biological effects, such as antiviral and antimicrobial activities, due to their
exceptional surface activity, reducing the surface and interfacial tension and the emulsifying
properties [7]. LPs can promote or inhibit biofilm formation, depending upon the structure
of the LP and the polarity of the cells and substrate [60]. Acting as pre-conditioning agents,
LPs produced by Bacillus spp. were also reported to contrast with the bacterial adhesion
to different surfaces, which represents a crucial step of bacterial biofilm formation due
to their ability to decrease hydrophilic interactions between biotic or abiotic surfaces and
bacteria [37,62]. These biosurfactant properties could be useful in controlling the microbial
contamination by pathogens and their persistence as biofilms, which are a great concern in
different contexts [33].

In this study, we evaluated the effects of the crude BS B3-15, produced by B. licheni-
formis B3-15, on the prevention and disruption of bacterial biofilm on polystyrene surfaces
and human nasal cells. Since the biosynthesis of biosurfactants largely depends on nutri-
tional factors [57,63,64], we first attempted to enhance the BS B3-15 yield for their large-scale
production, in optimized nutritional conditions of carbohydrates, phosphates, and nitrogen,
as organic (as yeast and meat extracts) and inorganic (NH4SO4) sources. We previously
reported that the copresence of peptone and saccharose supported the B. licheniformis
B3-15 growth and gave the best results in terms of sufactin-like production [44]. Although
similar values of B. licheniformis B3-15 growth were observed in the presence of glucose
and saccharose, the highest E24 (60%) was registered at 5% saccharose. These data are
according to Mendoza et al. [65], since molasses (rich in saccharose, fructose and glucose)
performed with better indices than glucose and lactose in terms of B. subtilis DS03 biomass
and higher crude biosurfactant production. Phosphate content greatly influenced both
strain growth and BS B3-15 production. As predicted by RSM analysis, the lowest phos-
phate concentration (0.06 mM) increased the crude BS B3-15 yield and its emulsifying
activity (E24 = 71%). BS B3-15 production was also verified via the detection and expres-
sion of genes related to the synthesis of lichenysin and surfactin at different incubation
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times. Lichenysin synthetase A gene (lchAA) was detected using PCR in strain B3-15,
but not the surfactin gene (srf A), nor its closest phylogenetically related B. licheniformis
ATCC 9789, which is reported to be unable to produce surfactin and iturin-A [66,67]. After
12 h and 24 h incubation in MGV-op conditions, lchAA gene expression levels were two-
fold greater than those of MGV, with the highest expression after 24 h. Interestingly, the
early overexpression of the lchAA gene in MVG-op occurred during the exponential phase
(12 h), with the consequent increase in the synthesis and lichenysin yield. This result
suggests that, without increasing the strain biomass, the phosphate deprivation in MGV-op
induced better indices of the BS-B3-15 yield (1.5 g/L), with the highest emulsified index
(E24 = 67%) compared to MGV. The emulsifying activity of both the cell-free supernatant
and crude BS-B3-15 could compete with industrially manufactured surfactants, such as
Triton-X-100 (74%) and sodium dodecyl sulfate (74.4%) [44]. To better characterize the
partially purified BS B3-15 obtained under optimized conditions, the FTIR spectrum was
analyzed. Although lichenysin and surfactin possess a similar lipopeptide structure and
also a similar pattern [68], several differences were observed as shifts in specific peaks in
the most representative bands of lipopeptide components. Specifically, the spectrum of BS
B3-15 showed significant shifts at lower frequency of the characteristic bands attributed
to the peptide structure (amide II and amide I), suggesting that the peptide component of
BS B3-15 could possess a higher molecular weight than surfactin. Moreover, the shifts of
peaks in the bands attributed to aliphatic chains (C–H stretching) of fatty acids indicated
that the composition of the lipidic chains of BS B3-15 was different from that of surfactin.

The crude BS B3-15 was able to hinder the adhesion and the biofilm formation on
abiotic surfaces without exerting any bacteriostatic or bactericidal activity, similarly to other
bacterial antibiofilm polymers, such as the exopolysaccharide mannose-rich EPS B3-15,
produced by the same B. licheniformis B3-15 using different cultural conditions [50]. The
activity of EPS B3-15 and BS B3-15 were similar in reducing the biofilm formation of P.
aeruginosa (52.7% and 47.1%, respectively) and S. aureus (35.9 and 32.3%, respectively) on
polystyrene surfaces. Although the emulsifying activity of EPS B3-15 was low (E24 = 37%)
(unpublished data), its modes of action were related to the modifications of charges and the
hydrophobicity of both abiotic (polystyrene and polyvinyl chloride surfaces) and bacterial
surfaces, together with the modification in the expression patterns of genes involved in the
early adhesion of P. aeruginosa and S. aureus. Unlike the EPS B3-15, the BS B3-15 also acted
on the irreversible attachment and was able to disrupt the mature biofilms, being more
efficient on S. aureus (47.2%) than P. aeruginosa (26.3%). Compared with other surfactants,
such as the crude BS produced by B. subtilis DS03 [64] and the lipopeptide produced by B.
licheniformis AL 1.1 [32], BS B3-15 was able to similarly disrupt the preformed biofilm of S.
aureus on the polystyrene surface, but in contrast, the BS B3-15 was also able to partially
disrupt the biofilm of P. aeruginosa. The biofilm-disruption effects of BS B3-15 may be
explained by its ability to strongly reduce the interfacial tension between the polystyrene
surface and the attached cells, as assessed by the reduction in the contact angle (Figure 4)
and therefore facilitating the biofilm removal. Since its addition at different concentrations
did not affect the luminescence of Vibrio harveyi G5, BS B3-15 appears to not interfere with
the quorum-sensing mechanism involved in the formation of bacterial biofilms.

In order to address its use in different medical applications, we evaluated the effects
of the crude BS B3-15 on the adhesion of P. aeruginosa and S. aureus to human nasal
epithelial cells (HNEpC), constituting the first barrier and one of the main targets of
airborne bacterial infections. Although it is well known that human cells are sensitive to
bacterial surfactants, the BS B3-15 did not show toxicity toward HNEpCs up to 300 µg/mL,
probably due to its own peptide and lipidic structure. In contrast, lichenysins and surfactins
from B. licheniformis B4094 and B4123 were reported to exert cytotoxic effects toward the
tumoral Caco-2 human intestinal epithelial cells at very low concentrations (IC50 16.6 and
23.5 µg/mL, respectively) [69]. BS B3-15 lichenysin (at 300 µg/mL) inhibited the adhesion
of S. aureus (five-log scale) to human nasal cells more efficiently than P. aeruginosa (one-log
scale). Conversely, the EPS B3-15 [50] was reported to be more effective in counteracting
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the adhesion of P. aeruginosa (five-log scale) to nasal cells than that of S. aureus (one-log
scale). In future perspectives, the synergic action of BS B3-15 and EPS B3-15 could be
evaluated to prospect their addition in a nasal spray to prevent infections of the upper
respiratory tract. As assessed by the bioluminescence inhibition assay, which is also useful
for detecting harmful effects of unknown substances on higher organisms in different
environments [61,70], BS B3-15 could be considered safe, and therefore, its potential use as
an antiadhesive could also be addressed in non-medical applications.

5. Conclusions

The marine, thermophilic B. licheniformis B3-15 represents a source of novel active
biopolymers, with unique structural complexity and biocompatibility, that are useful in
both environmental and human health.

The novel formulation of MGV optimized at low concentrations of phosphate induced
the early production of the lichenysin-like lipopeptide, with better indices of BS-B3-15 yield
and emulsified activity. Without exerting any antibacterial activity, BS B3-15 affected the
early adhesion of P. aeruginosa and S. aureus on polystyrene surfaces, and it was also able to
disrupt their preformed biofilms.

The BS B3-15 also inhibited the bacterial adhesion to HNEpC without interfering with
cellular viability. This BS could be successfully utilized as a detergent and antiadhesive
agent in industry (e.g., food, agriculture, cosmeceuticals) and for numerous medicine
purposes, as nasal spray, or as a coating agent in functionalized devices (i.e., orthopedic
and endotracheal devices, vascular and urinary catheters) to prevent the formation of and
to remove preformed biofilms.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms11071842/s1. Figure S1. Effects of EPS B3-
15 addition at different concentrations (from 100 to 1000 µg/mL) on the growth (OD600nm) of P.
aeruginosa (a) and S. aureus (b). Data represent mean ± SD for six replicates (n = 6). Figure S2. Effects
of the presence of BS B3-15 at different concentrations on the luminescence of V. harveyi G5 after
15 min as a percentage of relative luminescence unit (RLU). Data represent mean ± SD for six
replicates (n = 6).
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