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A B S T R A C T

In this paper, the pattern formation process in arid environments on flat terrains is investigated. In particular, a
class of one-dimensional hyperbolic reaction-transport vegetation model with a cross-diffusion term accounting
for plant roots’ suction in the soil water diffusion feedback is considered. To characterize the emerging Turing
patterns, linear stability analysis on the uniform steady states is first addressed. Then, multiple-scale weakly
nonlinear analysis is performed to describe the time evolution of the pattern amplitude close to the stability
threshold. Finally, to validate analytical predictions, a modified Klausmeier model which takes also into
account the internal competition rate is studied. The effects of the inertial times as well as the cross-diffusion
and the internal competition rate are illustrated both analytically and numerically.

1. Introduction

In the last decades, climate change and environmental engineering alteration conducted desertification to be one of the main problems that
trouble arid and semi-arid ecosystems. Recent works have provided the possibility of the ecosystem undergoing a catastrophic scenario with
an abrupt shift or a soft one [1]. A crucial phenomenon that provides additional information about the ecosystem’s health is characterized by
the formation of vegetation patterns [2]. In particular, they allow us to predict catastrophic scenarios, identify ecological indicators of land
degradation, and underline ecosystem resilience. Unfortunately, despite patterns being a characteristic feature of many arid and semi-arid areas,
their geographical remoteness together with the long timescale in which they occur, and the absence of laboratory replicates make field studies
not trivial at all.

Therefore, theoretical approaches become very useful to analyze the environmental conditions under which such patterns may form and
disappear. Thus, a lot of mathematical tools have been provided to build up different models, either deterministic or stochastic, able to reproduce
these fascinating structures and to predict the time–space evolution of their dynamics [2–6]. Among them, an appropriate description that may
depict this ecological phenomenon, which occurs at the macroscopic level, is based upon continuum theory and the corresponding mathematical
models are usually based on parabolic reaction–advection–diffusion systems [7–24].

In this framework, one of the simplest two-compartment models is the Klausmeier one [3], based upon the so-called ‘‘water redistribution
hypothesis’’ according to which the local biomass-water positive feedback loop, acting at the micro–scale, is able to give rise to the spatial
instabilities at the macro–scale. In detail, the rainwater falls on bare ground characterized by a low infiltration rate and runs off until vegetated areas,
marked by a higher infiltration rate. However, the Klausmeier model is not able to describe the complex dynamics occurring in vegetation patterns,
so several modified versions have been introduced to account for them by including a diffusion term in the balance equation for water [17,19]
and/or an advection term in the balance equation for vegetation [25]. These reaction–advection–diffusion models exhibit a large flexibility over
the control of positive feedback mechanisms for the uniform states and admit the formation of subcritical and supercritical bifurcations of the
uniform-vegetation state from the bare-soil one. However, most of these generalized versions do not take into account several ecological scenarios,
such as the possibility of water to be suctioned by roots plants or the occurrence of an inner competition between plants. Therefore, to fix the first

∗ Corresponding author.
E-mail addresses: ccurro@unime.it (C. Currò), gabgrifo@unime.it (G. Grifò), gvalenti@unime.it (G. Valenti).
960-0779/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.chaos.2023.114152
Received 12 June 2023; Received in revised form 28 August 2023; Accepted 5 October 2023

https://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:ccurro@unime.it
mailto:gabgrifo@unime.it
mailto:gvalenti@unime.it
https://doi.org/10.1016/j.chaos.2023.114152
https://doi.org/10.1016/j.chaos.2023.114152
http://creativecommons.org/licenses/by/4.0/


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 176 (2023) 114152C. Currò et al.

a

t
t

d
p

w

w

v
c
f

o
l

issue, Von Hardenberg et al. [26] introduced a new model that includes the interaction between underground soil moisture and vegetation roots
by adding in the water equation a cross-diffusion term, one of the drivers of pattern formation in many biological systems [27–29]. Then, to fix
the latter one, the Klausmeier kinetics have been modified by considering a nonlinear infiltration rate that has to mimic the inner competition
between biomass [30,31].

Motivated by the experimental evidence of inertia in vegetation dynamics [32–36] as well as to provide a better description of transient regimes,
hyperbolic reaction-transport models [37–45] have been introduced in the context of dryland ecology according to the guidelines of Extended
Thermodynamics theory [46]. In this framework, the role of inertia in vegetation patterns has been investigated to describe the transitions between
spatially homogeneous steady-states and stationary or oscillatory periodic patterned ones. However, to the best of our knowledge, the role of cross-
diffusion, as well as the internal competition effects, have never been considered in hyperbolic vegetation reaction-transport models. The aim of
this paper is to investigate the role of inertial times in stationary and transient regimes of vegetation bands when both self- and cross-diffusion are
taken into account. In detail, we elucidate how the instability threshold of the emerging pattern is affected by the cross-diffusion effects as well as
the internal competition rate and how hyperbolicity modifies transient dynamics occurring from a uniform vegetated state to a stationary periodic
one.

The paper is organized as follows. In Section 2 a class of 1D hyperbolic reaction-transport models is presented and linear stability analysis is
performed to deduce the main features characterizing the emerging Turing-type patterns, i.e. the critical value of the main control parameter as
well as the critical wavelength. In Section 3 a weakly nonlinear analysis to describe the amplitude evolution in both supercritical and subcritical
regimes as well as to gain more insights into the transient ones is addressed. Then, in Section 4 all the theoretical results are applied to the
illustrative example of a modified Klausmeier model [47–49] and numerical investigations are there addressed to validate theoretical results.
Finally, concluding remarks are given in the last section.

2. Model and linear stability analysis

In our previous work [39] we proposed a hyperbolic model describing the spatio-temporal evolution of plant biomass 𝑢(𝑥, 𝑡) and soil–water
density 𝑤(𝑥, 𝑡) in flat environments, which in dimensionless form reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 + 𝐽 𝑢
𝑥 = 𝑓 (𝑢,𝑤)

𝑤𝑡 + 𝐽𝑤
𝑥 = 𝑔(𝑢,𝑤)

𝜏𝑢𝐽 𝑢
𝑡 + 𝑢𝑥 = −𝐽 𝑢

𝜏𝑤𝐽𝑤
𝑡 + 𝑑𝑤𝑥 = −𝐽𝑤

(1)

where the subscripts denote the partial derivatives with respect to the indicated variable, 𝐽 𝑢 and 𝐽𝑤 are the dissipative fluxes, 𝜏𝑢 and 𝜏𝑤 are the
two constant inertial times, 𝑑 is the water-to-plant diffusion ratio and the functions 𝑓 (𝑢,𝑤) and 𝑔(𝑢,𝑤) take into account the reactive mechanisms.
From the mathematical point of view, the system (1) is strictly hyperbolic and reduces to the corresponding parabolic one in the limit case 𝜏𝑢 → 0
nd 𝜏𝑤 → 0.

In [39] the system (1) has been investigated to study the inertia effects on vegetation pattern dynamics by choosing kinetic terms characterizing
he Klausmeier model [3]. In particular, this study elucidated how the properties exhibited by supercritical and subcritical patterns during the
ransient regime are affected by the inertial times.

However, ecological observations suggest that vegetation pattern formation is also affected by the suction of water by roots, which are usually
escribed through a cross-diffusion term in Eq. (1)2 [26,31,50–56]. Therefore, to provide a more realistic description of vegetation pattern
ropagation, the governing system (1) can be replaced in the following vector form

𝐔𝑡 +𝐌(𝐔)𝐔𝑥 = 𝐍(𝐔) (2)

here

𝐔 =
[

𝐖
𝐉

]

, 𝐍 =
[

𝐅
𝐆

]

, 𝐌 =
[

𝟎 𝐈
𝐓 𝟎

]

(3)

ith

𝐖 =

[

𝑢

𝑤

]

, 𝐉 =

[

𝐽 𝑢

𝐽𝑤

]

, 𝐅 =

[

𝑓 (𝑢,𝑤)

𝑔(𝑢,𝑤)

]

, 𝐓 =

⎡

⎢

⎢

⎢

⎣

1
𝜏𝑢

0

−
𝛽𝑑
𝜏𝑤

𝑑
𝜏𝑤

⎤

⎥

⎥

⎥

⎦

, 𝐆 =

⎡

⎢

⎢

⎢

⎣

−𝐽 𝑢

𝜏𝑢

−𝐽𝑤

𝜏𝑤

⎤

⎥

⎥

⎥

⎦

. (4)

Herein 𝟎 and 𝐈 are the null and the identity matrix whereas 𝛽 represents the water-uptake ability of plant’s roots. From a biological point of
iew the cross-diffusion coefficient −𝛽𝑑, denoting the influence of 𝑢 on 𝑤, is negative since water tends to diffuse along the direction of higher
oncentration of plant biomass. Note that the system (2) belongs to a more general class of hyperbolic reaction-transport model with cross-diffusion
or two interacting species [57,58].

Now we briefly recall the main results concerning the linear stability analysis for the hyperbolic model (2) in order to investigate the occurrence
f vegetation patterns. To this aim, let 𝐔∗ = (𝑢∗, 𝑤∗, 0, 0) be a positive steady state, the linearization of the system (2) in the neighborhood of 𝐔∗

eads to the dispersion relation, which relates the growth factor 𝜔 to the wavenumber 𝑘, as follows

𝜔4 + 𝐴 𝜔3 + 𝐴 𝜔2 + 𝐴 𝜔 + 𝐴 = 0 (5)
2

1 2 3 4
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with

𝐴1 =
1
𝜏𝑢

+ 1
𝜏𝑤

−
(

𝑓 ∗
𝑢 + 𝑔∗𝑤

)

,

𝐴2 =
( 1
𝜏𝑢

+ 𝑑
𝜏𝑤

)

𝑘2 + 𝑏2,

𝐴3 = 𝑎3𝑘
2 + 𝑏3,

𝐴4 =
1

𝜏𝑢𝜏𝑤
[

𝑑𝑘4 + 𝑎4𝑘
2 + 𝑏4

]

,

𝑏2 =
1

𝜏𝑢𝜏𝑤
−
(

𝑓 ∗
𝑢 + 𝑔∗𝑤

)

( 1
𝜏𝑢

+ 1
𝜏𝑤

)

+ 𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢 ,

𝑎3 =
𝑑 + 1
𝜏𝑢𝜏𝑤

−
(𝑑𝑓 ∗

𝑢
𝜏𝑤

+
𝑔∗𝑤
𝜏𝑢

)

−
𝛽𝑑𝑓 ∗

𝑤
𝜏𝑤

,

𝑏3 =
( 1
𝜏𝑢

+ 1
𝜏𝑤

)

(

𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢
)

−
𝑓 ∗
𝑢 + 𝑔∗𝑤
𝜏𝑢𝜏𝑤

,

𝑎4 = −
(

𝑑𝑓 ∗
𝑢 + 𝑔∗𝑤 + 𝛽𝑑𝑓 ∗

𝑤
)

,

𝑏4 = 𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢 ,

(6)

here the asterisk denotes the quantity evaluated at 𝐔∗.
In the case of spatially homogeneous perturbations (𝑘 = 0), Eq. (5) can be factorized as

(

𝜔 + 1
𝜏𝑢

)(

𝜔 + 1
𝜏𝑤

)

(

𝜔2 − (𝑓 ∗
𝑢 + 𝑔∗𝑤)𝜔 +

(

𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢
))

= 0 (7)

so that the steady state 𝐔∗ is asymptotically linearly stable iff

𝑓 ∗
𝑢 + 𝑔∗𝑤 < 0, 𝑓 ∗

𝑢 𝑔
∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢 > 0. (8)

For what it concerns non-homogeneous perturbations, the linear stability analysis can be carried out by using the Routh–Hurwitz criterion, i.e.

Re𝜔 < 0 ∀𝜔 ⇔ 𝐴1 > 0, 𝐴3 > 0, 𝐴4 > 0, 𝐴1𝐴2𝐴3 > 𝐴2
3 + 𝐴2

1𝐴4 ∀𝑘. (9)

Therefore, under assumptions (8), 𝐴1 and 𝐴2 are positive for all 𝑘 and, in turn, the condition 𝐴3 > 0 is redundant, so that the Routh–Hurwitz
criterion requires

Re𝜔 < 0 ∀𝜔 ⇔ 𝐴4 > 0, 𝐴1𝐴2𝐴3 − 𝐴2
3 − 𝐴2

1𝐴4 > 0 ∀𝑘. (10)

Let us now focus our attention on the occurrence of Turing-like instability as a control parameter is varied. Then, the conditions under which the
steady state 𝐔∗ is stable to small homogeneous perturbations but it becomes unstable for non-homogeneous ones read [57]

𝑓 ∗
𝑢 + 𝑔∗𝑤 < 0, 𝑓 ∗

𝑢 𝑔
∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢 > 0,

𝑑𝑓 ∗
𝑢 + 𝑔∗𝑤 + 𝛽𝑑𝑓 ∗

𝑤 > 0,
(

𝑑𝑓 ∗
𝑢 + 𝑔∗𝑤 + 𝛽𝑑𝑓 ∗

𝑤
)2 − 4𝑑

(

𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢
)

> 0,

𝜉2 > 0, 𝜉1 + 2
√

𝜉0𝜉2 > 0

(11)

where

𝜉0 = 𝑏2𝑏3𝐴1 − 𝑏23 −
𝑏4

𝜏𝑢𝜏𝑤
𝐴2
1,

𝜉1 =
( 1
𝜏𝑢

+ 𝑑
𝜏𝑤

)

𝑏3𝐴1 + 𝑎3𝑏2𝐴1 − 2𝑎3𝑏3 −
𝑎4

𝜏𝑢𝜏𝑤
𝐴2
1,

𝜉2 =
( 1
𝜏𝑢

+ 𝑑
𝜏𝑤

)

𝑎3𝐴1 − 𝑎23 −
𝑑

𝜏𝑢𝜏𝑤
𝐴2
1.

Consequently, the system (2) undergoes a Turing bifurcation with critical wavenumber

𝑘2𝑐 =

√

𝑓 ∗
𝑢 𝑔∗𝑤 − 𝑓 ∗

𝑤𝑔∗𝑢
𝑑

(12)

for the model parameters such that

4𝑑
(

𝑓 ∗
𝑢 𝑔

∗
𝑤 − 𝑓 ∗

𝑤𝑔
∗
𝑢
)

−
(

𝑑𝑓 ∗
𝑢 + 𝑔∗𝑤 + 𝛽𝑑𝑓 ∗

𝑤
)2 = 0. (13)

Notice that (13) defines implicitly the critical value of a control parameter at which the instability occurs.
As it was observed in [57], the hyperbolic character of the system has no effect on the unstable modes but modifies the Turing regions through

the conditions (11)4 which are always satisfied in the parabolic limit. It should be also remarked that, in the absence of cross-diffusion, these
conditions give an upper bound on the allowed inertial time 𝜏𝑢 < 𝜏𝑢𝑡ℎ = 1

𝑓∗
𝑢

.

3. Weakly nonlinear analysis

As it is well known, the linear stability analysis carried out in the previous section describes the initial phase of small perturbation growth but it
does not provide any information on the amplitude of perturbation as well as on transient dynamics. In fact, to predict the pattern amplitude close
to the threshold, the nonlinear terms must be included in the analysis. Therefore, let us now perform a multiple-scales weakly nonlinear stability
3
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analysis around the uniform steady state 𝐔∗ close to the critical value of a bifurcation parameter, say 𝐵. To this aim, we expand the field variables
𝐔 as well as the bifurcation parameter 𝐵 with respect to a positive small parameter 𝜖 ≪ 1 and introduce two different time scales as follows

𝐔 = 𝐔∗ + 𝜀𝐔1 + 𝜀2𝐔2 + 𝜀3𝐔3 + 𝜀4𝐔4 + 𝜀5𝐔5 + 𝑂
(

𝜀6
)

,

𝐵 = 𝐵𝑐 + 𝜀2𝐵2 + 𝜀4𝐵4 + 𝑂
(

𝜀6
)

,
𝜕
𝜕𝑡

= 𝜀2 𝜕
𝜕𝑇2

+ 𝜀4 𝜕
𝜕𝑇4

+ 𝑂
(

𝜀6
)

.
(14)

hen, substituting the above expansions (14) into the governing system (2) and collecting terms of the same orders of 𝜀 we obtain the following
et of linear equations:

𝜕𝐔1
𝜕𝑥

−𝐾∗
𝑐 𝐔1 = 0 at order 1

𝜕𝐔2
𝜕𝑥

−𝐾∗
𝑐 𝐔2 =

1
2

(

𝑀−1)∗
𝑐

[

(

𝐔1 ⋅ ∇𝑈
)(2) 𝐍

]∗

𝑐
at order 2 .

𝜕𝐔3
𝜕𝑥

−𝐾∗
𝑐 𝐔3 =

(

𝑀−1)∗
𝑐

{

𝐵2

[

(

𝐔1 ⋅ ∇𝑈
) d𝐍

d𝐵

]∗

𝑐
+

+
[(

𝐔1 ⋅ ∇𝑈
) (

𝐔2 ⋅ ∇𝑈
)

𝐍
]∗
𝑐 +

+ 1
6

[

(

𝐔1 ⋅ ∇𝑈
)(3) 𝐍

]∗

𝑐
−

𝜕𝐔1
𝜕𝑇2

}

at order 3

𝜕𝐔4
𝜕𝑥

−𝐾∗
𝑐 𝐔4 =

(

𝑀−1)∗
𝑐

{

1
2

[

(

𝐔2 ⋅ ∇𝑈
)(2) 𝐍

]∗

𝑐
+

[(

𝐔1 ⋅ ∇𝑈
) (

𝐔3 ⋅ ∇𝑈
)

𝐍
]∗
𝑐 +

+1
2

[

(

𝐔1 ⋅ ∇𝑈
)(2) (𝐔2 ⋅ ∇𝑈

)

𝐍
]∗

𝑐
+

+ 1
24

[

(

𝐔1 ⋅ ∇𝑈
)(4) 𝐍

]∗

𝑐
+ 𝐵2

[

(

𝐔2 ⋅ ∇𝑈
) d𝐍

d𝐵

]∗

𝑐
+

+1
2
𝐵2

[

(

𝐔1 ⋅ ∇𝑈
)(2) d𝐍

d𝐵

]∗

𝑐
−

𝜕𝐔2
𝜕𝑇2

}

at order 4

𝜕𝐔5
𝜕𝑥

−𝐾∗
𝑐 𝐔5 =

(

𝑀−1)∗
𝑐

{

[(

𝐔1 ⋅ ∇𝑈
) (

𝐔4 ⋅ ∇𝑈
)

𝐍
]∗
𝑐 +

+
[(

𝐔2 ⋅ ∇𝑈
) (

𝐔3 ⋅ ∇𝑈
)

𝐍
]∗
𝑐 +

+1
2

[

(

𝐔1 ⋅ ∇𝑈
)(2) (𝐔3 ⋅ ∇𝑈

)

𝐍
]∗

𝑐
+

+1
2

[

(

𝐔1 ⋅ ∇𝑈
) (

𝐔2 ⋅ ∇𝑈
)(2) 𝐍

]∗

𝑐
+

+1
6

[

(

𝐔1 ⋅ ∇𝑈
)(3) (𝐔2 ⋅ ∇𝑈

)

𝐍
]∗

𝑐
+ 1

120

[

(

𝐔1 ⋅ ∇𝑈
)(5) 𝐍

]∗

𝑐
+

+𝐵2

[

(

𝐔3 ⋅ ∇𝑈
) d𝐍

d𝐵

]∗

𝑐
+ 𝐵2

[

(

𝐔1 ⋅ ∇𝑈
) (

𝐔2 ⋅ ∇𝑈
) d𝐍

d𝐵

]∗

𝑐
+

+1
6
𝐵2

[

(

𝐔1 ⋅ ∇𝑈
)(3) d𝐍

d𝐵

]∗

𝑐
+ 𝐵4

[

(

𝐔1 ⋅ ∇𝑈
) d𝐍

d𝐵

]∗

𝑐
+

+1
2
𝐵2
2

[

(

𝐔1 ⋅ ∇𝑈
) d2𝐍

d𝐵2

]∗

𝑐
−

𝜕𝐔3
𝜕𝑇2

−
𝜕𝐔1
𝜕𝑇4

}

at order 5

(15)

where the subscript “𝑐” means that the quantity is evaluated at the critical value of the control parameter 𝐵𝑐 and 𝐾∗
𝑐 =

(

𝑀−1∇𝐍
)∗
𝑐 . Moreover,

for a generic vector 𝐕, the expression
(

𝐕 ⋅ ∇𝑈
)(𝑗) denotes the result of applying 𝑗 times the operator

(

𝐕 ⋅ ∇𝑈
)

= 𝑉1
𝜕
𝜕𝑢

+ 𝑉2
𝜕
𝜕𝑤

+ 𝑉3
𝜕

𝜕𝐽 𝑢 + 𝑉4
𝜕

𝜕𝐽𝑤 .

Following a similar procedure as the one developed in [57], the solution of the homogeneous linear system (15)1, satisfying zero flux boundary
conditions, can be expressed as

𝐔1 = 𝛺
[

𝐫 cos
(

𝑘𝑐𝑥
)

�̂� sin
(

𝑘𝑐𝑥
)

]

(16)

where 𝛺
(

𝑇2, 𝑇4
)

is the pattern amplitude. Moreover the vectors 𝐫 =
[

𝑟1, 𝑟2
]𝑇 and �̂� =

[

−𝑟3, −𝑟4
]𝑇 satisfy the following systems:

(

𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐫 = 0,

�̂� = 𝑘𝑐𝐃𝐫,
(17)

being ∇̃ = 𝜕
𝜕𝐖 and 𝐃 the non–diagonal diffusion matrix defined by

𝐃 =
[

1 0
]

. (18)
4

−𝛽𝑑 𝑑
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I
d

Now, inserting (16) into the nonhomogenous linear system (15)2, the solution at the second perturbative order reads

𝐔2 = 𝛺2
[

𝐔20 + 𝐔22 cos
(

2𝑘𝑐𝑥
)

�̂�22 sin
(

2𝑘𝑐𝑥
)

]

(19)

where

𝐔20 =

[

𝑛1
𝑛2

]

, 𝐔22 =

[

𝑚1

𝑚2

]

, �̂�22 =

[

𝑚3

𝑚4

]

(20)

fulfill the following linear systems
(

∇̃𝐅
)∗

𝑐
𝐔20 = −1

4

(

(

𝐫 ⋅ ∇̃
)(2)

𝐅
)∗

𝑐
,

(

4𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔22 =

1
2

(

(

𝐫 ⋅ ∇̃
)(2)

𝐅
)∗

𝑐
,

�̂�22 = 2𝑘𝑐𝐃𝐔22.

(21)

Then, taking into account (16)–(19), the elimination of secular terms at the third perturbative order (15)3 leads to the following Stuart-Landau
equation for the pattern amplitude 𝛺

d𝛺
d𝑇2

= 𝜎𝛺 − 𝐿𝛺3 (22)

where the growth rate 𝜎 and Landau coefficient 𝐿 are given by

𝜎 =
𝐵2

[

𝑟1
(

𝛽𝑑𝑡1 + 𝑡2
)

− 𝑑𝑟2𝑡1
]

𝑟1
{

𝑟2 + 𝑑
(

𝑟2 − 𝛽𝑟1
) [

𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤) − 1
]} ,

𝐿 =
𝑑
(

𝑟2 − 𝛽𝑑𝑟1
) (

𝑝1 + 8𝑞1 + 4𝑠1
)

− 𝑟1
(

𝑝2 + 8𝑞2 + 4𝑠2
)

8𝑟1
{

𝑟2 + 𝑑
(

𝑟2 − 𝛽𝑟1
) [

𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤) − 1
]}

(23)

with

𝐩 =
[

𝑝1
𝑝2

]

=
(

(

𝐫 ⋅ ∇̃
)(3)

𝐅
)∗

𝑐
,

𝐪 =
[

𝑞1
𝑞2

]

=
(

𝐫 ⋅ ∇̃
)((

𝐔20 ⋅ ∇̃
)

𝐅
)∗

𝑐
,

𝐬 =
[

𝑠1
𝑠2

]

=
(

𝐫 ⋅ ∇̃
)((

𝐔22 ⋅ ∇̃
)

𝐅
)∗

𝑐
,

𝐭 =
[

𝑡1
𝑡2

]

=
((

𝐫 ⋅ ∇̃
)

𝑑𝐅
𝑑𝐵

)∗

𝑐
.

(24)

t should be noticed that, in the Turing region, the growth rate coefficient 𝜎 is always positive and the sign of the Landau coefficient 𝐿, which
epends on the model parameters, describes two different qualitative behaviors. In particular, the supercritical regime is related to 𝐿 > 0 whereas

the subcritical one to 𝐿 < 0.
Let us now focus on the supercritical dynamics characterized by the positiveness of the Landau coefficient 𝐿. In this case, the Stuart-Landau

Eq. (22) admits the nontrivial stable equilibrium

𝛺(super)
∞ =

√

𝜎
𝐿

(25)

corresponding to the asymptotic value of the pattern amplitude 𝛺. Moreover, by integrating (22), the temporal evolution of the supercritical pattern
amplitude is ruled by

𝛺
(

𝑇2
)

=
𝛺0exp

(

𝜎𝑇2
)

√

1 +
𝛺2
0

𝛺2
∞

[

exp
(

2𝜎𝑇2
)

− 1
]

(26)

where 𝛺0 is the initial amplitude perturbation. Notice that, as it is expected, the stationary amplitude 𝛺(super)
∞ does not depend on the inertial times,

whereas the transient dynamics are affected by the hyperbolic structure of the system through the parameter 𝜎. However, taking into account (23)1,
it is easy to ascertain that the hyperbolic structure of the model does not affect the pattern dynamics if the inertial times offset each other, i.e. when
𝜏𝑢 = 𝜏𝑤.

Therefore, the stationary solution of the governing system (2) at the second order approximation, provided by the weakly nonlinear analysis,
is given by

𝐔(𝑥) = 𝐔∗ + 𝜀
√

𝜎
𝐿

[

𝐫 cos
(

𝑘𝑐𝑥
)

�̂� sin
(

𝑘𝑐𝑥
)

]

+ 𝜀2 𝜎
𝐿

[

𝐔20 + 𝐔22 cos
(

2𝑘𝑐𝑥
)

�̂�22 sin
(

2𝑘𝑐𝑥
)

]

+ 𝑂(𝜀3). (27)

On the contrary, in the subcritical regime (𝐿 < 0) the cubic Stuart-Landau Eq. (22) does not admit any stable equilibrium so that we have to push
the weakly nonlinear analysis up to the fifth order. Then, the pattern amplitude 𝛺 satisfies the quintic Stuart–Landau equation

d𝛺 = 𝜎 𝛺 − 𝐿𝛺3 + 𝑅𝛺5 (28)
5

d𝑇
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T
i
t

f

i

𝛼

l

(

where
d

d𝑇 = 𝜕
𝜕𝑇2

+ 𝜀2 𝜕
𝜕𝑇4

,

𝜎 = 𝜎 + 𝜀2𝜎, 𝐿 = 𝐿 + 𝜀2�̃�, 𝑅 = 𝜀2𝑅.
(29)

he expressions of the new corrections 𝜎, �̃� and 𝑅, arising when higher order terms are considered, will be provided in the next section for the
llustrative example. Moreover, since 𝜎 > 0 and 𝐿 < 0, there exists 𝜀 ≪ 1 such that 𝜎 > 0, 𝐿 < 0 and in turn, when 𝑅 < 0, there exists one non
rivial stable stationary amplitude given by:

𝛺(sub)
∞ =

√

√

√

√

√
𝐿 −

√

𝐿
2
− 4𝑅𝜎

2𝑅
. (30)

Then, the integration of the quintic Stuart–Landau Eq. (28) implicitly defines the time evolution of the pattern amplitude 𝛺 (𝑇 ) as
ollows

𝑇 = 1
4𝜎𝜒

[

4𝜒 ln
(

𝛺
𝛺0

)

+
(

𝐿 − 𝜒
)

ln

(

2𝑅𝛺2 − 𝐿 − 𝜒

2𝑅𝛺2
0 − 𝐿 − 𝜒

)

−
(

𝐿 + 𝜒
)

ln

(

2𝑅𝛺2 − 𝐿 + 𝜒

2𝑅𝛺2
0 − 𝐿 + 𝜒

)]

(31)

where 𝜒 =
(

𝐿
2
− 4𝑅𝜎

)1∕2
.

Finally, according to (14)1 and under the assumption 𝑅 < 0, the stationary solution of the governing system (2) at the fourth order approximation
s given by

𝐔(𝑥) = 𝐔∗ + 𝜀𝛺∞

[

𝐫 cos
(

𝑘𝑐 𝑥
)

�̂� sin
(

𝑘𝑐 𝑥
)

]

+ 𝜀2𝛺2
∞

[

𝐔20 + 𝐔22 cos
(

2𝑘𝑐 𝑥
)

�̂�22 sin
(

2𝑘𝑐 𝑥
)

]

+

+𝜀3𝛺∞

⎡

⎢

⎢

⎣

(

𝐔31 +𝛺2
∞𝐔32

)

cos
(

𝑘𝑐 𝑥
)

+𝛺2
∞𝐔33 cos

(

3𝑘𝑐 𝑥
)

(

�̂�31 +𝛺2
∞�̂�32

)

sin
(

𝑘𝑐 𝑥
)

+𝛺2
∞�̂�33 sin

(

3𝑘𝑐 𝑥
)

⎤

⎥

⎥

⎦

+

+𝜀4𝛺2
∞

⎡

⎢

⎢

⎣

𝐔40 +𝛺2
∞𝐔41 +

(

𝐔42 +𝛺2
∞𝐔43

)

cos
(

2𝑘𝑐 𝑥
)

+𝛺2
∞𝐔44 cos

(

4𝑘𝑐 𝑥
)

(

�̂�42 +𝛺2
∞�̂�43

)

sin
(

2𝑘𝑐 𝑥
)

+𝛺2
∞�̂�44 sin

(

4𝑘𝑐 𝑥
)

⎤

⎥

⎥

⎦

+ 𝑂(𝜀5)

(32)

where we omitted the superscript ‘‘(sub)’’ to make (32) more readable. Details on the derivation of quintic Stuart–Landau Eq. (28) are given
in Appendix.

4. Illustrative example: a modified Klausmeier model

In this section, we apply the results previously obtained to a modified Klausmeier model to investigate the effects of internal competition
reaction between biomass on the vegetation spatial pattern formation. In fact, in arid or semi-arid regions, the lack of water resources leads to
plant competition for survival. Therefore, the kinetic terms, which take into account the fact that inner competition increases in more vegetated
areas, can be expressed as follows [30,31]

𝑓 (𝑢,𝑤) = 𝑤𝑢2

1 + 𝛼𝑢2
− 𝐵 𝑢,

𝑔(𝑢,𝑤) = 𝐴 −𝑤 − 𝑤𝑢2

1 + 𝛼𝑢2
.

(33)

In (33) the adimensional parameters 𝐵 and 𝐴 represent the plant loss and rainfall rate which, as suggested by previous investigations, belong to
the ranges 𝐵 ∈ (0, 2) and 𝐴 ∈ (0, 3) [3,59], whereas the parameter 𝛼 takes into account the inner competition between biomass. Notice that, for
= 0 we recover the kinetics terms characterizing the Klausmeier model.

The spatially homogeneous equilibrium states 𝐔∗ ≡ (𝑢∗, 𝑤∗, 𝐽 𝑢∗ , 𝐽𝑤∗ ) admitted by (2), (33) depend upon the value of the rainfall 𝐴 and the plant
oss B, namely

𝐴 < 𝐴𝑒𝑥 ⇒ desert state 𝐔∗
𝐷 ≡ (0, 𝐴, 0, 0) ,

𝐴 > 𝐴𝑒𝑥 ⇒ three equilibria 𝐔∗
𝐷, 𝐔

∗
𝑆,𝐿 =

(

𝑢𝑆,𝐿,
𝐵

𝑢𝑆,𝐿
(1 + 𝛼𝑢2𝑆,𝐿), 0, 0

)

, (34)

with

𝐴𝑒𝑥 = 2𝐵
√

1 + 𝛼,

0 < 𝑢𝐿 = 𝐴−
√

𝐴2−4𝐵2(𝛼+1)
2𝐵(𝛼+1) < 1

√

1+𝛼
< 𝑢𝑆 = 𝐴+

√

𝐴2−4𝐵2(𝛼+1)
2𝐵(𝛼+1) .

(35)

In the particular case when 𝐴 = 𝐴𝑒𝑥 the system admits, in addition to the desert state, only one steady-state being 𝐔∗
𝑆 = 𝐔∗

𝐿 =
1

√ , 𝐵(1+2𝛼)√ , 0, 0
)

.

6
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According to the linear stability analysis carried out in previous section, the dispersion relation (5) is obtained with

𝐴1 =
(𝜏𝑢 + 𝜏𝑤)

(

1 + 𝛼𝑢2𝑆
)

− 𝜏𝑢𝜏𝑤
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

𝜏𝑢𝜏𝑤
(

1 + 𝛼𝑢2𝑆
) ,

𝐴2 =
(𝑑𝜏𝑢 + 𝜏𝑤)

(

1 + 𝛼𝑢2𝑆
)

𝑘2 + 1 + 𝛼𝑢2𝑆 − (𝜏𝑢 + 𝜏𝑤)
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

𝜏𝑢𝜏𝑤
(

1 + 𝛼𝑢2𝑆
) ,

𝐴3 =

{

(𝑑 + 1)
(

1 + 𝛼𝑢2𝑆
)

− 𝑑𝐵𝜏𝑢 + 𝜏𝑤 +
[

𝜏𝑢 + 𝛼𝜏𝑤 + 𝑑𝜏𝑢 (𝛼𝐵 − 𝛽)
]

𝑢2𝑆
}

𝑘2

𝜏𝑢𝜏𝑤
(

1 + 𝛼𝑢2𝑆
) +

+

{

1 − 𝐵 (1 + 𝜏𝑢 + 𝜏𝑤) +
[

1 + 𝛼 + 𝐵 (𝜏𝑢 + 𝜏𝑤) + 𝐵𝛼 (1 + 𝜏𝑢 + 𝜏𝑤)
]

𝑢2𝑆
}

𝜏𝑢𝜏𝑤
(

1 + 𝛼𝑢2𝑆
) ,

𝐴4 =
𝑑
(

1 + 𝛼𝑢2𝑆
)

𝑘4 −
[

𝑑𝐵 − 1 − (1 + 𝛼 + 𝑑𝐵𝛼 − 𝑑𝛽) 𝑢2𝑆
]

𝑘2 + 𝐵
[

(1 + 𝛼) 𝑢2𝑆 − 1
]

𝜏𝑢𝜏𝑤
(

1 + 𝛼𝑢2𝑆
) .

(36)

Then, taking into account

𝑓𝑢(𝐔∗
𝐷) = −𝐵 , 𝑓𝑤(𝐔∗

𝐷) = 0 , 𝑔𝑢(𝐔∗
𝐷) = 0 , 𝑔𝑤(𝐔∗

𝐷) = −1 ,

𝑓𝑢(𝐔∗
𝑆,𝐿) =

𝐵
(

1−𝛼𝑢2𝑆,𝐿
)

1+𝛼𝑢2𝑆,𝐿
, 𝑓𝑤(𝐔∗

𝑆,𝐿) =
𝑢2𝑆,𝐿

1+𝛼𝑢2𝑆,𝐿
, 𝑔𝑢(𝐔∗

𝑆,𝐿) = − 2𝐵
1+𝛼𝑢2𝑆,𝐿

, 𝑔𝑤(𝐔∗
𝑆,𝐿) = −

1+(1+𝛼)𝑢2𝑆,𝐿
1+𝛼𝑢2𝑆,𝐿

,
(37)

it can be easily checked that the desert state 𝐔∗
𝐷 is always stable, the vegetated state 𝐔∗

𝐿 is always unstable whereas the stability of the steady state
𝐔∗
𝑆 depends on the values of 𝐴 and 𝐵. Consequently, patterned solutions may be observed as a destabilization of the homogeneously vegetated

state 𝐔∗
𝑆 .

Therefore the necessary conditions (11) for diffusion-driven instabilities yielding Turing–like patterns specialize to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆 < 0

𝐵
[

𝑢2𝑆 (1 + 𝛼) − 1
]

> 0

𝑑𝐵 − 1 − (1 + 𝛼 + 𝑑𝐵𝛼 − 𝑑𝛽) 𝑢2𝑆 > 0
[

𝑑𝐵 − 1 − (1 + 𝑑𝐵𝛼 + 𝛼 − 𝑑𝛽) 𝑢2𝑆
]2 − 4𝑑𝐵

(

1 + 𝛼𝑢2𝑆
) [

𝑢2𝑆 (1 + 𝛼) − 1
]

> 0

𝜉2 > 0

𝜉1 + 2
√

𝜉0𝜉2 > 0

(38)

where

𝜉0 =
(𝜏𝑢 + 𝜏𝑤)

[

1 − 𝐵 + (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
] {

𝐵 (𝜏𝑢)2
[

(1 + 𝛼) 𝑢2𝑆 − 1
]

− 𝜏𝑢
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

+ 1 + 𝛼𝑢2𝑆
}

(𝜏𝑢𝜏𝑤)3
(

1 + 𝛼𝑢2𝑆
)3

×

×
{

𝐵
(

𝜏𝑤
)2 [(1 + 𝛼) 𝑢2𝑆 − 1

]

− 𝜏𝑤
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

+ 1 + 𝛼𝑢2𝑆
}

,

𝜉1 =
𝑐1𝑑𝑢2𝑆𝛽 + 𝑐2

[

1 + 𝛼𝑢2𝑆 − 𝜏𝑢𝐵
(

1 − 𝛼𝑢2𝑆
)]

+ 𝑐3
[

1 + 𝛼𝑢2𝑆 + 𝜏𝑤
(

1 + (1 + 𝛼) 𝑢2𝑆
)]2 + (𝑑 − 1) (𝜏𝑢 + 𝜏𝑤)

[

𝜏𝑢𝐵
(

1 − 𝛼𝑢2𝑆
)

+ 𝜏𝑤
(

1 + (1 + 𝛼) 𝑢2𝑆
)]

(𝜏𝑢𝜏𝑤)3
(

1 + 𝛼𝑢2𝑆
)3

,

𝜉2 = −

{

𝑑𝛽 (𝜏𝑢)2 𝑢2𝑆 + (𝑑𝜏𝑢 − 𝜏𝑤)
[

𝜏𝑢𝐵 − 1 − 𝛼𝑢2𝑆 (1 + 𝜏𝑢𝐵)
]} [

𝑑𝛽𝜏𝑢𝜏𝑤𝑢2𝑆 + (𝑑𝜏𝑢 − 𝜏𝑤)
(

𝜏𝑤 + 𝜏𝑤(1 + 𝛼)𝑢2𝑆 + 1 + 𝛼𝑢2𝑆
)]

(𝜏𝑢𝜏𝑤)3
(

1 + 𝛼𝑢2𝑆
)2

,

(39)

with

𝑐1 = 𝜏𝑤 (𝜏𝑢 + 𝜏𝑤)
(

1 + 𝛼𝑢2𝑆
) {

1 + 𝛼𝑢2𝑆 + 𝐵 (𝜏𝑢)2
[

𝑢2𝑆 (1 + 𝛼) − 1
]}

− (𝜏𝑢)3 𝜏𝑤
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]2 +

+𝜏𝑢
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

{

(

1 + 𝛼𝑢2𝑆
)

[

(𝜏𝑢)2 − 𝜏𝑢𝜏𝑤 − (𝜏𝑤)2
]

+ (𝜏𝑢𝜏𝑤)2 𝐵
[

𝑢2𝑆 (1 + 𝛼) − 1
]

}

,

𝑐2 =
{

𝜏𝑤
[

𝜏𝑤𝐵
(

𝑢2𝑆 (1 + 𝛼) − 1
)

− 𝐵 + 1 + (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]} {

(𝜏𝑢 + 𝜏𝑤)
(

1 + 𝛼𝑢2𝑆
)

+
−𝑑 (𝜏𝑢)2

[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]}

+ 𝑑
(

1 + 𝛼𝑢2𝑆
) {

(𝜏𝑢 + 𝜏𝑤)
(

1 + 𝛼𝑢2𝑆
)

− (𝜏𝑢)2
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]}

,

𝑐3 =
{

𝜏𝑢
[

𝜏𝑢𝐵
(

𝑢2𝑆 (1 + 𝛼) − 1
)

− 𝐵 + 1 + (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]} {

𝑑 (𝜏𝑢 + 𝜏𝑤)
(

1 + 𝛼𝑢2𝑆
)

+
−𝑑 (𝜏𝑤)2

[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

}

+
(

1 + 𝛼𝑢2𝑆
)

{

(𝜏𝑢 + 𝜏𝑤)
(

1 + 𝛼𝑢2𝑆
)

− (𝜏𝑤)2
[

𝐵 − 1 − (1 + 𝐵𝛼 + 𝛼) 𝑢2𝑆
]

}

.

(40)

Furthermore, choosing the plant loss 𝐵 as the bifurcation parameter, the stationary pattern solution occurs at the critical values (12)–(13) which
reduce to:

𝑘2𝑐 =

√

√

√

√

𝐵𝑐

[

(1+𝛼)𝑢2𝑆𝑐
−1

]

𝑑
(

1+𝛼𝑢2𝑆𝑐

)

4𝑑𝐵𝑐

(

1 + 𝛼𝑢2𝑆𝑐

) [

(1 + 𝛼)𝑢2𝑆𝑐
− 1

]

−
[

𝑑𝐵𝑐 − 1 −
(

1 + 𝑑𝐵𝑐𝛼 + 𝛼 − 𝑑𝛽
)

𝑢2𝑆𝑐

]2
= 0

(41)

with 𝑢 = 𝐴+
√

𝐴2−4𝐵2
𝑐 (𝛼+1) .
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Fig. 1. Bifurcation diagram in the (𝐵, 𝐴)-plane for different values of 𝛽 (a, c) and 𝛼 (b). The Turing loci are denoted by solid lines, whereas the dashed ones define the loci
𝐴 = 𝐴𝑒𝑥. Fixed parameters: 𝑑 = 500, 𝛼 = 0 in (a), 𝛽 = 0 in (b) and 𝛼 = 10−2 in (c). Yellow squares represent the configurations P1 = (0.25, 1.7), P2 = (0.30, 1.7), P3 = (0.32, 1.7),
P4 = (0.34, 1.7), P5 = (0.40, 1.7) and P6 = (0.50, 1.7).

Let us now address numerical investigations to validate these analytical results and gain some insight into the combined role of the inertial
times 𝜏𝑢 and 𝜏𝑤, the cross-diffusion term 𝛽 and the internal competition rate 𝛼 on the vegetated patterns dynamics.

To this aim, we build up the bifurcation diagram in the (𝐵, 𝐴)-plane in Fig. 1 for different values of 𝛽 [panels (a, c)] and 𝛼 [panel (b)] by fixing
𝑑 = 500. In detail, in panel (a) we fix 𝛼 = 0 by focusing on the role of the cross-diffusion term 𝛽, in panel (b) we fix 𝛽 = 0 to underline the effects of
the internal competition rate 𝛼 whereas in panel (c) we fix 𝛼 = 10−2 to investigate the combined role of the above parameters. In these figures, the
solid curve represents the bifurcation locus (41)2 whereas the dashed line denotes the existence condition 𝐴 = 𝐴𝑒𝑥 (35)1. The curves separate the
(𝐵, 𝐴) parametric plane into three different regions: the one below the line 𝐴 = 𝐴𝑒𝑥 where the only desert state 𝐔∗

𝐷 exists and it is stable, the one
between dashed and solid line where vegetated patterns may be observed since 𝐔∗

𝑆 is destabilized by nonhomogeneous perturbations and, finally,
the one lying above such bifurcation locus where the bistability between 𝐔∗

𝐷 and 𝐔∗
𝑆 is observed. From a direct inspection we can deduce that

the cross-diffusion term favors the destabilization of the spatially-homogeneous vegetated states 𝐔∗
𝑆 as the instability region enlarges itself when

𝛽 is increased [panel (a)]. Ecologically this means that, when roots have a strong ability of absorbing the soil water, the growth of surrounding
vegetation is inhibited and this induces a stripe distribution. On the contrary, when 𝛽 is neglected, the increase of the internal competition rate
leads to a reduction of the Turing region by following a double effect: (i) the instability threshold (41)2 occurs for bigger values of plant loss 𝐵
and (ii) the existence condition (35)1 shifts up [see panel (b)]. From the ecological viewpoint, these phenomena are strictly correlated to the fact
that, when the internal competition increases, vegetation plants have less availability of environmental resources, so the desert state is favored.
Finally, when both 𝛽 and 𝛼 are taken into account, the effects can offset each other [see panel (c)].

Then, to characterize the wavelength dependence on the above parameters, we analyze the range of unstable wavenumbers and the critical
one in Fig. 2 by varying 𝛽 and 𝛼. As it is known, if a non-homogeneous perturbation is applied close to the onset of instability to 𝐔∗

𝑆 , the system
converges to a patterned configuration whose wavenumber is near to the mode exhibiting the largest growth rate. On the contrary, if we move away
from the critical threshold 𝐵𝑐 , a range of unstable wavenumbers arises and the competition of excitable modes occurs. In particular, at the onset
of instability 𝐵𝑐 , this range degenerates into the single value 𝑘𝑐 [see the turning points in panels (a, c)]. To better address this point, Fig. 2(a,c)
depict the variations in the (𝐵, 𝑘)-plane of the root of the characteristic polynomial (5), (36) associated to the most unstable mode for different
values of 𝛽 [panel (a)] and 𝛼 [panel (c)]. Results here achieved confirmed the prediction shown in Fig. 1. Indeed, when 𝛼 is neglected it can be
observed that the increase of cross-diffusion strength leads to an enlargement of the range of the excitable modes. On the contrary, if the role
of 𝛽 is not taken into account, the internal competition effects bring a reduction of the above-mentioned region. Details regarding the value of
8
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Fig. 2. (a, c) Solid (dashed) lines represent the range of unstable wavenumbers (the most unstable wavenumber) as a function of the plant loss 𝐵 for different values of 𝛽 (a)
and 𝛼 (c). (b, d) The critical wavenumber as a function of 𝐵𝑐 for different values of 𝛽 (b) and 𝛼 (d). Fixed parameters: 𝑑 = 500, 𝐴 = 2.8, 𝛼 = 0 in (a, b) and 𝛽 = 0 in (c, d).

the critical wavenumber at the onset of instability are depicted in Fig. 2(b, d). These results show that the increase of 𝛽 (𝛼) conducts to patterns
with smaller (bigger) wavelengths at the onset. From the biological viewpoint, these results suggest that an increment of the capability of roots to
suction water from soil conducts a richer scenario and admits several different patterned configurations. This framework is given to the fact that
a larger range of the admitted wavenumbers conducts a greater number of the excited modes that correspond to a different number of stripes in
the selected domain. On the other hand, the increment of the internal competition between plants has exactly the opposite behavior.

Finally, to better understand the combined effects of cross-diffusion and internal competition on the critical values in Fig. 3 we show the density
plot of the critical plant loss 𝐵𝑐 (41)2 [panel (a)] and the critical wavenumber 𝑘𝑐 (41)1 [panel (b)] in the (𝛽, 𝛼)-plane. We note that the level curves,
characterizing the above quantities when the cross-diffusion and internal competition rates vary continuously, denote a monotonic behavior and
confirm results reported in Fig. 1.

As previously observed, the occurrence of stationary patterns depends on the inertial times through conditions (38)5,6 which, once the set of
model parameters is fixed, characterize the stability or Turing region in the (𝜏𝑢, 𝜏𝑤)-plane. Therefore, by considering different values of 𝛼 and 𝛽, we
depict in Fig. 4(a, c, e) the stability regions at the point P1 denoted in Fig. 1(a), whereas in Fig. 4(b, d, f) we show the stability [panel (f)] and Turing
regions [panels (b, d)] at the configuration P3 [see Fig. 1(a)]. More precisely, the yellow areas represent the region in which conditions (38)5,6
are satisfied. In particular, when both 𝛽 and 𝛼 are neglected, conditions (38)5,6 provide an upper bound on the allowed inertial time, i.e. 𝜏𝑢 < 1∕𝐵
[panels (a, b)], as already observed in [39,57]. Differently, when 𝛽 is taken into account the upper bound value reduces itself according to the
strength of the cross-diffusion coefficient [panels (c, d)], whereas the internal competition one plays the opposite role [panels (e, f)]. Note that,
in panels (e, f) the upper bound on the inertial time 𝜏𝑢 is given by 𝜏𝑢𝑡ℎ ≃ 10.12 and 𝜏𝑢𝑡ℎ ≃ 5.28, respectively. It is also interesting to notice that the
effect of water inertia 𝜏𝑤 seems to be negligible also for 𝛽 ≠ 0 and only the vegetation one plays an active role in defining the instability region.
Therefore, to gain further insight into this feature, we now perform numerical investigations in the (𝐵, 𝛽)-plane by fixing 𝑑 = 500, 𝛼 = 0, 𝜏𝑤 = 10−4,
𝐴 = 1.7. Results shown in Fig. 5 for 𝜏𝑢 = 10−4 in panel (a) and 𝜏𝑢 = 4 in panel (b) reveal that a point that lies in the Turing region may conduct
to stationary patterns close to the parabolic limit [panel (a)] whereas prevents their occurrence far from it [panel (b)]. The black solid line herein
depicted represents the configuration P3.

In order to corroborate our analytical predictions, we integrate numerically the governing system (2)–(4), (33) with zero-flux boundary
conditions and using small sinusoidal fluctuations about the steady state 𝐔∗

𝑆 as initial conditions. Simulations have been carried out by means
of MATLAB® [60] over a time window 𝑡 ∈ [0, 200] and considering a spatial domain of length 𝐷 = 100. In particular, we inspect the time-space
evolution of the vegetation biomass 𝑢(𝑥, 𝑡) at the points P1, P2, and P3 for different values of the cross-diffusion coefficient 𝛽 in Fig. 6 and at the
points P , P , and P as the internal competition rate 𝛼 is varied in Fig. 7.
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Fig. 3. Density-plot showing the level curves in the (𝛽, 𝛼)-plane for the critical threshold 𝐵𝑐 (a) and the critical wavenumber 𝑘𝑐 (b). Fixed parameters: 𝑑 = 500 and 𝐴 = 1.7.

Fig. 4. 𝜏𝑢 − 𝜏𝑤 region defined by (38)5,6 and obtained for model parameters corresponding to the points P1 (a, c, e) and P3 (b, d, f) for different values of 𝛽 and 𝛼. In particular
𝛽 = 0 and 𝛼 = 0 in panels (a, b), 𝛽 = 2 × 10−3 and 𝛼 = 0 in panels (c, d), 𝛽 = 0 and 𝛼 = 10−2 in panels (e, f). Other fixed parameters: 𝑑 = 500.

According to Fig. 1(a), numerical results shown in Fig. 6 reveal that vegetated stripes are observed only at P3 [panel (c)] for 𝛽 = 0, whereas for
𝛽 = 2 × 10−3 stationary patterns occur at both P2 and P3 [panels (e, f)]. Finally, since P1, P2 and P3 are located within the Turing instability region
for 𝛽 = 3.5× 10−3, the system evolves towards band configurations at each of these points [panels (g, h, i)]. On the contrary, the opposite behavior
10
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Fig. 5. 𝐵 − 𝛽 region defined by (38)5,6 and obtained for model parameters corresponding to the point P3 for 𝜏𝑢 = 10−4 (a) and 𝜏𝑢 = 4 (b). Fixed parameters: 𝑑 = 500, 𝐴 = 1.7, 𝛼 = 0
and 𝜏𝑤 = 10−4.

Fig. 6. Spatiotemporal dynamics of vegetation biomass 𝑢(𝑥, 𝑡) corresponding to P1 (a, d, g), P2 (b, e, h) e P3 (c, f, i) for 𝛽 = 0 (a, b, c), 𝛽 = 2 × 10−3 (d, e, f) and 𝛽 = 3.5 × 10−3 (g,
h, i). Fixed parameters: 𝜏𝑢 = 𝜏𝑤 = 10−4. Other parameters as in Fig. 1(a).

is observed in Fig. 7 when the internal competition rate is varied. In particular, for 𝛼 = 0 all the considered configurations lead to the occurrence
of Turing patterns [panel (a, b, c)], for 𝛼 = 10−2 stripes arise at P5 and P6 [panels (e, f)], whereas for 𝛼 = 5×10−2 vegetation patterns occur at only
P , confirming the results obtained in Fig. 1(b).
11
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Fig. 7. Spatiotemporal dynamics of vegetation biomass 𝑢(𝑥, 𝑡) corresponding to P4 (a, d, g), P5 (b, e, h) e P6 (c, f, i) for 𝛼 = 0 (a, b, c), 𝛼 = 10−2 (d, e, f) and 𝛼 = 5 × 10−2 (g, h,
i). Fixed parameters: 𝜏𝑢 = 𝜏𝑤 = 10−4. Other parameters as in Fig. 1(b).

Next, according to the weakly nonlinear analysis developed in Section 3, we deduce the cubic Stuart–Landau Eq. (22) for the pattern amplitude
with

𝜎 =
𝐵2

{

2𝑢2𝑆𝑐

[

1 + (1 + 𝛼)𝑢2𝑆𝑐
] (

2𝛼𝐵𝑐𝑟1 − 𝑟2
) (

𝑟1 + 𝑑𝑟2 − 𝛽𝑑𝑟1
)

+ 𝐵𝑐𝑟1
[

1 − (1 + 𝛼)𝑢2𝑆𝑐

] (

1 + 𝛼𝑢2𝑆𝑐

) [

𝑑
(

𝛽𝑟1 − 𝑟2
(

1 − 𝛼𝑢2𝑆𝑐

))

− 2𝑟1
]}

𝐵𝑐𝑟1
[

1 − (1 + 𝛼)𝑢2𝑆𝑐

] (

1 + 𝛼𝑢2𝑆𝑐

)2
{

𝑟2 + 𝑑
(

𝑟2 − 𝛽𝑟1
) [

𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤) − 1
]}

,

𝐿 =

(

𝑝1 + 8𝑞1 + 4𝑠1
) (

𝑟1 + 𝑑𝑟2 − 𝛽𝑑𝑟1
)

8𝑟1
{

𝑟2 + 𝑑
(

𝑟2 − 𝛽𝑟1
) [

𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤) − 1
]} ,

(42)

being

𝑝1 =
6𝑟21

[

4𝛼𝐵𝑐𝑟1
(

𝛼𝑢2𝑆𝑐
− 1

)

+ 𝑟2
(

1 − 3𝛼𝑢2𝑆𝑐

)]

(

1 + 𝛼𝑢2𝑆𝑐

)3
,

𝑞1 =
2𝑛1

[

𝐵𝑐𝑟1
(

1 − 𝑢2𝑆𝑐
− 3𝛼𝑢2𝑆𝑐

)

+ 𝑟2𝑢2𝑆𝑐

]

𝑢𝑆𝑐

(

1 + 𝛼𝑢2𝑆𝑐

)2
,

𝑠1 =
2𝑛1

{

𝑟1
[

𝐵𝑐

(

1 − 𝑢2𝑆𝑐
− 3𝛼𝑢2𝑆𝑐

)

+ 4𝑑𝐵𝑐𝑘2𝑐 + 4𝑘2𝑐𝑢
2
𝑆𝑐
(𝛽𝑑 − 1 − 3𝛼𝑑𝐵𝑐 )

]

+ 𝑟2𝑢2𝑆𝑐

(

1 + 4𝑑𝑘2𝑐
)

}

9𝑢𝑆𝑐

(

1 + 𝛼𝑢2𝑆𝑐

)2
,

𝑛1 =
𝑟21

(

2𝑘2𝑐 − 𝐵𝑐
)

2𝑢𝑆𝑐
𝐵𝑐

[

(1 + 𝛼) 𝑢2𝑆𝑐
− 1

] .

(43)

Then, in order to investigate when 𝐔∗
𝑆 undergoes to a supercritical (𝐿 > 0) or subcritical bifurcation (𝐿 < 0), we depict in Fig. 8 the dependence

of the Landau coefficient 𝐿 (42)2 as a function of the critical plant loss 𝐵𝑐 , for different values of 𝜏𝑤 [panel (a)], 𝛽 [panel (b)] and 𝛼 [panel (c)].
A direct inspection of Fig. 8(a) confirms that the inertial times 𝜏𝑢 and 𝜏𝑤 do not affect the zeros of 𝐿, as it can be seen in (42)2. Moreover, panel
(b) reveal that the cross-diffusion favors the supercritical regime due to the fact that the transition threshold from subcritical to the supercritical
12
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Fig. 8. Dependence of the parameter L as a function of the critical plant loss 𝐵𝑐 for 𝑑 = 500 and 𝜏𝑢 = 10−4. The condition 𝐿 = 0 separates the supercritical regime (𝐿 > 0) from
the subcritical one (𝐿 < 0). Other parameters: 𝛼 = 0 in (a, b), 𝜏𝑤 = 10−4 in (b, c), 𝛽 = 2 × 10−3 in (a) and 𝛽 = 0 in (c).

Fig. 9. The bifurcation diagram in the supercritical case showing the amplitude of different stationary states 𝛺(𝑠𝑢𝑝𝑒𝑟)
∞ as a function of the plant loss 𝐵. Solid and dashed-dotted

lines represent the stable branches obtained analytically by weakly nonlinear analysis (25) and numerically via XPPAUT, respectively. The dashed line depicts the unstable branch.
The critical plant loss values 𝐵𝑐 are denoted by squares. Fixed parameters: 𝐴 = 1.7, 𝛼 = 0 (a) and 𝛽 = 0 (b).

regime (yellow squares) occurs for smaller values of plant loss 𝐵 as 𝛽 increases. On the contrary, the internal competition gives advantages to the
subcritical dynamics, i.e. the transition point occurs for greater values of 𝐵 when 𝛼 is increased. More precisely, when the internal competition is
neglected subcritical dynamics occur only for small values of critical plant loss 𝐵𝑐 whereas when 𝛼 increases the subcritical region enlarges itself.
From the ecological viewpoint, it is possible to conclude that, at least in the considered parameter setup, the increment of the capability of plants’
roots to suction water from the soil (plants’ internal competition) makes the vegetation pattern less (more) resilient to the variation of plant loss.

Let us now focus on the dynamics occurring in the supercritical regime (𝐿 > 0). As already observed in Section 3, the asymptotic value of
the pattern amplitude 𝛺(super)

∞ (25) depends on the model parameters, but it is not affected by the inertial times. Therefore, for different values
of 𝛽 and 𝛼, we plot in Fig. 9 the analytical (solid lines) and numerical (dashed-dotted ones) bifurcation diagram obtained via weakly nonlinear
analysis and the bifurcation package XPPAUT [61], respectively. Notice that, since 𝜎 and 𝐿 are positive, in both cases a supercritical pitchfork
bifurcation arises and the pattern amplitude follows a square root law for 𝐵 > 𝐵𝑐 . Moreover, a direct inspection of this figure reveals that the
comparison between the analytical and the numerical results agrees well close to the onset of instability whereas became worst when the distance
from the threshold is increased, as expected by weakly non-linear analysis. Finally, it can be observed that the bifurcation threshold occurs for
smaller (greater) values of the plant loss 𝐵 as 𝛽 (𝛼) increases and, in turn, vegetated bands with larger (smaller) amplitudes appear accordingly to
the fact that the distance from the threshold is varied. These behaviors, which are consistent with the results depicted in Fig. 1(a) and Fig. 3, are
also confirmed by numerical simulation [Fig. 10(a, b, d, e)] performed by integrating the governing system (2)–(4), (33). Then, in Fig. 10(c, f) we
plot the comparison among the time evolution of the theoretical (27) (solid lines) and numerical (dashed ones) envelopes of vegetation patterns
obtained for the parameter setting as in panels (a, b, d, e). Results provide a good agreement for 𝛽 = 2 × 10−3 and 𝛼 = 10−2, whereas it becomes
worst from a quantitative viewpoint for 𝛽 = 3.5 × 10−3 and 𝛼 = 0, since these latter cases describe far-from-threshold dynamics.

Finally, we inspect the role of the inertial times on the supercritical transient regime. First, in Fig. 11(a, b, c) we fix 𝜏𝑢 and we choose two
different values of 𝜏𝑤, i.e 𝜏𝑤 = 10−3 and 𝜏𝑤 = 5, corresponding to the dynamics occurring close and far from the parabolic limit respectively. These
results confirm that the hyperbolicity does not affect the pattern amplitude whereas it enlarges the transient regime, namely more time is needed
to reach the equilibrium pattern. On the contrary, according to the analytical prediction (23), if the inertial times offset with each other 𝜏𝑢 = 𝜏𝑤,
Fig. 11(d, e, f) shows that the hyperbolic model exhibits exactly the same transient dynamic of the corresponding parabolic system. However, in
this framework, working with a hyperbolic reaction-transport model is useful to better describe the transient regimes. In particular, inertia plays
a non-trivial role in those dynamics that are characterized by long-time evolutions, such as the vegetation ones which, for instance, evolve over
centuries in the case of tree dynamics.
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Fig. 10. Spatio-temporal evolution of vegetation patterns in the supercritical regime obtained for 𝛽 = 2 × 10−3 (a), 𝛽 = 3.5 × 10−3 (b), 𝛼 = 0 (d) and 𝛼 = 10−2 (e). Panels (c, f)
show the comparison among the time evolution of the theoretical (solid lines) and numerical (dashed ones) envelopes of vegetation patterns obtained in the above cases. Fixed
parameters: 𝐴 = 1.7, 𝐵 = 0.28 in (a, b, c), 𝐵 = 0.37 in (d, e, f), 𝜏𝑢 = 𝜏𝑤 = 10−4, 𝑑 = 500, 𝛼 = 0 in (a, b) and 𝛽 = 0 in (d, e).

We now focus our attention on the subcritical regime where the evolution of pattern amplitude is ruled by the quintic Stuart-Landau Eq. (28)
with

𝜎 = 1
2𝑟1

{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]}×

×

{

(

𝛽𝑑𝑟1 − 𝑟1 − 𝑑𝑟2
)

[

2
(

𝜔10𝐵2 + 𝐵4𝑟1
) d𝑓 ∗

𝑢
d𝐵 + 2

(

𝜔20𝐵2 + 𝐵4𝑟2
) d𝑓 ∗

𝑤
d𝐵 + 𝐵2

2

(

𝑟1
d2𝑓 ∗

𝑢

d𝐵2
+ 𝑟2

d2𝑓 ∗
𝑤

d𝐵2

)]

+2𝜎
[

𝑑
(

𝑟2 − 𝛽𝑟1
) (

𝜔10 − 𝜔30𝑘𝑐𝜏
𝑢) − 𝑟1

(

𝜔20 − 𝑘𝑐𝜔40𝜏
𝑤)] − 2𝑟1

(

𝜔10𝐵2 + 𝐵4𝑟1
)}

,

(44)

�̃� =
𝐵2

(

𝑟1 + 𝑑𝑟2 − 𝛽𝑑𝑟1
)

{

4
(

𝑚1 + 2𝑛1
)

(

𝑟2
d𝑓∗

𝑢𝑤
d𝐵 + 𝑟1

d𝑓∗
𝑢𝑢

d𝐵

)

+ 4𝑟1
(

𝑚2 + 2𝑛2
) d𝑓∗

𝑢𝑤
d𝐵 + 8

(

𝜔21
d𝑓∗

𝑤
d𝐵 + 𝜔11

d𝑓∗
𝑢

d𝐵

)

+ 𝑟21
(

𝑟1
d𝑓∗

𝑢𝑢𝑢
d𝐵 + 3𝑟2

d𝑓∗
𝑢𝑢𝑤

d𝐵

)}

8𝑟1
{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]} +

+

(

𝑟1 + 𝑑𝑟2 − 𝛽𝑑𝑟1
)

8𝑟1
{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]}

{

𝜔20
[

3𝑟21𝑓
∗
𝑢𝑢𝑤 + 4

(

𝑚1 + 2𝑛1
)

𝑓 ∗
𝑢𝑤
]

+ 2𝜔10
[

3𝑟1𝑟2𝑓 ∗
𝑢𝑢𝑤+

+2
(

𝑚2 + 2𝑛2
)

𝑓 ∗
𝑢𝑤 + 2

(

𝑚1 + 2𝑛1
)

𝑓 ∗
𝑢𝑢
]

+ 4𝑟1𝑓 ∗
𝑢𝑤

(

2𝜁20 + 𝜁22
)

+ 4
(

𝑟2𝑓
∗
𝑢𝑤 + 𝑟1𝑓

∗
𝑢𝑢
) (

2𝜁10 + 𝜁12
)}

+

+ 1
𝑟1

{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]}

{

𝐵2𝑟1𝜔11 − 3𝜎
[

𝑑
(

𝑟2 − 𝛽𝑟1
) (

𝜔11 − 𝑘𝑐𝜔31𝜏
𝑢) − 𝑟1

(

𝜔21 − 𝑘𝑐𝜔41𝜏
𝑤)]

+𝐿
[

𝑑
(

𝑟2 − 𝛽𝑟1
) (

𝜔10 − 𝑘𝑐𝜔30𝜏
𝑢) − 𝑟1

(

𝜔20 − 𝑘𝑐𝜏
𝑤𝜔40

)]}

,

(45)

𝑅 = −

(

𝑟1 + 𝑑𝑟2 − 𝛽𝑑𝑟1
)

8𝑟1
{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]}

{

𝜔23
(

𝑟21𝑓
∗
𝑢𝑢𝑤 + 4𝑚1𝑓

∗
𝑢𝑤
)

+ 𝜔13
[

𝑟1
(

𝑟1𝑓
∗
𝑢𝑢𝑢 + 2𝑟2𝑓 ∗

𝑢𝑢𝑤
)

+

+4
(

𝑚2𝑓
∗
𝑢𝑤 + 𝑚1𝑓

∗
𝑢𝑢
)]

+ 𝜔21
[

3𝑟21𝑓
∗
𝑢𝑢𝑤 + 4

(

𝑚1 + 2𝑛1
)

𝑓 ∗
𝑢𝑤
]

+ 𝜔11
[

3𝑟1
(

𝑟1𝑓
∗
𝑢𝑢𝑢 + 2𝑟2𝑓 ∗

𝑢𝑢𝑤
)

+

+4
(

𝑚2 + 2𝑛2
)

𝑓 ∗
𝑢𝑤 + 4

(

𝑚1 + 2𝑛1
)

𝑓 ∗
𝑢𝑢
]

+ 4
(

𝑟2𝑓
∗
𝑢𝑤 + 𝑟1𝑓

∗
𝑢𝑢
) (

2𝜂10 + 𝜂12
)

+ 4𝑟1𝑓 ∗
𝑢𝑤

(

2𝜂20 + 𝜂22
)

+

+2
(

𝑚2
1 + 2𝑛1𝑚1 + 2𝑛21

) (

𝑟1𝑓
∗
𝑢𝑢𝑢 + 𝑟2𝑓

∗
𝑢𝑢𝑤

)

+ 4𝑟1
[(

𝑚1 + 𝑛1
) (

𝑚2 + 𝑛2
)

+ 𝑛1𝑛2
]

𝑓 ∗
𝑢𝑢𝑤 +

+
𝑟21
3
[(

2𝑚1 + 3𝑛1
) (

𝑟1𝑓
∗
𝑢𝑢𝑢𝑢 + 3𝑟2𝑓 ∗

𝑢𝑢𝑢𝑤
)

+ 𝑟1
(

2𝑚2 + 3𝑛2
)

𝑓 ∗
𝑢𝑢𝑢𝑤

]

+
𝑟41
24

(

𝑟1𝑓
∗
𝑢𝑢𝑢𝑢𝑢 + 5𝑟2𝑓 ∗

𝑢𝑢𝑢𝑢𝑤
)

}

+

−
3𝐿

[

𝑑
(

𝑟2 − 𝛽𝑟1
) (

𝜔11 − 𝑘𝑐𝜔31𝜏𝑢
)

− 𝑟1
(

𝜔21 − 𝑘𝑐𝜔41𝜏𝑤
)]

𝑟1
{

𝑟2 + 𝑑
(

𝛽𝑟1 − 𝑟2
) [

1 − 𝑘2𝑐 (𝜏𝑢 − 𝜏𝑤)
]}

(46)

and the expression of the coefficients herein occurring are given in the Appendix. As it can be easily observed, the asymptotic amplitude in the
subcritical regime 𝛺(sub)

∞ (30) depends on the model parameters as well as on the dimensionless distance from the threshold and on the relaxation
times. Therefore, unlike the supercritical regime, the weakly nonlinear analysis predicts that the hyperbolic structure of the model may also affect
the asymptotic subcritical dynamics. However, as it is well-known, any stationary solutions of the hyperbolic model (2)–(4) must be unaffected by
inertial effects [39]. Indeed, this contradiction arises because our analysis starts to fail for patterns with non-negligible amplitude at the onset of
instability, namely 𝑂(1) perturbation of the uniform steady state. Owing to the nontrivial expressions of (44)–(46), the hyperbolic effects, as well
as the cross-diffusion and internal competition ones, are investigated by performing numerical simulations.
14
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Fig. 11. Spatio-temporal evolution of vegetation patterns in the supercritical regime obtained for (𝜏𝑢 , 𝜏𝑤) = (10−4 , 10−3) (b), (𝜏𝑢 , 𝜏𝑤) = (10−4 , 5) (c), (𝜏𝑢 , 𝜏𝑤) = (10−4 , 10−4) (c) and
(𝜏𝑢 , 𝜏𝑤) = (1, 1) (c). Panels (a, b) show the comparison among the time evolution of the envelopes of vegetation patterns for 𝑥 = 𝐷∕2 obtained for 𝜏𝑤 = 10−3 and 𝜏𝑤 = 5 in (a),
whereas 𝜏𝑢 = 𝜏𝑤 = 10−4, 𝜏𝑢 = 𝜏𝑤 = 10−1 and 𝜏𝑢 = 𝜏𝑤 = 1 in (b). Fixed parameters: 𝐴 = 1.7, 𝐵 = 0.28, 𝛽 = 2 × 10−3, 𝛼 = 0 and 𝑑 = 500.

Fig. 12. Bifurcation diagram in the subcritical case for different values of 𝜏𝑤 (a), 𝛽 (b) and 𝛼 (c). Solid and dashed lines correspond to stable and unstable branches, respectively.
Fixed parameters: 𝑑 = 500, 𝜏𝑢 = 10−4, 𝛽 = 2 × 10−3 in (a) and 𝜏𝑤 = 10−4 in (b, c). In panels (a, b) we fix 𝐴 = 0.01 and 𝛼 = 0, whereas in panel (c) 𝐴 = 2 and 𝛽 = 0.

To this aim, the bifurcation diagram in the (𝐵,𝛺(𝑠𝑢𝑏)
∞ )-plane is depicted in Fig. 12 by fixing 𝑑 = 500 and 𝜏𝑢 = 10−4 for different values of 𝜏𝑤, 𝛽

and 𝛼. This figure highlights the interesting phenomenon of hysteresis described by the quintic Stuart–Landau equation and characteristic of the
subcritical regime. In fact, Fig. 12 shows that two qualitatively stable states exist for 𝐵𝑠 < 𝐵 < 𝐵𝑐 , being 𝐵𝑠 the turning point in the backward
bifurcation. In detail, the corresponding results depicted in panel (a) show a sensitivity of 𝐵𝑠 on the relaxation times, in fact it decreases for bigger
values of 𝜏𝑤 by keeping fixed the instability threshold. Differently, when 𝛽 (𝛼) is varied [see panels (b, c)] the bifurcation threshold occurs for
lower (greater) values of plant loss 𝐵, so that the stationary amplitude is strongly affected by both the cross-diffusion coefficient and the internal
competition rate.

Therefore, to validate the above scenario, we integrate numerically the hyperbolic system (1), (33) in the ranges 𝑡 ∈ [0, 105] and 𝑥 ∈ [0, 500].
Note that, we have to enlarge both time and space scales because subcritical modes are characterized by longer dynamics and greater wavelength
with respect to the supercritical ones. Results are shown in Fig. 13 for 𝜏𝑤 = 10−4 [panels (a, b, c)] and 𝜏𝑤 = 5× 102 [panels (d, e, f)]. In particular,
starting with an above-threshold value corresponding to 𝐵(3) > 𝐵𝑐 , depicted in Fig. 12(a), the solution stabilizes to a pattern with the amplitude
corresponding to the stable branch of the bifurcation diagram, as it is shown in Fig. 13(a, d). Then, by decreasing 𝐵 below 𝐵𝑐 at the value
corresponding to 𝐵(2) (𝐵𝑠 < 𝐵 < 𝐵𝑐), labeled in Fig. 12(a), the pattern still survives [Fig. 13(b, e)], whereas at 𝐵(1) < 𝐵𝑠 vegetation bands disappear
in both setups [Fig. 13(c, f)]. This latter result confirms that the enlargement of the instability region due to hyperbolicity is an artifact of the
weakly nonlinear expansion [39,62].

Moreover, it should be noticed that, as expected by weakly nonlinear analysis, the saddle node predicted by Eq. (30) is not exactly fitted by
theoretical results because it is not close enough to the onset of instability and its approximation starts to become not satisfying. This observation is
validated by the comparison between the theoretical and numerical bifurcation diagrams depicted in Fig. 14 for the model parameters as in the inset
of Fig. 12(c). In particular, it shows that theoretical predictions agree well to numerical results close to the onset of instability and the agreement
15
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Fig. 13. Spatio-temporal evolution of vegetation patterns in the subcritical regime obtained for 𝐵(1) (a, d), 𝐵(2) (b, e) and 𝐵(3) (c, f) by considering 𝜏𝑤 = 10−4 (a, b, c) and
𝜏𝑤 = 5 × 102 (d, e, f). Other parameters as in Fig. 12(a).

Fig. 14. Bifurcation diagrams for the model parameters as in the inset of Fig. 12(c). Solid (dashed) lines represent the stable (unstable) branches. The red (black) lines denote the
analytical (numerical) bifurcation diagram obtained via weakly nonlinear analysis (the software XPPAUT). The critical plant loss value 𝐵𝑐 is denoted by the yellow square. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

becomes unsatisfactory when the distance from the threshold is increased. Therefore, in the subcritical regimes the theoretical bifurcation diagrams
obtained by using weakly nonlinear analysis give us a qualitative, but not quantitative, result.

5. Conclusion

In this manuscript, the occurrence of stationary vegetation patterns on flat terrains is theoretically investigated for a 1D hyperbolic class of
reaction-transport systems. In particular, the model here considered includes a cross-diffusion term as well as inertial times. The former has been
introduced to account for the process of water uptake by plant roots which assume a fundamental role in resource redistribution in arid and semiarid
environments. The latter has to be taken into account in order to describe accurately the transient regime as well as the transition between patterned
states or uniformly vegetated states and periodic ones.

In order to describe how these phenomena affect vegetation dynamics, the linear stability analysis has been performed by deducing the main
features characterizing stationary patterns at the onset of instability, so that the condition under which Turing instability occurs has been derived.
Then, to gain some insight into the pattern dynamics as well as to describe the transient regime, the equation ruling the pattern amplitude evolution
close to the onset of instability has been obtained in both supercritical and subcritical regimes by means of weakly nonlinear analysis.
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All the analytical predictions were corroborated by numerical simulations in the illustrative example of a modified Klausmeier model. The
extension here considered takes into account the internal competition of plants that, in arid and semiarid environments, plays a crucial role in
plant survival. Therefore, the effects of the cross-diffusion as well as the internal competition rate and the inertial times have been here illustrated.

Results suggest that the cross-diffusion term has a destabilizing effect by enlarging the region in which patterns may be observed and by
favoring the occurrence of supercritical dynamics. In particular, it is able to: (i) shift up the locus at which Turing instability occurs, (ii) decrease
the vegetation stripes’ wavelength and (iii) decrease the plant loss value beyond which the supercritical regime is observed. On the contrary, the
internal competition rate plays exactly the opposite role and enlarges the region in which only the desert state exists. Finally, the inertial times are
able to modulate the transient regime and prevent the occurrence of stationary vegetation patterns playing a crucial role in the description of those
phenomena occurring over different timescales. Furthermore, we observed that the dynamics obtained in the parabolic regime can be recovered
not only for vanishing inertial times but also when they offset each other.

The mathematical results herein obtained are consistent with the biological framework and may be very useful in extracting additional
information about ecosystem resilience and its response to a loosing of environmental conditions, such as an increase in plant loss, inner competition
or roots’ suction. Furthermore, the occurrence of inertia may suggest also a great impact on those dynamics characterized by time-dependent
parameters in which transient regimes play a more crucial role. In our opinion, the manuscript may attract both the interest of ecologists and
mathematicians involved in the study of vegetation patterned dynamics in arid and semi-arid environments on flat terrains. In particular, the
model here considered is able to include several ecological observations that better mimic the real physical process of plant evolution. In this
context, the mathematical tools here developed play a very important role in better characterizing the vegetation response to a stressor and in
preventing possible ecological disasters.

Finally, this paper should be read as a first step versus the analysis of more complex phenomena, such as the occurrence of oscillatory vegetation
patterns, the emergence of transitions between different patterned configurations, and the study of far-from-threshold dynamics.
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Appendix. Derivation of the quintic Stuart–Landau equation

In this Appendix we provide some details about the derivation of the quintic Stuart–Landau Eq. (28) obtained by pushing the analysis performed
in Section 3 up to the fifth order. As already observed, the cubic Stuart–Landau Eq. (22) for the amplitude 𝛺 still holds, even though the derivative
with respect 𝑇2 is now a partial derivative. Then, the solution of Eq. (15)3 is given by

𝐔3 = 𝛺
⎡

⎢

⎢

⎣

(

𝐔31 +𝛺2𝐔32
)

cos
(

𝑘𝑐 𝑥
)

+𝛺2𝐔33 cos
(

3𝑘𝑐 𝑥
)

(

�̂�31 +𝛺2�̂�32

)

sin
(

𝑘𝑐 𝑥
)

+𝛺2�̂�33 sin
(

3𝑘𝑐 𝑥
)

⎤

⎥

⎥

⎦

(A.1)

where the vectors

𝐔31 =
[

𝜔10
𝜔20

]

, 𝐔32 =
[

𝜔11
𝜔21

]

, 𝐔33 =
[

𝜔13
𝜔23

]

�̂�31 =
[

𝜔30
𝜔40

]

, �̂�32 =
[

𝜔31
𝜔41

]

, �̂�33 =
[

𝜔33
𝜔43

]
(A.2)

satisfy the following systems
(

𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔31 = 𝑘𝑐𝜎Λ�̂� − 𝜎𝐫 + 𝐵2𝐭

(

𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔32 =

1
8 (𝐩 + 4𝐬 + 8𝐪) + 𝐿

(

𝐫 − 𝑘𝑐Λ�̂�
)

(

9𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔33 =

1
24 (𝐩 + 12𝐬)

�̂�31 =
1
𝑘𝑐

[(

∇̃𝐅
)∗

𝑐
𝐔31 − 𝜎𝐫+𝐵2𝐭

]

�̂�32 =
1
𝑘𝑐

[(

∇̃𝐅
)∗

𝑐
𝐔32 + 𝐿𝐫 + 1

8
(𝐩 + 4𝐬 + 8𝐪)

]

̂

(A.3)
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S

w

a

with

Λ =
[

𝜏𝑢 0
0 𝜏𝑤

]

(A.4)

ubstituting (16), (19), (A.1) into (15)4 we obtain

𝐔4 = 𝛺2
⎡

⎢

⎢

⎣

𝐔40 +𝛺2𝐔41 +
(

𝐔42 +𝛺2𝐔43
)

cos
(

2𝑘𝑐 𝑥
)

+𝛺2𝐔44 cos
(

4𝑘𝑐 𝑥
)

(

�̂�42 +𝛺2�̂�43

)

sin
(

2𝑘𝑐 𝑥
)

+𝛺2�̂�44 sin
(

4𝑘𝑐 𝑥
)

⎤

⎥

⎥

⎦

(A.5)

here the vectors

𝐔40 =
[

𝜁10
𝜁20

]

,𝐔41 =
[

𝜂10
𝜂20

]

,𝐔42 =
[

𝜁12
𝜁22

]

,𝐔43 =
[

𝜂12
𝜂22

]

�̂�42 =
[

𝜁32
𝜁42

]

, �̂�43 =
[

𝜂32
𝜂42

]

,𝐔44 =
[

𝜂14
𝜂24

]

, �̂�44 =
[

𝜂34
𝜂44

]
(A.6)

re obtained by solving the following systems

(

∇̃𝐅
)∗

𝑐
𝐔40 = −𝐪01

(

∇̃𝐅
)∗

𝑐
𝐔41 = −𝐪02

(

4𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔42 = 𝐪21 + 4𝑘𝑐𝜎Λ�̂�22

(

4𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔43 = 𝐪22 − 4𝑘𝑐𝐿Λ�̂�22

(

16𝑘2𝑐𝐃 − ∇̃𝐅
)∗

𝑐
𝐔44 = 𝐪4

�̂�42 = 2𝑘𝑐𝐃𝐔42 − 2𝜎Λ�̂�22

�̂�43 = 2𝑘𝑐𝐃𝐔43 + 2𝐿Λ�̂�22

�̂�44 = 4𝑘𝑐𝐃𝐔44

(A.7)

with

𝐪01 =
1
2

[(

𝐫 ⋅ ∇̃
)((

𝐔31 ⋅ ∇̃
)

𝐅
)]∗

𝑐
− 2𝜎𝐔20 + 𝐵2

[(

𝐔20 ⋅ ∇̃
) 𝑑𝐅
𝑑𝐵

]∗

𝑐
+

𝐵2
4

[

(

𝐫 ⋅ ∇̃
)(2) 𝑑𝐅

𝑑𝐵

]∗

𝑐

𝐪02 =
1
2

[(

𝐫 ⋅ ∇̃
)((

𝐔32 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+ 1

4

[

(

𝐫 ⋅ ∇̃
)(2) ((

𝐔20 ⋅ ∇̃
)

𝐅
)

]∗

𝑐
+

+ 1
8

[

(

𝐫 ⋅ ∇̃
)(2) ((

𝐔22 ⋅ ∇̃
)

𝐅
)

]∗

𝑐
+ 1

4

(

(

𝐔22 ⋅ ∇̃
)(2)

𝐅
)∗

𝑐
+

+ 1
2

[

(

𝐔20 ⋅ ∇̃
)(2)

𝐅
]∗

𝑐
+ 1

64

[

(

𝐫 ⋅ ∇̃
)(4)

𝐅
]∗

𝑐
+ 2𝐿𝐔20

𝐪21 =
1
2

[(

𝐫 ⋅ ∇̃
)((

𝐔31 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+ 𝐵2

[(

𝐔22 ⋅ ∇̃
) 𝑑𝐅
𝑑𝐵

]∗

𝑐
+

𝐵2
4

[

(

𝐫 ⋅ ∇̃
)(2) 𝑑𝐅

𝑑𝐵

]∗

𝑐
− 2𝜎𝐔22

𝐪22 =
1
2

[(

𝐫 ⋅ ∇̃
)((

𝐔32 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+ 1

4

[

(

𝐫 ⋅ ∇̃
)(2) ((

𝐔20 ⋅ ∇̃
)

𝐅
)

]∗

𝑐
+

+ 1
4

[

(

𝐫 ⋅ ∇̃
)(2) ((

𝐔22 ⋅ ∇̃
)

𝐅
)

]∗

𝑐
+ 1

2

[(

𝐫 ⋅ ∇̃
)((

𝐔33 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+

+
[(

𝐔20 ⋅ ∇̃
)((

𝐔22 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+ 1

48

[

(

𝐫 ⋅ ∇̃
)(4)

𝐅
]∗

𝑐
+ 2𝐿𝐔22

𝐪4 =
1
2

[(

𝐫 ⋅ ∇̃
)((

𝐔33 ⋅ ∇̃
)

𝐅
)]∗

𝑐
+ 1

4

[(

(

𝐔22 ⋅ ∇̃
)(2)

𝐅
)]∗

𝑐
+

+ 1
8

[

(

𝐫 ⋅ ∇̃
)(2) ((

𝐔22 ⋅ ∇̃
)

𝐅
)

]∗

𝑐
+ 1

192

[

(

𝐫 ⋅ ∇̃
)(4)

𝐅
]∗

𝑐

(A.8)

Finally, taking into account (22), the elimination of the secular terms at the fifth perturbative order (15)5 leads to the quintic Stuart–Landau
equation for the amplitude 𝛺

𝐝𝛺
𝐝𝑇

= 𝜎 𝛺 − 𝐿𝛺3 + 𝑅𝛺5 (A.9)
18
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where
𝐝
𝐝𝑇

= 𝜕
𝜕𝑇2

+ 𝜀2 𝜕
𝜕𝑇4

𝜎 = 𝜎 + 𝜀2𝜎, 𝐿 = 𝐿 + 𝜀2�̃�, 𝑅 = 𝜀2𝑅
(A.10)

being 𝜎, �̃� and 𝑅 the new corrections that arise from higher order terms.
In particular, for the extended Klausmeier model (2)–(4), (33) the coefficients involved in (44)–(46) reduce to

𝜔10 =
𝐵2

{

𝐸1

[

𝑟1
(

1−𝛼2𝑢4𝑆
)

−(2𝐵𝑐𝛼𝑟1−𝑟2)
d𝑢2𝑠
d𝐵

]

+𝑟21
(

1+𝛼𝑢2𝑆
)2[

2𝑟1𝑘𝑐(𝛽𝑟1−𝑟2)(𝜏𝑢−𝜏𝑤)−𝑟2𝑌1
(

𝜏𝑢𝑘2𝑐+1
)]

}

4𝑘2𝑐 𝑟2𝑌1
(

1+𝛼𝑢2𝑆
)2{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔20 =
𝐵2

[

𝑟1
(

1−𝛼2𝑢4𝑆
)

−(2𝐵𝑐𝛼𝑟1−𝑟2)
d𝑢2𝑠
d𝐵

]

{

𝑟1𝐸1−2𝑘𝑐 𝑟2𝑌 2
1
[

𝑟1+𝑟2−𝑘2𝑐 (𝑑𝑟2𝜏𝑤+𝑟1𝜏𝑢−𝑑𝛽𝑟1𝜏𝑤)
]

}

4𝑘2𝑐 𝑟21𝑌1
(

1+𝛼𝑢2𝑆
)2{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

+

+
𝐵2

{

𝑟1
[

2𝑟1𝑘𝑐(𝛽𝑟1−𝑟2)(𝜏𝑢−𝜏𝑤)−𝑟2𝑌1
(

𝜏𝑢𝑘2𝑐+1
)]

+2𝑘𝑐 𝑟2𝑌 2
1
(

𝜏𝑢𝑘2𝑐−1
)

}

4𝑘2𝑐𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔30 =
𝐵2

{[

𝑟1
(

1−𝛼2𝑢4𝑆
)

−(2𝐵𝑐𝛼𝑟1−𝑟2)
d𝑢2𝑠
d𝐵

]

[

𝐸1+4𝑘2𝑐 𝑟2𝑌1𝜏
𝑢(𝑟1+𝑑𝑟2−𝑑𝛽𝑟1)

]

+𝑟21
(

1+𝛼𝑢2𝑆
)2[

2𝑟1𝑘𝑐(𝛽𝑟1−𝑟2)(𝜏𝑢−𝜏𝑤)+𝑟2𝑌1
(

3𝑘2𝑐 𝜏
𝑢−1

)]

}

4𝑘𝑐 𝑟2𝑌1
(

1+𝛼𝑢2𝑆
)2{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔40 =
−𝑑𝐵2

(

𝑟1+𝑟2
d𝑢2𝑠
d𝐵

)

{

𝑟1(𝛽𝑟1−𝑟2)
[

𝐸1+4𝑘2𝑐 𝑟1𝑌1𝜏
𝑤(𝑟1+𝑑𝑟2−𝛽𝑑𝑟1)

]

+2𝑘𝑐 𝑟22𝑌
2
1
[

𝑟1+𝑟2−𝑘2𝑐 (𝑟1𝜏𝑢+𝑑𝑟2𝜏𝑤−𝑑𝛽𝑟1𝜏𝑤)
]

}

4𝑘𝑐 𝑟21𝑟2𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]} +

−
𝑑𝐵2

{

2𝑟21𝑘𝑐(𝛽𝑟1−𝑟2)
2(𝜏𝑢−𝜏𝑤)−𝑟1𝑟2(𝛽𝑟1−𝑟2)𝑌1

[

1+𝑘2𝑐 (𝜏𝑢−4𝜏𝑤)
]

−2𝑘𝑐 𝑟22𝑌
2
1
(

𝑘2𝑐 𝜏
𝑢−1

)

}

4𝑘𝑐 𝑟2𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔11 =
(𝑝1+8𝑞1+4𝑠1)𝐸1

32𝑘2𝑐 𝑟2𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔21 =
(𝑝1+8𝑞1+4𝑠1)

{

𝑟1𝐸1−2𝑘𝑐 𝑟2𝑌 2
1
[

𝑟1+𝑟2−𝑘2𝑐 (𝜏𝑢𝑟1+𝑑𝜏𝑤𝑟2−𝛽𝑑𝑟1𝜏𝑤)
]

}

32𝑘2𝑐 𝑟21𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔31 =
(𝑝1+8𝑞1+4𝑠1)

[

𝐸1+4𝑘2𝑐 𝑟2𝑌1𝜏
𝑢(𝑟1+𝑑𝑟2−𝑑𝛽𝑟1)

]

32𝑌1𝑘𝑐 𝑟2
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔41 =
−𝑑(𝑝1+8𝑞1+4𝑠1)

{

𝑟1(𝛽𝑟1−𝑟2)
[

𝐸1+4𝑘2𝑐 𝑟1𝑌1𝜏
𝑤(𝑟1+𝑑𝑟2−𝛽𝑑𝑟1)

]

+2𝑘𝑐 𝑟22𝑌
2
1
[

𝑟1+𝑟2−𝑘2𝑐 (𝑟1𝜏𝑢+𝑑𝑟2𝜏𝑤−𝑑𝛽𝑟1𝜏𝑤)
]

}

32𝑘𝑐 𝑟21𝑌1
{

𝑟2+𝑑(𝛽𝑟1−𝑟2)
[

1−𝑘2𝑐 (𝜏𝑢−𝜏𝑤)
]}

𝜔13 = −
(𝑝1+12𝑠1)

[

𝑑𝑟2(𝑟1−4𝑌1𝑘𝑐)+𝑟21(1−𝑑𝛽)
]

768𝑑𝑘3𝑐 𝑟2𝑌1

𝜔23 = −(𝑝1+12𝑠1)[𝑟1+𝑑𝑟2+4𝑌1𝑘𝑐−𝑑𝛽(4𝑌1𝑘𝑐+𝑟1)]
768𝑑𝑘3𝑐𝑌1

𝜂10 = −
𝐸2

[

2𝑟1(𝑟1+𝑑𝑟2)+𝑑
(

𝑘𝑐 𝑟2𝑌1−2𝛽𝑟21
)]

+8𝐿[2𝑟1(𝑑𝑛1𝑟2−𝑛2𝑟1−𝛽𝑑𝑛1𝑟1)+𝑑𝑘𝑐𝑛1𝑟2𝑌1]
4𝑑𝑘3𝑐 𝑟2𝑌1

𝜂12 = −
𝐸3

[

2𝑟1(𝑟1+𝑑𝑟2)−𝑑
(

3𝑘𝑐 𝑟2𝑌1+2𝛽𝑟21
)]

+4𝐿
[

2𝑟21(2𝑘𝑐𝑚4𝜏𝑤−𝑚2+2𝑑𝑘𝑐𝛽𝑚3𝜏𝑢)+𝑑𝑟2(𝑚1−2𝑘𝑐𝑚3)(2𝑟1−3𝑘𝑐𝑌1)
]

18𝑑𝑘3𝑐 𝑟2𝑌1

𝜂20 = −𝐸2[2(𝑟1+𝑑𝑟2)−𝑘𝑐𝑌1+𝑑𝛽(𝑘𝑐𝑌1−2𝑟1)]+8𝐿[2(𝑑𝑛1𝑟2−𝑛2𝑟1−𝛽𝑑𝑛2𝑟1)+𝑘𝑐𝑌1(𝑛2+𝛽𝑑𝑛1)]
4𝑑𝑘3𝑐𝑌1

𝜂22 = −𝐸3[2𝑟1(𝑟1+𝑑𝑟2)+3𝑘𝑐𝑌1−𝑑𝛽(𝑘𝑐𝑌1+2𝑟1)]+4𝐿[(2𝑘𝑐𝑚4𝜏𝑤−𝑚2+2𝑑𝛽𝑘𝑐𝑚3𝜏𝑢−𝑑𝛽𝑚1)(2𝑟1+3𝑘𝑐𝑌1)+2𝑑𝑟2(𝛾0𝑚1−2𝑘𝑐𝑚3𝜏𝑢)]
18𝑑𝑘3𝑐𝑌1

𝜁10 = −

[

2𝑟1(𝑟1+𝑑𝑟2)+𝑑𝑘𝑐 𝑟2𝑌1−2𝑑𝛽𝑟21
]{

𝐵2𝑆1+2
[

(𝜔10𝑟2+𝜔20𝑟1)
(

1+𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶 +𝜔10𝑟1
(

1−3𝛼𝑢2𝑆𝐶

)

𝑤𝑆𝐶

]}

2𝑑𝑘3𝑐 𝑟2𝑌1
(

1+𝛼𝑢2𝑆𝐶

)3 +

−
2𝑛1𝑟21𝐵2+2𝜎

[

2𝑟1(𝑟1𝑛2−𝑑𝑟2𝑛1)−𝑑𝑘𝑐𝑛1𝑟2𝑌1+2𝑑𝛽𝑟21𝑛1
]

𝑑𝑘3𝑐 𝑟2𝑌1

𝜁12 = −

[

2𝑟1(𝑟1+𝑑𝑟2)−3𝑑𝑘𝑐 𝑟2𝑌1−2𝑑𝛽𝑟21
][

𝐵2𝑆2+2
[

(𝜔10𝑟2+𝜔20𝑟1)
(

1+𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶 +𝜔10𝑟1
(

1−3𝛼𝑢2𝑆𝐶

)

𝑤𝑆𝐶

]]

18𝑑𝑘3𝑐 𝑟2𝑌1
(

1+𝛼𝑢2𝑆𝐶

)3 +

−
2
{

𝑚1𝑟21𝐵2+𝜎
[

2𝑟21(𝑚2−2𝑘𝑐𝑚4𝜏𝑤+𝛽𝑑𝑚1−2𝛽𝑑𝑚3𝑘𝑐𝜏𝑢)+𝑑𝑟2(𝑚1−2𝑘𝑐𝑚3𝜏𝑢)(3𝑘𝑐𝑌1−2𝑟1)
]}

9𝑑𝑘3𝑐 𝑟2𝑌1

𝜁20 = −
[2(𝑟1+𝑑𝑟2)−𝑘𝑐𝑌1−2𝑑𝛽(𝑘𝑐𝑌1−2𝑟1)]

{

𝐵2𝑆1+2
[

(𝜔10𝑟2+𝜔20𝑟1)
(

1+𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶 +𝜔10𝑟1
(

1−3𝛼𝑢2𝑆𝐶

)

𝑤𝑆𝐶

]}

2𝑑𝑘3𝑐𝑌1
(

1+𝛼𝑢2𝑆𝐶

)3 +

−𝐵2𝑛1(2𝑟1−𝑘𝑐𝑌1)+2𝜎[2(𝑟1𝑛2−𝑑𝑟2𝑛1)−𝑘𝑐𝑌1𝑛2+𝑑𝛽𝑛1(2𝑟1−𝑘𝑐𝑌1)]
𝑑𝑘3𝑐 𝑟2𝑌1

𝜁22 = −
[2(𝑟1+𝑑𝑟2)+3𝑘𝑐𝑌1+𝑑𝛽(𝑘𝑐𝑌1−2𝑟1)]

{

𝐵2𝑆2+2
[

(𝜔10𝑟2+𝜔20𝑟1)
(

1+𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶 +𝜔10𝑟1
(

1−3𝛼𝑢2𝑆𝐶

)

𝑤𝑆𝐶

]}

18𝑑𝑘3𝑐𝑌1
(

1+𝛼𝑢2𝑆𝐶

)3 +

−[𝐵2𝑚1+2𝜎(𝑚2−2𝑘𝑐𝑚4𝜏𝑤+𝛽𝑑𝑚1−2𝛽𝑑𝑚3𝑘𝑐𝜏𝑢)](3𝑘𝑐𝑌1+2𝑟1)−4𝜎𝑟2(𝑚1−2𝑘𝑐𝑚3𝜏𝑢)

(A.11)
19

9𝑑𝑘3𝑐𝑌1
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where

𝑌1 =
2𝑘𝑐𝑟1

(

1 + 𝛼𝑢2𝑆𝑐

)

𝑘2𝑐
(

1 + 𝛼𝑢2𝑆𝑐

)

− 𝐵𝑐

(

1 − 𝛼𝑢2𝑆𝑐

)

𝑆1 = 𝑟21
d𝑤𝑆
d𝐵 + 2𝑟1𝑟2

d𝑢𝑆
d𝐵 + 2𝑛2

d𝑢2𝑆
d𝐵 + 2𝑛1

𝑆2 = 𝑟21
d𝑤𝑆
d𝐵 + 2𝑟1𝑟2

d𝑢𝑆
d𝐵 + 2𝑚2

d𝑢2𝑆
d𝐵 + 2𝑚1

𝐸1 = 2𝑘𝑐𝑟1
(

𝛽𝑟1 − 𝑟2
) (

𝜏𝑢 − 𝜏𝑤
) (

𝑟1 + 𝑑𝑟2 − 𝛽𝑟1𝑑
)

− 𝑟2𝑌1
[

𝑟1 + 𝑟2 + 𝜏𝑢𝑘2𝑐
(

𝑟1 + 𝑑𝑟2
)

+

+𝑑𝑘2𝑐 𝑟2
(

𝜏𝑢 − 𝜏𝑤
)

− 𝛽𝑟1𝑑𝑘
2
𝑐
(

2𝜏𝑢 − 𝜏𝑤
)]

𝐸2 =
1

(

1 + 𝛼𝑢2𝑆𝐶

)3

{[

𝑟21
(

𝑚2 + 2𝑛2
)

+ 2𝑟1𝑟2
(

𝑚1 + 2𝑛1
)

+ 4𝑟1𝜔11𝑤𝑆𝐶
+ 2𝑤𝑆𝐶

(

𝑚2
1 + 2𝑛21

)

] (

1 − 3𝛼𝑢2𝑆𝐶

)

+

+4
(

𝑚1𝑚2 + 2𝑛1𝑛2 + 𝑟1𝜔21 + 𝑟2𝜔11
)

(

1 + 𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶

}

+

+
3𝛼𝑟21

2
(

1 + 𝛼𝑢2𝑆𝐶

)5

{

𝑟21
(

10𝛼𝑢2𝑆𝐶
− 5𝛼2𝑢4𝑆𝐶

− 1
)

𝑤𝑆𝐶
+ 4𝑢𝑆𝐶

(

𝛼2𝑢4𝑆𝐶
− 1

)

[

𝑟1𝑟2 + 2
(

𝑚1 + 2𝑛1
)

𝑤𝑆
]

}

𝐸3 =
1

(

1 + 𝛼𝑢2𝑆𝐶

)3

{[

𝑟21
(

𝑚2 + 𝑛2
)

+ 2𝑟1𝑟2
(

𝑚1 + 𝑛1
)

+ 2𝑟1
(

𝜔11 + 𝜔13
)

𝑤𝑆𝐶
+ 4𝑚1𝑛1𝑤𝑆𝐶

] (

1 − 3𝛼𝑢2𝑆𝐶

)

+2
[

𝑟1
(

𝜔21 + 𝜔23
)

+ 𝑟2
(

𝜔11 + 𝜔13
)

+ 2
(

𝑚1𝑛2 + 𝑚2𝑛1
)]

(

1 + 𝛼𝑢2𝑆𝐶

)

𝑢𝑆𝐶

}

+

+
𝛼𝑟21

(

1 + 𝛼𝑢2𝑆𝐶

)5

{

𝑟1
(

10𝛼𝑢2𝑆𝐶
− 5𝛼2𝑢4𝑆𝐶

− 1
)

𝑤𝑆𝐶
+ 4

[

𝑟1𝑟2 + 3
(

𝑚1 + 𝑛1
)

𝑤𝑆𝐶

] (

𝛼2𝑢4𝑆𝐶
− 1

)

𝑢𝑆𝐶

}

(A.12)

Moreover, taking into account systems (21), the second order coefficient appearing in (A.11)–(A.12) reduce to

𝑛1 =
𝑟21

(

2𝑘2𝑐 − 𝐵𝑐
)

2𝑢𝑆𝑐
𝐵𝑐

[

(1 + 𝛼) 𝑢2𝑆𝑐
− 1

] , 𝑛2 = −𝐵𝑐𝑛1,

𝑚1 =
1 + 4𝑑𝑘2𝑐

9
𝑛1, 𝑚2 = −

[

𝐵𝑐 + 4𝑘2𝑐 (1 − 𝑑𝛽)
]

9
𝑛1,

𝑚3 = 2𝑘𝑐𝑚1, 𝑚4 = 2𝑑𝑘𝑐
(

𝑚2 − 𝛽𝑚1
)

.

(A.13)
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