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1. Introduction 

Over the years, the role of bioengineering in the medical sciences has been considerably 

increasing, thanks to the capabilities of new advanced tools and technologies, which are 

nowadays more widely available in terms of cost and complexity. The goal of 

bioengineering is to combine engineering methods and tools with life science's medical and 

biological issues. Bioengineering is applied in the domains of technology, industry, 

medicine, and in healthcare as well as in the workplace and in sports. Thanks to various 

multidisciplinary methodologies, bioengineering deals with multiscale modeling of 

physiological systems (from the molecular-cellular to the functional level), with reference to 

electrical, magnetic, chemical and mechanical phenomena and their interactions; as well as 

models identification techniques. Furthermore, bioengineering concerns the 

instrumentation for biosignals and data acquisition, as well as the signal processing 

procedures required for clinical purposes. Application opportunities range from the design 

of devices, aimed at monitoring, diagnosis, therapeutic intervention, the structural or 

functional replacement of organs or biological functions of a sensory, motor or metabolic 

type; to the ergonomic aspects of the person's interactions with the environment, including 

human-machine interfaces; up to the design of intelligent autonomous systems and 

telemedicine scenarios.  

 

Among the many medical applications, new technologies may have a significant impact on 

the assessment and therapy of neuromotor disorders. New technologies for the 

measurement of human movements and the visualization of virtual environments, and their 

diffusion in the field of consumer electronics, provide sophisticated data acquisition 

systems and data analysis techniques that allow to study complex movements at negligible 

cost. These technologies can be applied to the study of human movement both in the context 

of basic science to understand fundamental aspects of motor control and for medical 

applications to develop novel neuromotor assessment and rehabilitation protocols. Virtual 

reality (VR) systems provide both a head-mounted display creating an immersive virtual 
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environment and a sophisticated instrument for kinematic data acquisition thanks to the 

integrated motion capture capability. Thanks to commercial cross-platform game engines, 

immersive real-life scenarios can be easily developed and they can be employed as a 

controlled environment where to perform daily activities or complex tasks. These systems 

provide feedback to participants during the performance of motor tasks and rehabilitation 

training exercises which may allow for quantitative assessment of visuomotor function and 

for novel neuromotor rehabilitation approaches. For instance, a movement deficit may be 

compensated, and a patient with a motor disability, such as a stroke survivor, may be 

assisted to perform a task in the VR better than in reality, providing salient feedback on the 

functional movement to recover, and improving the patient’s participation to the training 

protocol by reducing the frustration and learned non-use due to the motor impairment, thus 

encouraging beneficial neuroplasticity. Another advantage of providing altered feedback is 

the possibility to study the adaptive processes underlying the learning of novel dynamics 

simulating novel physical environments. 

 

Studying kinematics often requires understanding the patterns of muscle activation which 

underlie movement generation. In recent years, several approaches have been developed to 

study the relation between electromyography (EMG) and kinematics or force generation, 

and to customize rehabilitation protocols in order to restore specific components of the 

movement affected by the motor impairment. Modern technologies allow to record EMG 

activity associated with muscle contraction using lightweight wireless sensors, which can 

be used for investigating complex movements in a noninvasive way. Some of these systems, 

developed for other purposes such as gaming are now available at an affordable price, 

which may promote a more extensive use of these technologies also in telemedicine 

scenarios. EMG signals have also been used for the control of assistive exoskeletons or 

prostheses. However, myoelectric interfaces are typically not very reliable and decoding 

participant’s intention through EMG signals is still challenging. Thanks to the 

advancements in machine learning techniques, it is now possible to reliably decode EMG 

signals in a reasonable time for real time applications. Using myoelectric interfaces in a 
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rehabilitation context may promote usages of residual myoelectric activity of the impaired 

limb to assist patients in generating voluntary movements through their spared cortico-

spinal pathway, promoting neuroplasticity that reshape neuromuscular activity and 

enhance motor learning, leading in some cases to motor function restoration. 

 

Thanks to the instrumental evaluations, quantitation assessment of physiological 

parameters may be performed. For instance using modern statistical analysis, such as linear 

discriminant analysis (LDA) which is a supervised classification technique, it is possible to 

quantify the degree of separation of observations in different groups. Therefore, it is 

possible to define different kinematic styles and inter individual strategies. 

 

Most of the applications developed during my PhD require a user interface (UI) to set 

experimental parameters and to avoid and prevent artifacts recordings during data 

acquisition. UI is generally designed after an iteration process which includes all the 

professionals involved (medical doctors, therapists, engineer and researcher). 

 

The common thread among the various projects presented in this thesis is the development 

of bioengineering techniques to carry out functional assessments. For each project, different 

methods of data acquisition, processing and analysis were developed based on the nature 

of the data to be recorded and the task of interest. In some cases, when some systems capable 

of recording the data required to analyze the specific task had already been developed and 

described in the literature, the aim of the project was to develop a low-cost solution capable 

of recording data with high accuracy and reliability. In other cases, when from a literature 

review no systems were found to match the requirements of a specific application, new 

developments were made to improve existing systems overcoming their limitations. When 

required for the development of a system, physiological models were created with reference 

to the mechanical phenomena and the interactions between the user and hardware 

components, or the ergonomic aspects of the person's interactions with the environment. 

Moreover, machine learning techniques have been integrated to allow the design of 
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intelligent partially autonomous methods. Finally, when the data acquisition systems were 

already available, advanced analysis methods were applied to the acquired data. 

 

Overall, three low-cost systems have been developed in collaboration with national and 

international research centers. The first system developed (Chap 3) allows to record the 

kinematic parameters during throwing actions through the development of a platform 

which integrates optoelectronic systems, synchronized camera systems, artificial 

intelligence methods for the automatic estimation of the distance from the point of impact 

of the ball from the center of the target and a hand-ball model to make the estimation of the 

throwing parameters as reliable as possible. The second low-cost system (Chap. 4) allows 

not only to record kinematic parameters through optoelectronic sensors, but also the 

recording of electromyographic signals, and thanks to artificial intelligence techniques to 

recognize hand gestures through the electromyographic activity of forearm muscles. In line 

with this project, some data analyses and initial developments were carried out to evaluate 

the feasibility of further developments to incorporate electromyographic recording of 

several muscles for the estimation, through machine learning methods, of the spatial 

position of the hand rather than just hand gesture (Chap. 5). The last developed data 

acquisition system, based on a force transducer, is a system for evaluating the maximum 

bite force (Chap. 6). This system allows to evaluate the maximum bite force and to monitor 

it over time providing reliable and repeatable recordings, thanks to the development of a 

mechanical model which describes the physical interactions between the masticatory 

system and the device and takes into account the physiognomy of the subject. However, it 

was not always necessary to develop a data acquisition setup. Indeed, in chapter 2, the data 

acquisition setup was previously developed. In this case, the focus was more on the use of 

kinematic data processing and analysis techniques. 
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Table 1.1 shows a schematic representation of all the projects developed during the PhD. 

For each project the table reports the methods developed and integrated in the systems (✓

), the methods which are not included (✗) and the methods which will be included in the 

next future (✗*). 

 

Chapter Description VR EMG Machine 

Learning 

UI Data 

Analysis 

2 Interception of 

virtual throws 

✓ ✗ ✗ ✗ ✓ 

3 Real and virtual 

throws 

✓ ✗ ✓ ✓ ✓ 

4 Virtual mirror 

therapy 

✓ ✓ ✓ ✓ ✓ 

5 Virtual mirror 

therapy new 

developments 

✗* ✓ ✓ ✗* ✓ 

6 Maximum bite force 

measurement 

device 

✗* ✗* ✗ ✓ ✓ 

Table 1.1. Summary of PhD projects and methods involved. For each project the table indicates the 

methods that have been developed and integrated in the systems (✓), the methods not included in the 

development (✗), and the methods which will be included in the next future (✗*). 
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2. Evaluation of sensorimotor performance through 

motion recording and virtual reality systems 

 

Based on: 

Maselli, A., De Pasquale, P., Lacquaniti, F., & d'Avella, A. (2022). Interception of virtual throws 

reveals predictive skills based on the visual processing of throwing kinematics. iScience, 25(10), 

105212. https://doi.org/10.1016/j.isci.2022.105212 

 

2.1. Introduction 

Intercepting fast objects requires predictive abilities. Sensorimotor control of interception is 

affected by latencies intrinsic to the processing of sensory information and to the planning 

and execution of motor commands (Zago et al., 2009). Altogether, these latencies may sum 

up to several hundreds of milliseconds, a temporal window in which a fast object may travel 

distances of the order of a few meters. It is, therefore, clear that successful interception must 

rely on predictive processes that anticipate the future trajectory of the flying object. 

 

Predictions of flying ball trajectories can be made based on information from the ball’s flight 

itself. Evidence from previous studies suggested that the human brain integrates 

information from the ball trajectory with an internal model of the physical laws of motion 

under gravity to predict successful interception points (Russo et al., 2017; Zago et al., 2008). 

Alternatively, prospective models assume that in interceptive tasks the hand is continuously 

guided by the visual information from the moving object (Peper et al., 1994). Both cases hold 

that predictions are continuously updated during the projectile’s flight (Brenner & Smeets, 

2018). 

In addition to the ball trajectory, the throwing action can provide information for predicting 

the ball trajectory (Maselli et al., 2017). The kinematics of intentional actions, namely the 

way our body segments move in space and time, provide information about the goal of the 

https://doi.org/10.1016/j.isci.2022.105212
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action ahead of its completion. This has been shown for simple actions, such as reaching for 

a bottle to pour water into a glass or to move it to another location (Ansuini et al., 2008). 

Importantly, such modulation in the kinematics of executed actions can be decoded by 

human observers who are able to anticipate appropriate responses (Ansuini et al., 2015; 

Cavallo et al., 2016; Soriano et al., 2018). Similar results have been found for more complex 

motor behaviors. The full-body kinematics of tennis serve (Huys et al., 2009) or of an 

overarm throw (Maselli et al., 2017) delivers information about the future direction of the 

hit or thrown ball. Elite sports players can use this information for enhancing their 

interceptive performance, but only in the context of the sports they have extensively trained 

(Abernethy, 1990; Aglioti et al., 2008; Mann et al., 2010). Most studies to date investigated 

how predictive skills based on the observation of complex actions depend on motor 

expertise. However, whether non-experts can readout information from complex but 

ecological relevant actions, like throwing, remains unclear. In the current study, we 

addressed this issue. 

 

Our aim was to assess whether untrained adults can extract information from observed 

overarm throwing actions to improve their interceptive performance. We considered 

overarm throwing because, besides being a complex full-body motor behavior well studied 

in sport science, it is part of the repertoire of universal human motor behaviors (Payne, 2017) 

observed across cultures and geographical regions (Lombardo & Deaner, 2018; Young, 

2009). Still further, throwing as a fundamental motor behavior has been associated with the 

shaping of the biomechanical bodily structure, and with the development of cognitive skills 

throughout human evolution (Calvin, 1982; Roach et al., 2013; Roach & Richmond, 2015). It 

is, therefore, plausible that, along with the innate ability to perform overarm throws, 

humans have developed skills to decode information from observed throwing actions to 

enhance their performance in interpersonal interactions involving throwing and catching 

objects, also a pervasive behavior in humans. 
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In previous studies, we examined overarm motor behavior in untrained adults (Maselli et 

al., 2017, 2019) who were instructed to perform free overarm throws at different targets 

placed at six meters distance. By combining dimensionality reduction and machine learning 

techniques we could characterize the predictability of individual throwers by quantifying 

advanced (i.e. preceding ball release) information that would permit an observer to 

anticipate the outgoing direction of the projectile (Maselli et al., 2017). In particular, we 

extracted the spatiotemporal profile of advanced information in the kinematics of 

individual throwers, by computing the accuracy with which it is possible to distinguish 

throws directed to the right, rather than to the left when looking at specific body segments 

and at different temporal phases of the throwing action. Results revealed how the full-body 

kinematics of throwing actions encodes information about the outgoing ball direction well 

ahead of ball release (up to 600 ms in advance). Large interindividual differences were 

found across participants, with advanced information distributed dishomogeneously in 

time and throughout body segments in a way that varies across individuals. So, while some 

throwers deliver most of the relevant information from their stepping trajectories, for others 

trunk rotations may be more informative. The question then arises whether non-expert 

observers can extract information from a thrower with the same efficiency as data-driven 

classifiers and whether they are better tuned to extract information from specific patterns of 

movement which may be present in some throwers but not others. 

 

The marked interindividual variability in the predictability of throwing action is in line with 

the heterogeneity that emerged from a complementary analysis of the full-body throwing 

kinematics aimed at characterizing and categorizing throwing actions across genders and 

individuals (Maselli et al., 2019). The motor pattern adopted in an unconstrained overarm 

throwing task was, indeed, found to be specific to individual throwers, to the extent that it 

is possible to recognize the identity and gender of a thrower from the pattern of joint 

trajectories characterizing a single throw. Despite this, there are similarities in the motor 

behavior observed across individuals. Four main classes of throwing strategies were 

identified across a pool of untrained throwers (n = 20), mainly differing in their stepping 
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pattern and, to a lesser degree, in the trajectory of the throwing arm. The emergence of 

individual throwing strategies (or styles), above the overall background motor variability 

characterizing the unconstrained throwing task, finds resonance in the more general view 

that redundancy in complex motor tasks implies the existence of multiple solutions (Ganesh 

et al., 2010; Ganesh & Burdet, 2013; Maselli et al., 2019) and with the evidence that 

individuals tend to adhere to one of the possible solutions (Vidal & Lacquaniti, 2021). These 

results further motivate and generalize the question above, namely if non-expert throwers 

can equally extract information from different throwers or are better attuned to a specific 

class of throwing strategies. 

 

Here we present an experiment designed to assess predictive skills based on the observation 

of throwing actions in untrained adults. In particular, we wondered whether advanced 

information, i.e., the information available ahead of ball release that provides hints about 

the outgoing ball trajectory, can be read out by non-expert observers and exploited in real-

time to improve performance in interceptive tasks. In addition, we tested whether 

interceptive performance based on the observation of throwing actions depends on the 

throwing strategy of the individual throwing strategy adopted by the observed thrower. 

For this, we selected four non-expert throwers (with no specific training in throwing and 

catching sports) from our earlier study (Maselli et al., 2019), each representative of a 

different throwing style. 
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2.2. Results 

Participants, wearing an immersive virtual reality (VR) headset, were instructed to intercept 

a virtual ball under three different visibility conditions, using a virtual racket. In two 

conditions they could see a virtual character facing them and executing a throwing action. 

In one case the flight of the ball released by the virtual character was visible (AllVisible), 

while in the other the ball was not rendered during its flight (ThrowerOnly). The third 

condition included only the ball flight, starting after an unpredictable interval in which the 

ball was shown still at a position corresponding to the location of ball release (BallOnly). 

Both the thrower’s kinematics and the ball trajectories displayed in the virtual environment 

accurately reproduced the kinematics of real throws recorded in our previous studies 

(Maselli et al., 2017, 2019). We included successful throws directed to four different targets 

and executed by four throwers, representative of the four of previously identified throwing 

strategies (Maselli et al., 2019). The four throwers were selected so to minimize differences 

in their predictability temporal profiles. For each of them, four throws, one for each target 

(Fig. 1), were selected so to minimize the variability in their flight time (seeMethods for more 

details). All together the experimental design included three factors: the throw visibility 

(BallVisibility), the hit target (Target), and the thrower identity (Thrower). 

 

Comparing interception performance across conditions allowed to address the research 

questions in our agenda by testing the following hypotheses. First, we hypothesize that 

interceptive performance improves when the thrower kinematics is visible in addition to 

the ball trajectory, i.e., performance in AllVisible is better that in BallOnly (H1). In addition, 

we hypothesize that the interception kinematics observed in the ThrowerOnly condition 

allows to disentangle the direction of the invisible ball (H2). If confirmed, both hypotheses 

would imply that non-expert participants are able to extract and use information from the 

observed throwing kinematics to prepare favourable conditions for successful interception 

and to effectively improve performance. We further hypothesize that, when the throwing 

action is visible, interceptive performance systematically varies with the throwing style of 
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the opponent (H3). To test this, we inspected interceptive performance in the ThrowerOnly 

condition, for which performances are not dominated and saturated by information from 

the ball trajectory. Interception performance was assessed based on two variables: the 

success rate of interception (Score) and the minimum distance between the ball trajectory and 

the racket (Dmin). The hypotheses under scrutiny were tested by contrasting Score and Dmin 

across experimental conditions using respectively generalized linear mixed models 

(GLMM) and linear mixed models (LMM). 

 

 

Figure 1: Ball trajectories. The trajectories selected for the four throwers are 

shown and coloured according to the corresponding target. The four targets are 

circles of 20 cm radius arranged on a vertical plane placed at a distance of 6 m 

from the initial position of the thrower. The location of the vertical 

semitransparent grey plane corresponds to the mean y-coordinate of 

interceptions across trials and participants. The interception point of the different 

trajectories with this plane clearly shows how, for each target, differences in the 

impact point of throws from different throwers are not negligible. 
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2.2.1. Differences in the ball trajectory alone affect 

performance 

The use of ecological stimuli, namely throwing kinematics and ball trajectories from real 

throws as visual stimuli, poses the issue of a possible confound associated with unavoidable 

differences in the trajectories of the different throws. In fact, although the selection of the 

throws from different throwers and to different targets have been selected so to minimize 

the variance in the ball release velocity and in the spatial distribution of the ball trajectories 

(seeMethods for details), such differences in ball trajectories across conditions cannot be 

completely suppressed. The potential impact of such difference on performance should be 

then taken into account when comparing performances associated with individual 

throwers. 

 

The trajectories selected for the different combinations of thrower and target are shown in 

Figure 1, where differences across conditions can be clearly appreciated. We thus tested 

whether these differences in the ball flight alone (so in the BallOnly condition) affected 

interceptive performances. Both performance variables, Score and Dmin, exhibit a noticeable 

modulation by Thrower (Fig. 2). Performance showed similar level of modulation by Target 

(Fig. 3). Score data were fitted with the GLMM model in Eq. 1 in Methods (R2 = 0.19), which 

revealed a significant main effect of Target (p = 0.008) and a significant interaction between 

Target and Thrower (p <10-10). Post-hoc analysis, based on the comparisons of the coefficients 

of the dummy variables and their interactions (values for the dummy variables were defined 

with respect to the reference condition Target 4 – Thrower 2, which has the highest mean 

Score value in the BallOnly condition) revealed that: i) Score for Target 2 were significantly 

lower with respect to Score for Target 4 (p = 0.003), and ii) Target by Thrower interactions 

were significant for all throwers and both Targets 2 and 3, with Score values in all the 6 

conditions all lower than in the reference condition (p < 0.01 for all comparisons). 

The corresponding LMM model was fitted on Dmin (R2 = 0.25). In this case, the main effect of 

of Target (p = 0.009) and the Target × Thrower interactions (p < 10-10). Post-hoc analysis 

revealed that the Target by Thrower significant interaction is associated with Dmin values 
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being significantly larger than in the reference condition (Target 4 – Thrower 2) in the 

following conditions: Target 2/3 – Thrower 1 (p = 0.001 and p < 10-10 respectively), Target 2/3 

– Thrower 3 (p < 10-10 and p = 0.02 respectively), Target 1/3 – Thrower 4 (p = 0.007 and p < 

10-4 respectively).The detailed output from both the GLMM and LMM models discussed 

above can be found in the supplementary online material. 

 

Figure 2. Performance in the BallOnly condition: the effect of Thrower. 

(A, C) The box plots show the distributions across participants of Score and 

Dmin for the four throwers included in the study. (B, D) The Score and Dmin 

values from individual participants are shown, with participants ordered 

along the x-axis by decreasing levels of overall (across all targets and 

throwers) Score in the BallOnly condition. 
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The performances of individual participants (panels B and D of both Fig.s 2 and 3) clearly 

show how modulations of performance by both Thrower and Target are dominated by 

participants with the worst performance. It is interesting that among the worst performing 

participants a consistent pattern of performance modulation is observed, which indicates 

that some trajectories are easier to intercept. In particular, trajectories hitting the bottom 

targets (1 and 4) are easier to intercept than those hitting the top targets. Top left trajectories 

(to Target 3) are the most difficult, as to be expected given that all participants used the right 

hand to intercept the ball. 

 

The significant differences in performance reported here are attributed to differences in the 

ball trajectories alone, as the throwing action is occluded in the BallOnly condition. As this 

could be a possible source of confound when testing the impact of thrower visibility on 

Figure 3. Performances in the BallOnly condition: the effect of Target. 

(A, C) The box plots show the distributions across participants of Score 

and Dmin for the four targets included in the study. (B, D) The Score and 

Dmin values from individual participants are shown, with participants 

ordered along the x-axis by decreasing levels of overall (across all targets 

and throwers) Score in the BallOnly condition. 
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interceptive performance, we considered performance differences between throws to each 

target and by each thrower. 

 

2.2.2. Thrower visibility improves interceptive performance 

To test whether viewing the throwing action in addition to the ball trajectory improves 

interceptive performance (H1) we compared performance (both Score and Dmin) in the 

AllVisible and BallOnly conditions, treating Thrower and Target as additional independent 

factors. To take into account the impact of different ball trajectories on performance, we 

considered the performance difference between the two ThrowVisibility conditions, i.e. ΔS = 

Score(AllVisibile) − Score(BallOnly) and ΔDmin = Dmin(AllVisibile) − Dmin(BallOnly). Doing so it is 

possible to appreciate the effect of thrower visibility on the performance in the same set of 

ball trajectories. Distributions of these differences across participants are shown in Figures 

4 for the different Throwers and in Figures 5 for the different Targets. 

 

Despite the large inter-individual variability and the small absolute values of ΔS and ΔDmin, 

they both appear to be skewed towards positive and negative values respectively, both 

pointing to an overall improvement in the performance when viewing the throwing action 

in addition to the ball trajectory. This can be better appreciated for the participants 

performing the worst in the BallOnly condition, for which there was more space for 

improvement. In particular, the larger improvements were observed for participants 8 and 

14, when intercepting throws from Thrower 1 and 3 directed to Target 3. 
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Statistical significance of the differences across visibility conditions were tested using the 

GLMM model in Eq. 2 in Methods for Score (R2 = 0.14) and the corresponding LMM model 

for Dmin (R2 = 0.23). The model includes three main factors, Target, Thrower and TrialType, and 

their interactions. The TiralType factor was included to test the effect of thrower visibility by 

comparing the AllVisible versus BallOnly conditions. 

Figure 4. Difference in performance between AllVisible and BallOnly 

conditions: the effect of Thrower. (A, C) The box plots show the 

distributions across participants of ΔS and ΔDmin (differences across 

visibility conditions) for the four throwers included in the study. (B, D) 

The corresponding values from individual participants are show, with 

participants ordered along the x-axis by decreasing levels of overall 

(across all targets and throwers) Score in the BallOnly condition. 
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For Score we found a significant main effect of Thrower (p < 0.001) and significant effects for 

all the two-way interactions tested, i.e., between Target and Thrower (p < 10-10), between 

Target and TrialType (p = 0.018), and between Thrower and TrialType (p = 0.032). In addition 

a significant three-way interaction of TrialType with Thrower and Target (p < 0.001) was 

found. Post-hoc analysis revealed that Score values for Thrower 1 and 3 were significantly 

lower than for the reference Thrower 2 (p = 0.004 and p = 0.032 respectively), and that Score 

values for Target 1 are significantly lower that for reference Target 4. The effect of thrower 

visibility was instead significant only for a subset of conditions: Score values were higher in 

the AllVisibile conditions for throws to Target 2 (p = 0.01), in particular for Thrower 3 and 4 

(p = 0.040 and 0.042 respectively), as well as for throws to Target 3 but only for Thrower 4 

(p = 0.034). In addition, a number of significant two-way interactions between Target and 

Figure 5. Difference in performance between AllVisible and BallOnly 

conditions: the effect of Thrower. (A, C) The box plots show the 

distributions across participants of ΔS and ΔDmin (differences across 

visibility conditions) for the four targets included in the study. (B, D) 

The corresponding values from individual participants are show, with 

participants ordered along the x-axis by decreasing levels of overall 

(across all targets and throwers) Score in the BallOnly condition. 
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Thrower were found (see the complete output of the model in the supplementary online 

material). 

 

Similar results were obtained for Dmin, for which, in addition to the significant effects 

reported for Score, we found a significant effect of Target (p = 0.02). The effect of thrower 

visibility was significant only in its interaction with the Target and Thrower factors. The 

complete output from the model can be found in the supplementary online material. 

These outcomes support the observation drawn above in discussing Figures 4 and 5, and 

thus confirm hypothesis H1 showing how interceptive performance improves when 

viewing thrower kinematics in addition to ball trajectory, although the effect could be 

appreciated only for some combinations of Thrower and Targets, and in particular for ball 

trajectories that cannot be intercepted with optimal performance (Score > 0.8) in the BallOnly 

condition. 

 

Improvement in performance associated with vision of the throwing action may derive from 

the ability to extract advance information about the future direction of the outgoing ball that 

can be used to prepare more effectively the interceptive movement, for example by directing 

the hand in the region of interest and/or taking a preparatory posture allowing for better 

hand control. To corroborate this interpretation, we looked at interceptive performance in 

the ThrowerOnly condition to test whether participants could discriminate the direction of 

the invisible ball based on the throwing kinematics alone (H2). 

 

2.2.3. Untrained adults can extract information about the 

outgoing ball direction based only on the throwing kinematics 

Effective interception of the invisible ball trajectory with the racket surface is an extremely 

difficult task. For this, for each trial we estimated extended interception point, defined as the 

location of the centre of the virtual racket at the time of its minimum distance (Dmin) from 

the ball’s trajectory. We then inspected the difference in the distribution of the extended 
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interception point across the four targets. The distributions of the extended interception 

points for throws to the four targets are represented in Figures 6 as the 2D ellipses obtained 

by projecting them onto the frontal (xz) plane, separately for the different throwers 

(columns) and for four representative participants (rows). The latter were chosen among all 

participants as the ones performing better and worse in the Right-vs-Left (P19 and P7 

respectively) and Up-vs-Down discrimination (P6 and P2 respectively), as revealed by the 

linear discriminant analysis (LDA) discussed below. For participant 6 the ellipses associated 

with different targets tends to occupy different regions of the space, with a spatial 

arrangement that corresponds to the target positions both in elevation and laterally, 

indicated a capacity to correctly discriminate the direction of the occluded balls based on 

information extracted exclusively from the throwing kinematics. Participant 19 instead is 

characterized by a clear separation of the ellipses by side but not in elevation, therefore the 

ability to discriminate the lateral direction of the occluded balls, but not their elevation. A 

similar trend, but with a lower degree of ellipses separation is observed for participant 2. 

The discrimination ability drops drastically for participant 7, characterized by larger ellipses 

(indicating a larger variability in the extended interception points distributions) and a 

higher degree of overlap among them. For most participants (supplementary Figure S1), the 

separation between targets at different sides (Right-vs-Left) appears to be larger than for 

target at different elevation (Up-vs-Down), suggesting an overall better predictability of the 

ball direction on the horizontal (mediolateral) direction, rather than on the vertical direction. 

Interestingly, differences in the ellipses geometry and spatial arrangement can be clearly 

noticed when comparing different throwers. 
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Figure 6. Distributions of extended interception points. The four ellipsoids in each panel 

represent the distribution of the extended intercepting points for throws directed to the 

different targets, coded by colour. The centre of each ellipsoid corresponds to mean (averaging 

extended interception positions across the corresponding subset of trials), whereas the principal 

semi-axes correspond to the standard deviation of the distributions along the 3 directions of 

higher variability. Panels in the three rows represents performance from three representative 

participants. Panels along the four columns corresponds to participants performance in the 

subset of throws from individual throwers. 
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As a quantitative assessment, we used a linear discriminant analysis (LDA) to test whether 

the interception kinematics effectively discriminate ball direction. Horizonal and vertical 

discrimination were tested separately by considering two 2-class problems: Right-vs-Left 

and Up-vs-Down. For each participant (catcher), the analysis was conducted on the four 

Figure 7. Results from the linear discriminant analysis (LDA) applied to 

the problem of ball side and elevation discrimination in the 

ThrowerOnly condition trials. (A) Heat map show the resulting 

misclassification errors from LDA applied to the Right-vs-Left (left panel) 

and Up-vs-Down (right panel) problems, for all participants (rows) and for 

the different throwers (columns); participants are ordered from top to 

bottom in decreasing order of average misclassification errors across 

throwers. (B) Boxplots provide the summary statistics (across participants) 

of the misclassification errors from LDA applied to the Right-vs-Left (left 

panel) and Up-vs-Down (right panel) problems, associated with the four 

throwers. 
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subsets of trials associated with the different throwers. The LDA model was trained with 

the positions of the extended interception points, each labelled according to the belonging 

class (Right/Left, Up/Down) of the corresponding throw. Results are shown in Figure 7A, in 

terms of misclassification errors (MEs) estimated with the one-leave-out method 

(seeMethods for more details). Figure 7B shows the summary boxplots corresponding to the 

MEs distributions across all participants for the different throwers. In the horizontal 

classification problems, the ME values for all possible combinations of catcher and thrower 

are well below chance level (50 per cent for the 2-class discrimination problems), with an 

average value of 11.43 and standard deviation of 7.58. The misclassification errors for the 

vertical discrimination problem are larger, with an average value of 32.92 and standard 

deviation of 12.42. Indeed, for this problem not all combinations of catchers and throwers 

have misclassification rates below chance level, implying that some participants were not 

able to correctly infer the vertical arrival position of the outgoing ball for one or more 

throwers. 

 

We next tested whether the extraction of information of the outgoing ball trajectory from 

the throwing kinematics depended on the thrower. For this, we fit Score and Dmin, in the 

ThrowerOnly condition, with GLMM and LMM respectively, adopting the models in Eq. 1 

of Methods. For both we found a significant main effect of Target and Thrower, and a 

significant interaction between the two; all p-values are below 10-6, but for the main effect 

of Thrower on Score, which is 0.016. The detailed output of both models can be found in the 

supplementary online material. 

 

In sum, these results indicate that untrained individuals are able to extract information 

about the future ball direction on the basis of the throwing kinematics alone, thus 

confirming our hypothesis H2, and that the ability to extract information is significantly 

modulated by the thrower kinematics strategy, thus confirming H3. 
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2.3. Discussion 

The current study shows that human adults, not specifically trained in throwing sports, are 

able to extract information from the observed kinematics of a throwing action, and to use 

online this information to enhance their interceptive performance. Participants who had to 

intercept a thrown ball in an immersive virtual reality setup, performed better when they 

could see the complete throwing action in addition to the ball flight. Moreover, when the 

ball was occluded during its flight, participants were able to correctly direct the interceptive 

action using the information provided by the throwing action alone. In addition, our results 

highlight how the reported predictive skills based on the observation of naturalistic 

throwing actions are modulated by the thrower, as the throwing pattern adopted by some 

throwers could be read out better than the pattern adopted by others. Crucially, these effects 

are mostly evident for participants having poor interceptive skills, and in general for those 

conditions in which the baseline performance, corresponding to trials in which only the ball 

flight was visible, were poor leaving room from improvements associated with the visibility 

of the throwing action. 

 

These results extend our current knowledge on the nature of predictive skills for action, and 

in particular for interceptive behaviour. Studies focusing on interceptive performance have 

demonstrated how humans make use of internal predictions about projectiles trajectories to 

successfully intercept flying objects, plausibly based on an internal model of how objects 

moves under the effect of gravity (Dayan et al., 2007; Russo et al., 2017; Zago et al., 2008). 

Our results show that untrained adults are able to correctly predict the direction of projected 

objects also based on the kinematics of the throwing action. Notably, this implies a more 

complex ability for predictions with respect to the processing of a ball flight. Previous 

studies have demonstrated the ability of elite sport athletes to correctly infer the future 

direction of a thrown ball based on the observed throwing movement of an opponent, but 

this ability has been so far considered a skill learned throughout extensive and sport-specific 

training. So, anticipatory skills based on action observations have been shown to be higher 
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for elite athletes than for non-experts (Abernethy, 1990; Farrow et al., 2005; Müller & 

Abernethy, 2012), but only if they were specifically trained in the observed throwing or 

kicking technique (Aglioti et al., 2008; Mann et al., 2010). While these results demonstrated 

that specific training enhances predictive skills, our results provide direct evidence that 

humans have the ability to extract and use online advanced information from observed 

throwing actions for the successful interception of projected objects even without training. 

It may be possible that such predictive ability evolved together with throwing (Calvin, 1982; 

Lombardo & Deaner, 2018; Roach et al., 2013; Young, 2009) and catching skills, although this 

is a speculation that needs to be further explored in dedicated studies. 

 

Results from the current study are also interesting in the context of social neuroscience. 

Humans are known to extensively rely on predictions based on the observation of biological 

motion for inferring others intentions and anticipating the future unfolding of observed 

actions (Ambrosini et al., 2015; Ansuini et al., 2015; Cavallo et al., 2016). These predictive 

mechanisms are thought to be key to guarantee a smooth and effective interpersonal 

interaction based on non-verbal communication (J. R. Flanagan & Johansson, 2003; Giese & 

Rizzolatti, 2015; Pezzulo et al., 2019). Still, established experimental evidences for these 

overall conclusions are largely based on the examination of simple actions, such as reaching 

for an object to grasp and/or move it (Aglioti et al., 2008; Ansuini et al., 2008; Donnarumma 

et al., 2017; J. R. Flanagan & Johansson, 2003). Here we showed that similar mechanisms are 

at play in complex forms of interpersonal interactions, demonstrating that not only humans 

are able to predict the unfolding of complex full-body action involving the manipulation of 

external objects, but they are also able to use online these predictions to optimize the 

interaction. So, our results extend previous research on interpersonal communication by 

including quantitative assessments of the critical role played by predictive mechanisms 

associated with action observation in complex and full body motor behaviour. 

Importantly, the experimental evidence from the current study are grounded in a 

scrupulous experimental design, in which the visual stimuli – namely the throwing actions 

shown to participants in the interceptive task – have been selected based on a previous 
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analysis in which the information content about the outgoing direction of the projected ball 

has been fully characterized (Maselli et al., 2017). That study showed a large interindividual 

variability in throwing predictability, so that individual throwers differ not only in how 

early (before ball release) they become predictable, but also in the set and sequence of body 

segments that deliver the most relevant information. Having quantified and characterized 

the information about the outgoing ball direction encoded in the selected throws, we could 

then assess the extent to which such information could be decoded by a human observer 

and make grounded comparisons across different throwers conditions. 

 

In particular, the current study addressed the issue of how differences in the predictability 

profile of throwers adopting different motor strategies impact on prediction skills and on 

the ensuing interceptive performance. Results show that interceptive performance varies 

with the opponent thrower: despite the large interindividual differences, a consistent trend 

was found across participants for individual throwers being less predictable (e.g., Thrower 

3 for side discrimination) or more predictable (e.g., Thrower 4 for elevation discrimination) 

than others. Although the four throwers were selected so to have comparable temporal 

profiles of their predictability, differences in their motor strategies and therefore in the 

kinematics cues (body segments) that convey the relevant information could explain the 

different degrees of information read out from individual throwers. This suggests that not 

all information encoded in the kinematics of an action is equally easy to decode, and thus 

that the human brain may be better tuned to specific bodily cues when decoding observed 

actions for predicting their incoming unfolding. Nevertheless, it is interesting to notice how 

results show a better discrimination of the outgoing ball lateral motion with respect to 

vertical motion, which is in line with the marked differences found for the encoding of the 

relative information (Maselli et al., 2017). 

Noticeably, the grounded comparison of different ecologically valid experimental 

conditions (in this case different throwing styles) has been granted by the introduction of 

novel methodology to quantitatively characterize complex motor behaviour (Maselli et al., 

2019) and kinematics-driven predictability with a small set of parameters. These 
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quantitative approaches allow for further sophisticated analysis. For example, one could 

look at the relation of interceptive performance with the detailed spatiotemporal structure 

of each thrower’s predictability so to point out which are the kinematics cues (e.g., from 

which body segments) that are easier to decode. One could also wonder whether there is an 

individual tuning to specific bodily cues and whether this tuning reflects the individual 

motor expertise and styles (Vidal & Lacquaniti, 2021), as mirror neurons theories would 

suggest (Calvo-Merino et al., 2010; Casile & Giese, 2006; Giese & Rizzolatti, 2015). In this 

case, a match in the throwing styles of catcher and thrower would facilitate the decoding of 

the observed throwing action. While these questions go beyond the aim of the current study, 

we plan to address them in future studies. 

 

In sum, the results of the present study highlight the ability of humans to formulate detailed 

predictions about the unfolding of complex full-body actions, and to use online these 

predictions to optimize interactions. Differently from what suggested by previous studies, 

our results show that such predictive skills do not require an extensive exposure to, or motor 

training in, the observed action, and may be therefore rooted in an intrinsic internal 

knowledge of how common actions in the human-motor repertoire maps into changes in 

the physical state of the surrounding environment. The combination of ecological valid 

stimuli, immersive technologies and new methods for describing and categorizing complex 

actions that allowed to achieve these results, may pave the way for a research agenda that 

aim at exploring in more details the sensorimotor mechanisms underlaying the role of 

prediction skills in real-life multi-agents interactions. 

 

2.3.1. Limitations of the study 

The current study has some intrinsic limitations associated with the use of immersive virtual 

reality (IVR). In fact, IVR exposure may affect motor behaviour in a way that it is still not 

straightforward to predict (Thomas et al., 2016; Zhang & Sternad, 2021). However, IVR 
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grants the otherwise impossible chance of adopting complex but perfectly reproducible 

visual stimuli, in our case reproducing with high fidelity the full-body kinematics of 

throwing actions from real throwers. In this respect, we believe that IVR provides a precious 

experimental tool for state-of-art research on non-verbal interpersonal interaction, affording 

the optimal compromise between systematic experimental designs and the use of complex 

ecologically valid stimuli. 

 

2.4. Methods 

2.4.1. Experimental model and subject details 

Participants performed a task in immersive virtual reality (IVR), in which they had to 

intercept a virtual ball thrown by a virtual character. Before this, participants were asked to 

perform a real throwing session, replicating the task and the experimental procedure 

adopted in our previous studies (Maselli et al., 2017, 2019). This part of the data collection 

served for a complementary study in which we aimed at exploring how interceptive 

performance are affected by the relation between the throwing styles of the catcher and the 

thrower. 

 

The experiment consisted in a 3 × 4 × 4 within-subjects design, the three factors being the 

ThrowVisibility, Thrower and Target. All factors modulate the visual stimuli to which 

participants were exposed in the virtual catching task. The ThrowVisibility factor had three 

levels: BallOnly, in which only the ball trajectory was displayed; ThrowerOnly, in which the 

throwing kinematics was displayed but the ball disappeared at the ball-release time; and 

AllVisible, in which both the throwing kinematics and the full ball trajectory was available 

to participants. The Thrower factor had four levels in which the throwing kinematics was 

modulated: each level corresponded to one of the four throwing styles identified and 

described in our previous work (Maselli et al., 2019). For each thrower, we further 
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considered throws to four different targets arranged with respect to the thrower as in 

(Maselli et al., 2017). 

 

The virtual catching session included 10 repetitions for each condition, summing up to a 

total of 480 trials presented to participants in a pseudorandom order: trials were grouped in 

10 blocks of 48 trials (one for each condition), and trials within each group were arranged 

in a random order. 

 

Twenty-two participants (11 female; age: 26.5 ± 4.9 years, mean ± std) took part to the 

experiment. They were all right handed according to the laterality score given by the 

Edinburgh questionnaires (L: 0.86 ± 0.14). They were informed that they could leave the 

experiment and/or could ask for breaks at any time. All but one participant (who only 

performed the throwing session for technical problems) completed the whole experiment. 

A second participant, despite completing the experiment was excluded from the analysis 

because they failed in following properly the task instructions. 

 

2.4.2. Method details 

2.4.2.1. Throwing stimuli selection 

The virtual throws stimuli, including both the throwing kinematics and the ball trajectories, 

faithfully reproduced the real throwing kinematics recorded from real subjects (Maselli et 

al., 2017, 2019). First, we selected four throwers among the twenty subjects available, each 

representative of a throwing style. The four throwers were selected so to match as close as 

possible the temporal profile of their characteristic “throwing predictability”, as computed 

and reported in (Maselli et al., 2017). To this aim, we minimized the variance of the time 

intervals before ball release at which the thrower becomes predictable in the groups of four 

throwers each representative of a specific throwing style. According to this criterium, the 

selected subjects were P4, P5, P6 and P13 from (Maselli et al., 2017), representative 
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respectively of the No-Step, Left-Step, Right-Step and Double-Step throwing styles identified 

in (Maselli et al., 2019). The throwing kinematics and corresponding predictability profiles 

are shown in Figures 3 and 7 of (Maselli et al., 2017), while the animated kinematics as 

displayed through the HMD can be seen in the supplementary videos SV1-SV4 (showing 

the throws to Target 1 for all throwers). For each thrower we next selected four throws, one 

for each target. The throws selected were those that, among the successful trials (i.e. throws 

hitting the intended target of 20 cm radius), minimized (i) the reciprocal distance of the 

impact locations on the target board, and (ii) the variance of the flight time across the four 

throwers. Following these criteria the mean and standard deviation of the flight time across 

participants, averaged across target, was 0.595 ± 0.02 s, while the mean distance of the same-

target arrival locations was 0.17 cm. The kinematics recoded in the selected trials was used 

to create the virtual throwing stimuli (more details in the “Virtual Scene” subsection). As a 

sanity check, we computed the differences in flight times and speed at impact of the virtual 

balls thrown by the different throwers to the four targets in the Unity scenario. Flight time 

was estimated as the time interval between ball release and the virtual impact of the ball 

with the plane of average interception (i.e., the vertical xz plane placed at the mean y-

coordinate of interceptions across trials and participants shown in Fig. 1). Impact speed was 

estimated as the ball tangential velocity at the time of intersection with the same plane. 

Mean and standard deviation across throwers and targets were 0.450 ± 0.01 s for the flight 

time, and 8.771 ± 0.431 m/s for the ball speed. The corresponding values for each single 

thrower are given in table T1. The reported differences across throwers have been taken into 

account when assessing the impact of the individual throwing strategy on interceptive 

performance by looking at the difference in performances between AllVisible and BallOnly 

conditions. 

Thrower ID Flight Time [s] Impact Speed [m/s] 

1 0.457 ± 0.010 9.178 ± 0.221 

2 0.449 ± 0.006 8.290 ± 0.142 

3 0.442 ± 0.006 8.979 ± 0.205 

4 0.451 ± 0.013 8.638 ± 0.456 
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Table T1. Ball flight time and impact speed by thrower. The table reports mean and standard deviations 

across throws to the four targets of ball flight time (from ball release to impact with the plane of average 

interception shown in Fig. 1) and impact speed for the four throwers included in the experiment. 

 

2.4.2.2. Experimental setup 

The experimental setup included a Vive system for IVR and the motion capture optical 

system OptiTrack for the recordings of full-body kinematics. 

The Vive system (HTC Europe Co. Ltd, Slough, Berkshire, U.K), includes two base stations 

emitting infrared pulses which create a “room scale” tracking area where the headset and 

the controllers can be tracked with sub-millimeter precision. The headset streams the 

interactive virtual scenario designed for the virtual catching task, at a refresh rate of 90Hz 

and a 110° field of view, with a display resolution of 1080×1200 pixels per eye. For the 

experiment we further used one Vive controller, which participants held in their right hand 

and used to control a virtual racket for intercepting the virtual ball. The controller was also 

used to track the hand kinematics during the interceptive task. The Vive system was 

integrated via SteamVR with the Unity Engine running on a personal computer. 

 

The OptiTrack (NaturalPoint, Inc., Oregon, USA) optoelectronic motion capture system, 

including its data acquisition and processing software Motive Body, was used to track the 

full-body kinematics during both the real throwing task and the virtual catching task. 

Participants were instrumented with 57 retroreflective markers that allowed to track the 

whole body. The experimental setup for the throwing task replicated exactly the one 

described in (Maselli et al., 2017). 
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2.4.2.3. Virtual scenario 

The virtual scene has been implemented on the Unity platform. It included an empty room 

of 8 × 15 m2 floor size and 5 m height, a 9 cm diameter ball, four virtual characters, and a 

racket. The latter was generated by attaching a white disk (20 cm diameter, 3 cm thickness) 

to a virtual replica of the hand-held controller. The four virtual characters were created by 

resizing the skeleton’s body segments of a standard virtual character, so to match the bodily 

proportion and the high of the real participants selected as throwers. This assured that when 

loading the kinematics of a specific throw onto the corresponding virtual character as an 

animation (which is controlled by the joint angles kinematics) the spatial trajectories of the 

single joints accurately matched the one recorded in the motion capture session. The 

characters head was occluded by an opaque sphere, in order to remove possible implicit 

cues about the intended target present in the head movement of the thrower (see Fig. 8). For 

each throw the ball was animated according to the trajectory of the real ball, also tracked by 

the motion capture system. Each trial was associated with a single trial and therefore a single 

thrower. The participant started the throwing stimuli by pressing a button on the hand-held 

controller while being in a fixed initial position and holding a neutral A-pose, with the feet 

slightly spread and the arm along the sides of the body. According to the experimental 

condition, each trial either began either with the thrower appearing in the initial A-pose as 

in Fig. 9A, facing the participants (AllVisible, ThrowerOnly), or with the ball appearing at the 

location corresponding to the throwing release point of the specific trial (BallOnly). The 

animation of the throwing action or the ball flight was started after an average interval of 1 

second with a uniformly distributed random jitter of 0.5 seconds, included to make the start 

unpredictable. In the AllVisible condition both the throwing action and the complete ball 

flight were shown, while in the BallOnly and the ThrowerOnly condition only the ball 

trajectory and the avatar throwing action respectively were displayed. 
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The controller position and orientation were tracked by the HTC Vive system. If the actual 

ball trajectory was successfully intercepted, a haptic feedback of the event was rendered as 

a vibration of the controller. 

 

 

2.4.2.4. Procedure 

Participants were instructed about the experimental procedure and signed a consent form 

before taking part to the experiment. They then filled the Edinburgh handedness 

questionnaire for assessing hand preference (Oldfield, 1971), a brief questionnaire about 

their experience with sport activity, and their previous exposure to immersive virtual 

Figure 8. Virtual scene: throwing stimuli. (A) The 

figure shows virtual thrower initial A-pose. (B, C, D, 

E) Snapshots of the different throwers at the moment 

of ball release. 
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reality. Participants were then instrumented with the retroreflective markers for full-body 

kinematics recording. This preparation phase took on average 20 minutes. 

 

The experiment started with a brief familiarization with the throwing task followed by the 

experimental throwing session consisting in 80 throws, 20 for each of four targets arranged 

on a vertical plane at a distance of 6 meters, see (Maselli et al., 2017) for more details. After 

the throwing session, participants took a break of about five to ten minutes, after which the 

virtual interception session started. After being fit the head-mounted display (HMD) and 

provided with the Vive controller, participants performed few trials for getting familiar with 

task in the three visibility conditions. The experimental session started next and consisted 

of 480 trials in which the 48 conditions were presented pseudo-randomly, in 10 consecutive 

blocks each including all 48 conditions. Participants took one to two breaks in which they 

could remove the HMD and rest. All together the experiment including both the throwing 

and virtual interception tasks, plus breaks, lasted on average 90 minutes. 

 

In both throwing and interceptive sessions we recorded full-body kinematics. In addition, 

in the virtual session we recorded the kinematics of the controller held by the intercepting 

hand (always the right hand) and of the head with the Vive system. In the current study we 

focus our analysis on the kinematics of the intercepting hand from the controller. The full-

body kinematics of the throwing and interceptive actions will be analysed in future studies. 

The experimental design and protocol were approved by the Ethical Review Board of the 

Santa Lucia Foundation (Prot. CE/PROG.542). 

2.4.3. Quantification and statistical analysis 

2.4.3.1. Data collection and pre-processing 

For each trial, the kinematics of the hand-held controller and the position of the virtual 

racket were recorded from the start of the trial to the time at which the ball impacted the 

racket or exceeded 5.5 m along antero-posterior axis (y-axis) in the VR environment (moving 
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so behind the participant). For each trial, we analysed the kinematics of the virtual racket 

position, which is automatically extracted from Unity as a fixed roto-translation of the 

tracked controller, and sampled at 90 Hz. Positional data were filtered with a digital low 

pass-filter (a 5th order Butterworth filter with 10 Hz cutoff frequency). Each trial was labelled 

as successful, or failed, according to whether there was, or was not, a collision between the 

ball and the virtual racket. Scores values for each combination of participant and 

experimental condition were computed as the fraction of successful trials. In addition, Dmin 

was estimated as the distance at which the position difference between the racket and ball 

was minimal. For each trial, we also extracted the extended interception point as the position 

of the virtual racket centre at the time of minimum distance between the ball and the racket. 

Data were processed in Matlab. 

2.4.3.2. Statistical analysis 

The dependence of the Score and the Dmin on the experimental factors was tested with 

generalized linear mixed models (GLMM) and linear mixed models (LMM) that account for 

interindividual variability by including the participant as a random effect. Different mixed 

models were adopted according to the metric under scrutiny. The experimental factors, i.e. 

BallVisibility (BV), the hit target (Ta), and the thrower identity (Th)) were treated as fixed 

effect factors with categorical (dummy) variables. Data from the BallOnly and ThrowerOnly 

conditions were fitted with the model described in Eq. 1. Instead, when comparting the 

impact of the thrower visibility by contrasting the AllVisible and BallOnly conditions data 

were fitted with the model in Eq. 2. 

 

𝑌 = 𝑔 (𝑢0 + 𝛼0𝑇𝑎 + 𝛽0𝑇ℎ + 𝜆0𝑇𝑎𝑇ℎ + 𝜖) 

 

(1) 

𝑌 = 𝑔 (𝑢0 + 𝛼0𝑇𝑎 + 𝛽0𝑇ℎ + 𝛾0𝐵𝑉 + 𝜆0𝑇𝑎 𝑇ℎ + 𝜁0𝑇𝑎 𝐵𝑉 + ∆0𝑇ℎ 𝐵𝑉 + 𝛿0𝑇𝑎 𝑇ℎ 𝐵𝑉

+ 𝜖) 

(2) 
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In equations 1 and 2, u0 represents the individual intercept and accounts for inter-individual 

differences. The coefficients α0, β0, γ0, λ0, ζ0, ∆0 and δ0 represent fixed-effects, thus the 

modulation of the response variable by the main factors Ta, Th, and BV, and their 

interactions. 

 

In both equations, 𝑔 represents the link function. As Score data have a binomial distribution 

(as it could take only two possible outcomes: Y = 1 for hits, and Y = 0 for missed balls), they 

were fitted with a GLMM using a logit link function (Matlab function fitglme). For Dmin , 

which represents a continuous variable, data were instead fit with a LMM (thus with 𝑔 

representing the identity functions, Matlab function fitlme). In all cases the estimation of 

model parameters were based on the maximum likelihood using Laplace approximation.  

 

Dummy variables for Th and Ta fixed effect were defined with respect to the corresponding 

conditions with the highest mean Score in the BallOnly visibility condition. Post-hoc 

comparisons could be then performed by assessing the p-values of the regression 

coefficients for the dummy variables and their interactions. 

 

In order to test the hypothesis that participants were able to make reliable predictions about 

the direction of the outgoing ball based on information from the throwing kinematics alone, 

we run a linear discriminant analysis (LDA) on the points of extended interception for the 

ThrowerOnly condition (Matlab function fitcdiscr). LDA is a standard supervised 

classification technique that may be used to quantify the degree of separation of 

observations in different groups (or classes). The method consists in finding discriminant 

functions that divide the space in which observations are defined in a number of predefined 

regions, by maximizing the ratio of the between-groups to the within-group variabilities in 

the training set (Mardia et al., 1979). By applying LDA to the distribution of extended 

interception points for throws directed to different targets it is possible then to quantify the 

ability of the catcher to discriminate the direction of the invisible ball. We specifically tested 

the ability to discriminate the lateral direction (Right-vs-Left) and the vertical direction (Up-



41 

 

vs-Down), with different 2-classes LDA tests. LDA performance for both classification 

problems have been run separately for all combinations of participants and throwers. The 

data given in input to train the model were the 3D positions of the extended interception 

points labelled according to the class of belonging of the associated throw (Up/Down, 

Right/Left). Results are reported in terms of misclassification errors (MEs) computed with 

the leave-one-out cross-validation procedure. The latter consists in performing the 

classification assignment of each single observation (the one left out) based on the training 

set defined by the rest of the observations, repeating the same procedure for all observations 

in the data set, and defining ME as the percentage of misclassified observations. 
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3. Development of a low-cost system for studying motor 

strategies in complex motor tasks 

3.1. Introduction 

Humans are extremely dexterous. The Central Nervous system (CNS) manages to smoothly 

coordinate and accurately control several DOFs and hundreds of muscles. However, several 

studies in human motor control have focused their investigation on simple tasks (e.g. 

reaching) in very controlled environments (e.g. reaching to targets arranged on a plane) 

(Franklin & Wolpert, 2011; Shadmehr & Mussa-Ivaldi, 1994). Albeit the fundamental 

knowledge about motor control that we have gathered from such studies, it is hard to 

understand how we can generalize those findings to more complex tasks such as most of 

the motor tasks encountered outside the laboratories, i.e., in the real world. Therefore, it 

arises the need to explore more naturalistic behaviors and complex tasks (Russo et al., 2021). 

With the help of innovative technologies, researchers can now approach this realm of 

movements, without losing the requirements of an experimental protocol that needs to be 

reproducible and controlled (Krotov et al., 2022; Maselli et al., 2017, 2019). 

 

A fundamental characteristic of complex tasks is that they show multiple solutions, i.e., an 

individual can accomplish the same goal with different motor strategy, all successful. In 

addition, the complexity of body dynamics grows exponentially with the number of DoFs 

involved. Given that, variability also increases and the computational models, classically 

used to explore simple behaviors, can no longer be applied (Todorov & Jordan, 2002). 

Recently, a new approach that is not limited by the dimensionality of the motor task and 

can be applied to the actions of daily life and sports activities (Tommasino et al., 2021) has 

been proposed. In particular, such approach has been used to investigate throwing actions, 

relating ball release kinematic features to performance. It has allowed to characterize the 

relationship between individual movement strategies, their variability and performance, 
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providing a new methodology for investigating sports performance and improving 

functional recovery after injury. 

 

Tommasino and collaborators analyzed throwing actions of 20 participants. Such dataset 

was collected with a standard motion capture system and the release instant was 

determined from hand and ball trajectories. Similarly, the performance was calculated when 

the ball path intersected the target location. Since in a throw, release parameters (i.e. ball 

velocity and position) determine the ball trajectory (given drag and gravity), accurate 

estimation of the release instant is fundamental for the analysis of throwing actions. In 

addition, the dynamics of the environment affects ball behavior and in turn, also the thrower 

action. What would be the ball launch like and its performance if the dynamics of the ball 

was not affected by gravity? Can individuals learn to throw accurately in such scenario? 

Moreover, individuals with throwing expertise, like baseball pitchers, might show different 

features in their release/performance relation. Given that, it would be interesting extending 

the results presented by Tommasino and colleagues. One potentially fruitful direction to 

explore would be to characterize throwing strategies of participants with expertise in 

different sport disciplines. Moreover, it would also be interesting to investigate not only 

throwing of real balls but also throwing in a virtual environment, where it is possible to 

systematically control the dynamics of the ball and thus investigate learning of new complex 

motor skills. 

 

The aim of the work described in this chapter was to develop a low-cost and easily 

deployable system for studying throwing actions, both in an experimental setup and in a 

matched virtual environment, of different groups of sport experts. In this chapter, the 

development of the different components of such a system are described first. The issues 

encountered during the development and the solutions found to address them are also 

discussed. Finally, the results of experimental tests for validating the system are presented. 

Concerning standard motion capture systems, i.e. marker-based, one limitation impeding 

their widespread application and easy deployment in field studies is that they are expensive 
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and require a controlled and large environment to be placed in. Also, placing markers on 

the participants body may be extremely time consuming. Therefore, to overcome these 

limitations we decided to exploit the motion capture capabilities embedded in a VR headset 

and tracking devices. 

 

One of our goals was to investigate throwing actions in VR. The rationale behind this 

approach is the possibility of exploring learning and adaptive behaviors in altered dynamics 

conditions. VR indeed allows to test participants in a realistic and controlled environment, 

and it provides the researcher with the chance of altering the dynamics of the environment, 

such as different gravity or drag values. In addition, thanks to VR each throw with the same 

initial conditions will provide the exact same repeatable outcome, i.e., there are no abrupt 

and unpredictable distractions or noises. 

 

Finally, an unexpensive VR system is also portable, easy to install and therefore could be 

used outside the traditional laboratory scenario, allowing testing large and diverse 

populations. 

 

Our system was developed using a commercial VR platform (HTC Vive) and it was 

designed to investigate throwing of both real and virtual balls. A VR environment 

reproducing a real experimental setup for studying throwing was developed. The setup 

consists of a room, a target board, and a ball. Since ball throwing actions are uniquely 

determined by release parameters and impact parameters, a critical design goal was to 

achieve an accurate estimation of these parameters. Moreover, realistic throws require 

hand-ball interaction, therefore a model of such interaction is required. As proposed 

solutions, we developed and compared several methods to estimate release and impact 

parameters. The methods are based on a micro-switch integrated in the VR system to detect 

the ball release event and on algorithms to improve release parameters estimation. As the 

release event detection by the micro-switch is not always accurate, a mismatch between VR 



45 

 

throws and real ones was observed. Then, different software solutions were investigated to 

obtain more reliable estimations of release parameters and consequently impact parameters. 
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3.2. Methods 
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Figure 3.1. Overview of the methods. A schematic representation of the system and the developed 

procedures and methods. 
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The developed system (Fig. 3.1), based on a commercial VR platform, allows to study motor 

strategies during ball throwing actions, as the kinematics of the throwing hand can be 

recorded with the embedded motion capture system. Several methods have been developed 

and integrated in the system to simulate throws both in real and virtual environments. Two 

operation modes have been implemented: Virtual Throws, to perform the throwing action 

in a virtual scenario and with a virtual ball, Real Throws, to record the participant throwing 

a real ball towards a real target. For the first operation mode a virtual environment was 

developed, release events were detected by the trigger button of the VR system hand-held 

controller while the impact events were computed in the virtual environment as the time 

taken by the virtual ball to impact on the virtual target. For the second operation mode, a 

real experimental setup was constructed matching the virtual one. Throwing parameters 

were estimated by detecting the release events using a switch integrated in the controller 

and placed on participant’s finger and using a novel estimation method, which takes into 

account hand-ball interaction. Impact parameters were estimated by detecting the ball 

impact on a target board through a webcam synchronized with the VR system and using an 

image processing procedure based on a MATLAB toolbox. Parameters detection for the 

second operation mode required several calibration procedures to estimate real ball-hand 

distance, to align the real room and the real target with the motion capture system, and to 

calibrate webcam parameters. The methods developed for real throws were validated with 

a second standard optoelectronic motion capture system which simultaneously recorded 

throwing actions. 
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3.2.1. Experimental setup 

The setup is based on a VR platform which includes motion capture sensors to record hand 

kinematics, and a headset to display the virtual environment. The commercial VR platform 

was integrated with several devices to allow recording of throws of virtual and real balls 

and to estimate the kinematic parameters that characterize the throwing task. 

 

3.2.1.1. VR system (HTC Vive) 

 

The Vive system (HTC Europe Co. Ltd, Slough, Berkshire, U.K) (Fig. 3.2), includes two base 

stations emitting infrared pulses which create a tracking area where the positions of headset, 

the controllers and the trackers can be tracked with sub-millimeter precision. The headset 

(Fig. 3.3A) displays the interactive virtual scenario designed for the virtual throwing task, 

at a refresh rate of 90Hz, with a 110° field of view, and with an image resolution of 1080 × 

1200 pixels for each eye. For the experiments we used one Vive controller (Fig. 3.3B) and 

one Vive tracker (Fig. 3.3C). In the Virtual Throws operation mode, the participant wears 

the headset to visualize the virtual environment, hold the controller is hand and uses it to 

pick up, move and release the virtual ball. The tracker is placed on the dorsum of the 

participant’s hands to track the throwing movement. In the following, coordinates of the 

tracker position in the Vive reference system are indicated by a superscript v (e. g. 𝒙𝑡
𝑣 

  

Figure 3.2. Htc Vive system. The system consists of the headset to display VR, 2 base stations, 

2 controllers and 2 trackers for motion capture. 
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indicates the 3D vector representing the position of the tracker in Vive coordinates). In the 

Real Throws operation mode, the headset is not worn by the participant, the controller is 

placed on participant’s upper arm and used to detect pickup and release events, while the 

tracker is placed on the dorsum of the participant’s hand and is used to track the position 

of the real ball, which had a fixed position with respect to the tracker when is gripped by 

participants. 

 

The Vive system was developed integrating SteamVR (SteamVR su Steam), a commercial tool 

for interfacing different VR devices, with Unity (Unity Real-Time Development Platform | 3D, 

2D VR & AR Engine), a commercial platform for creating and operating interactive real-time 

3D content, running on a personal computer. Unity allows developers to create immersive 

and interactive VR environments thanks to an intuitive interface and the possibility to create 

or modify object behaviours using C# scripts. Scripts can be used to implement new 

gameplay features, to respond to input from the player, to trigger game events, to create 

graphical effects or control the physical behaviour of objects in the game. 

 

A 

B C 

Figure 3.3. HTC Vive hardware components. (A) Headset, (B) Controller, (C) Tracker. 
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3.2.1.2. Micro-switch 

 

A 

B 

C 

D 

Figure 3.4. Development of ball release detection using a micro-switch integrated in the 

controller. (A) Controller buttons representation. (B) USB port integration. (C) Micro-switch 

and controller. (D) Micro-switch usage. 
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A micro-switch placed on participant’s index finger pad was used to detect ball release 

during throwing actions in Real Throws operation mode. The sensor has been integrated in 

the controller through a connection to the grip button (Fig. 3.4A). An USB connector has 

been welded to the grip switch wires in the controller electronic board in order to use the 

controller integrated electronics to operate and communicate wirelessly with the PC (Fig. 

3.4B). A 3.1 mm high light touch micro-switch which operates with low contact forces (0.5 

N threshold) was placed on participant’s finger pad with a velcro strap (Fig. 3.4C) and was 

connected through a spring-loaded extendable cable to the integrated controller placed on 

participant’s arm (Fig. 3.4D). The extendable cable allows to adjust the length of the cable 

according to participant’s arm length. 

 

3.2.1.3. Webcam 

 

A low-cost webcam (c270 Logitech, 720p, 30 fps, Fig. 3.5A) has been integrated in the system, 

for the Real Throws operation mode, to detect ball impact on target board and to estimate 

ball impact to target centre distance. The Webcam recording process is based on the open-

source SDK CaptureManager (GitHub - Xirexel/CaptureManagerSDK). The webcam 

integration into the system VR platform allows to record synchronized video triggered by 

the virtual ball pickup event and until the impact event. Both the events are related to the 

B C A 

Figure 3.5. Webcam and synchronization delay time calibration procedure. (A) c270 Logitech 

webcam. (B) LED on after ball pickup event (hardware switch) and before the release event. 

(C) LED off during ball release event. 
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virtual environment, and they are defined as the instant in which the virtual ball is picked 

up thought the switch placed on subject’s finger (pickup) to the instant in which the virtual 

ball impacts with any virtual object (target, walls, floor, roof) in the virtual environment. 

 

The development process included several tests aimed at finding the software configuration 

with the best performances defined as the amount of PC hardware resources used and the 

temporal delay between trigger event and video start recording. A validation dataset (22 

trials) recorded with the optoelectronic system (see below) has also been performed in order 

to estimate impact spatial and temporal error estimations. In particular, using a process 

integrated in the Unity platform instead that an external process triggered by TCP 

communication allows to minimize the temporal delay between the trigger event and the 

start of recording. Some attempts were performed to record 3 webcams in parallel, but the 

amount of required CPU resources exceeded PC hardware capabilities. Moreover, in order 

to minimize the delay between the trigger events (pickup, impact) and the webcam 

recordings timing, the library has been modified to allow a continue streaming of the data. 

In particular, the modified version of the C# library 

CaptureManagerUnityVideoAndAudioRecorder.dll of the SDK starts a continuous video 

streaming from the webcam, at the beginning of the experiment and saves on the PC only 

when the events are triggered. The continuous streaming allows to solve the delay issue, 

recurring every trial, due to the time required to start and stop the recording process of the 

webcam. 

 

A testing setup was developed, and 30 trials have been performed to evaluate the delay in 

video recording procedure (Fig. 3.5). The setup, consisting of the Vive system, the webcam 

and a LED, made it possible to calculate the difference between Unity and webcam data 

acquisition times. In particular, a LED was connected to the hardware switch in order to 

remain on until the switch is triggered (Fig. 3.5B switch turned on, 3.5C switch turned off). 

At the beginning of every trial the webcam starts to record a video of the LED connected to 

the switch. When the switch is triggered, the LED turns off and the temporal difference 
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between the pickup event recorded by Unity and the LED turning off frame can be 

evaluated. 

 

3.2.1.4. Standalone cameras 

 

Two standalone high-definition cameras (GoPro Hero 8, 1080p, 120 fps, Fig. 3.6A) have been 

integrated to record thrower’s whole-body kinematic during the throwing action of both the 

virtual and real operation mode for an offline analysis. The cameras have been synchronized 

with the system through the Open GoPro API. In particular, the C# script based 

GoProCSharpSample demo (GoProCSharpSample : Open GoPro, s.d.) has been modified to 

discover, pair, connect and UDP communicate to the cameras via Bluetooth LE (BLE) 

through the UI (Fig. 3.6B). 

A B 

Figure 3.6. Standalone cameras. (A) GoPro Hero 8. (B) User interface. 
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3.2.1.5. Virtual environment and matching real experimental 

setup 

 

Two different environments have been developed, one for each operation mode. A user 

interface (UI) in Unity allows to select and define the operation mode, Virtual Throws (Fig. 

3.7A) or Real Throws (Fig. 3.7B) and to set some of the experimental parameters as the 

saving directory, operator and participant names or IDs, and number of trials. The Unity 

platform is engaged in both operation modes to record hand kinematics and temporal 

events. In the VR environment (Fig. 3.7C), Unity also renders the virtual scenario and its 

A 

C D 

B 

Figure 3.7. Environments and UI. (A) Virtual Throws operation mode UI selection. (B) Real Throws 

operation mode UI selection. (C) VR environment. (D) Real experimental setup matching the VR 

environment. 
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components, which consist in a target disc of 1 m radius placed at 6 m from the thrower 

with the centre of the disc at a height of 1.2 m from the floor, a ball of 0.045 m radius and a 

room. 

 

When Real Throws is selected from the developed UI, it is possible to choose webcam 

parameters used during the experiment and to collect data for the real target calibration (see 

3.2.2.1.2). The real experimental setup matching the VR environment (Fig. 3.7D) consists of 

a target board with 1 m radius target disc located at 6 m in front of the thrower at a height 

of 1.2 m from the floor and a ball with 0.045 m of radius. To create consistent lighting 

conditions regardless of the weather or the time of the day, all the windows in the room 

have been covered with black panels and 2 high-intensity LED light sources have been 

placed on the side of the target to supplement the room ceiling artificial illumination. The 

intensity and positioning of the LED light sources have been optimized to have a sufficient 

illumination of the target to ensure clear images in the webcam recordings resolution and 

adequate frame rate. 

 

3.2.2. Experimental protocol 

Specific experimental protocols to be used with the system has also been developed to 

investigate throwing actions in both real and virtual environments. According to these 

protocols, participants perform both throwing operation modes in the same experimental 

session.  

 

In the Virtual Throws scenario, participants stand at the center of the room, wearing the 

headset and the motion tracking sensors (tracker) on the right hand’s dorsum. The controller 

is held with the same hand and is used to pick up and throw the ball. When the controller 

(i.e. the hand) reaches close to the virtual ball, placed in a known and visible position for the 

participants, the participant can pick up the ball by pressing the controller trigger. Once the 
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ball is picked up, it remains attached to the center of the controller. To release the ball the 

participant must release the trigger. Then, the ball moves affected by gravity in VR. Initial 

position and velocity of the ball are taken from the controller position and velocity at the 

time of release. Once a collision is detected in the VR scenario, i.e., the ball contacts the target 

board or the floor/walls of the room, an impact event is saved and the position of the ball at 

that instant is considered as ball impact position. 

 

In the Real Throws mode, participants grasp a real ball, which however is not tracked. At 

the time of pick-up, the participant presses the micro-switch onto the real ball and the Unity 

software starts the trial. The release event is gathered as the instant at which the switch is 

released, and the ball launched. Then, the ball flies freely in the laboratory. The time of 

impact, i.e. when the ball touches the target board (or the floor/walls), is identified by the 

webcam video offline. In this scenario, the ball trajectory is estimated offline from release 

and impact parameters. Therefore, accuracy of release and impact parameters is crucial to 

identify the trajectory the ball during its flight. Several methods have been compared to 

provide the best estimation of the release parameters. Impact detection has been performed 

with a webcam. All these estimates have been compared with real ball trajectories recorded 

with a standard motion capture systems to assess the validity of the approach. 

 

3.2.3. Throwing parameter estimation 

In the Virtual Throws operation mode, virtual ball pickup and release are detected by the 

trigger button on the hand-held controller. When the thrower presses the trigger button, the 

virtual ball attaches to the controller. Release parameters, as ball position and velocity are 

estimated from the samples of the position of the controller recorded until the time at which 

the trigger is released. Since the ball attaches to a specific position of the controller held in 

the participant’s hand (Fig. 3.13) the throws are not natural and, because of the distance 

between the hand and the virtual ball, a new throwing strategy with the controller must be 
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learned. The ball trajectory from release to impact is simulated with Unity. Impact 

parameters are estimated from the simulated ball trajectory. A Gaussian error function has 

been implemented to provide the participant with a score related to the ball distance from 

the centre. A tracker is placed on the dorsum of the thrower’s hand to be consistent with the 

Real Throws operation mode. 

 

In Real Throws operation mode, real ball pickup and release are detected by the micro-

switch placed on thrower’s finger. Differently from the Virtual Throws operation mode, 

release parameters are estimated from the kinematic data from the tracker placed on the 

dorsum of the thrower’s hand, when the switch is released. To estimate reliably the release 

position, a calibration procedure is required to estimate the position of the centre of the real 

ball in the tracker coordinate reference system (see 3.2.2.2.2). Impact parameters are 

estimated from the synchronized webcam which records the final part of the trajectory and 

the impact on the target. An image processing procedure allows to estimate ball impact 

point and distance from the centre of the target. 

 

3.2.3.1. Impact parameters 

While for the Virtual Throws operation mode, impact parameters (position and time) are 

estimated from the virtual simulated ball trajectory, for the Real Throws operation mode, 

impact parameters estimation is based on the synchronized webcam and an image 

processing procedure to estimate impact parameters from the acquired videos. The 

developed method, based on the Matlab Image Processing toolbox, requires several 

calibration procedures to achieve an accurate and reliable estimation of the ball impact 

parameters. In the next paragraphs the image processing and the developed calibration 

procedures are described. 
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3.2.3.1.1. Camera calibration 

 

The camera calibration procedure estimates camera parameters, as intrinsic camera 

parameters (internal characteristics of a camera, such as the focal length, the optical center, 

lens distortion coefficients) and extrinsic camera parameters (position and rotation of the 

camera with respect to the calibration pattern) by using images that contain a known 

calibration pattern. The calibration of the intrinsic parameters is required to remove lens 

distortion effect from the image and it is performed only the first time a new camera is used. 

The webcam is placed in front of a planar surface perpendicular to the axes between the 

plane and the webcam, at a distance of 0.7 m. A video of the calibration pattern placed in 

different positions on the planar surface is recorded. A typical calibration pattern is an 

asymmetric checkerboard (Fig. 3.8A), where one side contains an even number of squares, 

both black and white, and the other contains an odd number of squares. The corners of the 

squares that lie inside the pattern are used as the control points. These corners can be 

detected on the 2-D calibration image automatically by using a corner detector algorithm. 

A 

B C 

Figure 3.8. Camera calibration. (A) Calibration pattern. (B) Extrinsic camera parameter 

visualization. (C) Average reprojection error in each calibration image. 
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By assuming the lower-right corner point of the top-left square of the checkerboard is the 

origin, we can also determine the 3-D world coordinates of the points by using the square 

size of the checkerboard. 69 frames have been selected from the video to calibrate camera 

parameters. To evaluate the accuracy of the estimated parameters, it is possible to plot 

relative camera and calibration pattern location (extrinsic parameters, Fig. 3.8B) and 

calculate the reprojection errors (Fig. 3.8C). Extrinsic parameters estimation allows to 

discover obvious errors in the calibration by plotting relative locations of the calibration 

pattern in the camera’s coordinate system (Matlab function showExtrinsics). The extrinsic 

parameters consist of a rotation matrix, R, and a translation vector, t. The origin of the 

camera’s coordinate system is at its optical centre and its x- and y-axis define the image 

plane. The intrinsic parameters include the focal length, the optical centre, also known as 

the principal point, and the skew coefficient. Radial distortion occurs when light rays bend 

more near the edges of a lens than they do at its optical centre. The smaller the lens, the 

greater the distortion. Tangential distortion occurs when the lens and the image plane are 

not parallel. The tangential distortion coefficients model this type of distortion reprojection 

errors provide a qualitative measure of accuracy. A reprojection error is the distance 

between a pattern key point detected in a calibration image, and a corresponding world 

point projected into the same image (Matlab function showReprojectionErrors). 
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3.2.3.1.2. Target calibration 

 

A procedure has been developed to estimate the position of target centre with respect to the 

webcam. Target calibration is performed every time the camera or the target is moved. The 

procedure can be performed at the beginning of each session through the initial menu or, if 

no changes on webcam-target placement has occurred, a stored calibration can be loaded. 

The procedure based on the Matlab toolbox allows to record a video from the webcam of 

the target and the calibration pattern (10x10 cm) placed with the first corner of the pattern 

on the target centre. A 1 m radius circle is than plotted on the undistorted image and then 

the image is distorted according to the camera intrinsic parameters. 

 

3.2.3.1.3. Room calibration 

To align the VIVE coordinate system to the laboratory an offline calibration procedure has 

been developed. The calibration is a roto-translation of the data recorded in the VIVE 

coordinate reference system with respect to world (laborarory) coordinate reference system. 

Basically, it consists of recording the VIVE coordinates of the tracker at a known position 

and the VIVE coordinates of the target. To perform the room calibration the operator needs 

to press the button “r”. A red text appears in the virtual environment above the target to 

alert the user. While the headset is placed on the floor in the zero position (which is 

Figure 3.9. Target center calibration 
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consistent with the virtual one thanks to the steamVR room calibration) and the tracker is 

placed on the floor 1 meter far away from the zero along the line which passes from the zero 

position and the target centre projection on the floor, the subject press and release controller 

trigger in order to start and stop position recording. 

3.2.3.1.4. Ball trajectory detection 

 

An offline procedure allows to detect the ball trajectory from the video recorded by the 

webcam. Using the Matlab Computer Vision toolbox, using Gaussian mixture models, it is 

possible to determine whether individual pixels are part of the background or the 

foreground in order to compute a foreground mask (Matlab function 

vision.ForegroundDetector) and to compute statistics for connected regions in a binary image 

(Matlab function vision.BlobAnalysis) in order to define centroid, bounding box, label matrix, 

and blob count. To perform the foreground computation 50 frames and an initial model 

variance of 60 have been used for training background model (Fig. 3.10). 

Figure 3.10. Movement recognition 
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3.2.3.1.5. Estimation of ball impact position and distance from the 

target centre 

 

To estimate the impact point within the points of the ball trajectory detected with the Matlab 

Computer Vision Toolbox, an offline algorithm has been implemented. The algorithm 

considers a maximum number of points n from the first detected one, defines a set of n-1 

vectors passing through each pair of detected points. The impact point is selected as the 

point at with there is the largest angular change between consecutive vectors. To prevent 

detection errors due to the ball bouncing on the floor after target impact, a procedure was 

implemented to consider only a maximum set n of detected point (n = 12) within a maximum 

distance d from the centre of the target (d ≤ 1 m). The remaining detected points are not 

included in the impact detection algorithm. (Fig. 3.11). The distance between the impact 

point and the target centre is estimated from the laboratory coordinates of the points, 

estimated with the Matlab function pointsToWorld, which takes into account the intrinsic 

camera parameters (see 3.2.2.1.1) recorded and the extrinsic parameters (see 3.2.2.1.2). 

 

3.2.3.2. Release parameters 

Ball trajectories are characterized by several parameters: release time, position and velocity, 

impact time and position. Therefore, it is key to estimate ball release position and velocity 

Figure 3.11. Impact detection 
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of the throwing action, especially for the Real Throws where there is no tracking of the ball. 

In the Virtual Throws operation mode, the virtual ball is attached to the controller centre, 

after pick-up. The ball release event time is detected as the time of release of the trigger 

button, and ball release position is estimated from the controller position and orientation at 

time of release. Instead, in the Real Throws operation mode, we want to estimate the ball 

release position and velocity from the tracker position and velocity at the time of release. 

The position of the ball with respect to the tracker has been calibrated with the procedure 

described below (see 3.2.3.2.1). The release event is detected by the switch connected to the 

controller, when the finger is lifted from the ball (see 3.2.3.2.2). Estimation of ball position 

and velocity at time of switch release is gathered from position and orientation of the 

tracker. 

 

However, such estimated ball position and velocity, derived from tracker by the SteamVR 

software library, were found not to be reliable. In particular, the velocity of the tracker was 

different from the velocity computed through deriving position data. To test whether the 

initial conditions of the ball trajectory (i.e. position and velocity) were correct, we simulated 

the ball trajectory and compared its arrival location with the impact position of the real ball 

detected by the camera. 

 

Thus, we decided to compute the initial ball velocity deriving its position online through a 

buffer of position data after the release event (see 3.2.3.2.3). However such approach was 

not sufficient to achieve an accurate estimation of the velocity. Several attempts have been 

made to achieve an accurate estimate of the velocity of the ball at release, given hand 

position and orientation. At first, we assumed that the release event detected by the switch 

was not correct. Therefore, we tested whether an earlier instant with respect to the release 

time would improve the accuracy of the estimation (Single Delta Method, see 3.2.3.2.4). 

Then, we decided to include drag into our simulation of the trajectory as we were indeed 

comparing a real ball (affected by drag) and a simulated ball path moving with constant 

accelerated motion. To this end, we estimated the drag in the room with the help of a 
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marker-based motion capture system, Optitrack (see 3.2.3.2.5). In all following simulations, 

air drag in ball trajectory motion is included. 

Finally, we compared 4 methods to estimate release events and their resulting ball 

trajectories 

1- Detection of fingers lifting by the micro-switch (Switch, see 3.2.3.2.6) 

2- Detection of a zero in the acceleration of the ball in the vicinity of the switch release 

event (Zero Acceleration, see 3.2.3.2.7) 

3- Simulation of the ball motion in the hand along different axes of a reference system 

attached to the hand starting at different times before the instant detected by the 

micro-switch (Multi Delta, see 3.2.3.2.8). The simulation assumes that the ball starts 

moving at different instant on each axis and that before the final release both hand 

acceleration and gravity are acting on the ball. Two optimizations have been 

considered: 

a. A unique set of three time delta was optimized for all trials (General Multi 

Delta). 

b. A set of three time delta was optimized for each trial (Individual Multi Delta). 

We tested and compared the reliability of the methods on a dataset consisting of 18 throws 

performed by a thrower. Validation has been performed tracking the ball with a marker-

based motion capture system. 
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3.2.3.2.1. Ball position calibration at pick up 

 

In the experimental setup, the real ball is not tracked during its flight. Ball position until the 

time of release is determined from the position of the tracker on the dorsum of the hand 

(assuming a fixed position of the ball with respect to the hand before release) and at the time 

of impact from the video recorded by the webcam as the position of the ball on the target 

board. In order to accurately estimate such positions and use them to estimate the ball 

trajectory during ball flight, a calibration procedure has been developed. 

 

The hand position is tracked with the tracker device (see above). When the subject grasps 

the ball with their hand the ball has a constant offset with respect to the tracker attached to 

the dorsum of the hand (i.e. a fixed vector 𝐱𝑏
𝑡  indicating the ball position in the reference 

system of the tracker, indicated by the superscript t) depending on the shape and size of the 

hand. This offset is measured at the beginning of the experimental session. Then it is used 

to identify the position of the ball in the virtual environment (i.e., in Vive coordinates, 𝐱𝑏
𝑣). 

Subjects are instructed to grasp the ball always in the same way. 

Figure 3.12. Hand-ball distance calibration. The 

figure shows the calibration procedure required to 

estimate the participant-dependent distance 

between the ball and thrower’s hand. 
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The calibration procedure works as follows. The real ball is placed in a position that can be 

measured using the Vive controller (see Fig. 3.12). Let be 𝒙𝑏
𝑣  such position. The position of 

the tracker is 𝒙𝑡
𝑣. The position of the ball in tracker coordinates will be 

 

𝒙𝑏
𝑡 = 𝑅𝑣

𝑡 (𝒙𝑏
𝑣 − 𝒙𝑡

𝑣) 

Equation 3.2. Virtual ball position estimation with respect to tracker position (offset). 

 

where 𝑅𝑣
𝑡  is the rotation matrix which depends on the tracker orientation. Such offset is 

assumed constant and ball position in Vive coordinates during the trial will be represented 

as follows 

𝒙𝑏
𝑣 = 𝑅𝑡

𝑣𝒙𝑏
𝑡 + 𝒙𝑡

𝑣 

Equation 3.3. Virtual ball position estimation until release event. 

 

3.2.3.2.2. Analog micro-switch to detect release event 

The analog switch estimates the time of ball release as switch release time and the position 

and velocity of the ball at release from the trajectory of the ball (tracked either by the 

Optitrack motion capture system for the validation experiments, see below, or by the Vice 

tracker attached to the dorsum of the hand and using the ball position calibration, see above) 

until that time. The position 𝒙𝑡
𝑣 and orientation 𝒒𝑡

𝑣 (Euler angles for Optitrack, quaternions 

for Vive) of the ball from pickup to 2 seconds after ball impact time timp are considered. An 

offline algorithm extrapolates Euler angles from quaternions (for Vive only), resamples and 

filters the samples (low pass 5th order Butterworth filter, cutoff frequency 10 Hz). The 

rotation matrix is extrapolated from the Euler angles and the position of the ball 𝒙𝑏
𝑣  in Vive 

coordinates is computed using the ball position offset recorded experimentally during 

hand-ball calibration procedure (see 3.2.3.2.1) and rotating frame by frame ball position 
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offset according to the tracker rotation matrix. Finally, system rotates virtual ball position, 

tracker position and rotation matrix in order to obtain a clockwise reference system. 

 

3.2.3.2.3. SteamVR velocity estimation error 

 

A systematic error has been identified using the SteamVR library. Using the method velocity 

of the class SteamVR_Controller.Device, tracker estimated velocity has a delay of 0.1 s with 

respect to the velocity estimated offline as the derivative of the position (SteamVR method 

mDeviceToAbsoluteTracking of the class TrackedDevicePose_t) with respect to time, while the 

controller has a delay of 0.022 s. In Fig. 3.13 it is possible to see the differences in the velocity 

profiles of the tracker (Fig. 3.13A) and of the controller (Fig. 3.13B) with respect to the 

velocity estimated offline with Matlab using the position samples. To improve velocity 

estimation, we implemented a new online method in Unity to estimate tracker velocity from 

tracker position. A buffer of 20 position samples (at 90 Hz sampling frequency) is used to 

estimate ball velocity at release. Position samples are stored in the buffer until the release 

event. After release, the ball disappears for 10 frames (i.e., during the trajectory estimation 

computation) and reappears after 10 frames in the estimated position. In Eq. 3.1A the virtual 

ball velocity 𝒙̇(𝒊)𝑏
𝑣 for the ith frame is estimated as the position numerical derivative. Where 

𝒙(𝒊 + 𝟏)𝑏
𝑣  and 𝒙(𝒊 − 𝟏)𝑏

𝑣 are respectively the position of the ball at the ith+1 and ith-1 frame, 

while ∆𝒕 is the temporal delta between each frame. Then, the position 𝒙(𝒊)𝑏
𝑣 is estimated for 

A B 

Figure 3.13. Controller and tracker velocity estimation. (A) Online tracker estimated velocity profile (blue 

line) and online reconstructed velocity estimated with Matlab from positions (red line). (B) Controller 

velocity estimations. 
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each axes component of 𝒙𝑏
𝑣  (Eq. 3.1B) at the given time 𝑡, which is in this case 0.111 s after 

the release (10 frames at 90 Hz sampling rate) (Eq. 3.1C). 

 

𝒙̇(𝒊)𝑏
𝑣 =  

𝒙(𝒊 + 𝟏)𝑏
𝑣 + 𝒙(𝒊 − 𝟏)𝑏

𝑣

2 ∗ ∆𝒕
 

A 

𝒙𝑏
𝑣 = [𝑥𝑐𝑜𝑚𝑝, 𝑦𝑐𝑜𝑚𝑝, 𝑧𝑐𝑜𝑚𝑝] B 

𝒙(𝒊)𝑏
𝑣 = {

𝑥𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) + 𝑥̇𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) ∗ 𝑡

𝑦𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) + 𝑦̇𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) ∗ 𝑡

𝑧𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) + 𝑧̇𝑐𝑜𝑚𝑝(𝑖𝑟𝑒𝑙) ∗ 𝑡 + 𝑔 ∗ 𝑡2 

 

C 

Equation 3.1. Online velocity estimation method. Equations from position to velocity implemented 

online to overcome the delay of the SteamVR tracker velocity estimation. 

 

3.2.3.2.4. Identifying release event before fingers lifting 

To study the effect of release timing on ball trajectories an offline simulation method has 

been developed. The method allows to simulate the trajectory using as release parameters 

the values recorded from 1 to 9 frames (frame: 0.011 s) before the hardware switch release 

(Single Delta Method). 

 

3.2.3.2.5. Ball trajectory simulation with air drag 

To improve the accuracy of the ball trajectory estimated from the position and velocity of 

the ball at release, air drag was included in the ball motion equations. An air drag coefficient 

has been estimated from a validation dataset of 22 trials performed from a single thrower. 

We selected, in a range of values from 0.1 to 1, the drag air coefficient that allows to simulate 

the trajectory with minimal impact point error on the target with respect to the real impact 

point. Trajectory simulation starts at 0.1 s after release time as detected from the switch tr 
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and ends when ball arrives at target plane (x-z), placed at 6 meters from thrower. We used 

the equation of motion in a linear resisting medium for estimating the drag (Eq. 3.4). 

𝑇 =
𝑔𝑡

𝑣0
 𝜖 =

𝑘𝑣0

𝑔
 

𝜖𝑇 = 𝑘𝑡 

𝑹 =
𝒗̂0

𝜖
 (1 − 𝑒−𝜖𝑇) +

1

𝜖2
 (1 − 𝜖𝑇 − 𝑒−𝜖𝑇)𝑱̂ 

𝑽 =
𝒗̂0

𝜖
 𝑒−𝜖𝑇 +

1

𝜖
 (𝑒−𝜖𝑇 − 1)𝑱̂ 

𝑹 =
𝑔𝒓

𝑣0
2
 

Equation 3.4. Equation of motion in a linear resisting medium. 

Where 𝒗̂0 is the initial dimensionless velocity of projection. R and V are respectively the 

dimensionless position and velocity vectors at time t. r is the dimensional position vector at 

time t and k is the air resistance coefficient constant. 

 

3.2.3.2.6. Analog micro-switch with air drag 

This method, based on the method analog micro-switch, simulates ball flight from tr to timp 

using the equation of motion in a linear resisting medium used for estimating the air drag 

coefficient. 

 

3.2.3.2.7. Searching for a zero in ball acceleration to determine 

release event 

The Zero Acceleration method searches the time, in a range from 222 ms before tr to 111 ms 

after, at which the acceleration of the tracker is equal to zero. From tr to timp, trajectory is 
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simulated using the equation of motion in a linear resisting medium used for estimating the 

air drag coefficient. 

 

3.2.3.2.8. Multi delta method: ball motion onset time is not 

coincident in all directions 

 

During the opening of the fingers the ball starts moving on the hand (Fig. 3.14A) and the 

actual onset of ball movement along the three axes of the Cartesian reference frame attached 

to the hand, may occur at different times (Fig. 3.14B). If we do not consider these motions, 

we cannot extrapolate accurately position and velocity at release. (NCM 2021, NER21). 

 

3.3 3.4 3.5 3.6 3.7 3.8

-1

-0.5

0

x
h

a
n

d
 [
m

]

Ball in Hand Coordinates

ball

T Rel

3.3 3.4 3.5 3.6 3.7 3.8
-1

-0.5

0

y
h

a
n

d
 [

m
]

3.3 3.4 3.5 3.6 3.7 3.8
Time [s]

-1.5

-1

-0.5

0

z
h

a
n

d
 [
m

]

y
hand

 z
hand

 

x
hand

 

A 

B 

Figure 3.14. Ball-tracker interaction. (A) Ball movement during fingers opening. (B) Ball position in hand 

coordinates shows anticipatory movement respect to switch release time. 
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The Multi Delta method searches for a time t0, from tr to 0.1 s before it, that allows to 

simulate the trajectory with the minimum average error of the simulated impact position 

with respect to the position recorded with the optoelectronic motion capture system: 

 

∆𝑻∗ =  argmin𝑗=1:𝐽 (𝛴𝑖=1:𝑛𝑇𝑟𝑖𝑎𝑙(||𝑷𝑖𝑚𝑝,𝑖 − 𝑷̂𝑖𝑚𝑝,𝑖𝑗||)) 

𝑷̂𝑖𝑚𝑝,𝑖𝑗 = 𝐹𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠(∆𝑻𝑗 , 𝑇𝑎𝑟𝑔𝑒𝑡, 𝑘𝑎𝑖𝑟 , ℎ(𝑡)𝑖 , 𝑡𝑠𝑤𝑖𝑡𝑐ℎ,𝑖) 

Equation 3.5. Multi delta time estimation general solution (online implementation). The equation finds 

∆𝑻∗minimizing the impact error between the simulation and the real impact point. 

Where ∆𝑻∗ is the general multi delta temporal array, ∆𝑻𝑗 is one of the J possible delta 

combinations, 𝑷𝑖𝑚𝑝,𝑖 is the impact estimated from the optoelectronic system ball for trial i-

th, 𝑷̂𝑖𝑚𝑝,𝑖𝑗 is the impact estimated from multi delta algo using ∆Ti and ℎ(𝑡)𝑖 is the hand plane 

for trial i-th. 

 

For each throw the method finds the times t0 (3x1 vector) for each axis of the hand 

coordinates reference system at which the ball starts moving respect the hand. In the time 

interval between t0 and tr, the ball is subject to both the force applied by the hand and the 

gravity. Neglecting drag and Magnus effect for simplicity, the ball acceleration (a) in the 

hand reference system can be then modelled as  

 

𝒂 = 𝒂ℎ𝑎𝑛𝑑 + 𝑅ℎ𝑎𝑛𝑑
−1 𝒈 = 𝒂𝑏

𝑡 + 𝒂𝑔
𝑡  

 

Where: 

𝒂𝑔
𝑡 = 𝑅𝑤

𝑡 𝒈 − 𝑅𝑤
𝑡 𝒙𝑡

𝑤 

 

𝒙𝑟 = 𝒙0 + 𝒗0(𝑡𝑟 − 𝒕0) + .5𝒂(𝑡𝑟 − 𝒕0)2 

Equation 3.6. Ball trajectory motion equation. 
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From tr to timp, the trajectory is simulated using the equation of motion in a linear resisting 

medium used for estimating the air drag coefficient. 

 

The Multi delta method allows to estimate a unique t0 solution for all trajectories, which can 

be used online to correctly estimate release time event and release parameters. However, 

the method can also be used offline to estimate the best t0 for each trial, in order to obtain 

more accurate estimation of the throwing parameters. 

 

∆𝑻∗
𝑖 =  argmin𝑗=1:𝐽(||𝑷𝑖𝑚𝑝,𝑖 − 𝑷̂𝑖𝑚𝑝,𝑖𝑗||) 

Equation 3.7. Multi delta time estimation individual solution (offline implementation). The equation 

finds ∆𝑻∗
𝒊 minimizing the impact error between the simulation and the real impact point for each trial. 

An example of trajectory simulated with the Multi Delta General algorithm is shown in 

Figure 3.15. Release times found for each axis in hand coordinates (xh medio-lateral axis on 

the palm plane, yh normal to the palm, zh proximal-distal axis on the palm) before the release 

time provided by the switch were: t0x = -1 ± 31 ms, t0y = -31 ± 38 ms, t0z = -32 ± 44 ms. Simulated 

ball trajectories estimated with mean release times were more accurate than ball trajectories 

simulated with the hardware release as shown by the smaller error of impact location on 

the vertical board: 0.33 ± 0.13 m (estimated), 0.58 ± 0.11 m (switch). 
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3.2.4. Validation using an optoelectronic motion capture 

system 

 

An optoelectronic motion capture system (Flex 13, Optitrack, Natural Point, Inc., Corvallis, 

OR, USA) (Fig. 3.16) was used to validate the developed methods and algorithms and to 

compare them in order to find the most accurate method. The motion capture system, which 

tracks both the ball and the Vive motion capture sensors (tracker and controller) as rigid 

bodies, was used to assess the accuracy and precision of ball release position and velocity 

estimations of the different methods and of the ball impact position estimation obtained 

from the webcam video acquisition. To this aim, estimates of the release parameters 

Figure 3.15. Real and simulated ball trajectories. 

 

Figure 3.16. Validation setup. Optoelectronic motion capture system. 
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obtained with the Vive sensors and estimates of impact parameters obtained from the 

webcam videos were compared with the throwing parameters estimates obtained with the 

optoelectronic motion capture system. 

  



75 

 

3.3. Results 

In this section the performance and reliability of the developed methods to estimate 

throwing parameters are presented. Some of the results are evaluated with ad-hoc 

developed procedure, while others with the validation procedure based on the 

optoelectronic system recordings. 

 

3.3.1. Webcam performance and impact parameters validation 

Several tests were made to estimate the delays in different operating conditions, in 

particular 4 different Windows operating conditions were tested, selected according to the 

priority of the process: no priority, high, normal and real time (Fig. 3.17A). From the results 

the real time priority seems to be the best, among those analysed, in terms of mean and sd 

delay (0.050 ± 0.013 (s)). The priority of the process must be set at the beginning of each 

experiment. Furthermore, to avoid further delays or higher standards, it is advisable not to 

use the PC resources for any other additional task during video recording. Figure 3.17B 

shows the values relating to each test of the session operating in real time conditions. From 

the calibration with the Optitrak motion capture system the mean impact point spatial error, 

computed as the difference between the position estimated from the webcam video and the 

position estimated by Optitrack, was 0.04 ± 0.02 m (Fig. 3.17D), a distance centre to impact 

error of -0.04 ± 0.02 m and a mean impact time error, computed as the difference between 

the time estimated form the webcam video and the time from Optitrak, of 0.03 ± 0.02 s (Fig. 

3.17E) (Tab. 3.1). 
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Figure 3.17. (A) Mean and sd delay between release time and video frame LED off on 4 different Windows 

process priority conditions: no priority, high, normal and real time. (B) Mean and sd delay between release 

time and video frame LED off on real time priority condition. (C) Example of visualization of impact points 

and camera position estimated by the 2 acquisition systems, optoelectronic and video. (D) Impact position 

estimation differences between the 2 system. (E) Impact time estimation differences between the 2 systems. 
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Impact point 

spatial error 

estimation 

Video VS Opti 

(m) 

Impact point 

distance to 

center 

Video VS 

Opti 

(m) 

Camera position 

estimation  

Video VS Opti 

(m) 

Impact point 

temporal error 

estimation 

Video VS Opti 

(s) 

0.04 ± 0.02 -0.04 ± 0.02 0.53 0.03 ± 0.02 

Table 3.1. Results comparison between impact estimations of the two systems. 

 

3.3.2. Release parameters estimation 

In this subsection the accuracy and reliability of the developed methods to estimate release 

event and relative ball position and velocity are presented in an order of incremental 

complexity. 

 

3.3.2.1. Single Delta Simulation 

In Figure 3.18 the effect on ball trajectory of an anticipatory release is shown for the first trial 

of the dataset (10 trials from a single thrower). For each axis (x, y, z) ball trajectory and 

impact point components are shown for the real ball (green line), the virtual ball (red line) 

and the simulated one (cyan line). This simulation, in which the release happened 7 frames 

before the microswitch release event detection, as shown in the figure, was selected because 

it minimizes the impact (blue star) error with respect to the trajectory recorded with the 

Optoelectronic system. Moreover, the tracker trajectories recorded with the 2 systems are 

shown, real tracker (black line) and virtual tracker (blue line). 
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In Figure 3.19 the mean result for all trials is reported (10 trials). The figures show the mean 

difference between the values of release position and velocity and impact position estimated 

according to the single delta simulations and the values estimated by Optitrack for all the 

trials (mean) and for each single trial. Release parameters (release position and velocity) and 

impact parameters (impact position) are reported both as vectors for all the axes (left 

column) and for each axes (right column). The best mean impact estimation distance with 

respect to the real one 1.162 m, achieved with this method, which was obtained when the 

simulation starts from 0.056 s before the time of release of the hardware switch (Tab. 3.2). In 

Table 3.2 each row shows the result of a different optimization in which the delta parameter 

minimizes the error in the release position (first row, where the minimized value is indicated 

in bold), release velocity (second row), and impact distance (third row). The results 

indicated that a more accurate simulation is required and that a different release time is 

required for each component of the hand reference system. 

Figure 3.18. Single delta simulation. For each axes ball and tracker trajectories and impact 

points recorded with the optoelectronic system and the developed one are shown (red line: 

virtual ball, green line: real ball, blue line: virtual tracker, black line: real tracker). The ball 

simulated from an anticipatory release (cyan line) are shown from 1 to 9 frames before the 

hardware switch release (vertical blue line). 
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Figure 3.19. Ball trajectories from release to impact. Real ball (red trajectory) recorded from 

optoelectronic system, ball trajectory simulated with drag (green) and without (blue). The 

target of 1 m radius is placed at a distance of 6 meters from the thrower. 
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Delta Time [s] Release Position [m] Release Velocity 

[m/s] 

Impact Distance [m] 

0.012 0.1389 4.001 2.535 

0.051 0.357 1.483 1.209 

0.056 0.398 1.551 1.162 

Table 3.2. Single delta throwing parameter estimation performances. Table shows the error between real 

throws and single delta simulations estimations for release position, velocity and impact position. The delta 

selected for each row is the one that minimize the bolded parameter. 

 

3.3.2.2. Ball trajectory simulated with drag  

Average performance in terms of impact point error, computed with a ball trajectory 

simulation including an air drag coefficient of k = 0.4425, with respect to impact 

measured with Optitrack was 0.100 ± 0.045 m, while it was 0.340 ± 0.102 m for ball 

trajectories simulated without drag. Average impact time difference was -0.005 ± 0.009 s 

for ball drag simulation and -0.069 ± 0.044 s for ball simulated without drag. Figure 3.20 

shows an example of ball trajectories, from 0.05 s after the time of release switch to target 

impact time, recorded with Optitrack (red), simulated with drag (green) and without 

(blue). 
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3.3.2.3. Comparison of methods for the estimation of ball 

release parameters 

Release position parameters estimated with Multi Delta methods are closer, respect the 

other methods considered, to the parameters recorded with the optoelectronic system at 

switch release time. Fig. 3.21 shows average differences of release positions (Fig. 3.21A) and 

velocities (Fig. 3.21B) with respect to positions and velocities measured by Optitrack 

estimated by each method compared across the entire dataset (22 trials). Fig. 3.21C and D 

show respectively differences along the three different components of the position and 

velocity vectors. The Multi Delta offline method does not estimate release parameters better 

than the Multi Delta online method. The worse performance of the offline method with 

respect to online one may be due several factors. First, the Multi Delta method minimizes 

the impact error rather than the release parameters. Second, the comparison between 

parameters is performed at switch release time, which do not coincide with the real release 

Figure 3.20. Ball trajectories from release to impact. Real 

ball (red trajectory) recorded from optoelectonic system, 

ball trajectory simulated with drag (green) and without 

(blue). The target of 1 m radius is placed at a distance of 6 

meters from the thrower. 
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time. Third, release delta in multi delta online/general [0, 0.01,0.02] s is timely closer to the 

switch release time than the offline/individual deltas which can vary from 0 to 0.1 s before 

the switch. 

 

Method Release position (mean ± sd) 

[m] 

Release velocity (mean ± sd) 

[m] 

Multi Delta Online 0.002 ± 0.001 0.173 ± 0.074 

Multi Delta Offline 0.016 ± 0.02 0.47 ± 0.44 

Switch 0.131 ± 0.066 3.837 ± 1.205 

ZeroAcc 0.122 ± 0.056 3.131 ± 0.599 

C D 

A B 

Figure 3.21. Methods average release parameters differences respect real one (Optitrack). 
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Table 3.3. Methods release parameters estimations reliability. Table shows the error between (mean and 

sd) real throws and the developed methods. 

3.3.2.4. Impact performance 

Average performance in terms of impact position error with respect to Optitrack is better 

for Multi Delta methods respect the other compared methods. The best performance was 

obtained for the Multi Delta Individual (Offline) method (0.047 ± 0.065 m). Fig. 3.22A 

shows the average error of ball impact position on the target plane. Fig. 3.22B shows 

errors along each coordinate axis. Fig. 3.22C show the average impact time error with 

respect to Optitrack. 
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Figure 3.22. Methods average impact differences respect real one 

(Optitrack). (A) Average impact error for each method. (B) Average 

impact error for each method for each axis. (C) Average impact time 

differences respect real one. 
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Method Impact position (mean ± sd) 

[m] 

Impact time (mean ± sd) [s] 

Multi Delta Online 0.154 ± 0.086 -0.011 ± 0.028 

Multi Delta Offline 0.047 ± 0.065 -0.017 ± 0.054 

Switch 6.303 ± 4.325 0.662 ± 0.301 

ZeroAcc 3.459 ± 1.07 0.499 ± 0.125 

Table 3.4. Methods impact parameters estimations reliability. Table shows the error between (mean and 

sd) real throws and the developed methods. 

 

3.4. Discussion 

Studying complex tasks, such as unconstrained ball throwing, can be challenging and 

expensive with the motion capture technologies available on market. In this chapter, a low-

cost system, developed using a commercial VR platform, has been presented. The system 

allows to investigate virtual throws and real throws. The Virtual Throws operation mode 

allows to simulate throws in a VR environment and to study release (position and velocity) 

and impact (position on target and time) parameters, when throwing actions are controlled 

by the motion capture sensor integrated in the system (controller). Since throwing a virtual 

ball using a controller is not representative of naturalistic throwing, due to the unusual 

hand-controller interaction and ball dynamics, some hardware and software components 

have been developed and integrated in the system to record real throwing actions and to 

reliably estimate throwing parameters. An experimental setup, which reproduces the VR 

environment, has also been constructed. In the Real Throw operation mode, real ball release 

detection is controlled by a micro-switch and ball impact on the target is estimated by a 

synchronized webcam using an image processing procedure. Four methods to estimate 

release parameters have been developed and their accuracy has been assessed by 

comparison with the estimates provided by a second state-of-the-art optoelectronic motion 

capture system. A calibration procedure has been developed to customize the system on 
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subject’s morphology (hand-ball distance calibration), a ball-hand model has been 

developed to take into account hand-ball interactions. A drag model has been used to 

simulate more accurately ball flight dynamic. Impact parameters estimation has been 

validated both with a calibration procedure, using a LED attached to the switch, and with 

the optoelectronic system synchronous recordings, to validate impact time and position 

accuracy. 

 

The best release method, called Multi Delta individual has been evaluated with an 

optimization procedure, which finds for each trial and each axis of a coordinate system 

attached to the hand the temporal delay minimizing the impact point error, shows an impact 

spatial error of 0.047 ± 0.065 m and a release position and velocity error respectively of 0.016 

± 0.02 (m) and 0.47 ± 0.44 (m/s). Since the method require a different delay time for each axis 

and each trial, it is not possible to use it online as it requires an offline analysis. To overcome 

this limitation, a second optimization procedure called Multi Delta general, has been 

developed to allow the online estimation of the release parameter based on an offline 

estimation of a unique set of 3 different delays, one for each hand coordinate. With this 

method we found an average impact position error of 0.154 ± 0.086 m and release position 

and velocity errors respectively of 0.002 ± 0.001 m and 0.173 ± 0.047 m/s. It should be noticed 

that even if the second method has a higher impact error, it has lower release parameter 

error compared to the first one. This may be due to several reason. First, these methods 

minimize the impact error rather than the release parameters. Second, the comparison 

between parameters is performed at switch release time, which does not coincide with the 

real release time. Third release delta found in multi delta online/general [0, 0.01, 0.02] s is 

timely closer to the switch release time than the offline/individual deltas which can vary 

from 0 to 0.1 s before the switch. 

 

The impact parameters estimation procedure based the webcam video had on average an 

impact position error of 0.04 ± 0.02 m, a distance centre to impact error of -0.04 ± 0.02 m, and 

a temporal delay of 0.03 ± 0.02 s. A mismatch with the temporal error found with the LED 
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procedure calibration (0.050 ± 0.013 (s) was found. It can be due to the time delay between 

the system and the optoelectronic one. 

 

3.5. Conclusions 

The developed system allows to study throwing and real-life complex tasks using a 

controlled experimental paradigm in a virtual environment and in a natural environment. 

In particular, the system can be used for studying unconstrained throwing without an 

expensive motion capture system in real and virtual scenarios. Future studies will 

investigate the effect of different throwing styles, strategies and learning capabilities of 

altered dynamic of ball flight (e.g. altering gravity or drag) and hand-ball interaction (e.g. 

simulating balls with additional degrees of freedom).  
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4. Development and validation of an innovative 

methodology for upper limb post-stroke rehabilitation 

based on Virtual Mirror Therapy 

4.1. Introduction 

Cerebral stroke is one of the main causes of disability in adults and involves, in many cases, 

a contralateral hemiparesis of the upper limb. This motor deficit, which occurs for 80% of 

patients in the acute phase and for 40% in the chronic phase, can be improved by involving 

patients in rehabilitation protocols with high-intensity and task-specific exercises (Cramer 

et al., 1997; Kwakkel et al., 2004; Veerbeek et al., 2014). Technological advances in recent 

years have provided new methodologies to support and favour the rehabilitation process 

by increasing its repeatability and intensity (Foley et al., 2012). 

 

Rehabilitation systems integrated in virtual reality (VR) environments can provide more 

complex training scenarios than the traditional rehabilitation therapy. In addition, daily life 

activities can be simulated in an ecological and controlled manner thanks to the immersive 

properties of virtual headset devices. Thus, VR scenarios effectively increase patient’s active 

participation and motivation in successfully performing the rehabilitation protocol 

(Domínguez-Téllez et al., 2020). 

 

Recent advancements in the assessment methodologies have allowed to devise customized 

rehabilitation approaches, aimed at restoring specific components of the motor deficits. In 

particular, post-stroke motor deficits are characterized by specific patterns of muscle co-

activation or pathological muscle synergies. Regarding muscle synergies, quantitative 

approaches have recently been developed for identifying motor coordination strategies in 

healthy subjects based on the decomposition of muscle activation patterns as a combination 

of physiological muscle synergies through factorization algorithms (Bizzi et al., 2008; 

d’Avella et al., 2006). When applied to muscle patterns recorded from post-stroke patients, 
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such decomposition approaches have revealed specific changes in muscle coordination 

(Cheung et al., 2009, 2012; Clark et al., 2010). Thus, the characterization of the alterations of 

the post-stroke muscle patterns by their decomposition as combination of muscle synergies 

can provide an indicator of the pathological state, with prognostic value on the functional 

recovery induced by a therapeutic intervention, which may be more accurate than the 

assessment obtained using clinical scales or quantitative measures based only on kinematic 

data. 

 

In addition to the applications of VR and muscle synergies, myoelectric control is also a 

novel and promising approach for rehabilitation. Myoelectric interfaces have been mostly 

used for the control of actuators such as exoskeletons or prostheses (DiCicco et al., 2004; 

Liarokapis et al., 2013). Thanks to myoelectric interfaces, which decode the patient's 

intention through the residual myoelectric activity of the paretic limb, patients may generate 

voluntary movements through their spared cortico-spinal pathway and receive feedback 

(e.g. visual) thus establishing a closed loop system that promotes re-learning and 

encourages active participation, increasing motor coordination and muscle strength, and 

reducing spasticity (Song et al., 2013). The use of myoelectric interfaces for rehabilitation 

also aims at promoting neuroplasticity to reshape neuromuscular activity and to enhance 

motor learning, leading in some cases to the restoration of motor function. 

 

The aim of the work presented in this chapter was to evaluate the effectiveness of a novel 

post stroke upper limb rehabilitation approach based on VR and myoelectric control. The 

approach is based on the use of a VR system (HTC Vive) for displaying virtual environments 

and an 8 channels myoelectric sensor (Myo Armband) available on the consumer electronics 

market for recording EMG signals. The development is the result of a collaboration with the 

Deutsches Institute of Robotics and Mechatronics Zentrum für Luft- und Raumfahrt e.V. 

(DLR) of Munich, Germany, which is the coordinator of a project (VVITA) funded by the 

Helmholtz Association e.V. (Germany). 
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The system allows to practice rehabilitation exercises that simulate the performance of daily 

life activities in immersive VR environments, providing real-time visual feedback on the 

movement of a virtual limb that reproduces and improves the movement of the paretic limb 

via a visor integrated into a wearable helmet. The movement of the virtual paretic limb is 

displayed based on the movement and electromyographic activity of both the impaired and 

the unimpaired limb recorded with the system integrated motion capture sensors and the 

wearable bracelets. 

 

To validate the system, the effectiveness of VR neurorehabilitation therapy for the recovery 

of motor function is assessed through clinical and instrumental evaluations performed 

before, in the middle, and after the entire rehabilitation treatment. This chapter presents 

preliminary results of a pilot study currently ongoing at Fondazione Santa Lucia. 
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4.2. Methods 

 

The experimental setup included a VR system with a head-mounted display, two wearable 

hand trackers, two arm bracelets for EMG signals recordings, and a table with adjustable 

height. An experimenter assisted by a therapist performed the training sessions and the 

clinical evaluations. 

 

4.2.1. VR system + Trackers 

The Vive system (HTC Europe Co. Ltd, Slough, Berkshire, U.K), includes two base stations 

(Fig. 4.1F) emitting infrared pulses which create a “room scale” tracking area where the 

position of the headset (Fig. 4.1A) and the trackers can be measured with sub-millimeter 

precision (Bauer et al, 2021). The headset displays the interactive virtual scenario designed 

A 

B C 

D 

H 

I 
F 

E 

G 

Figure 4.1. VVita Setup. (A) Virtual reality headset HTC Vive. (B) EMG 

bracelet Thalmic labs Myo. (C) Motion capture HTC Vive tracker sensor. 

(D) Motion capture HTC Vive controller sensor. (E) Laptop connected to 

the system. (F) One of the two HTC Vive base stations. (G) Adjustable 

table. (H) Therapist. (I) Physiotherapist. 
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for the performance of a virtual bimanual reaching task, at a refresh rate of 90Hz, with a 

110° field of view, and with a display resolution of 1080×1200 pixels per eye. Two Vive 

trackers (Fig. 4.1C), are placed on the dorsum of the participant’s hands and used to control 

a virtual hand for reaching the virtual targets. The trackers are also used to record hands 

kinematics during the task for offline analysis. The Vive system is integrated via SteamVR 

with the Unity Engine running on a personal computer (Fig. 4.1E). 

 

4.2.2. Virtual environment 

 

The virtual scenario reproduces a familiar environment with a table in front of the patient, 

a virtual representation of the hands of the patient and the objects to be reached and grasped 

bimanually (Fig. 4.2). A calibration procedure, based on the Vive controller (Fig. 4.1D), 

allows to match the position and the size of the virtual table with respect to the real one. 

Two different objects are used as targets. For each object a different hand gesture is required 

to complete the reaching action: for the concertina (Fig. 4.2A) the fingers must be closed (fist 

gesture) while for the ball (Fig. 4.2B) the finger must be opened (hand opening gesture). 

A B 

Figure 4.2. Virtual environment. The virtual environment consists of a room in a house with a 

desk and two different objects, a concertina (A) and a beach ball (B), that the participants is 

instructed to reach with both hands. 



93 

 

4.2.3. Myoelectric bracelets 

Electromyographic activity is recorded from patient’s forearm muscles by Myo armband 

sensors (Thalmic Labs, Ontario, Canada) placed on both patient’s forearms (Fig. 4.1B). The 

Myo armband, is composed of eight small plastic parallelepipeds connected with a plastic 

band. Metal electrodes placed on face of the parallelepiped in contact with the forearm skin 

and connected to a differential amplifier record the surface electromyography (EMG) 

signals associated with the contraction of the different forearm muscles. A calibration phase 

uses a machine learning method (Gijsberts et al., 2014) to build an EMG to activation 

mapping used to decode three different gestures (relaxed, fist, extended) and to control the 

virtual hands during tasks execution. 

 

4.2.4. Algorithms for controlling the virtual limbs 

Controlling the virtual limbs requires two different methods: one to estimate hand position 

(proximal control) and one to estimate hand gesture (distal control). Proximal control uses 

the kinematic recorded by the trackers, whereas distal control uses the EMG recorded by 

the Myo armband. 

 

The virtual unimpaired limb (VUL), represented with as the position and orientation (pose) 

of a virtual hand, reproduces the position and orientation of the real unimpaired limb (RUL) 

via the tracker placed on the dorsum of the hand. The VUL gesture activation, defined as 

the kinematic configuration of the fingers, is estimated using the EMG signals gathered from 

forearm muscles of the unimpaired limb using iterative Random Fourier Features Ridge 

Regression (iRR-RFF) (Patel et al, 2017) and displayed at the VUL hand as finger flexion 

angles. 

 

The virtual impaired limb (VIL) can be controlled by real impaired limb (RIL) pose and 

gesture or by a weighted combination of the RIL and the RUL (Eq. 4.1), where F is a fixed 
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and task-dependent transformation, labelled “stiff coupling”, which consists in a reflection 

with respect to a vertical plane passing from the start position and centre of the target. 

 

𝒙𝑽𝑰𝑳 =  𝛼𝑝𝒙𝑹𝑰𝑳 +  (1 – 𝛼𝑝) 𝐹[𝒙𝑽𝑼𝑳] 

𝒒𝑽𝑰𝑳 =  𝛼𝑑  𝒒𝑹𝑰𝑳  +  (1 – 𝛼𝑑) 𝒒𝑽𝑼𝑳 

Equation 4.1. Virtual impaired hand position and gesture estimation equations. 

The difficulty of the task is controlled by two parameters for both hand pose (proximal) and 

hand gesture (distal) that can be adjusted during training: “agency” α and “capability” β. 

The α parameter, ranging between 0 and 1, determines the contribution of the RIL 

movement to the VIL movement, i.e., how much agency the real limb has on the virtual one. 

Such parameter is adjusted separately for the proximal control (αp) and, for distal control 

(αd). If α is 1, the VIL reproduces exactly the pose and gesture (estimated from EMGs) of the 

RIL. This condition allows a participant with no impairment to intuitively perform the 

bimanual reaching task in the virtual environment. However, if a participant is unable to 

reach the target with the RIL but can do so with the RUL, the movement of the VIL will be 

improved by the weighted combination of movement of the VUL. For instance, the higher 

αp, the closer the VIL pose will be to the RIL pose rather than to the reflection of the RUL, 

while the higher αd, more directly the VIL hand gesture will be controlled by the RIL rather 

than mirroring the VUL gesture. 

 

The coefficient β, also ranging between 0 and 1, is adjusted according to the capability of the 

patient, and determines the maximum target distance for the proximal control βp, and the 

difficulty of performing a gesture for the distal control βd. For instance, if βp is 0 the targets 

are placed as close to the body as possible and if βp is 1 they are places at the edge of the 

patient’s peri-personal space. The higher proximal βp gets, the further away the patient must 

reach. βp is estimated for each limb during the first initial maximum amount of movement 

calibration procedure. Similarly, the required activation of the hand (βd) can range from 0 
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to 1. If the value is smaller, less muscle activation is required to achieve a successful gesture, 

whereas for higher values, a stronger muscle activation is required. 

 

The therapy is administered in different days, each day is defined as a session. During each 

session the patient must perform a series of blocks, each consisting of 12 bimanual reaching 

and grasping movements towards objects in different target locations xtar = xtar[r, θ, h, βp], 

where r is the distance from the mean hand position at start posture to the target centre, θ 

is the target azimuth and h is the target height. 

 

After each block, both proximal and distal agency (αp, αd) and capability (βp, βd) are adjusted 

by the therapist, according to a patient’s performance score πj = π(t1, ..., tTj) in that block (j-

th, composed of Tj trials) in order to obtain a task success rate of approximately 70-90%. In 

this way the patient is motivated to try to improve his/her performance but is not frustrated 

by too many failures. So, when the score is higher than 90% (11 or more successful trials 

over 12 trials in a block) the difficulty is increased. When the score is between 70 and 90% 

(9-10 successful trials over 12 trials) the difficulty level is not changed. When the score is 

lower than 70% (8 or less successful trials over 12 trials) the difficulty level is decreased. 

 

The distance (r) of the target is adjusted according to βp as the fraction of maximum distance 

recorded during calibration phase (r = βp rmax); the direction (θ) is selected randomly within 

a given set of targets and the distance (r) as the fraction of maximum distance recorded 

during calibration phase (r = βp rmax) (Fig. 4.3). The required level of muscle activation (grasp 

intensity) follows a similar law rule with a difficulty adjusted by βd. 
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Figure 4.3. Targets placement. Figure shows an example of targets placement for participant 5 

when βp is equal to 1. For each panel a different view (A) 3D view, (B) top view, (C) lateral view, 

(D) frontal view of all the 12 targets (green spheres), the head (black sphere) and RUL (blue 

sphere) and RIL (red sphere) resting poses. 

 

A B 

C D 
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4.2.5. User-centred development of the setup and the protocol 

 

Figure 4.4. User-centered scheme. 

The system has been developed as an application to stroke rehabilitation of the VR platform 

originally developed for upper amputee phantom limb pain treatment within the VITA 

project also led by the DLR team, coordinated by Prof. Claudio Castellini (Researcher at 

DLR and Professor at Friedrich-Alexander-University of Erlangen-Nürnberg). The new 

project (VVITA), is coordinated by the DLR team, which is the main platform developer and 

has expertise on decoding of upper limb/forearm muscle signals to predict hand 

movements, and involves NEEEU (NEEEU Spaces GmbH, Berlin, Germany), which 

collaborates on the design and development of the virtual environment and the user 

interface, and several clinical partners including the IRCCS Santa Lucia Foundation (FSL, 

Rome, Italy) in collaboration with the University of Messina (UniMe). The FSL-UniMe team 

has contributed to both the development the stroke rehabilitation protocol and to the 

validation of the system with stroke patients. 

 

A user-centred approach, based on involvement of both technical developers, motor control 

neuroscientists, neurologists, therapists, and patients, has been implemented in the 

development of the stroke-specific application of the VVITA system. The training activities, 

DLR 

Main system developer  

NEEEU 

VR environment and 

user interface developer 

Clinical partners 

Clinical observations and 

testing 
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the assistive algorithms and the user interface have been developed and selected through 

several iterations between all the partners (Fig. 4.4). After the initial analysis of the patients’ 

needs and rehabilitation goals, a simple bimanual reaching task has been selected as the 

main training activity and the use of a “virtual mirroring” approach, using both kinematic 

signals for hand pose and EMG signals for hand gesture, has been defined as the key 

assistive element to enhance functional recovery. Initially, 3 different assistive algorithms 

were considered (stiff coupling, rubber band and trajectories) and implemented for pilot 

testing. Each method affects in a different way influence the control modality and the 

guidance of the unimpaired upper limb to the impaired limb. The stiff coupling method 

reflects the pose of the RUL with respect to a vertical plane passing from the start position 

and centre of the target. In this case, the impaired side can be thought of as directly coupled 

to the unimpaired side: if the RUL moves to the right side, the VIL follows this movement 

to the right. With the rubber band method, the RUL is mirrored with respect to the mid-

sagittal plane as in a classical mirror therapy: if the RUL moves towards the lateral direction, 

the VIL also moves towards the lateral direction in the contralateral side. The trajectories 

method projects the RIL along a predefined VIL path according to the path length of the 

RUL on a predefined VUL path. The path is pre-recorded from the RUL and mirrored to the 

impaired side. 

 

After pilot testing and several meetings with all partners, the first method (stiff coupling) 

has been selected to be used in the experimental phase. The amount of assistance provided 

by the reflection of the unimpaired limb is controlled by the αp parameter, which has also 

been introduced as a separate parameter from αd the during the development after some 

iterations between the partners to accommodate for different level of proximal and distal 

impairments in different patients. Also, the difficulty of the task, adjusted by the βp and βd 

parameters, has been integrated in the system and the random displacement of the 12 targets 

in the virtual space and their orientation have been specially chosen to follow clinician 

partner requests. 
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The interaction with the therapists has also been instrumental to the development of 

therapist a custom user interface (UI) to be used during the training sessions to monitor the 

signals from the sensors and guide the patients while they are immersed in the VR 

environment performing the reaching task. The UI allows to visualize the required data as 

the muscle activity, the VR view seen by the patient and task performances. It also allows 

the therapist to select the difficulty level of the exercise choosing the desired assistive 

parameters. 

 

4.2.6. Training protocol 

The experimental study to assess the efficacy of a 2 months of treatment and it has been 

designed taking into account the results of a one-month pilot study performed on 4 stroke 

patients, 2 chronic and 2 subacute. During the experimental study, each patient was treated 

for 2 month, 3 times for week, 30 minutes for each session. During each session the patient 

performed as many blocks of reaching trials as possible. In the middle of the session, the 

patient was asked to remove the helmet and to take a 3 minute break. Target placement was 

selected randomly for each block within the 12 possible target positions. At the beginning 

of each session, patients were asked to perform the maximum range of movement first with 

the unimpaired limb and then with the impaired one to offline quantify the motor function 

recovery. The maximum amount of movement (range of movement) recorded during the 

first session of each patient was used to characterize target placement for all the sessions 

and to define target placement distance with respect to the resting poses. The objects were 

rotated around a vertical axis such that the handle of the lateral side of the object was closer 

to the patient frontal plane, allowing for a more natural bimanual reaching movement. Since 

the target handles rotation method depends on the maximum range of movement calibrated 

at the beginning of the treatment and some anthropometric parameters as the shoulder 

width for each patient, it was not always possible to rotate the targets. Both targets, 

concertina and ball, were alternatively shown to the patient in order to perform a different 
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hand gesture each time (fist and extension). For each trial, maximum duration was of 20 

seconds, since we noticed that 30 seconds, used during the pilot study, was too long, 

especially when patients could not successfully reach a certain target, leading to excessive 

fatigue. The reaching movement was considered successful when both virtual hands were 

closer than 0.05 m to the center of the target handles and the required gesture was 

maintained for 1 s. Feedback on the success in hand placement and gesture maintenance 

was provided to the patient in the VR. The color of the target handles changed from orange 

to green when the virtual hands position was within the tolerance. A small representation 

of the required gesture disappeared when the virtual hand gesture was correct. Finally, 

when both the correct position and the gesture were achieved the object color turned green 

progressively (Fig. 4.2A), indicating in this way the holding time. 

 

4.2.7. Participants and inclusion criteria 

A total of twenty post-stroke patients will be enrolled in the experimental study. Inclusion 

criteria are age, between 18 and 80 years, gender, male and female suffering from upper 

limb deficiency following ischemic or hemorrhagic stroke confirmed by CT or MRI, which 

has occurred at least 1 year before (chronic phase) the beginning of the treatment. UL-Fugl-

Meyer scale rate between 14 and 54, Medical Research Council (MRC) scale rate greater or 

equal to f2 for the shoulder and f1 for the elbow. No toxin treatments in the previous 2 weeks 

from the beginning and during the treatment. 

 

Exclusion criteria are Modified Ashworth Scale (MAS) greater than 3, Mini Mental State 

Examination (MMS) grater or equal to 24, absence of orthopedic neurological and 

rheumatological pathologies that can cause upper limbs sensorimotor deficits. Patients are 

randomly assigned into two groups: an experimental group and a control group. 

Randomization takes into account neuromotor deficit severity (moderate and severe) and 

the age. Inclusion criteria have been selected according to the pilot study results. 
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As the recruitment of participants and the experimental sessions are ongoing, in this chapter 

preliminary results of the analysis of 7 participants included in the experimental group are 

presented. Table 4.1 reports some details of these. 

 

Patient Age Gender Stroke Type Affected limb Language deficit Time since stroke (years) Session N° 

P1 60 M Ischemic Left No 12 24 

P2 71 F Ischemic Left No 2 21 

P3 38 F Ischemic Left Yes 24 21 

P4 48 M Hemorrhagic Left No 28 18 

P5 70 M Hemorrhagic Right No 7 20 

P6 50 M Ischemic Left No 2 22 

P7 64 M Ischemic Right Yes 2 24 

Table 4.1. Participants included in the preliminary analysis. The table reports for each participant some 

patient’s informative data as the age, gender, time from stroke and type of stroke. Fugl-Meyer index scores 

for T0, T1 and T2 are also reported to quantify the functional recovery evaluated with one of the used clinical 

scales. 

 

4.2.8. Clinical and instrumental evaluations 

Clinical and instrumental functional recovery indicators were considered. Upper-limb Fugl-

Meyer clinical scale has been used for the evaluation of upper limb functionality. This scale 

is based on existing knowledge about recovery patterns in stroke. In the motor scale of the 

Fugl-Meyer assessment, items are based on the ontology and stages of stroke recovery 

described by Twitchell and Brunnstrom respectively (Gladstone et al., 2002; Sanford et al., 

1993). The Fugl-Meyer Assessment scale is an ordinal scale with 3 points for each item. If 

the subject is unable to complete the task, the item receives a score of 0. When the work is 

partially finished, a score of 1 is awarded, and when it is successfully completed, a score of 

2. 
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With regards to the instrumental indicators, thanks to the sensors integrated in the VR 

system, kinematic variables and overall task performances have been recorded. In 

particular, the score performance, which was kept within a given range by the protocol, was 

investigated together with the assistance parameters to evaluate therapist’s operational 

behavior. Moreover, the maximum speed achieved during the task execution and the 

maximum range of movement achieved in each session during the initial calibration were 

estimated for each limb. 

 

In this preliminary analysis, both the clinical and instrumental evaluations were 

investigated at the beginning (T0), at midterm after 12 sessions (T1), and at the end (T2) of 

the rehabilitation protocol. 

 

4.2.9. Statistical analysis 

The dependence of the overall assistance level, Fugl-Meyer index, and maximum speed on 

the different sessions (Se) was tested with a linear mixed model (LMM) that accounts for 

interindividual variability by including the participant as a random effect. The experimental 

factor (Se), was treated as a fixed effect with categorical (dummy) variables. Data were fitted 

with the model: 

 

𝑌 =  𝑢0 + 𝛼0𝑆𝑒 + 𝜖 (1) 

 

where u0 represents the individual intercept and accounts for inter-individual differences; 

the coefficients α0 represents fixed-effect slopes, thus the modulation of the response 

variable by the factor Se. As data represent a continuous variable, they were fit with a LMM 

(Matlab, function fitlme). Estimation of model parameters were based on the maximum 

likelihood using Laplace approximation. 
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4.3. Results 

As the study is still ongoing, in this section preliminary results are reported from 7 

participants of the experimental group. Control group and the remaining experimental 

group participants are still performing the rehabilitation protocol. 

 

The assistance parameters (α and β, proximal and distal) were adjusted after each block see 

paragraph 4.2.4). In Fig. 4.6 the assistance parameters and the performance for patient P1 

(A) and patient P4 (B) for each block across all the sessions are reported. P1, who had a 

A 

B 

Figure 4.6. Blocks parameter selection and performance. Each panel shows for each 

participant and each block the 4 assistance parameters (αp, βp, αd, βd) used and the participants’ 

performance (number of successful trials over number of trials) for patient 1 (A) and 4 (B). 
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higher level of residual functionality and P4, who had a lower level of residual functionality, 

were selected to illustrate the assistance parameter selection in the case of low and high 

upper limb impairment. As the performance graphs show, when the value is smaller than 

70% or higher than 90% the difficulty is decreased or increased by adjusting the assistance 

parameters accordingly. The therapist was successful in keeping the level of performance 

around 70-80%, as shown in the figure. 

 

 

As example of the parameter distribution used during the rehabilitation protocol is shown 

in Fig. 4.7 for P1 (A) and P4 (B). For each patient, the proximal (left column) and the distal 

A 

B 

Figure 4.7. Parameters distribution. Figure shows for P1 (A) and P4 (B) assistance proximal 

(left column) and distal (left column) parameters distribution. For each bin (3 sessions), the 

mean value (ellipse center) and the standard deviation (ellipse principal axes) are reported. 

Color saturation represents the temporal evolution of the distribution. 
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parameters distribution (right column) are reported. For each time bin, which correspond 

to 3 consecutive sessions, the center of the ellipse corresponds to the mean of the values of 

the α and β parameter in that bin, whereas the principal semiaxes correspond to the 

parameters covariance. Color saturation shows the temporal evolution of the parameter 

distribution. The figure shows a clear difference between P1 and P4. For the patient P1, both 

parameters are closer to one, i.e., indicating less assistance, than for P4, who was less 

impaired than P4. Moreover, for P1 the parameters over time tend to become closer to 1 than 

for P4. This indicates that, for the same performance, P1 was able to perform with a greater 

task difficulty with respect to P4. However, since the therapist can modulate task difficulty 

changing both proximal and distal assistance parameters, an overall assistance index is 

required to uniquely define the tasks difficulty. 

 

 

Figure 4.8. Assistance level. Figure shows for the first (T0), 

midterm (T1) and last (T2) session the overall assistance level 

for each patient (different colors and symbols) and for all the 

patients (boxplots). Statistical difference significance is 

reported as *** = 0.001, ** = 0.01 and * = 0.05. 
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The overall assistance level, defined as 1-(αp + βp + αd + βd)/4, decreased for all the patients 

except for patient 4 (Fig. 4.8, different colours and symbols). The boxplots representing the 

distribution of the assistance level across all patients are shown for the initial evaluation 

session at T0 (mean ± sd = 50 ± 16 (%)), the midterm evaluation session at T1 (mean ± sd = 44 

± 21 (%)), and the final evaluation session at T2 (mean ± sd = 41 ± 24 (%)). 

 

Assistance data were fitted with the LMM model of Eq. 1 (see 4.2.9) (R2 = 0.96), which 

revealed a significant main effect of session (p = 0.007). Statistical difference between each 

session is reported in the figure as *** = 0.001, ** = 0.01, * = 0.05. Significant difference between 

T0 and T1 sessions (p = 0.021) and T0 and T2 (p = 0.002) were found, while the difference for 

T1 and T2 was not significant (p = 0.313). 

 

 

The therapist was instructed to change the assistance parameters in order to maintain 

performance at around 70-80% in each block. Figure 4.9 shows the overall reaching 

performance for each patient. The performance, reported as percentage of successful trials 

Figure 4.9. Overall reaching performances. Overall reaching 

performance is shown in the figure as percentage of successful trials over 

all trials for each patient. 
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with respect to all performed trials for all sessions, had a mean value across all patients of 

79.5 and a standard deviation (sd) of 10.23, which confirms therapist’s correct management 

of task’s difficulty. Table 4.2 show the performance (mean ± sd) for each patient. 

 

Patient P1 P2 P3 P4 P5 P6 P7 

Performance 

(mean ± sd) 

76.5 ± 6.7 73.2 ± 13.8 87 ± 11.2 72.8 ± 11 77.5 ± 10.9 76.5 ± 12.1 93.4 ± 5.6 

Table 4.2. Participants’ performance. The table reports mean and standard deviation of the performance for 

each patient. 

 

Figure 4.10. Clinical evaluations. Figure shows the first (T0), midterm (T1) 

and last (T2) upper limb motor function clinical evaluation for each patient 

(different colors and symbols). The maximum score in upper limb motor 

function is 66. Statistical difference significance is reported as *** = 0.001, ** = 

0.01 and * = 0.05. 
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Each participant was evaluated clinically at the beginning (T0) of the rehabilitation protocol, 

after 12 sessions (T1) and at the end (T2). The Fugl-Meyer assessment scale, which has 3 

points (index: 0, 1, 2) for each item of the upper limb motor function assessment, has been 

assessed by the physiotherapists to evaluate the efficacy of the rehabilitation protocol in the 

treatment of the stroke upper limb hemiparesis. Figure 4.10 shows the evolution of the Fugl-

Meuer motor function assessment index for each patient (different colors and symbols) for 

each evaluation (T0, T1, T2). 

 

The mean and sd of the Fugl-Meyer index over all the patients is reported in the boxplot for 

the first T0 (35.1 ± 12.4), midterm T1 (39.4 ± 12.6) and the last T2 (42.1 ± 12.4) sessions. 

For each patient the motor function upper limb score increases during the temporal 

evolution of the rehabilitation protocol (Tab. 4.3). 

 

Fugl-Meyer assessment index data were fitted with the LMM model of Eq. 1 (see 4.2.9) (R2 

= 0.99), which revealed a significant main effect of session (p = 8.22×10-9). Statistical 

difference between each session is reported in the figure as *** = 0.001, ** = 0.01, * = 0.05. 

Significant difference between T0 and T1 sessions (p < 10-5), T0 and T2 (p < 10-8) and T1 and T2 

(p < 10-3) were found. 
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Maximum speed was estimated for RIL and RUL in each trial to evaluate its evolution 

during the rehabilitation protocol. The average maximum speed values for each limb for all 

patients are shown in Fig. 4.11 for the first session T0 (RIL: 0.7 ± 0.5, RUL: 1.1 ± 0.6), the 

midterm session T1 (RIL: 0.7 ± 0.4, RUL: 1.2 ± 0.5) and the last session T2 (RIL: 0.9 ± 0.3, RUL: 

1.3 ± 0.6). Maximum speed data were fitted with the LMM model of Eq. 1 (see 4.2.9) (RIL R2 

= 0.88, RIL R2 = 0.84), which revealed a non-significant main effect of session for both limbs 

(RIL p = 0.15, RUL p = 0.51). Non-significant difference between T0 and T1 sessions (RIL p = 

0.7, RUL p = 0.6), T0 and T2 (RIL p = 0.1, RUL p = 0.2), and T1 and T2 (RIL p = 0.1, RUL p: 0.5) 

were found. 

 

A B 

Figure 4.11. Maximum speed. Figure shows the maximum speed for the RIL (A) and the RUL (B) for 

the first (T0), midterm (T1) and last (T2) session each patient (different colors and symbols) and for all 

the patients (boxplots). 
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Finally, the range of motion was assessed on the movement calibration performed at the 

beginning of each session. Figure 4.12 shows for P1 and P4 the maximum range of 

movement recorded at the beginning of T0 (red line), T1 (orange line) and T2 (green line) 

sessions with both RIL (left column) and RUL (right column). 

 

A 

B 

Figure 4.12. Range of movement. Figure shows for patient P1 (A) and P4 (B), the RIL (left column) 

and the RUL (right column) maximum range of movement for the T0 (red line) T1 (orange line) and T2 

(green line) evaluations. 
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To quantify the range of movement, an estimation of the volume of the convex hull of the 

trajectories recorded during the initial calibration was obtained (Matlab, convhull function). 

Fig. 4.13 shows the average RIL (left column) and RUL (right column) convex hull volume 

values for each limb for all patient for the first session T0 (RIL: 0.1 ± 0.1, RUL: 0.2 ± 0.1), the 

midterm session T1 (RIL: 0.1 ± 0.1, RUL: 0.2 ± 0.1) and the final session T2 (RIL: 0.1 ± 0.1, RUL: 

0.2 ± 0.1). Convex hull volume data were fitted with the LMM model in Eq. 1 (see 4.2.9) (RIL 

R2 = 0.89, RIL R2 = 0.78), which revealed a non-significant main effect of sessions for both 

limbs (p RIL = 0.8, p RUL = 0.3). Non-significant difference between T0 and T1 sessions (p 

RIL = 0.6, p RUL = 0.7), T0 and T2 (p RIL = 0.9, p RUL = 0.3), and T1 and T2 (p RIL = 0.5, p 

RUL: 0.2) were found. 

 

 

 

Figure 4.13. Maximum calibration movement achieved volume estimation. Figure shows the convex 

hull estimated for RIL (left column) and RUL (right column) initial range of movement calibration for 

the first (T0), midterm (T1) and last (T2) session each patient (different colors and symbols) and for all 

the patients (boxplots). 
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4.4. Discussion 

The developed system allows to perform a novel rehabilitation protocol for post stroke 

upper limb motor recovery in a controlled virtual environment. The system is based on 

commercial technologies and allows to perform bimanual reaching movements in a VR 

environment while assisting the patient’s impaired upper limb movements with the 

kinematic and forearm EMG of the unimpaired limb. The use of a VR or gaming-based 

systems (Karamians et al., 2020) and assistance parameters, aims at overcoming some of the 

limitation of a conventional rehabilitation therapy. First, the system allows to continuously 

monitor functional motor recovery indicators, thanks to the instrumental evaluations. 

Second, the system enhances the motivation of the patient to perform the tasks and to 

complete the therapy, thanks to the assistance procedure which allow to maintain the 

difficulty of the task at the appropriate level throughout the therapy. In particular, the 

assistance parameters, adjusted by the therapist block by block depending on performance, 

set the amount of contribution of the unimpaired limb to the kinematic (proximal assistance) 

and to the hand gesture (distal assistance) to the impaired one. 

 

The new system is based on a system originally developed by the DLR team for amputees 

which has been modified according to the indication provided by clinical and technical 

partners during several user-centred development iterations. A pilot study involving 4 

patients, 2 chronic and 2 sub-acute, has been conducted for one month to test the feasibility 

of the proposed rehabilitation protocol and to setup the system and patient’s inclusion 

criteria for the main study. The ongoing main experimental study aims at characterizing the 

effectiveness of the provided rehabilitation therapy, comparing the functional recovery of 

the experimental group with that of a control group performing an equal amount of 

conventional therapy. At the end of the experimental study, twenty chronic stroke patients 

will have been recruited in the study, 10 in the experimental and 10 in the control group. 

The experimental group performs for 2 month every week, 3 times for week, 20 minutes of 
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VR mirror therapy rehabilitation, while the control group performs a conventional upper 

limb rehabilitation of the same amount of time. 

 

The first preliminary analysis conducted on 7 participants of the experimental group aimed 

at assessing the compliance of the therapist’s behaviour with the experimental protocol. The 

therapist was instructed to change assistance parameters at the beginning of each new block 

according to the performance of the previous block. The instruction was to increase 

assistance when the block performance was smaller than 80% (9/12 trials) while decrease 

assistance when performance was greater. We found an average overall performance of 80% 

± 10% (sd), which confirms therapist’s correct implementation of the experimental protocol. 

 

The functional recovery was then assessed both with clinical and instrumental evaluations 

performed at the beginning (T0), midterm (T1) and at the end (T2) of the rehabilitation 

process. To assess the effectiveness of the therapy in enhancing motor recovery, a clinical 

evaluation index (Fugl-Meyer assessment scale) and two kinematic indexes (the range of 

movement in the calibration performed at the beginning of each session and the maximum 

speed achieved during the tasks execution) recorded at T0, T1 and T2 were considered. A 

significant increase in the upper limb motor function Fugl-Meyer score was observed when 

comparing the 3 different temporal clinical evaluations. In contrast, this preliminary 

analysis did not reveal a significant increment in the instrumental indexes. A possible 

explanation of a mismatch between the clinical and the instrumental evaluations could be 

due to the small number of patients included in the analysis or to a lack of sensitivity of the 

specific kinematic metrics used to quantify motor recovery. In the future a more extensive 

analysis will be required to identify additional metrics based on instrumental data adequate 

to assess the effectiveness of the rehabilitation therapy. One key advantage of instrumental 

evaluation metrics is the possibility to obtain an objective and operator-independent 

evaluation, overcoming one of the limitations of the clinical scales. 
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Finally, when the experimental study will be completed, a key analysis will compare both 

clinical and the instrumental evaluations between the experimental and the control groups 

in order to provide a reliable assessment of effectiveness of the developed VR rehabilitation 

protocol with respect to the conventional therapy. Moreover, for the experimental group 

additional analysis will be used to assess the upper limb motor function recovery in terms 

of limb kinematic and forearm residual muscle activity. For instance, a specific analysis on 

the hand speed profiles, could lead to identify the presence of several peaks which are often 

related to movement corrections (Cirstea et al., 2000) occurring because of poor motor 

planning, variation in motor execution, or task constraints. Moreover, movement 

smoothness is characteristic of coordinated human movements, and stroke patient 

movements seem to grow more smooth with recovery (Rohrer et al., 2002). 

 

4.5. Conclusions 

A VR mirror therapy has been developed for rehabilitation and assessment of upper limb 

motor function of hemiparetic chronic stroke patients. The system developed by the DLR in 

collaboration with the Fondazione Santa Lucia and the NEEEU allows to perform bimanual 

reaching movements in a controlled environment. A one-month pilot study has been 

condicted with 4 stroke patients and a main study involving 20 stroke patients is still 

ongoing. Preliminary results from the analysis of 7 patients of the experimental group have 

demonstrated an increase in the clinical evaluations scale but additional analyses will be 

required to assess more systematically indicators of the functional recovery on the 

instrumental data. Further analysis of the complete dataset will compare both the clinical 

and instrumental evaluations of the experimental with respect to the instrumental group. 

These preliminary results provide an initial encouraging indication that the system can be 

used by patients with stroke upper limb hemiparesis for allow upper limb motor 

rehabilitation in a controlled environment and to record instrumental data to assess the 

functional recovery. In the future, the system could become a powerful yet affordable 
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rehabilitation system to be used in a clinical environment or in a teleoperation scenario 

directly at patient’s home, without any physical intervention of any operator.  
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5. Toward the development of a Virtual Mirror Therapy 

using myoelectric control with many muscles 

5.1. Introduction 

The collaboration between the University of Messina (UniMe), IRCCS SantaLucia 

Foundation (FSL) and the Deutsches Institute of Robotics and Mechatronics Zentrum für 

Luft- und Raumfahrt e.V. of Munich (DLR) established for the development and validation 

of the VVITA system (see chapter 4), aimed at developing a new version of the VVITA 

system for assisting stroke survivors to improve their motor performance in a bimanual 

reaching tasks using virtual reality (VR) making a more extensive use of myoelectric control. 

While in the original VVITA system the EMG signals recorded from the forearm muscles 

were used to estimate hands gesture, the aim of this new project was to use EMG signals 

recorded from several muscles of the entire upper limb to estimate hands position. Basically, 

the role of myoelectric control in VVITA is limited to a few forearm muscles involving only 

in distal limb movements (e.g., hand closing and opening), while in the new system the 

focus of myoelectric signal decoding is on the proximal limb movements (e.g., reaching) to 

exploit the full potential of myoelectric control. As a first step towards the development of 

the new system, I did an internship at DLR laboratories, where I assessed the feasibility of 

an approach based on using many forelimb muscles to estimate the hand position, taking 

advantage of the expertise of the DLR group in myoelectric control and non-linear 

estimation methods and working under the supervision of Prof. Claudio Castellini. 

 

The goal of this work presented in this chapter is to provide a proof-of-concept of learning 

assistance using myoelectric control on healthy participants as a model for motor 

rehabilitation of stroke survivors. The novel assistance approach is thought to extend the 

capabilities of the existing VVITA system by using myoelectric signals from several muscles 

acting on one upper limb together with kinematics from the other limb to assist bimanual 

reaching of virtual objects. The key idea is that myoelectric control on the paretic limb of 
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stroke survivors may enhance motor recovery because it provides salient feedback on the 

muscle patterns than need to be re-learned. The feedback on the position of the hand in VR 

will incorporate an assistance enhancing task performance, thus motivating the patient to 

continue practicing the exercises. As for VVITA, the level of assistance will be continuously 

adjusted during the training sessions to maintain a level of performance that motivates the 

patient to keep practicing. The assistance will depend on the similarity between the muscle 

patterns generated by the patient when attempting to perform the reaching movement and 

reference muscle patterns (based on those recorded from the unaffected limb or from 

healthy participants), thus providing salient feedback on the functional muscle patterns 

required to perform the task. Moreover, as in VVITA, the mirrored kinematics of the 

unaffected limb will be used to further enhance performance and keep the patient engaged 

in the task. In the proof-of-concept validation with healthy participants, the impairment in 

the generation of functional muscle patterns will be simulated in VR as a perturbation of the 

hand position estimated from EMGs. Such perturbation is meant to represent a simple 

model of motor impairment due to stroke simulated in a healthy participant. 

 

The key goal of this initial development is to identify a model with the minimum complexity 

necessary to obtain an adequate kinematic approximation from the EMG signals. Therefore, 

model characterization is the core and the most challenging aspect of the project, for this 

reason the development has required a data analysis phase, in which different machine 

learning methods have been considered and the best one has been selected comparing the 

positional estimation errors from an existing reaching database (d’Avella et al., 2006). The 

first model application consists in extending to 3D movements the linear mapping used in 

the isometric VR setup used at FSL (Berger et al. 2013) to estimate hand position from EMG 

signals for several points and several directions for each point. This extension thus implies 

mapping EMG signals onto hand acceleration rather than isometric force. 

Typically, surface electromyography allows to control only a few degrees of freedom. Due 

to the high dimensionality of human upper limb movements and to the negative influence 

on control performance of several factors which may change myoelectric signals over time, 
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such as muscle fatigue, conductivity changes, electrode displacement, differences in the 

patterns produced by the user or changes in the position and the velocity of the arm 

(Fougner et al., 2011), linear models may not be sufficient to model adequately the 

relationship between EMG signals and acceleration especially when using reduced, low-

resolution, set of commercially available EMG electrodes. 

 

More sophisticated machine learning techniques may have the potential to overcome these 

limitations. Therefore, two different machine learning approaches have been proposed 

(Gijsberts et al., 2014): (1) an incremental regularized variant of least-square regression 

defined as incremental ridge regression (RR), which allows to balance the trade-off between 

minimizing the errors and regularizing the solution and continual adaptation to the changes 

in the signals thanks to occasional updates with a modest amount of novel training data 

and, (2) a combined incremental RR with Random Fourier Features (RR-RFF) (Rahimi and 

Recht, 2008b) to solve non-linear problems. Incrementality performance of the methods, one 

important feature of these methods in addition to the non-linear modeling, has not be 

investigated and is not presented in this chapter. 

 

To conduct such proof-of-concept validation, I performed both hardware and software 

development and integration. I developed a novel myoelectric control approach to estimate 

hand position from EMG signals recorded from many upper limb muscle extending 

machine learning approaches developed at DLR for the estimation of hand gestures. I then 

conducted a preliminary analysis of existing reaching data to validate the approach. To 

record the EMG signals needed to estimate hands positions, a more sophisticated EMG 

recording system with higher number of sensors was required. A wireless 16 channels 

system (Trigno, Delsys Inc., USA) has then been integrated in the VR system to replace the 

8 channels EMG myoband acquisition system (Thalmic Labs, Ontario, Canada). A new VR 

environment and acquisition software was also developed to perform the experimental 

validation. 

 



119 

 

The main aim of this chapter is to report the methods developed for the estimation of hand 

position from EMG signals and the results of the preliminary analysis performed on the 

unimanual reaching database previously recorded at FSL (d’Avella et al., 2006) to validate 

the feasibility of the proposed approach. Several analyses were performed to estimate the 

best machine learning method and the optimal parameters which allow to reliably predict 

the desired outcomes. The online validation and the new version of the VVITA software 

will not be presented and discussed in this chapter, since some such developments are still 

ongoing. 

 

5.2. Methods 

This section first introduces the proposed approach to estimate hand position from EMG 

signals and to overcome the possible limitations of the approach in an online usage. Three 

different regression methods, standard linear regression and two machine learning 

methods, have been considered. Then, an offline validation procedure to test the feasibility 

of the proposed approach is presented. The procedure has been developed to identify the 

regression method and the signals preprocessing parameters with the minimum complexity 

necessary to obtain an adequate kinematic approximation from the EMG signals. 

 

5.2.1. Upper limb end-point estimation from EMG 

The proposed approach, extending the existing VVITA system (see chapter 4), combines 

assistance from the mirrored kinematics of one upper limb with the predicted kinematics 

from EMG signals from many muscles of the same limb. EMG signals collected from up to 

16 muscles of one arm (denoted as 1) [𝑚1(𝑡)] are used to estimate the instantaneous hand 

position either directly or along a pre-recorded trajectory {𝑓[𝑚1(𝑡)]}. Such estimated hand 

position is combined, as for the current VVITA system, with the recorded position of the 



120 

 

real hand [𝑥1
𝑅(𝑡)] and the mirrored position of the other hand {𝑇[𝑥2

𝑅(𝑡)]} to provide visual 

feedback in the VR [𝑥1
𝑉(𝑡)]: 

 

𝑥1
𝑉(𝑡) =  𝛿{𝛼𝑥1

𝑅(𝑡) + (1 − 𝛼)𝑇[𝑥2
𝑅(𝑡)]} + (1 − 𝛿)𝑓[𝑚1(𝑡)] 

 

where 𝑥1
𝑉 and 𝑥2

𝑉 indicates respectively the virtual position of hand 1 and 2 in VR and 𝑥1
𝑅 

and 𝑥2
𝑅 the position of the real hands. 𝑚1 indicates the electromyographic activity of 

recorded from the muscles of limb 1. 𝑇 indicates a mirror transformation of the kinematic of 

limb 2. 𝑓 indicates the model, to be developed, with the minimum complexity necessary to 

obtain an adequate kinematic approximation. 𝛿 and 𝛼 represent the coefficients through 

which it is possible to select the type and amount of movement assistance provided to limb 

1. The combination coefficients are meant to be adjusted manually during the training. 

 

This approach assumes that it is possible to estimate hand position from EMG signals 

approximately yet reliably and with an adequate accuracy without a realistic 

musculoskeletal model. The idea is to test the feasibility of extending the approach for 

myoelectric control of a virtual end effector in isometric condition based on a linear 

mapping of EMG into force applied to a point mass developed at FSL (Berger et al., 2013) to 

the estimation of hand position during bimanual reaching movements. The mapping is 

estimated at different locations and smoothly interpolated with the workspace. The motion 

of the end-effector is then simulated as a point mass subject to a force estimated from EMGs. 

 

An estimation of hand position from EMG signals during reaching movements starting from 

several initial positions and towards target in several directions for each position can be 

achieved by approximating the hand as a point mass and finding, at each starting position, 

a local map Hp between muscle activities and accelerations. This simple approach extends 

the method used in isometric conditions in which the local map is between muscle activities 

and acceleration. 
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𝐹(𝑡) ≃ 𝐻𝑝(𝑥, 𝑥̇)𝑚 (1) 

𝐹(𝑡) = 𝑀𝑎𝑠𝑠𝑎𝑟𝑚𝑥̈ (2) 

𝑥̈ ≃
𝐹(𝑡)

𝑀𝑎𝑠𝑠𝑎𝑟𝑚
≃

𝐻𝑝(𝑥, 𝑥̇)

𝑀𝑎𝑠𝑠𝑎𝑟𝑚
𝑚 = 𝐻𝑝′𝑚 

(3) 

𝐻𝑝
′ =

𝐻𝑝(𝑥, 𝑥̇)

𝑀𝑎𝑠𝑠𝑎𝑟𝑚
 

(4) 

𝑥̈ ≃ 𝐻𝑝′𝑚 (5) 

 

Where matrix Hp is the position dependent mapping between muscle activity m and force 

f, estimated in the isometric approach using linear regression. 𝑥, 𝑥̇, 𝑥̈ are the position, 

velocity and acceleration vectors of the end effector (hand) and 𝑀𝑎𝑟𝑚 is the mass of the arm. 

From the second law of dynamics, an equation which relates the acceleration to the force 

and consequently a relation between acceleration and muscle activity can be found. 

 

To develop the model a calibration procedure is required. A task in an initial calibration 

phase consists of multiple point-to-point unimanual reaching movements towards different 

targets in a 3D space. To estimate Hp, at a specific initial position p, a linear regression (LR) 

can be applied to fit muscle activity to hand acceleration. To find a mapping H incorporating 

the dependence on the initial position, it is possible to interpolate all the position specific 

maps Hp (Sharif Razavian, 2017). An alternative way, to estimate Hp, is to use machine 

learning approaches to find a non-linear relation between acceleration and muscle activity. 

Incremental machine learning methods enforcing regression (Gijsberts et al., 2014) using a 

16 or higher dimensions input space, i.e., one coordinate for each EMG electrode, and the 

acceleration as set of real values for the regression can also be used. 

 

Therefore, in this project the reconstruction performances of the LR method were compared 

with an incremental variant of RR, which represent a regularized variant of least-squares 

regression and with RR-RFF, a non-linear incremental learning method which combine 

incremental RR with Random Fourier Features. The analysis presented in this chapter will 
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investigate the effect of the different models without studying the effect of the 

incrementality. 

 

RR method builds a linear model of the input space 𝑥 (Eq. 6). Given a training set of m real-

valued input-output pairs 𝑥𝑖 ∈ ℝ𝑛,𝑦𝑖 ∈ ℝ, RR determines the optimal weight vector 𝒘̂ that 

minimizes the Eq. 7, where 𝜆 is a hyper-parameter that balance the tradeoff between 

minimizing the errors and regularizing the solution. 

 

Since the practical use of RR is limited due to its linearity a kernel-based approach was 

developed (Gijsberts et al., 2014). In the Kernel Ridge Regression (KRR), the limitation is 

circumvented using the so-called kernel trick, which allows the algorithm to be performed 

implicitly in a potentially infinite dimensional feature space. As consequence the model 

takes the form of a weighted summation of kernel evaluations with the training samples 

(Eq. 8). Kernels drastically increases the capacity of RR, but at the cost of a dependency on 

the number of training samples of the computational requirements for predictions and 

incremental updates. This dependence can be avoided by approximating the kernel function 

with a finite dimensional feature mapping as for instance a finite number of random 

samples in the Fourier domain of shift invariant kernel functions (Eq. 9), which produce an 

unbiased estimate of a kernel if 𝝎 has an appropriate distribution and b is drawn from a 

uniform distribution from 0 to 2π. The kernel approximation can be made more precise by 

averaging multiple RFFs 𝒛𝝎, so that for D features it isis Eq. 10, where each feature 𝑧𝑖 

independently draws an individual 𝜔𝑖 and 𝑏𝑖. Therefore, to make RR non-linear, it thus 

sufficient to replace each input vector 𝐱𝐢 with its random projection z(𝐱𝐢). The accuracy of 

the algorithm approximation will increase as the number of feature D, but at the cost of a 

higher computational requirement. 

 

𝑓(𝑥) = 𝑤𝑇𝑥 (6) 

arg min 
𝒘

𝜆

2
‖𝒘‖2 +

1

2
∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑚

𝑖=1

 
(7) 
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𝑓(𝑥) = ∑ 𝑐𝑖𝑘(𝑥, 𝑥𝑖)

𝑚

𝑖=1

 
(8) 

𝒛𝝎(𝒙) = √2cos(𝝎𝑇𝒙 + 𝑏) (9) 

𝒛(𝒙) =
𝟏

√𝑫
 [𝒛𝟏(𝒙), … , 𝒛𝑫(𝒙)]𝑻 

(10) 

 

Hand position x̂(t) is estimated through numerical integration. If this simplification does 

not provide an appropriate estimate, a more accurate forward dynamics model can be taken 

into account as indicated in Eq. 11. The equation represents a mass spring damper system 

with an additional gravitational component g. Mcursor is point mass whose position in VR is 

represented by a spherical cursor and b and k are respectively the coefficient of the damper 

and of the spring. Finally, the estimated position (Eq. 12) can be used both directly (black 

line) or can be amplified (red line) and/or projected into a pre-recorded reference trajectory 

(blue line), to give VR feedback. 

 

𝐻(𝑥(𝑡))𝑚(𝑡) ≃ 𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑚(𝑡)) = 𝑀𝑐𝑢𝑟𝑠𝑜𝑟𝑥̈ + 𝑏𝑥̇ + 𝑘(𝑥 − 𝑥0) + 𝑀𝑐𝑢𝑟𝑠𝑜𝑟𝑔 (11) 

𝑃𝑥𝑟𝑒𝑓
(𝑥̂) = 𝑥𝑉(𝑡) (12) 
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Figure 5.1. Transformation of estimated trajectory. 

To assist the movement in a certain direction, a vector 

𝒙𝒓𝒆𝒇 is identified. The vector can be used to project the 

instantaneous trajectory into its direction in the 

kinematic space 𝑷𝒙𝒓𝒆𝒇
𝛄𝒙𝒑(𝒕). If it is necessary, 𝛄 can be 

used to scale 𝒙𝒑 size before projecting on 𝒙𝒓𝒆𝒇(𝒕). 
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5.2.2. Offline validation analysis 

 

 

To validate the feasibility and reliability of the proposed approach, an off-line validation 

analysis was performed using EMG and kinematics data for point-to-point reaching 

movements previously collected at FSL (d’Avella et al., 2006). Standing subjects performed 

fast-reaching movements from a fixed starting position (corresponding to a posture with 

A B 

C 

Figure 5.2. Example of one trajectory for each of the 8 frontal targets and the relative 

EMG signals previously recorded at FSL (d’Avella et al, 2006). (A) top panel shows 

the pre-processed EMG signals and for each trial the movement onset (green vertical 

dashed lines) and offset (blue vertical dashed lines) time events. (A) bottom panel 

shows the kinematic velocity profile for each reported trial and the onset and offset 

events. (B) shows the experimental setup: standing subjects performed fast-reaching 

movements from a fixed starting position (corresponding to a posture with the arm 

vertical along the body and the forearm horizontal) to eight targets in the frontal plane 

(centre-out movements). (C) shows the kinematic of the 8 selected trials from centre 

(green sphere) to targets (blue spheres). 
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the arm vertical along the body and the forearm horizontal) to eight targets in the sagittal 

plane and eight targets in the frontal plane (center-out movements) and fast-reaching 

movements from the peripheral targets back to the starting position (out-center 

movements). From the collected data, the eight targets in the frontal plane were selected 

(Fig. 5.2B). For each trial only the center-out movement kinematic from the starting position 

(Fig. 5.2C, green sphere) to each target (Fig. 5.2C, blue spheres) was selected to be used as 

data for the validation analysis. Five repetitions for each target were performed. The 

position of a marker placed on a sphere attached to a handle gripped by the participant was 

acquired with an electromagnetic motion-tracking system (Fastrak, Polhemus, Colchester, 

VT) while the EMG from 20 muscles (latissimus dorsi, teres major, infraspinatus, trapezius 

inferior, trapezius medial, trapezius superior, pectoralis clavicular, pectoralis low, deltoid 

anterior, deltoid medial, deltoid posterior, biceps short, biceps long, brachii internal, brachii 

external, pronator teres, brachioradialis, triceps lateral, triceps long, triceps medium) were 

acquired with two 16-channel EMG systems (Bagnoli-16, Delsys, Boston, MA). Both 

kinematic and EMG raw data were pre-processed. Kinematic data recorded at 120Hz were 

filtered with a low pass Butterworth filter (cutting frequency = 10Hz, order = 5) and 

normalized to the maximum norm of the kinematic vector (3 channels) found for each trial. 

EMG data recorded at 1000Hz were first high pass filtered (Butterworth, cutting frequency 

= 10Hz, order = 4) and then rectified. EMG signals were also low pass filtered and resampled 

at 120Hz to match kinematic sampling frequency. The cut-off frequency of the applied low 

pass filter was identified maximizing the goodness of the fit (R2) between the acceleration 

estimated from the recorded position and the acceleration predicted from EMG signals with 

the different methods. To prevent the negative impact on the estimation of any delay 

between the time samples of the kinematic and EMG data, the optimal time difference 

between the two dataset was identified. The optimal time difference selected was that 

maximizing the R2 of all compared methods. 

 

The validation analysis aimed at comparing three different regression methods, i.e. a simple 

linear regression (LR), a ridge regression (RR), and a machine learning method based on 
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ridge regression and random Fourier features (RR-RFF), to estimate hand acceleration from 

recorded EMGs. The validation relied on a cross-validation approach. The different 

regression models were fitted on random subsets of the data and their prediction 

performances tested on the rest of the dataset. For each target, 3 repetitions were selected to 

train the regression models (3 trials x 8 targets = 24 trials) and 2 repetitions were selected to 

test the predictions (2 trials x 8 targets = 16 trials). The entire dataset was randomly 

partitioned 10 times and the procedure repeated to achieve a more robust assessment of 

model performance. 

 

5.2.3. Validation of the regression model 

Once the best model was found, its predicted acceleration was integrated twice to compute 

the estimated position. In the following, I will refer to this predicted position as modPos. To 

validate the estimation, modPos was compared with the recorded position (truePos). To 

quantify the effect of data noise on the integration and derivation procedures, the 

acceleration estimated deriving twice truePos was integrated twice in order to obtain the 

position (estPos). The different end point positions, for each trial of the testing dataset were 

compared in terms of angle error and positional error. 

 

5.2.4. Statistical analysis 

The dependence of the estimate of the position (Y) on the estimation method (Md) and on 

the target (Ta) and therefore the movement direction was tested with a linear mixed models 

(LMM). The experimental factors were treated as fixed effect factors with categorical 

(dummy) variables. Data were fitted with the model in Equation 13. 

 

𝑌 = 𝑢0 + 𝛼0𝑇𝑎 +  𝛽0𝑀𝑑 + 𝜖 (13) 
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where u0 represents the individual intercept, the coefficients α0 and 𝛽0 represent fixed-effect, 

thus the modulation of the response variable by the experimental factor Ta and Md. As the 

predicted position is a continuous variable, data were fit with a LMM (Matlab, function 

fitlme) using maximum likelihood with Laplace approximation.  
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5.3. Results 

Several analyses were performed to characterize the feasibility of the estimation process and 

to find the best parameters to reliably predict hand acceleration and consequently hand 

position from EMG signals recorded from upper limb muscles. 

 

The first analysis allowed to identify the best cut-off frequency for the low-pass filter applied 

to the EMG signals after a high-pass filter (Butterworth 4th order, cut-off frequency 10Hz) 

and rectification and the best delay between EMG and kinematics samples. In figure 5.3, ten 

different cut-off frequencies, from 1 to 10 Hz in steps of 1 Hz (different line colours), were 

used to low-pass filter (Butterworth) the EMG signals. For each of the 3 predicted variables 

(3 components of the hand acceleration), the mean of the goodness of the fit R2 for all 

compared ML methods and training datasets obtained with the cross-validation approach, 

is reported as a function of the temporal shift applied at the EMG (Fig. 5.3A, B, C). Due to 

the temporal delay induced by the acquisition system during signals recordings, and to the 

electromechanical delays due to the muscle excitation-contraction process, the prediction 

may not be reliable. Therefore, EMG signals were shifted forward with respect to the 

kinematics by 0.1s to find the best delay which maximize the cross-validation R2 for all the 

ML methods. 

 

Since the regression was performing poorly especially for the RR (max R2 = 0) and RR-RFF 

(max R2 = 0.024) methods, the same analysis was performed with EMG data normalized to 

the maximum norm of each vector of EMG samples (Fig. 5.3D, E, F). All the analyses were 

performed from the onset to the offset of the movement (see Fig. 1 green and blue dashed 

lines). Tab 5.1 shows, for both the normalized data and not, the highest R2 values found for 

each regression method in the spanned range of the parameters. RR-RFF shows the best 

performance in terms of goodness of the fit when the regression was performed with the 

normalized data and when the EMG signals were low-pass filtered with a 5 Hz cutoff 
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frequency Butterworth filter and shifted by 0.1s. These optimal values of the parameters 

(EMG filtering cutoff frequency and temporal shift) were used for further analyses. 

 

A 

B 

C 
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D 

E 

F 

Figure 5.3. Span filter and temporal delay. The figure shows the simulation process used to 

define the best Butterworth low pass filter cutting frequency and the time shift to apply to the 

EMG signals. (A, B, C) represent the results for the three methods: LR (A), RR (B), RR-RFF (C) 

for the non-normalized data, while (D, E, F) represent the same results for the normalized data. 

The spanned cutting off frequency were from 1 to 10Hz with a step size of 1Hz, while the 

spanned temporal shift were from -0.3 to 0.3s with a step size of 0.1s. 
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 Not normalized 

data 

Normalized data 

Max R2 0.445 0 0.024 0.445 0.36 0.604 

Filter Low Pass 

(Hz) 

5 10 10 5 5 5 

Temporal shift (s) 0.09 0.07 0.07 0.09 0.09 0.1 

Table 5.1. Span filter and temporal delay. Table shows the low pass filter cutting frequency and temporal 

shift parameters which maximize R2 for both the not normalized (left column) and the normalized datasets 

(right column). 

 

Figure 5.4 shows the acceleration reconstruction performed with the selected pre-processing 

parameters. Each of the 3 components of the hand acceleration computed by numerical 

differentiation of the recorded position samples (blue line) and predicted by the RR-RFF 

method (red line) are plotted for one of the cross-validation datasets. 

 

Figure 5.4. Example of RR-RFF acceleration reconstruction. The figure shows the acceleration 

estimated with the low pass filter cutting frequency and the temporal shift parameters found 

with the first simulation process (red line) and the acceleration given by the second derivative 

of real recorded position (blue lines) for the 3 Cartesian axes (x, y, z). 
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To study the feasibility of an online estimation process where the prediction should 

independently discriminate between movement and resting phase, a larger temporal 

interval was considered in order to include in the prediction both resting and reaching 

phases. A new analysis was performed starting from a given time interval t before and after 

movement onset and offset (green and blue dashed lines Fig. 5.1). Table 5.2 shows the R2 

found for each method and for each time interval considered. The best result for all the 

methods was obtained with a time interval equal to zero. However, since the analysis aims 

at finding the best procedure to predict reliable estimations in an operative scenario, the 

delta time selected was t = 0.1s, which balances the trade-off between performance 

reconstruction and temporal interval width. 

 

t (s) 0 .05 .1 .2 .3 .4 

Max R2 for LR 0.445 0.379 0.336 0.294 0.266 0.245 

Max R2 for RR 0.36 0.315 0.285 0.257 0.237 0.222 

Max R2 for RR-RFF 0.604 0.55 0.508 0.461 0.436 0.419 

Table 5.2. Span temporal delay. Table shows the R2 performance for the different temporal interval 

considered. 

Next, an analysis was performed to define the optimal hyper parameter 𝜆, i.e. maximizing 

the goodness of the fit, in both the RR and RR-RFF methods. Figure 5.5 shows the mean R2, 

computed on both training (blue lines) and testing datasets (red lines) for several 𝜆 values 

selected from 0 to 3 with a step size of 0.1. For each condition (training or testing) and each 

method, the 𝜆 value which maximize the R2 was selected to estimate the acceleration and 

the prediction evaluated on one of the testing datasets was shown in Figure 5.5. 
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A B C 

Figure 5.5. Span lambda. Figure shows the mean R2 for the three methods LR (A), RR (B), RR-RFF (C) 

obtained with the simulations estimated pre-processing parameters for both the training dataset (blue 

circles) and the testing one (red circles). 
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RR-RFF was the best method in terms of goodness of the fit both for the training and the 

testing datasets. Therefore, a final analysis was performed to find the optimal choice for the 

Gaussian basis functions bandwidth σ, used in the RR-RFF method. The simulation spanned 

several values for σ from 0 to 0.2 with 0.05 step size. Moreover, to span a larger 𝜆 interval 

the simulation also spanned the values from 0 to 1500 with step size of 100 (Fig. 5.7A). A 

more detailed simulation, spanning with a smaller step size the values around the most 

A 

C 

E 

B 

D 

F 

Figure 5.6. Best acceleration reconstruction with respect to the R2 performance estimated spanning 

lambda from 0 to 3 (step size 0.1). Figure shows the R2 performances for the machine learning methods: 

LR (A, B), RR (C, D), RR-RFF (E, F). Left column reports an example of reconstruction for one of the training 

datasets selected, while right column shows the reconstruction for one of the testing dataset selected. Each 

plot in the figure shows the acceleration estimated with the parameters found with the previous processed 

simulations (red line) and the acceleration given by the second derivative of real recorded position (blue 

lines) for the 3 Cartesian axes (x, y, z). 
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performing ones in terms of goodness of the fit, is shown in Fig. 5.7B. The maximum R2 for 

the training datasets was 0.689 found with σ equal to 0.135 and 𝜆 equal to 200, while the 

maximum R2 found for the testing datasets was 0.397 with σ equal to 0.136 and 𝜆 equal to 

390. 

 

Lastly, modPos, the position reconstructed integrating the predicted acceleration was 

compared to estPos the position estimated integrating the acceleration estimated from the 

real position and to truePos the real position for one of the testing datasets. Fig. 5.8 shows, 

for one of the testing datasets, two examples of estimated trajectories. Fig. 5.8A shows a 

good example of modPos estimated trajectory (red line), while Fig. 5.8B shows an example 

A 

B 

Figure 5.7. Span sigma and lambda. Figure shows the R2 performance for the last simulation, 

which spans simultaneously the sigma and lambda parameters. (A) Larger parameters span. 

(B) Specific span selected to maximize the goodness of the fit. 
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of poor reconstruction. The figure shows in the left column a 3D plot of the estimated 

trajectories, from the starting point (green sphere) to the target (blue sphere), while right 

column shows single axis components. 

 

B 

A 

Figure 5.8. Trajectory reconstruction. Figure shows position reconstruction examples for one of the testing 

datasets created to perform the analysis. (A) Example of good modPos estimation (red line). (B) Example 

of bad modPos estimation (red line). For each row the left column shows in a 3D plot the estimated 

trajectories (truePos blue line, estPos green line, modPos red line) from the starting point (green sphere to 

the target (blue sphere). Right column shows the estimated trajectories for each axis. 
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The mean spatial error, on the trials of one of the testing datasets, between truePos and estPos 

(mean ± sd = 0.007 ± 0.005 (m)) and between truePos and modPos (mean ± sd = 0.222 ± 0.132 

(m)) is shown as boxplot in Fig. 5.9A. Mean spatial error data were fitted with the LMM 

model in Eq. 13 (R2 = 0.66), which revealed a significant main effect of sessions (p < 0.001). 

Statistical difference between methods is reported in the figure as *** = 0.001, ** = 0.01, * = 

0.05. No statistical differences were observed for between targets (p = 0.48). 

 

Fig. 5.9B shows the mean end point angular error computer between truePos and estPos 

vectors (mean ± sd = 0.91 ± 0.42 deg) and between truePos and modPos (mean ± sd = 40 ± 39 

deg) trajectories for each trial of the testing dataset. Mean end point angular error data were 

fitted with the LMM model in Eq. 13 (R2 = 0.49), which revealed a significant main effect of 

session (p < 0.001). Statistical difference between methods is reported in the figure as *** = 

0.001, ** = 0.01, * = 0.05. No statistical differences were observed for between targets (p = 

0.26). 

A B 

Figure 5.9. End point estimations error. (A) End point position differences shown as the difference 

between the truePos and the estPos end points (truePos-estPos) and the difference between the 

truePos and the modPos (truePos-modPos). (B) End point angle differences shown as the end point 

angle error between the truePos end point vectors and the estPos end point vector (truePos-estPos) 

and the angle error between the truePos end point vector and the modPos end point vector (truePos-

modPos). Different colors dots show different targets. Statistical difference significance is reported as 

*** = 0.001, ** = 0.01 and * = 0.05. 
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The angular error and the position error were larger when position was estimated with our 

model. However, for some targets the estimation was closer to the truePos. 

 

5.4. Discussion 

The research that I have conducted during my internship at DLR has contributed to the 

initial development of a new version of the VVITA system, which allows to perform a virtual 

mirror therapy for the rehabilitation of stroke patients’ the upper limb, based on the use of 

a VR system and myoelectric control. The new system aims at extending the capabilities of 

the current VVITA system, allowing the reconstruction of the upper limb movements using 

EMG signals from many upper limb muscles. Therefore, the aim of this work was to 

evaluate the feasibility and reliability of the approach using machine learning methods and 

a high number of muscles to perform myoelectric control of reaching movements in VR. 

 

In this chapter, a validation analysis on an unimanual reaching dataset previously recorded 

at the FSL (d’Avella et al., 2006) was presented. The analysis aimed at assessing the 

feasibility of the approach and to define which regression method better predicts the 

kinematic from the EMG, in order to be used online in a VR scenario in the next step of 

development. I used and compared 3 different regression methods to locally approximate 

the hand as a point mass and to find a local map Hp between acceleration and muscle 

activities. The first and simplest method considered was linear regression (LR), the second 

was a regularized variant of the LR called ridge regression (RR), while the third one was a 

non-linear machine learning method called ridge regression with random Fourier features 

(RR-RFF), which combines the RR with random Fourier basis functions. Several analyses, 

based on a cross-validation procedure, allowed to establish the feasibility of the approach, 

to estimate the most reliable method and to find signal preprocessing and machine learning 

parameters, which perform best in terms of goodness of the fit R2. 
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The first analysis evaluated EMG pre-processing parameters. While for the kinematic, 

signals were only filtered (low pass Butterworth, cutoff = 10Hz, order = 5) to preprocess 

data, for the EMG I needed to find the optimal low-pass filter cutoff frequency to apply, 

after high-pass filtering (Butterworth, cutoff = 10Hz, order = 5) and rectifying the signals, to 

obtain the best prediction. Moreover, I found that due to the different delays in the 

acquisition of EMG and kinematic data to the electromechanical delays due to the muscle 

excitation-contraction process, a temporal shift was required to align the kinematic with the 

EMG and to obtain the best reconstruction. The analysis also investigated the effect of data 

normalization. Therefore, through these analyses I found that the best preprocessing 

procedure for the EMGs was to apply after the high-pass filter and the rectification, a low-

pass filter with a 5 Hz cutoff frequency. I also found that a temporal shift of 0.1 s between 

kinematic and EMG data was the optimal value needed in order to obtain the best 

reconstruction. Finally, while no differences were observed for the LR method, normalizing 

data to the maximum norm for each vector of EMG signal at each time sample, improved 

the performance of the RR and RR-RFF methods (Fig. 5.2). 

 

The second analysis reproduced an online operative scenario where the regression is be 

performed on a larger time interval than the one used in the first analysis, which is defined 

as the time interval between movement onset and offset. Therefore, I performed a cross-

validation analysis where I spanned several time interval ranges enlarging the movement 

onset to offset range. I found that a extending the time interval before movement onset and 

after movement end by 0.1 s was a reasonable trade-off between performance reconstruction 

and width of time interval. 

 

After evaluating the best pre-processing parameters, I performed a third analysis to define 

the optimal regularization parameter 𝜆 which maximize the goodness of the fit. I found that 

the best mean R2 evaluated on both the training and the testing datasets, which were 

obtained with a cross-validation approach, was achieved with the RR-RFF method (Fig. 5.4). 

I then decided to select and use the RR-RFF method to predict the position of the hand and 
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to refine the research of both the optimal 𝜆 parameter and the Gaussian basis functions 

bandwidth σ. Therefore, I performed a final analysis to simultaneously estimate both the 

optimal values for 𝜆 and σ parameters. The best result obtained for the training datasets was 

R2 = 0.689 found with σ equal to 0.135 and 𝜆 equal to 200, while the maximum R2 found for 

the testing datasets was 0.397 with σ equal to 0.136 and 𝜆 equal to 390. The accelerations 

predicted with the RR-RFF method (modPos) were integrated to obtain hand position and 

the reconstruction was compared with the real one (truePos) and the one estimated from the 

acceleration estimated directly from the real position (estPos). The comparison between the 

end point spatial error and angular error on one of the testing datasets. A mean end point 

spatial error of (mean ± sd = 0.007 ± 0.005 (m)) between the truePos and estPos and a mean 

spatial error of (mean ± sd = 0.222 ± 0.132 (m)) between truePos and modPos were estimated. 

Statistical differences between the errors were noticed (p < 0.001). No statistical differences 

were observed for the different targets. A mean end point vector angle error of (mean ± sd 

= 0.91 ± 0.42 deg) between the truePos and estPos trajectories and a mean end point vector 

angle error of (mean ± sd = 40 ± 39 deg) between truePos and modPos trajectories were 

estimated. Statistical differences between the errors were noticed (p < 0.001). No statistical 

differences were observed for the different targets.  

 

The overall results highlight some of the limitations of the approach. However, for some 

trials the quality of the estimation is acceptable in terms of spatial and angular error of the 

end point vector. Moreover, the proof of concept aims to study the feasibility of the 

approach to estimate movement intentions to be projected and scaled onto a reference 

trajectory or assisted by the kinematic of the other limb as for the virtual mirror therapy 

described in Chapter 4. Another possibility to improve estimation performances is to exploit 

the incrementality of the RR-RFF method in order to update the model in with new samples 

for the most deficient movement directions. 

 

These analyses allowed to identify the optimal parameters to reconstruct hand position from 

upper limb EMG signals during reaching movements. The next step is to test the procedures 
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in an online scenario on healthy subjects, using a modified version of the VVITA software 

to validate the method and to estimate the usability and reliability of the system. The 

estimated position will be used directly to perform first unimanual and then bimanual 

reaching. As planned, if the reconstruction will not be reliable enough to be used online to 

accomplish the task, the reconstructed signal will be amplified and/or projected into a pre-

recorded reference trajectory to give VR feedback. Moreover, as real time forward dynamic, 

the mass spring damper system with an additional gravitational component described in 

5.2.1.2 could be used. Finally, if the system will provide a reliable target and position 

dependent kinematic estimation, an interpolation process (Sharif Razavian, 2017) could be 

applied to all the target specific maps Hp to find a unique mapping H between EMG and 

acceleration. Incrementality of the RR-RFF method, which was not investigated in this 

project, will also be taken into account to maintain a stable level of performance (Gijsberts 

et al., 2014). 
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6. Development and validation of a low-cost system for 

measuring maximum bite force 

Based on: 

De Pasquale, P., Rubino, E., Borzelli, D., Peditto, M., Nastro Siniscalchi, E., De Ponte, F. S., 

Oteri, G., & d'Avella, A. (2022). A Low-Cost Wireless Bite Force Measurement Device. Materials 

(Basel, Switzerland), 15(11), 4000. https://doi.org/10.3390/ma15114000 

6.1. Introduction 

Maximum bite force (MBF) is an indicator of the functional state of the masticatory system 

(Bakke, 2006). Individual MBF has been used to evaluate jaw muscle functionality and 

activity and the therapeutic effect of prosthetic devices (Calderon et al., 2006); it is 

considered important in the diagnosis of the disturbances of the stomatognathic system. For 

example, MBF in patients with symptoms of temporomandibular disorders (TMD) is lower 

than in healthy subjects (Molin, 1972). However, MBF may vary substantially across healthy 

subjects because it depends on several anatomical and physiological factors: gender, age, 

general physical structure (height and weight), cranio-facial morphology, pain, and occlusal 

factors (Fernandes et al., 2003). MBF estimation is also affected by the mechanical 

characteristics and measurement technique of the recording device (Koc et al., 2010). Indeed, 

a large variability has been found when recording MBF with different devices (Tortopidis 

et al., 1998) and in the sensitivity, i.e., the slope of the load-response curve, of different 

sensors (Testa et al., 2016). 

Moreover, due to the oral cavity morphology, the biomechanical characteristics of the 

mouth are not homogeneous, and the position of the force transducer relative to the dental 

arch also affects MBF, as the more anteriorly MBF is recorded, the smaller is the maximum 

force achieved. Indeed, from the literature, it is well known that MBF varies in different 

regions of the oral cavity (Ferrario et al., 2004), with different anterior vertical jaw openings 

(Manns et al., 1979), and that bilateral clenching is larger than unilateral (Van Der Bilt et al., 

2008). As a result of the effects of all these parameters, MBF values reported for the molar 

https://doi.org/10.3390/ma15114000
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region of healthy young adults may vary in a wide range across studies: 113‐1692 N 

(Waltimo & Könönen, 1993), 446‐1221 N (Koc et al., 2010), 216‐740 N (Singh et al., 2011), 

with lower values reported for the incisal region: 108‐293 N (Hellsing, 1980; Linderholm & 

Wennström, 1970; Singh et al., 2011; Waltimo & Könönen, 1993). A previous study stated 

that when masseter muscle activity levels were kept constant, MBF varied with bite 

opening, and the maximum MBF was recorded with an anterior vertical jaw opening 

between 15 and 20 mm (Manns et al., 1979). There has also been disagreement about MBF 

differences between men and women. In some studies, no difference between genders was 

detected, whereas, in other studies, men produced greater bite forces than women (Bakke 

et al., 1990; Garner & Kotwal, 1973; Helkimo et al., 1975; Singh et al., 2011; Waltimo & 

Könönen, 1993). 

Several technologies and techniques have been used to record MBF. At present, most of the 

devices use strain-gauge, piezoresistive, piezoelectric, and pressure-sensitive force 

transducers. Strain-gauge transducer devices, consisting of a metal plate or fork whose 

deformation leads to resistance changes, have been proven to be highly sensitive, accurate, 

and capable of operating with a large measuring range. However, it is still difficult to record 

a true MBF due to discomfort and the fear of breaking the edges of the teeth when biting the 

hard surface of the transducer (Van Eijden, 1990; van Steenberghe & de Vries, 1978; Verma 

et al., 2017). Moreover, for the maximal incisal region force recording, “pain in teeth” might 

be the major limiting factor for expressing MBF (Waltimo & Könönen, 1993), and since the 

surface of the recording devices is usually made with hard materials, an uncomfortable and 

hazardous feeling may be perceived by many subjects (Fernandes et al., 2003). Placement of 

the sensor relative to the force application point may also affect measured MBF due to the 

mechanical leverage caused by the metal plate of the bite fork used in the strain gauge 

transducer (Braun et al., 1996; Gu et al., 2021). Piezoresistive transducer devices, consisting 

of a crystal silicone material that changes resistivity with the applied force, have been 

proven to be highly sensitive, thin, light-weight, and cheap but less accurate than strain 

gauge devices (Gu et al., 2021). Piezoelectric transducers use the piezoelectric effect of a 

material to convert the pressure into an electric signal. These devices are generally very thin 



145 

 

(0.1 mm) and can be used to record MBF in subjects with minimal jaw opening, but they are 

limited by a narrow range and low sensitivity and flexibility of the sensor (Gu et al., 2021). 

Pressure-sensitive devices consist of a chamber filled with fluid or air and a pressure gauge, 

which measures chamber pressure. Since the bite element is soft, the advantage of using 

these devices is that MBF can be recorded safely and comfortably; however, they are less 

reliable with respect to the other device types (Gu et al., 2021). Pressure-sensitive film 

devices consist of a pressure-sensitive sheet, which changes color according to the applied 

pressure. Due to their thinness, these devices do not interfere with the occlusion; however, 

they cannot perform continuous measurements, and they need analytical equipment to 

analyze the data (Gu et al., 2021). 

One critical open issue concerning MBF recording is that despite several devices and 

techniques that have been developed, a standardized measurement method that is also easy 

to use and reliable is still lacking (Dýraçoðlu et al., 2008). Most of the developed devices can 

record force levels in the range of 50–800 N with an accuracy level of 10 N (Fernandes et al., 

2003; Manns et al., 1979; Verma et al., 2017). Moreover, because of the inherent variability in 

placing the sensor in the patient’s mouth, highly repeatable measurements of individual 

bite force are challenging (D. Flanagan et al., 2012), especially in the premolar or molar 

region (Testa et al., 2016). Another important aspect of MBF measurement devices is their 

cost and complexity. For example, servo-controlled motors or load cells mounted on a 

customized dental device have been used to investigate motor function and evaluate bite 

force. However, due to the complexity and costly technical procedure, these approaches are 

more suited for research purposes than for routine clinical examination (Testa et al., 2016). 

Three-dimensional printing or additive manufacturing is a process for making 3D objects 

from a 3D model. The technology consists of an additive process in which successive layers 

of material are laid down under computer control. Nowadays, thanks to the development 

of affordable 3D printing technologies, rapid prototyping using 3D printers has become 

widespread and has a wide range of applications in several fields, such as research 

engineering and the medical industry. An important advantage of 3D printing is the ease of 

manufacturing any object of any shape with the same characteristic in any part of the world 



146 

 

from a 3D model as the stereolithographic STL file format, which is the standard format 

currently used for 3D printing (Gokhare & Raut, 2017). 

The aim of the present study was to develop a novel device for the estimation of the 

maximum bite force that could be built in-house at a low cost and would allow recording 

multiple standardized incisal maximum bite forces with adequate reliability and 

repeatability. A comparative analysis of several force sensors, estimation techniques, and 

maximum expression influential factors led to the selection of the most suitable force 

transducer for high range reliable measurement, the design of a sensor interface allowing to 

express MBF in the most physiological jaw separation, and the development of methods 

allowing the standardization and repeatability of the measurements across multiple 

experimental sessions and subjects, taking into account subject’s morphology. Safe 

operation characteristics, cost effectiveness, ease of use, and the possibility to build it in-

house make the device a useful tool for investigating the masticatory system functionality 

of adults in a clinical and non-clinical setting for diagnosis and/or monitoring of the therapy 

of patients with muscular and/or orthopaedic TMD and also in affordable telemedicine 

scenarios. The open-source software and CAD designs are made freely available to enable 

easy replication of the device. 
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6.2. Materials and Methods 

A bite force measurement device consisting of a force sensor, placed in between two 3D 

printed ergonomic forks and connected to a read-out system interfaced through a wireless 

link to a personal computer was developed (PC) (Fig. 1). A reusable silicone mold, 

customized for each participant, provides the interface between the forks and the subject’s 

teeth. Thanks to the mold interface and to an offline procedure, it is possible to estimate the 

device placement within the oral cavity and the distance of the force transducer from force 

application points. A model was developed to describe the physical interactions between 

the masticatory system and the device. A calibration procedure was implemented, and three 

sets of data were collected with both the device and an accurate industrial force transducer 

as reference. A linear regression analysis was performed on the first dataset to calibrate the 

device. The reliability of calibration parameters was then assessed using the other two 

datasets. A validation procedure with multiple recordings was performed on 16 healthy 

participants. Precision over multiple sessions and repetitions across experimental 

conditions was analyzed using linear mixed models (LMM). For each participant, the 

coefficient of variation of the recorded MBF values recorded during all the repetitions 

within the three sessions was used as an indicator of individual variability. 
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6.2.1. Force Sensor 

A small (20 × 11 mm) and inexpensive alloy steel load cell (TAS606, Ht Sensor Technology 

Co., Ltd., Xi’an, China) capable of measuring up to 2000 N was used to measure bite force. 

The load cell transducer has four strain gauges connected in a Wheatstone bridge formation, 

allowing to measure changes in resistance with an accuracy of 0.3% of the full scale. 

 

Figure 1. Bite force measurement device. (A) Schematic representation of the system: the 

force sensor placed in a 3D printed forks interface is wired connected to the electronic 

instrumentation, which is wirelessly connected to the PC. (B) Developed device: the force 

sensor with the 3D printed interface connected to the electronic instrumentation (box). 
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6.2.2. Custom Made Ergonomic Design and In-House 3D 

Printing 

A custom-made ergonomic interface between the sensor and the participant’s teeth was 

designed with commercial CAD software (AutoCAD, Autodesk Inc., San Rafael, CA, USA) 

and printed with a 3D printer (Supplementary Materials CAD drawing and 

stereolithography meshes S1). The interface consists of two hinged elements with a slot for 

inserting the load cell (Fig. 2). Each element (maximum length 53.8 mm) had the shape and 

size of a medium bite fork for dental records. At a distance of 31.8 mm from the hinge axis 

(fulcrum) is the center of a circular slot for the insertion of the force sensor. At the edges of 

each fork plate, a series of vertical flanges have been 3D printed to contain the silicone mold 

and to guide its repositioning. A series of notches placed at 1 mm steps, starting from the 

center of the force sensor, indicated with a cross notch, were printed on each fork plate. 

When the mold is placed on the fork plate and pressure is exerted, these notches leave an 

indentation on the mold. An offline procedure then allows measuring the distance between 

the center of the sensor (cross notch) and the incisal teeth by comparing the position 

impressed on the mold of the incisal teeth with respect to the indentations generated by the 

notches. The total vertical distance between the force application points (on the upper 

surface of the top element and on the lower surface of the bottom element) was 15.0 mm 

with the force sensor inserted between the two elements. A commercial 3D printing machine 

(Ultimaker 2 Extended+, Ultimaker B.V., Geldermalsen, The Netherlands) was used for 

prototyping the device. Polylactic Acid (PLA) was chosen as the printing material because 

it is biodegradable and non-toxic when used in solid form. A nozzle of 0.4 mm was used to 

lay down, at a speed of 50 mm/s, a layer of material with a grid infill pattern and a density 

of 20%. Stereolithography meshes used for 3D printing can be found in the Supplementary 

Materials CAD drawing and stereolithography meshes S1. 
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Figure 2. Interface of 3D CAD model. Representation of the 3D printed interface and the force 

measurement sensor CAD models. (A, B) Isometric view of the 3D sensor placed in the interface 

CAD while the upper fork plate is closed (A) and open (B). (C, D) The top-bottom and medio-

lateral views of the sensor-interface CAD with the relative sizes, respectively. (E) Top-bottom 

view of the sensor while the upper fork plate is open. 



151 

 

6.2.3. Read-Out System 

The data read-out system consisted of a microcontroller (Arduino UNO, Arduino S.r.l.) 

connected to the load cell through an amplifier (HX711, AVIA Semiconductor), powered by 

a 3.7 V lithium-ion battery with 2000 mAh capacity. A Bluetooth module (HC-05, 

iTeadStudio) is used to establish a wireless link to transmit data from the microcontroller to 

a PC and to control the device from the PC. Read-out components are mounted in a custom-

made 3D printed housing. The read-out components and circuitry scheme can be found in 

Supplementary Figure S1, and the 3D CAD model and the stereolithography meshes used 

for 3D printing the housing can be found in Supplementary Materials CAD drawing and 

stereolithography meshes S1. 

6.2.4. Software 

Software modules for data collection, device control, and data display were developed 

using two different open-source solutions. The software running on the Arduino 

microcontroller collects data from the force measurement sensor and transmits it via 

Bluetooth to the PC, which is implemented using Arduino scripting language. The graphical 

user interface controlling data collection and display on the PC (Fig. 3) was developed in 

C#. Arduino sketches and the PC GUI C# Visual Studio project can be found in 

Supplementary Materials Software S1. 
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6.2.5. Physical Model 

Since the position of the measuring sensor with respect to the dental arch is necessary to 

measure MBF, the point of force application by the dental arches on the fork plates must be 

estimated. A model (Fig. 4), consisting of a simplified representation of both the masticatory 

system (blue) and the device (red), allowed us to characterize the mechanical interaction 

between the fork plates and the dental arches and to determine that the force application 

point occurs at the level of the incisors. In particular, the force recorded by the force sensor 

on the device is proportional to the force exerted by the incisors furthest away from the force 

sensor. 

Figure 3. Data visualization software interface. C# based interface 

running on a PC allows visualizing and saving data sent wirelessly from 

the Arduino board. The software interface displays the instantaneous 

expressed force (Kg) and MBF achieved during the whole session. 
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The device is modeled as a second-order lever with the load (force transducer) between the 

fulcrum and the effort (bite force). The masticatory system can be described as a third-class 

lever with the effort (masticatory muscles force) between the fulcrum (condyle) and the load 

(teeth-device application points). The force recorded on the transducer is proportional to 

the force applied by the masticatory muscles. In particular, since the device acts as a lever, 

the applied force can be estimated from torque balance and depends on the difference 

between the distance from the sensor to the fulcrum and the distance from the force 

application point to the fulcrum, which are the lever arms. Moreover, since the device is a 

second-order lever, the difference between lever arms will provide a mechanical advantage 

(gain) in the recorded force with respect to the real one. When the mouth is open, the forces 

applied by the masticatory muscles (Fig. 4, F7, and F8, equal and opposite forces) rotate the 

Figure 4. Schematic representation of masticatory system (blue) and 

device (red) model system. F7 and F8 are equal and opposite forces 

exerted by the masticatory muscles; F5 and F6 are forces recorded by 

the sensor. For simplicity, only two contact points between the mouth 

and the device are considered for each arc: F1 and F3 for the upper part, 

F2 and F4 for the lower one. 
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jaws around the fulcrum. For simplicity, only two contact points between each dental arch 

and each element of the device are considered: F1 and F3 for the top element, F2 and F4 for 

the bottom element. However, the method can be generalized to an arbitrary number of 

contact points without affecting the result. The problem can be considered as a statically 

indeterminate problem in which the laws of static are not sufficient to determinate all the 

unknown forces or moments (Crandall et al., 1972). This problem can be solved by writing 

the appropriate equations of static equilibrium and additional equations pertaining to the 

deformation and constraints known as compatibility conditions (see Appendix A). From the 

characterization of the device, if the distance R1 between the application point of F1 and the 

fulcrum of the device is greater than the distance R2 for F2, then the sensor momentum (Ms 

= Fs·Rs) is equal to the momentum at the upper incisal teeth (M1 = F1·R1) because the top 

element of the device works as a hyperstatic beam and the force F3 is equal to zero. 

Conversely, if R1 is smaller than R2, then Ms is proportional to the momentum at the upper 

lower incisal teeth (M2 = F2·R2), and F4 is equal to zero, see Equation (1). Therefore, the 

force recorded by the sensor depends on the distance between the sensor and the most 

distant incisal application point. 

{
𝐹1 =

𝐹𝑠 · 𝑅𝑠

𝑅1
 , 𝑖𝑓 𝑅1 > 𝑅2

𝐹2 =
𝐹𝑠 · 𝑅𝑠

𝑅2
 , 𝑖𝑓 𝑅1 < 𝑅2

 (1) 

6.2.6. Calibration Procedure Using a Second Force Transducer 

To calibrate the device, it was loaded with known forces through a manual press. To 

measure the forces applied by the press, two accurate 6-axis force transducers were used: a 

small 6-axis transducer (Nano 25 F/T Sensor, ATI Industrial Automation, Apex, NC, USA, 

Fig. 5A) calibrated by the manufacturer, with a resolution of 1/16 N and a maximum force 

of 500 N (single-axis overload: ± 7300 N) for the longitudinal axes and a large 6-axis 

transducer (Delta F/T Sensor, ATI Industrial Automation, Apex, NC, USA, Fig. 5B), with a 

resolution of 1/16 N and a longitudinal maximum force of 495 N (single-axis overload: ± 

10,000 N) for the longitudinal axis. Forces were applied on the two elements of the device 
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through a 3D-printed PLA interface (base 0.2 × 2 mm) mounted on the 6-axis force 

transducer so that both devices were firmly coupled with the manual press machine (Fig. 

5A, B). The system, 1D-6D load cell (Fig. 5C), can be characterized by the linear equation 

derived from the system of torque balance equations (Halliday et al., 2013): 

 

𝐹1𝐷𝑑1𝐷 = 𝐹6𝐷𝑑6𝐷 

 

where F6D is the force measured by the 6-axis sensor, F1D is the force measured by the 

device 1-axis sensor, d1D = Lever is the lever arm, i.e., the distance from the center 1-axis 

sensor to fulcrum; d6D = Lever + ∆d is the distance from the center of 6-axis sensor to the 

fulcrum: 

 

𝐹6𝐷 =
𝐹1𝐷𝐿𝑒𝑣𝑒𝑟

𝐿𝑒𝑣𝑒𝑟 + ∆𝑑
=  𝐹6𝐷 +

𝐹6𝐷∆𝑑

𝐿𝑒𝑣𝑒𝑟
 

If F6D = x and F1D = y, 

𝑦 = 𝑥 +
𝑥∆𝑑

𝐿𝑒𝑣𝑒𝑟
= 𝑥(1 +

∆𝑑

𝐿𝑒𝑣𝑒𝑟
) (4) 

𝑦̂ = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑥 𝑆𝑙𝑜𝑝𝑒 + 𝑥 𝑆𝑙𝑜𝑝𝑒
∆𝑑

𝐿𝑒𝑣𝑒𝑟
 (5) 

𝑦̂ = 𝛽1 + 𝑥 𝛽2 + 𝑥 𝛽3∆𝑑 (6) 

 

where β1 = Offset, β2 = Slope, β3 = Slope/Lever. Then: 

 

𝑥̂ =
𝑦 − 𝛽1

𝛽2 + 𝛽3∆𝑑
=

𝑦 − 𝑂𝑓𝑓𝑠𝑒𝑡

𝑆𝑙𝑜𝑝𝑒 + 𝑆𝑙𝑜𝑝𝑒
∆𝑑

𝐿𝑒𝑣𝑒𝑟

 (7) 

𝐹6𝐷̂ =
𝐹1𝐷 − 𝛽1

𝛽2 + 𝛽3∆𝑑
=

(𝐹1𝐷 − 𝑂𝑓𝑓𝑠𝑒𝑡)

𝑆𝑙𝑜𝑝𝑒 + 𝑆𝑙𝑜𝑝𝑒
∆𝑑

𝐿𝑒𝑣𝑒𝑟

 (8) 

 

The parameters β1, β2, and β3 (Equation (6)) were estimated with a linear regression 

performed on the dataset. In the first dataset with the small transducer, 21 different force 

values, ranging from 0 to 490 N (0–50 Kg), were recorded. Each measurement consisted of 
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50 samples. Then, 2 additional datasets were recorded to test the reliability of the estimated 

parameters. The first test dataset consisted of 15 force recordings, with a load range from 98 

to 490 N with a step size of 100 N and different force application points at 0, 5, and 10 mm 

from the 1D load cell axis, in order to characterize the lever gain. The second dataset 

collected with the large transducer consisted of 6 recordings (50 samples each), from 0 to 

980 N. 

 

 

 

 

 

 

Figure 5. Calibration procedure. A manual press machine applies several loads on the 

device through a second calibrated load cell. (A) The calibration procedure used a small 

6D force transducer (max force 500 N) as the second device. (B) the setup with a large 6D 

force transducer (max force 495 N). (C) Schematic representation of the second-order lever, 

which characterizes the calibration process. In particular, the press machine exerts a force 

on the 6 DOF (F6D) sensor, which can be placed at a variable distance (∆d = d6D − d1D) from 

the main axes of the 1 DOF. d6D and d1D are, respectively, the distances from the fulcrum of 

the lever of the 6 DOF and 1 DOF sensors. F1D is the resulting force recorded on the 1 DOF 

sensor. 
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6.2.7. Validation Procedure with Multiple Force Recordings 

of Healthy Participants 

Sixteen healthy participants (7 females), aged from 24 to 55 years (32 ± 10, mean ± SD), height 

155 to 187 cm (170 ± 10 mean ± SD), weight 52 to 87 kg (68 ± 11 mean ± SD), performed 3 

consecutive MBF measurement sessions for 3 days. Subjects were tested at the U.O.C. 

Odontoiatria ed Odontostomatologia of the Azienda Ospedaliera Universitaria (AOU) 

Gaetano Marino in Messina, were informed of the purposes of the measurement and gave 

their consent to the measurement and to the collection of personal data. The study was 

conducted in accordance with the Declaration of Helsinki, and since the measurements did 

not involve any intervention, they did not require ethical approval according to the standard 

procedures of the AOU. Subjects were seated on a chair with heads positioned so that the 

Frankfort horizontal plane would be parallel to the floor while performing the task. When 

the subject performed the task for the first time, the forks were filled with silicone teeth mold 

and covered by a plastic thin film that sealed the device from liquids (Fig. 6A). The operator 

placed the device in the mouth of the participant simulating the teeth moulding procedure 

in order to obtain a subject-specific interface (Fig. 6B, C). Thanks to the fork supports, the 

silicone mold can be easily removed from the fork and replaced in the same position for 

multiday recordings. The silicone mold provides a measure of the incisive teeth application 

point, which can be used offline in order to estimate the correct MBF value (Fig. 6C). 
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6.2.8. Statistical Analysis 

The dependence of MBF on experimental factors was analysed with a linear mixed model 

(LMM) that accounts for interindividual variability by including the participant as a random 

effect. The session (S) and the repetition (R) within each session were treated as fixed effect 

factors. Data were fitted with the model described in Equation (9). 

 

𝑌 = 𝑢0 + 𝛼0𝑆 + 𝛽0𝑅 + 𝜖 

 

Figure 6. Experimental procedure. (A) Device setup steps. During setup phase, therapist 

places the teeth silicone molds on the device forks. (B) Device placed in subject’s mouth. 

(C) Example of the subject’s customized upper and lower silicone molds and the 

application point distance measurement phase. During this phase, the distances between 

both incisors, upper and lower, and the center of the sensor are estimated thanks to the 

notches on the silicone mold. 
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In Equation (9), u0 represents the individual intercept and accounts for inter-individual 

differences. The coefficients α0 and β0 represent fixed-effects; thus, the modulation of the 

response variable by the main factors S and R. The estimation of model parameters was 

based on the maximum likelihood approximation. To test the significance of each fixed 

effect term in the selected model, a hypothesis test on the fixed effect terms applying 

analysis of variance (ANOVA) on the fitted LMM was performed. The analysis was 

implemented in Matlab. 
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6.3. Results 

6.3.1. Calibration: Accuracy and Precision 

In Figure 7A, the forces recorded during the calibration and testing phases are reported for 

three datasets. For each estimated point, which represents the mean value over 50 samples, 

the distance of the force application point from the center of the device (1-axis) force sensor 

is reported. The forces estimated with the 6-axis sensor (red) and the one recorded with the 

1-axis sensor (blue) are reported for the calibration session (filled circular markers) and the 

test sessions (empty circular markers). The mean force estimation error of the force 

measured with the device (1-axis sensor) with respect to the 6-axis sensor was 0.00 ± 0.65 N 

for the calibration dataset and 6.4 ± 6.7 N for the test datasets. Figure 7B shows the force 

estimated by the device (1-axis sensor) as a function of the force estimated with the accurate 

6-axis sensor, and Figure 7C the force residual, for the test sessions. The color of the 

triangular markers indicates the distance of the force application point from the center of 

the 1-axis sensor. 



161 

 

 

 

Figure 7. Calibration results. (A) Calibration and test session curves. Estimated force 

recorded with the 6D load cell (red), and the estimated force recorded with the 1D sensor 

(blue), are reported in the function of the application point distance from the center of the 

1D load cell. Black dots are the records used for the calibration; white dots are the data 

used for the test. (B) Compares the 1D load cell estimated force with the 6D load cell one. 

(C) Delta force (1D − 6D estimated force) in function of the 6D one. Triangle color indicates 

the distance of the force application point from the center of the 1D sensor (yellow: 10 mm; 

orange: 5 mm; red: 0 mm). 



162 

 

6.3.2. Validation: Repeatability and Effect of Session and 

Participant 

Figure 8A illustrates an example of the force data recorded in one participant (12). In each 

recording session (different colors) performed on three different days, the participant 

generated MBF three times in the course of about 20 s. The average MBF over all sessions 

for each participant varied from a minimum of 65 N to a maximum of 584 N (see Fig. 8B). 

Gender is indicated with different colors (blue) for male and (red) for female participants. 

Thus, the data revealed a large inter-individual variability of MBF. The average MBF over 

participants was 240 ± 105 N (mean ± SD), which is compatible with the mean incisal range 

found in the literature (108‐293 N) [12]. The mean maximum bite force for men was (277 ± 

114 N), with the range of 584 to 105 N. The mean maximum bite force for women was (195 

± 64 N), with the range of 308 to 65 N. Figure 8C shows the mean values over repetitions in 

each session, better highlighting the repeatability over repetitions and sessions. A linear 

mixed effect (LME) model, with gender, repetition, and session as fixed effects and subject 

as random effect, did not reveal any statistically significant differences between gender (p = 

0.25), repetitions (p = 0.26), and sessions (p = 0.24). Figure 8D shows a broad distribution of 

the coefficient of variation (CV) of MBF across sessions for each participant. The average CV 

over participants was 11 ± 4%, indicating a low extent of variation for the recorded forces 

for each subject, which confirm the precision and repeatability of the measurement within 

and between sessions. Figure 8E shows the individual CV as a function of MBF. No 

significant relations between MBF and the CV were found. 
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Figure 8. (A) Recorded MBF profiles as a function of time for the 3 different sessions 

(different colors). During each session, subject performed MBF 3 times. (B) Mean MBF 

value over sessions for each subject, (blue) for male and (red) for female. (C) Mean MBF 

value over session repetitions for each subject. (D) Histogram of MBF coefficient of 

variation value, (E) MBF coefficient of variation in function of MBF mean. 
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6.4. Discussion 

Evaluation of MBF is important to assess the functional state of the masticatory system. 

Despite the various devices using different technologies that have been developed to 

measure MBF, there is still no standardized measurement method that is also easy to use 

and reliable. It is well known that the mechanical characteristics and the measurement 

technique of the recording device can influence the accuracy and precision of MBF 

estimation (Koc et al., 2010). Moreover, as MBF can be affected, in addition to the used 

technologies, by the presence of TMJ disorders (Molin, 1972), patient-specific anatomical 

factors (Fernandes et al., 2003), and force application point (Braun et al., 1996; Gu et al., 

2021), device placement within the oral cavity must be standardized and evaluated to 

reliably estimate MBF. Finally, to obtain adequate reliability and repeatability while 

performing multiple measurements in the same patient, it is critical to minimize the 

dependence of the results from the operator and to make an accurate repositioning of the 

device that is easy to perform. 

A novel, low-cost MBF measurement device, based on a commercially available strain gauge 

sensor, with a nominal working range adequate for use with adult subjects, inserted in a 

custom housing interface, using a simple microcontroller-based data read-out system 

connected wirelessly to a data acquisition and display software on a personal computer was 

introduced. The soft polymeric housing of the sensor can be easily reproduced, without any 

industrial machinery, with a commercial 3D printer and provides a homogeneous soft 

surface to bite, which overcomes the fear of breaking edges of the teeth that may occur when 

biting in the hard surface of the strain-gauge force sensor (Van Eijden, 1990; van Steenberghe 

& de Vries, 1978; Verma et al., 2017). The developed measurement procedure, based on the 

usage of a reusable subject-specific silicone mold, allows for customizing the device 

according to individual anatomical factors and easily repositioning the device within the 

mouth. A series of notches in the 3D printed forks are imprinted by pressure on the silicone 

mold, providing a graduated indicator that allows to easily estimate the distance between 

the force sensor and both the upper and lower incisive teeth region. Such estimation is 



165 

 

necessary to evaluate the force application point, which may vary across individuals since 

the distances between both teeth regions and the sensor depend on the anatomical structure. 

The distance between the sensor and the application point is required for a reliable 

estimation of MBF since the device acts as a lever due to the developed 3D printed interface 

design. Neglecting the distance between the device and the force application point when 

measuring MBF may lead to unreliable force estimation, especially for strain gauge-based 

devices with a metal fork acting as a lever (Braun et al., 1996; Gu et al., 2021). To reliably 

estimate MBF according to the participant’s morphology, a model of the interaction between 

the masticatory system and the device was developed. Then, a test calibration was 

performed in the laboratory to assess the reliability and repeatability of the device within 

the physiological range of loads and application points. The device demonstrated 

satisfactory performance in terms of accuracy and precision in an adequate force range. In 

particular, the device could record forces in the range of 0-980 N with an accuracy of about 

6.4 N and a precision of 6.7 N, corresponding to a mean relative accuracy of 2% over the test 

dataset and a relative precision of 2% for the mean force value of the test dataset. Previous 

reviews reported a mean accuracy of 2% in the range 0-350 N (Koc et al., 2010) or an accuracy 

of 10 N and 20% relative precision (assuming that one minus relative precision, i.e., 80%, 

was reported) in the range of 50–800 N (Fernandes et al., 2003; Manns et al., 1979; Verma et 

al., 2017). It is worth noticing that the selected force transducer allows for an even wider 

force range, up to about 2000 N, but the calibrated load range was adequate for incisive 

region MBF (Hellsing, 1980; Linderholm & Wennström, 1970; Singh et al., 2011; Waltimo & 

Könönen, 1993). The consistency and accuracy of the bite force recorder were further 

supported by testing 16 adult subjects. As shown in the results section, the reliability and 

validity of MBF estimations (240 ± 105 N) are in line with published studies using state of 

the art bite force recording devices for measuring maximum incisal teeth bite force in 

healthy subjects (108‐293 N) (Hellsing, 1980; Linderholm & Wennström, 1970; Singh et al., 

2011; Waltimo & Könönen, 1993). The values recorded were just above those reported in the 

literature, possibly due to physiological factors specific to the selected participants or to the 

more comfortable bite afforded by the developed device, which allows for exerting MBF 
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without fear. Differences between gender were also investigated. While in some studies, no 

differences between gender were detected, in most studies, men produced greater bite 

forces than women (Bakke et al., 1990; Garner & Kotwal, 1973; Helkimo et al., 1975; Singh et 

al., 2011; Waltimo & Könönen, 1993). Even if, in our study, men’s mean maximum bite force 

(277 ± 114 N) was greater than for women (195 ± 64 N), no statistically significant differences 

in bite force were found (Singh et al., 2011). This might be due to the small number of 

subjects included in the study. 

The customization of the device using a subject-specific silicone mold allows for adequate 

repeatability across multiple sessions. The developed methods also allow performing 

multiple recordings either within the same day or on different days with high precision (CV 

of 11 ± 4%) and no statistically significant differences within or across sessions. Because teeth 

shape may vary and because of the variation in positioning the sensor in the patient’s 

mouth, which might also be due to operator inaccuracy, force estimation (Braun et al., 1996; 

Gu et al., 2021) may be unreliable (D. Flanagan et al., 2012; Hellsing, 1980), and highly 

repeatable measurements of patient MBF may be difficult to achieve (D. Flanagan et al., 

2012), especially in the premolar and molar region (Testa et al., 2016). However, one study 

did not find statistically significant differences between repetitions (Fernandes et al., 2003), 

possibly because the authors were very careful in repositioning the sensor within the oral 

cavity. Since in our device, after the first application, the replacement within the oral cavity 

is standardized by the silicone mold, the device can be repositioned precisely and also used 

without the operator’s supervision. 

Finally, the design of our device has additional desirable features. To ensure the safety of 

the device, the electronic read-out component transmits wireless data to a PC for storage, 

and it is therefore intrinsically safe, as it does not require a power isolation thanks to a low 

voltage battery supply. Moreover, the device is low-cost, can be easily reproduced, and is 

able to assess MBF in clinical or domestic settings for characterizing the functionality of the 

masticatory system for patients with TMJ disorders during a longitudinal study or a 

rehabilitation program. However, the device also has some limitations. Even if the device is 

wireless, it requires a PC to visualize and store data. Future developments will address this 
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limitation by integrating a display and a data storage system directly into the small-size, 

portable read-out system. Another limitation is the requirement of an initial silicone mold 

customization procedure to standardize device replacement within the mouth, compared to 

a simple stick fork that can be directly bitten. However, the silicone mold has several 

benefits, such as the accuracy of the repositioning and the device customization with respect 

to the patient’s mouth, that justify its use. Moreover, the material required for the mold is 

easily available in dentistry. Finally, to be reproduced, the device requires a 3D printer. 

However, nowadays, 3D printing is very affordable. 

 

6.5. Conclusions 

A novel computer-assisted design for an MBF measurement device was developed that is 

portable, cost effective, and open-source. The device is easy to use, reliable and can be 

employed in both clinical and domestic environments, for accurate functional assessments, 

for monitoring of the therapy of patients with muscular and/or orthopedic TMD, and in 

telemedicine scenarios. Further studies will use the novel device to characterize the changes 

in MBF and evaluate the efficacy of physical therapy in specific pathologies, such as TMD 

(Linsen et al., 2009) and myotonic dystrophy (Guimaraes et al., 2007). Moreover, further 

development will concern the integration of a low-cost EMG system to study the relation 

between MBF and myoelectric signals recorded from jaw-closing muscles (Manns et al., 

1979). 
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6.6. Appendix A 

6.6.1. Appendix A.1. Physical Model 

In this section, the interaction between the masticatory system and the force measurement 

device can is described using a simple physical model. The equilibrium of momentum 

equations is used to characterize the device, which works as a second-order lever. Static 

methods have been applied to solve the problem, which shows an indeterminate solution. 

Through this model, the device can record the force applied at the most distant incisive teeth 

from the sensor, and thus the correct MBF estimation requires taking into account the 

participant’s dental arc morphology. 

Figure A1 shows a simplified model of the masticatory system and the device. In this 

system, the masticatory system in blue and the force recording device in red are represented. 

The masticatory system can be described as a third-class lever with the effort (masticatory 

muscles force) between the fulcrum (condyle) and the load (teeth-device application points). 

Our device is modeled as a second-order lever with the load (force transducer) between the 

fulcrum and the effort (bite force). 

In particular, equal and opposite F7 and F8 represent the force exerted by the masticatory 

muscles system, F5 and F6, instead of the force measured by the sensor. For simplicity, only 

two points of contact between the mouth and the device are considered for each arch: F1 

and F3 for the upper part, F2 and F4 for the lower one. Table A1 reports the momentum 

equilibrium equations for both the device and the masticatory system. The method can be 

generalized to an arbitrary number of contact points. 
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Momentum Equilibrium Equations 

Device Masticatory System 

ΣM = 0 ΣM = 0 

(1) M5 = M1 + M3 (1) M7 = M1 + M3 

(2) M6 = M2 + M4 (2) M8 = M2 + M4 

(3) M5 = M6 (3) M7 = M8 

M1 = R1·F1 M1 = L1·F1 

M2 = R2·F2 M2 = L2·F2 

M3 = R3·F3 M3 = L3·F3 

M4 = R4·F4 M4 = L4·F4 

M5 = R5·F5 M7 = L7·F7 

M6 = R6·F6 M8 = L8·F8 

F1·R1 + F3·R3 = F2·R2 + F4·R4 F1·L1 + F3·L3 = F2·L2 + F4·L4 

Figure A1. Schematic representation of masticatory system (blue) and device 

(red) model system. F7 and F8 are equal and opposite forces exerted by the 

masseter, F5 and F6 force recorded by the sensor. For simplicity, only two points 

of contact between the mouth and the device are considered for each arch: F1 and 

F3 for the upper part, F2 and F4 for the lower one. 
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Table A1. Momentum equilibrium equations for the device (left column) and the masticatory system 

(right column). 

If only the upper arches of the device and the masticatory system are considered (Fig. A2), 

the model would be composed of two beams hinged at one end and resting on two supports 

(device-dental arc contact points). The force in both cases is applied between the hinge and 

the two supports, which will generate constraint reactions. 

 

 

 

Each beam is considered separately, and since the number of unknown constraints is higher 

than the available equations, the problem is statically indeterminate (or hyperstatic) 

(Equation (A1)). However, while isostatic structures can be treated as rigid bodies, 

hyperstatic structures must be treated as deformable bodies to solve all the constraints. 

Therefore, both the masticatory system and the device as a hyperstatic beam whose load 

(representing the action exerted by the masticatory muscles) is applied between the fulcrum 

and the loads (device-teeth contact points) are considered (Fig. A3). Hyperstatic structures 

require compatibility conditions and solid body deformation equations to be considered in 

addition to the static equilibrium equations for determining the internal forces and 

reactions. Therefore, the superposition effect principle (Crandall et al., 1978) to the 

Figure A2. Schematic representation of upper component of the 

masticatory system (blue) and device (red) model system. 
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deformations of the redundant constraint, which is assumed to be the support in L1, was 

applied. The principle of superposition states that on a linear elastic structure, the combined 

effect of several loads acting simultaneously is equal to the algebraic sum of the effects of 

each load acting individually (Equation (A1)). 

 

{
𝛴𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐹𝑜𝑟𝑐𝑒𝑠 = 𝑉0 + 𝑉1 + 𝑉2
𝛴𝑀𝑎 = 𝐹 · 𝐿 =  𝑉1 · 𝐿1 + 𝑉2 · 𝐿2

 (A1) 

 

 

 

 

 

6.6.2. Appendix A.2. Principle of Superposition 

1. Removing the constraint L1 

If the constrain L1 is removed, a supported beam with a concentrated load is obtained (Fig. 

A4). For the resolution, it is necessary to consider the differential equation of the elastic line 

(Crandall et al., 1978). 

 

Figure A3. Hyperstatic beam representation. 
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If af > bf, 

𝑋𝑌𝑚𝑎𝑥,𝑓 =  
√𝑙2 − 𝑏𝑓2

√3
 

𝑌𝑚𝑎𝑥,𝑓 =  
𝐹 · 𝑏𝑓 · √(𝑙2 − 𝑏𝑓2)3

9 · √3 · 𝐸 · 𝐽 · 𝑙
 

 

where E is the Young’s modulus and J is the second moment of area. 

If af < bf, x‐axes must be inverted: 

 

{
𝑎𝑓′ = 𝑏𝑓

𝑏𝑓′ = 𝑎𝑓
 

𝑋𝑌𝑚𝑎𝑥,𝑓′ =  
√𝑙2−𝑏𝑓′2

√3
 for inverted x-axes, 

𝑋𝑌𝑚𝑎𝑥,𝑓 = 𝑙 − 𝑋𝑌𝑚𝑎𝑥,𝑓′ for original x-axes, 

𝑌𝑚𝑎𝑥,𝑓′ =  
𝐹 · 𝑏𝑓′ · √(𝑙2 − 𝑏𝑓′2)3

9 · √3 · 𝐸 · 𝐽 · 𝑙
 

 

2. Removing the force F 

In this case, a supported beam with concentrated load is obtained (Fig. A5). 

 

Figure A4. Representation of the hyperstatic beam without the constrain L1. 
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If a1 > b1, 

𝑋𝑌𝑚𝑎𝑥,1 =  
√𝑙2 − 𝑏12

√3
 

𝑌𝑚𝑎𝑥,1 =  
𝑉1 · 𝑏1 · √(𝑙2 − 𝑏12)3

9 · √3 · 𝐸 · 𝐽 · 𝑙
 

 

If a1 < b1, x‐axes must be inverted: 

 

{𝑎1′ = 𝑏1
𝑏1′ = 𝑎1

 

𝑋𝑌𝑚𝑎𝑥,1′ =  
√𝑙2−𝑏1′2

√3
 for inverted x-axes, 

𝑋𝑌𝑚𝑎𝑥,1 = 𝑙 − 𝑋𝑌𝑚𝑎𝑥,1′ for original x-axes, 

𝑌𝑚𝑎𝑥,1′ =  
𝑉1 · 𝑏1′ · √(𝑙2 − 𝑏1′2)3

9 · √3 · 𝐸 · 𝐽 · 𝑙
 

 

Since the displacements Ymax,f and Ymax,1 are in the opposite direction: 

 

𝑌𝑚𝑎𝑥,𝑓 = 𝑌𝑚𝑎𝑥,1 

 

It is obtained: 

 

Figure A5. Representation of the hyperstatic beam without the force F. 
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 𝑉1(𝐹) 

 

In our case: 

 

𝑉1 =  
𝐹 · 𝑏𝑓 · √(𝑙2 − 𝑏𝑓2)3

𝑏1 · √(𝑙2 − 𝑏12)3
 

 

Then, from the sum of the moments in the system of equations (A1): 

 

𝛴𝑀𝑎 = 𝐹 · 𝐿 =  𝑉1 · 𝐿1 + 𝑉2 · 𝐿2 

𝑉2 =
(𝐹 · 𝐿 −  𝑉1 · 𝐿1)

𝐿2
 

 

Since: 

 

𝐹 · 𝐿 <  𝑉1 · 𝐿1 

 

Therefore: 

 

𝑉2 < 0 

 

However, since Y2 is not strictly a support because it does not constrain the upward 

movement, the beam will flex (Fig. A6). Therefore, the point of application of the force can 

be considered unique and, in particular, as the point closest to the force. 
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Despite the dental being modeled as a deformable beam, its lower deformability with 

respect to the device allows us to neglect it, only a deformation of the device is considered 

(Fig. A7). Then, only L1 can be considered as a point of contact. The same approach can be 

replicated in the lower half of the system (Fig. A8). 

 

 

Figure A6. Representation of the effect superimposition analysis on 

the hyperstatic beam. 

Figure A7. Representation of the single deformation acting only on 

the upper device fork plate. 
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Since the distances of the upper and lower incisal teeth R1 and R2 are different, it is 

necessary to understand which of the two forces between F1 and F2 generates the moment 

recorded by the sensor (M5 or M6). Therefore, the internal forces are neglected, and then the 

device is modeled as a unique rigid beam (Fig. A9). 

 

 

Since the upper and lower forces are not applied along the same axis, the resultant 

unbalanced moment would generate a rotation. The direction of this moment will depend 

on the difference R1 − R2. However, since the real device does not actually rotate during the 

task, other constraints would compensate for the resultant moment. Therefore, the contact 

Figure A8. Representation of the masticatory system and the device 

with only one application point for each dental arc. 

Figure A9. Representation of the masticatory system and the device 

neglecting internal forces. 
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points R3 and R4 can be reconsidered as applied points for constraint forces, which balance 

that moment. Whether R1 < R2, the moment would have a clockwise direction and negative 

sign, which will unload on R3 (Fig. A10). 

 

 

 

 

𝛴𝑀 = 0 

𝑀1 + 𝑀3 = 𝑀2 

𝐹1 · 𝑅1 + 𝐹3 · 𝑅3 = 𝐹2 · 𝑅2 

 

In summary, the device in Figure A1 can be modeled as in Figure 4, where based on the 

difference between L1 and L2, an unload on L3 or L4 will occur. 

If R1 < R2: 

𝐹4 = 0 

Knowing the force recorded on the sensor F6, the force applied in F2 is obtained by summing 

the moments: 

 

𝑀𝑠 = 𝐹6 · 𝑅6 = 𝐹2 · 𝑅2 

𝐹2 =
𝐹6 · 𝑅6

𝑅2
 

Then, from distance L2 (incisor-masticatory system fulcrum distance) and L8 (masticatory 

muscles-masticatory system fulcrum distance), the moment and, therefore, the force exerted 

by the masseter F8, can be calculated as a function of the force recorded at the sensor F6: 

 

Figure A10. Representation of the masticatory system and the device 

neglecting internal forces and considering R3 as the moment unloading point. 
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𝑀𝑚 = 𝐹8 · 𝐿8 = 𝐹2 · 𝐿2 =  
𝐹6 · 𝑅6

𝑅2
· 𝐿2 

 

Otherwise, if R1 > R2: 

 

𝐹3 = 0 

𝑀𝑠 = 𝐹5 · 𝑅5 = 𝐹1 · 𝑅1 

𝐹1 =
𝐹5 · 𝑅5

𝑅1
 

 

Finally, from the distance L1 (incisor-masticatory system fulcrum distance) and L7 

(masseter-masticatory system fulcrum distance), the moment and, therefore, the force 

exerted by the masseter F7, can be calculated as a function of the force recorded at sensor 

F5: 

 

𝑀𝑚 = 𝐹7 · 𝐿7 = 𝐹1 · 𝐿1 =  
𝐹5 · 𝑅5

𝑅1
· 𝐿1 
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7. Conclusions 

During my PhD program, I conducted research activities within 5 different projects that 

addressed different aspects of human movement, ranging from the analysis of visuomotor 

control of complex naturalistic movements, to the development and validation of novel 

upper-limb rehabilitation protocols for stroke survivors, to the development of a new device 

for the functional assessment of the masticatory system. The thesis has presented, for each 

project, the procedures that have been developed and the methods that have been used to 

obtain acceptable performances in terms of estimation of the physiological parameters and 

the metrics necessary to carry out, analyse and study various motor tasks. These projects 

mostly used low-cost technologies or technologies developed ad-hoc through open-source 

systems that allowed customization of the developed devices taking into account the 

individual characteristics of the participants. Methods were developed to obtain a reliable 

estimation of kinematic parameters and performance metrics useful for quantifying 

neuromotor function and to assess improvements due to the proposed rehabilitation 

protocols. Thanks to the VR systems and the 3D virtual environment development 

platforms, it has been possible to develop immersive scenarios that allow for studying 

complex tasks such as intercepting virtual balls, throwing virtual and real balls, and 

bimanually reaching virtual objects. The use of open source systems (such as the Arduino 

platform) combined with open-source software and 3D models development solutions has 

instead allowed the development of a subject-specific customized and low-cost system for 

recording the maximum bite force. Various data analysis methodologies were developed 

and compared to estimate with sufficient reliability the parameters necessary to establish 

the performance of the various motor tasks. 

 

Regarding the first project (presented in chapter 2), VR was used to study complex 

visuomotor processes underlying interceptive actions. It was observed that adult naive 

participants, without any expertise in sports that involve throwing or interception, can 

extract information from the throwing action kinematic and use this information online to 
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improve their interception performance. It was also highlighted that some throwing styles 

among those identified are more informative than others. These results extend our current 

understanding of the nature of predictive abilities for action, and in particular for 

intercepting behaviour. Studies focusing on interceptive performance have demonstrated 

how humans use internal predictions of projectile trajectories to successfully intercept flying 

objects, presumably based on an internal model of how objects move under the effect of 

gravity. These results show that untrained adults are able to correctly predict the direction 

of projected objects based on the kinematics of the throwing action, which involves a more 

complex prediction capability than just processing the flight of a ball. 

 

The second project (presented in chapter 3) focused on the development of low-cost system 

for studying unconstrained throwing of virtual and real balls. Such system is capable of 

recording the kinematic parameters necessary for characterizing throwing actions the 

exploiting the motion capture capability of a commercial VR system, replacing an expensive 

motion capture system as those usually employed for this type of studies. Ball release and 

ball impact parameters were used to quantify the accuracy and precision of the developed 

data acquisition setup. Time, position and speed of the ball release were estimated through 

several computational methods that were developed taking into account the ball-hand 

interactions and with ad-hoc hardware solutions, such a microswitch interfaced with the 

controller of the VR system. An image processing algorithm allowed to estimate time and 

position of ball impact on a target board. To obtain the most reliable parameters, several ball 

release estimation methods were compared. In the future, the system will be used to 

investigate the effect of different throwing styles and strategies, as well as sport expertise 

by recruiting participants practicing different sports, either involving throwing actions or 

not. 

 

The third project (presented in chapter 4) has been conducted within a collaboration 

between UniMe, FSL, and DLR, aiming at the development and validation of a novel 

neuromotor rehabilitation approach. The main goal of the project, which is still ongoing, is 
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to use VR and myoelectric control to enhance recovery of upper limb motor functional in 

patients suffering from hemiparesis following a stroke event. The novel approach is based 

on the idea of using VR systems integrating motion capture sensors and machine learning 

techniques applied to EMG to provide assistance to patients during bimanual reaching tasks 

in the virtual environment by mirroring the unimpaired limb. As in a conventional mirror 

therapy, the developed rehabilitation protocol allows to assist the movement of a virtual 

representation of the impaired upper limb and the gesture of the virtual impaired hand with 

the mirrored movement and gesture of the unimpaired ones. Based on the functional 

assessment and recovery of the patient during the rehabilitation process, therapists can 

adjust the level of assistance taking into account the reaching performance. A preliminary 

analysis on the data collected so far has highlighted an improvement in the functionality of 

the upper limb, quantified through clinical evaluation (Fugl-Meyer) and instrumental 

evaluations. Clinical evaluations have highlighted a significant difference between the 

beginning and the end of the rehabilitation protocol. The instrumental evaluations have not 

shown a statistically significant improvement by comparing the selected parameters. This 

may be due to the choice of an inadequate metric. Future analysis will compare several 

additional parameters from the entire experimental dataset with the control group dataset, 

to find the best metric to quantify motor function and to highlight further statistical 

differences. 

 

The fourth project (presented in chapter 5) aimed at extending the virtual mirror therapy 

approach described in chapter 4 by exploiting the full potential of myoelectric control. I 

performed this project during an internship at DLR. The idea was to use the EMG signals 

from many upper-limb muscles, rather than only from forearm muscle mostly involved in 

controlling hand gestures as in the approach described in chapter 4, to assist the movement 

of the virtual impaired limb. In this new system assistance will be provided by a 

combination of mirrored kinematics from the unimpaired hand and a prediction of the 

position of the impaired hand from EMG signals. Such myoelectric control component is 

intended to provide a salient feedback on the muscle patterns that need to be re-learned by 
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the patient and to stimulate positive neuroplasticity by reinforcing any attempt to improve 

the functionality of the muscle patterns. As a first step towards the development of such a 

system, as a proof-of-concept of the proposed approach, a data analysis was performed on 

a dataset previously collected at the FSL. The goal was to understand the feasibility of using 

EMG signals from many muscles of the entire upper limb, instead of only from forearm 

muscles, to estimate hand position. Different regression methods, including a machine 

learning algorithm previously developed by the DLR group to fit a non-linear mapping of 

EMG signal into hand kinematic variables, were compared to determine which was most 

adequate to perform the task. The non-linear method (RR-RFF), with the appropriate data 

pre-processing and regression parameters, provided the best prediction of the kinematic 

from EMG signals, superior with respect to the other linear methods. A new version of the 

VVITA software will be developed to validate the approach in an online operative scenario 

and to test the software on healthy participants as a model for motor rehabilitation of stroke 

survivors. 

 

Finally, the fifth project (presented in chapter 6) resulted from a collaboration with the 

department of Odontoiatria ed Odontostomatologia of the Azienda Ospedaliera 

Universitaria (AOU) Gaetano Marino in Messina. It aimed at developing a new device to 

assess the functionality of the masticatory system by measuring the maximum bite force 

(MBF). A wireless, low-cost device was developed thought several iterations among the 

various collaborators, taking into account the individual anatomical and biomechanical 

characteristics of each participant and therefore customizable according to the participant's 

physiognomy. A method to standardize the repositioning of the device within the oral 

cavity was developed. The developed device and force estimation methods allow to 

estimate MBF in a reliable and repeatable manner over multiple measurement sessions. The 

device takes into account the different conformation of the mouth, which is a fundamental 

aspect for reliable recordings since the mouth acts as a physical lever and allows multi day 

recordings thanks to the position replacement standardization. Moreover, from the 

literature review emerged that no low-cost devices allow the MBF to be estimated reliably 
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and reproducibly in a laboratory without a development process based on industrial 

machinery. For this reason, both the software and the 3D CAD models needed to replicate 

the device have been available as open-source distribution. The device is a useful tool for 

estimating MBF in both single session clinical evaluation or in longitudinal studies and can 

be freely developed and used. Further studies will investigate the changes in MBF and 

evaluate the efficacy of physical therapy in specific pathologies such as TMD. Further 

development will integrate a low-cost EMG system to study the relation between MBF and 

jaw-closing myoelectric signals. 

 

In sum, several research projects have been conducted for this PhD thesis, involving the 

investigation of basic principles of human motor control and the development of novel 

methods for the assessment of motor function and for neuromotor rehabilitation. While 

these projects addressed different neuroscientific and bioengineering questions, they all 

shared the use of VR tools and innovative data analysis methods. Several low-cost devices 

have been developed as a result of collaborations with other research groups of the 

University of Messina and international centres. Some of the work presented in this thesis 

has already been published in international scientific journals (iScience, Materials) or 

presented at international motion control or bioengineering conferences (International 

IEEE/EMBS Conference on Neural Engineering, Society for the Neural Control of 

Movement). Further developments and data analyses will be necessary to complete part of 

the ongoing studies and developments and to expand the research field of the already 

consolidated and published studies. 
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