
Università degli Studi di Messina

Dipartimento di Scienze Matematiche e Informatiche,
Scienze Fisiche e Scienze della Terra

Doctoral Programme in "Physics" XXXV Cycle

Analytical and Numerical Approaches for Light
Scattering by Nanostructured Materials

Doctoral Thesis of: Supervisor:

Abir SAIDI Prof. Rosalba SAIJA

Co-Supervisor:

Dr. Maria Antonia IATÌ

Ph. D. Course Coordinator:

Prof. Vincenza CRUPI

Academic Year 2021 - 2022





CONTENTS

Contents

Chapters 6

Introduction 7

1 The Scattering Problem: analytical and numerical approaches 12

1.1 Scattering Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Analytical and numerical approaches . . . . . . . . . . . . . . . . . . 15

1.3 Multipole Fields and Transition Matrix Formalism . . . . . . . . . . . 18

1.3.1 General Solutions of Helmholtz equation . . . . . . . . . . . . 18

1.3.2 Multipole expansions of Electromagnetic Fields . . . . . . . . 21

1.3.3 Transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.4 The case of spherical scatterer . . . . . . . . . . . . . . . . . . 25

1.3.5 The case of nonspherical scatterer . . . . . . . . . . . . . . . . 27

1.4 Dipole Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Finite Difference Time Domain Method: conceptual basis and

diagram of the simulation process . . . . . . . . . . . . . . . . 34

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

2



CONTENTS

1.5.2 Equations analog of the time-dependent Maxwell’s curl equations 38

2 Theory of optical forces and optical tweezers 43

2.1 Conservation laws, Maxwell stress tensor, radiation force and torque . 43

2.1.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Optical Forces in T-matrix formulation . . . . . . . . . . . . . . . . . 47

2.2.1 Modeling the electromagnetic focused field in T-matrix approach 49

2.2.2 Implementation of computing code . . . . . . . . . . . . . . . 50

2.3 Optical Forces in Dipole Approximation . . . . . . . . . . . . . . . . 54

2.3.1 Modeling the electromagnetic focused field in dipole approximation 55

2.3.2 Implementation of computing code . . . . . . . . . . . . . . . 57

2.4 Optical Forces in Finite Difference Time Domain . . . . . . . . . . . 59

2.4.1 Maxwell Stress Tensor technique . . . . . . . . . . . . . . . . 59

2.4.2 Volumetric technique . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.3 Modeling the electromagnetic focused field in FDTD . . . . . 62

2.4.4 Implementation of computing code . . . . . . . . . . . . . . . 63

3 Numerical comparison on representative case studies 67

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

3



CONTENTS

3.1 Numerical results for the focused incident field . . . . . . . . . . . . . 68

3.2 Numerical results for the radiation force . . . . . . . . . . . . . . . . 71

3.3 Numerical comparison: comments and conclusions . . . . . . . . . . . 77

4 Modeling optical forces for space tweezers applications 80

4.1 Space Tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 The Complexity of Solar System Dust . . . . . . . . . . . . . . . . . . 83

4.3 Optical forces on dust particles . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Models for dust particles . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Modelling optical trapping of dust particles in laboratory optical

tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Comparison with experiments . . . . . . . . . . . . . . . . . . 95

5 On the optical properties of Ag-Au colloidal alloys 98

5.1 Simulations of the UV-Vis spectra for pure metal colloids (e-Ag and

e-Au) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Simulations of the UV-Vis spectra for mixtures of the elemental colloids103

5.3 Simulations of the UV-Vis spectra for re-irradiated mixtures of elemental

colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

4



CONTENTS

Conclusions 113

Acknowledgment 116

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

5



Chapters



Introduction

Introduction

Light scattering and absorption are ubiquitous phenomena with a strong impact

on our everyday life. Light scattering includes a whole class of light-matter interaction

processes during which light is deflected due to the interaction with an obstacle. Most

of our visual perceptions result from the scattering and absorption of light by the

objects around us. Colors, brightness, and glossiness are a consequence of different

scattering and absorption properties.

Due to its strong impact, light scattering has been and still is an important

research field in physics. The Maxwell equations describing the nature of electromagnetic

waves, dated back to the 1860’s, are the basis of the electromagnetic theory and the

fundamental tool for the understanding of light scattering and absorption processes.

We can distinguish between elastic scattering when no energy transfers are involved

in the process and inelastic otherwise. Rayleigh scattering and Mie scattering belong

to the first category, while a typical example of inelastic scattering is Raman scattering.

In this thesis, only the case of elastic scattering will be considered because, in the

matter-radiation interactions under study, the energy is conserved. A complete

study of the problem can be done using Quantum Electrodynamics. However, in the

cases of our interest, we can neglect quantum contributions and use a fully classical

description.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

7



Introduction

Historically, light scattering in the classical theoretical understanding has been

investigated through suitable approximations that depend on the particle size [1]. For

homogeneous spherical particles, an accurate evaluation of the radiation fields can be

obtained by Mie theory [2] [3]. When we consider scattering processes involving non-

spherical or non-homogeneous particles, we need to use more sophisticated approaches.

The Transition matrix (T-matrix) has proven to be one of the most powerful methods

to solve the light scattering problem by cluster or aggregates of spherical monomers,

by spheres with spherical, possibly eccentric, inclusions, and nano-shell particles [4].

The T-matrix formalism, first derived by Waterman [5], is based on the multipole

expansions of the electromagnetic fields and on the calculation of the linear Transition

operator that, acting on the multipole amplitudes of the incident field, gives as

a result the multipole amplitudes of the scattered field. It can be regarded as a

generalization of Mie theory, to which it reduces for a single homogeneous spherical

particle. Although the analytical approach of the multipole expansion is relatively

simple and general, the computational methods needed to calculate the expansion

coefficients from the imposition of the boundary conditions on the surface of the

scatterer can be quite complex [4].

The T-matrix gives the opportunity to explore several systems and configurations

in a broad range of fields of applications, such as interstellar dust modelling [6], light

trapping in complex fractal structures [7], plasmonics, and optical trapping [8] see

figure 1. We will describe this method in detail and also compare it with alternative

approximated approaches that, only in specific regimes, can grant a fast and simple

way to obtain reasonable results.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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Introduction

Figure 1: Trapping regimes and typical objects that are trapped in optical manipulation
experiments. In defining the regimes of optical trapping, we have assumed trapping wavelengths
that fall in the visible or near-infrared spectral region [1].

In recent years the T-matrix method has been successfully applied to the study

of the mechanical effects of light, proving to be a very efficient tool to calculate

optical forces, especially in the case of non-spherical particles or at intermediate

size scale, where approximate descriptions are bound to fail. Optical forces emerge

from momentum exchange between light and matter and play a key role in optical

trapping and manipulation (optical tweezers). This is an ever growing research field

with relevant applications in biology, medicine, nanofluidics, soft matter, atomic

physics, and photonics, just to mention a few [9].

Despite the relevant advances in optical trapping techniques and the key role
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played by radiation pressure in many cosmic processes, the application of optical

tweezers to space exploration and cosmic dust characterization (space tweezers)

has yet to be developed. The application of optical trapping to space materials

is challenging and paves the way for a new research field. In space missions, several

techniques have been developed to collect and characterize extra-terrestrial samples,

but with the drawback of unavoidable sample contamination. Optical trapping

systems mounted on stratospheric instruments, onboard cometary probes, or on

rovers to Mars or to the Moon would mean the opportunity for in situ characterization

of extraterrestrial material without any contamination.

This thesis is organized as follows. In the first chapter, we introduce the light

scattering theory. After a preliminary discussion on the different scattering regimes

meant to motivate the use of approximated approaches under certain conditions, we

illustrate some methods to solve the light scattering problem. First, we introduce the

T-matrix technique, a rigorous analytical method based on a complete electromagnetic

theory. Then, the dipole approximation with its limits of applications and, finally,

the numerical approaches, specifically the Finite Difference Time Domain method

(FDTD).

In the second chapter, we present the theory of optical forces and optical tweezers.

After introducing the Maxwell stress tensor and the general equations from which

optical forces and torques can be calculated [10], we describe how the T-matrix

approach can be used to calculate optical forces efficiently. Then, we compare this

description with those obtained using the dipole approximation and the FDTD,

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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showing the implementation of computing codes with the three different approaches.

The third chapter presents and discusses a comparison between analytical and

numerical approaches to calculate the optical forces for some representative case

studies, specifically single spherical particles and dimers. Results obtained through

the T-matrix, the FDTD approach, as implemented in Lumerical, and the Dipole

approximation will be shown in order to compare the strengths and weaknesses of

the various computational approaches.

In the fourth chapter, we discuss the application of optical tweezers to space

exploration and cosmic dust characterization. We present the results obtained for the

optical forces acting on cosmic dust analogs using the T-matrix method, highlighting

the key role played by dust composition and morphology for optical trapping. Finally,

the perspectives for future and challenging applications of optical tweezers in curation

facilities for sample return missions or in extraterrestrial environments will be discussed

[11, 6].

In the last chapter, we present an application of the T-matrix method in plasmonics

to study the optical properties of Ag-Au colloidal alloys produced by pulsed laser

ablation in liquid [12].
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Chapter 1

The Scattering Problem: analytical and numerical

approaches

The scattering problem aims at describing the electromagnetic fields scattered by a

particle when it is illuminated by an incoming electromagnetic wave.

1.1 Scattering Regimes

Approximated solutions to the scattering problem can prove very valuable in specific

situations when the particle size is very small or very large compared to the wavelength

of the light. A striking example is given by optical trapping calculations that are

often applied to dielectric nanoparticles or to particles of tens of microns, much

smaller or much larger than the visible wavelength used to trap them, respectively [1].

Approximations are often much easier to handle with respect to full electromagnetic

calculations. However, they are inapplicable when dealing with systems with a size

comparable to the light wavelength or with a highly non-spherical shape.

When limiting to spherical particles, we can identify regimes that depend on

the particle radius. For each regime, simplifications and approximations are made

for a fast but often qualitative understanding and calculation of the light scattering

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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1.1 Scattering Regimes

properties. The size parameter x is crucially used to determine the range of validity

of these approximations:

x = kma =
2πnm
λ0

a

Where km is the light wavenumber in the medium surrounding the particle, λ0 is the

incoming monochromatic wavelength in vacuum, a is the particle radius, and nm is

the refractive index of the surrounding non-magnetic medium.

When the particle radius is much larger than the incident wavelength (kma >> 1),

we can safely use a theoretical approach based on the ray optics regime. In the

opposite case, if the radius of the particle is much smaller than kma, we can use the

Rayleigh approximation and consider the particle as a dipole or a suitable collection

of dipoles [1]. This means that we consider the electromagnetic field homogeneous

inside the particle under the condition |np/nm|kma << 1 where np is the refractive

index of the particle.

In case kma ≈ 1, we need to use complete wave-optical modelling of the particle-

light interaction to calculate the cross sections and the mechanical effects of light.

In such a case, the T-matrix approach proves to be a very convenient choice, as

far as it is possible to take advantage of the symmetry of the particle responsible

for light scattering. Several techniques, mostly numerical, are based on a rigorous

electromagnetic theory and, in some cases, can take into account the precise shape

of the particle. In this respect, we first remember the extended boundary conditions

methods, mainly based on the pioneering paper of Waterman [5], that rely on

integrals over the volume or over the surface of the particle. If these integrals can

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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be calculated, at least numerically, with sufficient accuracy, these methods account

very well for the actual shape of the particle. Secondly, we recall the so-called finite

elements methods, which have in common the spatial or temporal discretization of

the scattering problem, leading to the replacement of spatial and temporal derivatives

in Maxwell’s curl equations by finite difference quotients.

In the following sections, we introduce the mathematical formalism of the multipole

fields for the description of electromagnetic fields, which leads to the analytic definition

of the Transition matrix. We show how powerful this method is for describing

scattering by non-spherical particles, modelled as cluster of spheres. Then, we present

one of the most common finite methods in the time domain, the Finite Difference

Time Domain method (FTDT), as implemented by Lumerical, and, finally, we discuss

the range of application of the dipole approximation to be able to compare the

potential and limitations of the three different approaches.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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1.2 Analytical and numerical approaches

1.2 Analytical and numerical approaches

Although eminent scientists had already dealt with the problem (Debye, Lorenz,

Clebsch,...), the first fundamental work on light scattering by spherical particles was

written by Gustav Mie and published in 1908. Mie solved the problem by giving

a rigorous analytical solution by studying the scattered light in a colloidal solution

made of spherical golden particles [2].

The geometry of the problem is illustrated in figure 2. Here, we consider a

homogeneous particle of refractive index np in a medium of refractive index nm. If

the incident electric field is E⃗i(r⃗) and we denote the scattered electric field as E⃗s(r⃗),

the total electric field outside the particle is E⃗t(r⃗)=E⃗i(r⃗)+E⃗s(r⃗) . We will indicate

the total electric field inside the particle E⃗p(r⃗).

The starting point is the solution of Maxwell’s equations:

∇ · D⃗ = ρ

∇ · B⃗ = 0

∇× H⃗ − ∂D⃗

∂t
= J⃗

∇× E⃗ +
∂B⃗

∂t
= 0

Supplemented by the constitutive equations that relate the field vectors to each

other within a given medium. As far as we dealt with linear media, the constitutive

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials
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1.2 Analytical and numerical approaches

Figure 2: Pictorial view of the scattering process. Scattering theory studies how an incoming
electromagnetic wave is scattered by a particle. In general, when light impinges on an object,
the object emits a scattered electromagnetic field, which in the far field is a spherical wave. In
particular, given an incoming linearly polarised plane electromagnetic wave (E⃗i(r⃗)) in a medium
of refractive index nm impinging on a particle of homogeneous refractive index np, one wants to
determine the electromagnetic field inside the particle(E⃗p(r⃗)) and the scattered electromagnetic
field (E⃗s(r⃗)), both in the near field and in the far field [1].

equations are:

D⃗ = ϵE⃗, B⃗ = µH⃗, J⃗ = σE⃗

where ϵ, σ, and µ, thanks to the assumed linearity of the media, are tensors

whose components are independent of the field strength. Moreover, as the media we

are considering are non-magnetic and isotropic, µ = 1 and ϵ and σ reduce to scalars

that, in the case of non-homogeneous media, are space-dependent.

The linearity of the field equations and of the constitutive relations allows us

to apply them to each of the monochromatic components obtained through a time

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials
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1.2 Analytical and numerical approaches

Fourier transform of the fields. Through a straightforward analytic procedure, it is

possible to transform the system consisting of the four Maxwell differential equations

into the pair of decoupled vector Helmholtz equations:

(∇2 + n2k20)E⃗ = 0

(∇2 + n2k20)B⃗ = 0

where:

n2
m = µ

(
ϵ+

4πiσ

ck0

)
is the complex refractive index of the medium in which the field propagates, where

the positive sign in front of the imaginary part of n2 is due to the choice of the time

dependence as exp(-iwt), with w = ck0

The solution of these vector differential equations would certainly be easier if

rectangular coordinates were used, but this choice appears advantageous only when

the separation surfaces between the media through which the field propagates are

plane. In this case, each of the vector Helmholtz equations separates into a set of

scalar ones that acts on the single component of the electric and/or magnetic field.

In any other case, to achieve this advantageous decoupling, it is necessary to find

another coordinate system that respects the symmetry of the system.

Regardless of the geometry of the system, the physically significant solutions

of the Helmholtz equations must still meet the boundary conditions applied to the

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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1.3 Multipole Fields and Transition Matrix Formalism

separation surface between the outer medium and the scatterer:

n⃗× (E⃗1 − E⃗2) = 0

n⃗× (B⃗1 − B⃗2) = 0

where n⃗ is the versor normal to the separation surface. The analytical formulation of

the boundary conditions will also benefit from the choice of an appropriate coordinate

system according to the symmetry of the scatterer.

1.3 Multipole Fields and Transition Matrix Formalism

1.3.1 General Solutions of Helmholtz equation

Let us consider the Helmholtz equation in its scalar form:

(∇2 + k2v)F (r⃗) = 0

where F (r⃗) = F (r, θ, ϕ) represents a component of the electromagnetic field. Assuming

that the symmetry of the problem is spherical, this differential equation can be easily

solved by writing it in spherical coordinates and taking into account that the scalar

function F (r⃗) can be factored as F (r⃗) = F (r)Φ(ψ)Θ(θ). The angular solution of the

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials
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scalar Helmholtz equation is given in terms of spherical harmonics Ylm [10, 13]:

Ylm(r̂) = Ylm(θ, ϕ) = Θ(θ)Φ(ψ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)e

imψ

which on a unitary sphere form an orthonormal basis of scalar functions. As for

the radial part of the F (r), it can be shown that there are two linearly independent

solutions that satisfy the equation, the Bessel spherical functions[10, 13] which have

the property of being regular at the origin:

jl(z) = (−z)l
(
1

z

d

dz

)l
sin z

z

and the Hankel spherical functions [10, 13] of the first kind that satisfy the radiation

condition at infinity,

hl(z) = h
(1)
l (z) = jl(z) + yl(z)

The solution of the scalar equation discussed above is of fundamental importance

since all the vector fields involved in a scattering process satisfy the Helmholtz

equation and, if the symmetry of the system allows it, can be resolved analytically

for each of their scalar components. However, the EM field is a vector field, and

this quality must also be maintained in the solutions of the equations to correctly

describe all phenomena related to polarization, a crucial physical characteristic in

the correct description of the field. For this reason, it is necessary to use the vector

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials
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1.3 Multipole Fields and Transition Matrix Formalism

spherical harmonics [10, 13] as follows:

X⃗lm =
1√

l(l + 1)
(−ir⃗ ×∇)Ylm =

1√
l(l + 1)

L⃗Ylm

These vectors form an orthonormal basis on which we can represent the electromagnetic

field that propagates in a homogeneous media and constitute the spherical multipole

fields on the basis of which we decide to develop all the fields involved in the scattering

process.

In particular, we define J-multipoles, the vectors used for the construction of the

regular fields at the origin:

J⃗
(1)
lm = jl(kr)X⃗lm(r̂), J⃗

(2)
lm =

1

k
∇× J⃗

(1)
lm (1)

and H-multipoles that go to zero when r tends to infinity:

H⃗
(1)
lm = hl(kr)X⃗lm(r̂), H⃗

(2)
lm =

1

k
∇× H⃗

(1)
lm (2)

The superscript p = 1, 2 is a parity index that distinguishes the magnetic multipole

fields(p = 1) from electric ones (p = 2). Note that the multipole fields are the

solution to the Maxwell equations and eigenvectors of L2 and Lz as well as of the

parity.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

20



1.3 Multipole Fields and Transition Matrix Formalism

1.3.2 Multipole expansions of Electromagnetic Fields

In this section, we deal with the expansion of the electromagnetic incident and

scattered fields in terms of multipole fields. Without loss of generality, we can

consider that the incident field is constituted by a plane wave propagating in an

homogenous media, with refractive index nm and propagation vector k⃗; in this case,

one of the monochromatic components of the time Fourier transform of the field EM

fields is represented by the following equations:

E⃗ = E0ηêηexp(ik⃗m · r⃗) (3)

iB⃗ = inmE0η(k̂m × êη)exp(ik⃗m · r⃗) (4)

where |km| = nm|k0| and êη represents one of the two possible states of field polarization.

As stated in the preceding section, the multipole field 1-2, solution of Helmholtz

equation in free space, are written in terms of vector spherical harmonics X⃗lm that

constitute an orthonormal basis on which the EM field can be expanded, for this

reason, we get the following:

E⃗i =
2∑

η=1

E0η

+∞∑
l=0

+l∑
m=−l

W
(1)
lm (êη; k̂)J⃗

(1)
lm (km, r⃗) +W

(2)
lm (êη; k̂)J⃗

(2)
lm (km, r⃗) (5)

iB⃗i = nm

2∑
η=1

E0η

+∞∑
l=0

+l∑
m=−l

W
(2)
lm J⃗

(1)
lm (km, r̂) +W

(1)
lm J⃗

(2)
lm (km, r̂) (6)

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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1.3 Multipole Fields and Transition Matrix Formalism

where we have used J-multipole fields that are regular at the origin. The coefficients

of the incident fields are known and can be analytically determined by applying the

orthogonality relations of the vector spherical harmonics:

E0ηW
(1)
lm jl(kr) =

∫
E⃗ · X⃗∗

lmdΩ = 4πilE0ηêη · X⃗∗
lm(k̂)

nmE0ηW
(2)
lm jl(kr) = i

∫
B⃗ · X⃗∗

lmdΩ = 4πil+1E0η(k̂ × ˆe{eta) · X⃗∗
lm(k̂)

In close analogy with the incident field, the scattered field has a similar form but

for the multipole fields type; in fact, we have to use H-multipole, equation 2, that

have the suitable properties at ∞:

E⃗s =
+∞∑
l=0

+l∑
m=−l

A
(1)
lmH⃗

(1)
lm (km, r̂) + A

(2)
lmH⃗

(2)
lm (km, r̂) (7)

Series like those in the equations 5-7 have infinite terms, but there is an optimal

value of l, say L, to which you can truncate the series and be sure that it converges.

This criterion meets a more precise empirical formula found by Wiscombe (1979)

[14], that however is not suitable for metal nanoparticles. In this case, we choose to

truncate the multipolar expansion requiring that the values of scattering, absorption

, and extinction cross-section have an accuracy of one part in a million evaluated

between two jobs running with different L values. It has been shown that, for a

system with a size parameter x and a refractive index typical of a dielectric material,

it is sufficient to include in the series terms with l of just over the integer part of x

Analytical and Numerical Approaches for Light Scattering by Nanostructured
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1.3 Multipole Fields and Transition Matrix Formalism

[13].

1.3.3 Transition matrix

As stated above, the linearity of all the equations describing the electromagnetic

fields allows us to connect the fields resulting from the scattering process to the

incident field through a linear operator that, acting on the incident field, returns the

scattered field [5]:

E⃗S = SE⃗i

When this operator is represented on the basis of the spherical multipole fields, it is

known as the transition matrix (T-matrix) and is defined by the equation:

A
(p′)
l′m′ =

∑
plm

S
(p′p)
l′m′lmW

(p)
lm (8)

In this representation, the operator links the amplitudes of the incident field to

those of the scattered field. However, the most relevant result of this approach

is that the T-matrix, for a given wavelength and after imposing the boundary

conditions, depends solely on the chemical and physical properties of the scatterer

being independent both from the state of polarization of the incident field and from

the scattering geometry of the process [15].

In far-field regime, where the EM field is described by the multipole expansions

containing only the transversal components of the field. It is possible to find the
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1.3 Multipole Fields and Transition Matrix Formalism

relation between the S −matrix coefficients and the scattering amplitude that, for

a η′−polarized incident field, is:

fη′η = − i

4πkm

∑
plm

W
(p)∗
lm (êsη′ , k̂s)A

(p)
lm(êiη, k̂i) =

= − i

4πkm

∑
plm

∑
p′l′m′

W
(p)∗
lm (êsη′ , k̂s)S

(pp′

lml′m′W
(p′)∗
l′m′ (êiη, k̂i) (9)

This equation is one of the most important relations in the electromagnetic theory

of scattering as it links the measurable physical quantities, such as the cross sections,

to the elements of the T-matrix that contain the optical properties of the scatterer.

Indeed, applying the optical theorem and assuming that the T-matrix elements are

known, we can write the relation between the extinction cross section σT and the

forward scattering amplitude as follows:

σT,ηη′ =
4π

km
Im[fηη′(k̂s = k̂i, k̂i; êi) · êi] =

= − 1

k2m

∑
plm

∑
p′l′m′

W
(p)∗
ηlm S

(pp′)
lml′m′W

(p)∗
η′l′m′ (10)

Moreover, even the scattering cross-section, the ratio of all the energy scattered by

the particle to the incident energy, can be expressed in terms of the forward scattering
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amplitude:

σSηη′ =

∫
|fηη′(k̂s = r̂, k̂i; êi)dΩ =

=
1

k2m

∑
plm

∑
p′l′m′

∑
p′′l′′m′′

S
(pp′)∗
lml′m′W

(p′)∗
ηl′m′S

(pp′′)∗
lml′′m′′W

(p′′)
η′l′′m′′ (11)

At this stage, it is evident that the knowledge of the T-matrix of the particle

concerned has paramount importance for the interpretation of the optical behavior,

as it can be directly linked to optical cross sections. At this point our attention shifts

to the methodology by which it is possible to determine the elements of the T-matrix

S and consequently, through equation 8, the coefficients of the scattered field.

1.3.4 The case of spherical scatterer

If the particle of interest has a spherical shape the expansion of the field into a series

of spherical multipole fields make the imposition of the boundary conditions across

the surface of the particles an easy matter because, as far as the spherical particle is

radially homogeneous, even the fields within the sphere must be regular at the origin

and their expansion can be taken in the form:

E⃗tη = E0

∑
plm

C
(p)
ηlmJ⃗

(p)
lm (kp, r⃗) (12)

iB⃗ =
1

km
∇× E⃗ (13)
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where kp = npk0, np being the refractive index of the particle. Now, on account that

the transverse harmonics form a complete orthonormal set tangent to the surface of

the unit sphere, it is possible to apply the boundary conditions simply by equating

the dot products of the internal and the external fields with the transverse harmonics

and integrate analytically the resulting equations over the solid angle [15].

The result of this procedure yield a system of equations among which the

amplitudes of the internal field can be easily eliminated and, in the case of

homogeneous sphere, the scattering coefficients are related to the incident coefficients

as follows:

A
(p)
ηlm = −R(p)

l W
(p)
ηlm (14)

where the quantities R
(1)
l and R

(2)
l coincide with the well known Mie scattering

coefficients, bl and al, respectively [16].

This procedure can be extended also to radially non-homogeneous spheres when

the refractive index is space-dependent. In this case, the electric and the magnetic

field do not satisfy the Helmholtz equation but rather a system of analogous equations

in which the electric and magnetic fields are coupled because of the assumed

inhomogeneity of the medium. Due to the spherical symmetry of the scatterer,

however, the internal field can still be expanded in a series of multipole fields in which

the radial function is no longer Bessel’s function but a more general and numerically

determinable function that takes into account the radially non-homogeneity of the

sphere. In this case is possible to determine once again a relation formally analogous

to equation 14, in which now the quantities R(p)
l constitute a set of generalized Mie
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coefficients [17].

1.3.5 The case of nonspherical scatterer

The particles that are most commonly met in actual observations are nonspherical

and, even when their orientations are randomly distributed, the effects that stem from

the lack of sphericity may be attenuated but never fully canceled by the averaging

procedure. For these reasons, the possibility to determine the optical properties

of these particles has been and still is a crucial question in light scattering theory

and simulation. Several attempts have been made to devise model nonspherical

particles whose optical properties could be calculated as exactly as possible without

resorting to a purely numerical approach like FDTD (finite difference time domain),

FEM (Finite element method), or DDA (Discrete-Dipole Approximation). Several

attempts have been made to devise model nonspherical particles whose optical

properties could be calculated as exactly as possible [18] [19] [20], i.e., without

resorting to any approximation. However, one of the most promising procedure

devised to simulate a real non-spherical scatterer consists in modeling the real shape

by an aggregate of N, not necessarily equal spheres, whose mutual distances are so

small that they must be dealt with as one object [21].

In the following, we briefly report the procedure for calculating the T-matrix for

a cluster of spheres starting from one of the most useful and important properties of

the electromagnetic fields: the principle of superposition.
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Figure 3: Sketch of a 3-sphere cluster. The dashed curve separates the near from far-field region; in
this latter, the optical behavior can be described through the definition of T-matrix. Figure from
[15]

Thanks to this property, it is possible to write the field scattered by the whole

aggregate as the superposition of the fields scattered by each of the spheres in the

form:

E⃗sη = E0η

∑
α

∑
plm

A(p)
ηαlmH⃗

(p)
lm (km, r⃗α) (15)

where the amplitudes A(p)
ηαlm should be calculated so that E⃗sη satisfy the appropriate

boundary conditions at the surface of each of the spheres, whose inner field is of the

form:
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E⃗tηα = E0η

∑
α

∑
plm

C(p)
ηαlmJ⃗

(p)
lm (kp, r⃗α) (16)

By analyzing the equation 15, it is possible to note that the scattered field is

given by a linear combination of multiple fields that have different origins, whereas

the incident field is given by a combination of multipole fields centered at the origin

of the coordinates. Since the boundary conditions must be imposed at the surface

of each of the spheres, e.g., of the α-sphere, it is necessary to apply the addition

theorem for vector spherical harmonics [22] and to rewrite the whole field in terms

of multipole fields centered at Rα:

E⃗sη = E0η

∑
plm

[A(p)
ηαlmH⃗

(p)
lm (km, r⃗α) +

∑
α′

∑
p′l′m′

H(pp′)
αlm,α′l′m′A(p′)

ηα′l′m′ J⃗
(p)
lm (km, r⃗α)] (17)

where the quantities H are responsible of the translation of multipole fields from α′

sites to α sphere.

After applying the boundary conditions on the surfaces of each of the spheres, it

is necessary to apply the addition theorem so as to refer all the quantities to a single

origin. At the end, the elements of the T-matrix are:

S
(p,p′)
lml′m′ = −

∑
qLMq′L′M ′

∑
αα′

I(pq)
0lmαLM [M−1]

(qq′)
αLMα′L′M ′I(q′p′)

α′L′M ′0l′m′ (18)

The T-matrix of the whole aggregate defined above has the correct transformation

properties under rotation. In addition, as a consequence of the lack of spherical
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symmetry of the aggregate as a whole, is non-diagonal and contains all the multiple

scattering contributions due to the interaction among the spheres that form the

cluster.
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1.4 Dipole Approximation

Rayleigh scattering refers to the study of the phenomenon of light diffusion when

the incident wavelength is much larger than the average size of the sample particles.

In this case, if rp is the minimum radius of the sphere containing the scatterer,

x|np/nm| = 2πrp
λ0

|np/nm| << 1 and we can model the particle as an induced dipole

immersed in an electromagnetic field E⃗(r, t), which can be considered homogeneous

inside the particle [23] [24].

This last condition is important when considering the applicability of the dipole

approximation and has to be considered with care when we deal with high refractive

index dielectric particles or metal nano-particles, where the presence of plasmonic

resonances dominates the optical response [25]. In the range of validity of this

approximation, if the external field is not too large, the induced dipole moment,

p⃗(r, t) = αpE⃗(r⃗, t), is proportional to the external field through a linear complex

polarisability, αp, as corrected by Draine and Goodman to satisfy the optical theorem

[26]:

αp = α0(1− i
2k3mα0

3ϵm
)−1

with ϵm dielectric permittivity of the medium and α0 being the static Clausius-

Mossotti polarisability,
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α0 = 3V ϵm
ϵp − ϵm
ϵp + 2ϵm

where V is the particle volume and ϵp is the dielectric permittivity of the particle.

When the electric dipole p⃗ is illuminated by a plane electromagnetic wave E⃗i

whose intensity is given by Ii =
1
2
nmc|Ei|2, the extinction cross-section, defined as

the ratio between the power removed from the EM field by the dipole and the incident

intensity, is given by:

σ(d)
e = 4πk0Im(αp)

Similarly, if we now consider the rate of energy scattered by the particle to the

incident intensity, we obtain the scattering cross-section as:

σ(d)
s =

8πk40
3

|αp|2

The usefulness of the dipole approximation is to give a simple analytical approach

which permits to obtain quantitative information on the optical properties of nano-

particles and, as we can see in the next sections, on the optical trapping (force

components, trap stiffness) of small particles in many different beam configurations.
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1.5 Numerical Methods

The scattering properties of a particle are intimately related to its physical

and geometrical parameters, such as size, shape, refractive index, and

orientation. Therefore, understanding the optical phenomena and developing particle

characterization techniques require accurate knowledge of the electromagnetic

interaction as a function of particle parameters.

Although light scattering by spherical scatterers can be very well described by

Lorentz-Mie theory, when one is interested in effects that depend on the precise shape

of the particles concerned, the use of more sophisticated methods is in order. Most

of the theories belong to one of these two broad categories:

differential equation methods, that compute the scattered field by solving the

Maxwell or the vector wave equations in frequency or time domain;

integral equation methods, based on the volume or surface integral counterparts

of the Maxwell equations.

Of course, the T-matrix method on which our approach is based is only one of

the methods that were devised to study the scattering properties of non-spherical

particles. In this respect, the T-matrix method, derived by Waterman [5] starts

from the integral equation formulation of electromagnetic scattering from particles.

This formulation also called the extended boundary conditions method, relies on

integrals over the volume or, more often, over the surface of the particle. Provided
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these integrals can be performed with sufficient accuracy, the extended boundary

conditions method accounts very well for the actual shape of the particle. A survey

of all the methods that have been developed to deal with scattering from particles

of general shape has been given by Mishchenko and Travis [4] and by Kahnert [27] .

Here, I report a brief description of the framework of the so-called finite elements

methods, of which Lumerical constitute a smart implementation, which is in

common use for studying electromagnetic scattering from particles of complicated

shape. The description does not pretend to be exhaustive and is meant to understand

the similarities and differences of the results obtained with different approaches.

1.5.1 Finite Difference Time Domain Method: conceptual basis and

diagram of the simulation process

Most of the methods that are in common use for calculating the scattered field from

particles seek solutions of the Maxwell equations in the frequency domain. From a

mathematical point of view, Maxwell equations in the frequency domain are elliptic

so the imposition of the boundary conditions is essential for finding solutions that

describe actual wave propagation. On the contrary, the finite difference time domain

method (FDTD) is a finite-elements method based on the numerical integration of

the Maxwell equations in the time domain [28]. This means that the solution to

the scattering problem is dealt with as an initial value problem, and the incident

field has not to be a monochromatic wave. In principle, boundary conditions are not

necessary because, in the time domain, the Maxwell equations are hyperbolic [29].
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Figure 4: (a) Sketch of the discretized region for the computation of the near-field by the FDTD
method; (b) and scheme of field components on a cubic cell. [4]

The FDTD approach is a direct implementation of Maxwell’s time-dependent curl

equation for the temporal variation of electromagnetic waves within a finite space

that contains the scattering object. The electromagnetic properties as functions

of the spatial location are specified by defining the permittivity, permeability, and

conductivity at each grid point, as shown in the conceptual diagram in figure 4.

The time-dependent Maxwell’s curl equations are discretized by using the finite

difference approximation in both time and space. At the initial time t = 0, the

incident field is turned on and propagates toward the particle. After the interaction,

a scattering event is established. The spatial and temporal variations of the

electromagnetic field are simulated and computed through time-matching iterations

over the entire computational domain, and the information on the convergent

scattered field can be obtained when a steady-state field is established at each grid

point if a sinusoidal source is used, or when the electric and magnetic fields in the
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computational domain have reduced to significantly small values if a pulse source is

implemented.

The conventional FDTD numerical algorithm is based on Cartesian grid meshes

by defining a regular array of cells whose vertices are commonly referred as node.

When a scattering particle with a non-rectangular surface is discretized over a

Cartesian grid mesh, a staircasing effect occurs that could alter the optical response

of the simulated system. For this reason, various FDTD algorithms associated

with global curvilinear and obliquely Cartesian grids have been implemented [30]

and to economize the computer memory and central processing unit (CPU) time

demands, some FDTD algorithms have been introduced to allow a coarse grid size

and the subgridding technique [31] [32]. Although the curvilinear grid and target-

conforming schemes are more accurate, they are inherently more complicated and

tedious than rectangular Cartesian schemes. In addition, it has been shown that

the staircasing effect is not a serious problem when the simulations are performed

for the computation of light scattering by nonferromagnetic and nonconducting

nano/micro nanoparticles once a proper method is developed to evaluate the

dielectric constants over the grid points [33]. Although the actual process of

scattering of an electromagnetic wave by a particle occurs in unbounded space, the

diagram presented in figure 2 shows that in practical applications of the FDTD

technique, it is also necessary to introduce artificial boundaries. To meet the demand

that the simulation of the field within the truncated region is the same for the

unlimited case, an artificial boundary must be imposed with a property known as

the absorbing or transmitting boundary condition. Otherwise, the spurious reflections
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off the boundary would alter the near field within the truncated domain. The

construction of an efficient absorbing boundary condition is an important aspect of

the FDTD technique, as an inappropriate boundary condition may lead to numerical

instability, thus requiring more computer memory and CPU time.

As the values of the near field computed by the FDTD finite difference are in the

time domain, the frequency response of the scattering particle can be obtained by

transforming the field from the time domain to the frequency domain. This procedure

is not so straightforward, especially when it is necessary to use a Gaussian pulse as an

incident field. An inaccurate choice of the beam parameters could introduce aliasing

effects and dispersion phenomena.

Once the near-field simulations are performed, the scattering and extinction

cross-section can be obtained by invoking a surface-integration technique [34] [33]

associated with the tangential components of electromagnetic fields on a surface

enclosing the particle or a volume-integration technique [35].

On the basis of the preceding discussions, the major steps required are the

following: (a) discretize the finite space containing the particle by a grid mesh;

(b) simulate the field in the region by the finite difference analog of Maxwell’s time-

dependent curl equations; (c) apply boundary condition to suppress the unwanted

reflection from the boundary of the computational domain; (d) transform the near

field from the time domain to the frequency domain; (e) transform the near field in

the frequency domain to the far field with a suitable electromagnetic integral method.
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In the next subsection, the theoretical basis for the formulation of finite difference

equations analog to the time-dependent Maxwell’s curl equations is presented.

1.5.2 Equations analog of the time-dependent Maxwell’s curl equations

As stated above, in the framework of the FDTD approach the electromagnetic wave

is simulated in the time domain so that from a mathematical point of view, the

interaction is an initial value problem. The well-known time-dependent Maxwell’s

curl equations are given by

∇× H⃗(r⃗, t)− ϵ(r⃗)

c

∂E⃗(r⃗, t)

∂t
= 0 (19)

∇× E⃗(r⃗, t) +
1

c

∂B⃗(r⃗, t)

∂t
= 0 (20)

where the permeability has been assumed to be unity, ϵ is the permittivity of the

dielectric medium, and c is the speed of light in a vacuum. Based on the definition

of effective dielectric constants, ϵ = ϵr + iϵi, Eq. (19) can be expressed conveniently

as follows:

∇× H⃗(r⃗, t) =
ϵr(r⃗)

c

∂E⃗(r⃗, t)

∂t
+ kϵi(r⃗)E⃗(r⃗, t) (21)

To construct the finite difference analog of Maxwell’s equations, the computational

space (see Figure 4) containing the scattering particle is discretized by defining a

regular array of cells whose vertices, commonly referred to as nodes, are individuated
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by three integers such that the vector position of node (i, j, k) is

r⃗ijk = i∆x ⃗̂ex + j∆y ⃗̂ey + k∆z ⃗̂ez .

The particle is then characterized by assigning the value of the dielectric function at

each node within the volume occupied by the particle itself. This procedure, which is

similar to the one used in the DDA, does not require the particle to be homogeneous

or to have a regular shape. Each space- and time-dependent variable, such as the

components of the fields, is discretized as

F (r⃗, t) → Fd(i, j, k;n) = F (i∆x, j∆y, k∆z;n∆t) ,

and this procedure is used to write the discretized version of the Maxwell curl

equations to be integrated numerically. According to Yee’s numerical strategy [36],

the magnetic field at the center of cell faces and the electric field counterparts at

the cell edges are considered (see figure 4) in order to ensure the continuity at the

cell interfaces of tangential components of the electric field and normal components

of the magnetic field respectively. As an example, from equation 19, the discretized

cartesian x-component of the electric field can be written as follows:

En+1
x (i, j + 1/2, k + 1/2) = a(i, j + 1/2, k + 1/2)En

x (i, j + 1/2, k + 1/2)+

b(i, j + 1/2, k + 1/2)[
c∆t

∆y
(Hn+1/2

z (i, j + 1, k + 1/2)−Hn+1/2
z (i, j, k + 1/2))+

c∆t

∆z
(Hn+1/2

y (i, j + 1, k)−Hn+1/2
y (i, j + 1/2, k + 1)]
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And, from equations 21, the discretized cartesian x-component of the magnetic field

is:

Hn+1
x (i+ 1/2, j, k) = Hn−1/2

x (i+ 1/2, j, k)+

[
c∆t

∆y
(En

z (i+ 1/2, j − 1/2, k)− En
z (i+ 1/2, j + 1/2, k))+

c∆t

∆z
(En

y (i+ 1/2, j, k + 1/2)− En
y (i+ 1/2, j, k − 1/2))]

From the preceding equations, it can be seen that the E and H fields are interlaced

both in time and in space. Provided that the initial values of the electric and

magnetic fields are given, these expressions are suitable for a time-marching iteration

procedure. The propagation of the wave can then be simulated by updating the

E and H fields in a straightforward manner without imposing the electromagnetic

boundary condition at the particle surface. In practice, given the field at t = 0, one is

confronted with the numerical integration of a system of six coupled finite-difference

equations for the space-time propagation of the field. Six schemes of integration

have been devised, each of which is applicable to one of the six rules that are used

to approximate the derivatives of the field components. Without dwelling on the

technical definition of these rules, suffice it to say that three of them refer to first

discretizing the temporal derivatives, and the others three refer to first discretize

the spatial derivatives. More details on this argument can be found in the specific

scientific literature. Here it is possible to state that the spatial discretization scheme

and the temporal discretization scheme, when compared to Lorenz–Mie solution,

produce the same, while different, grid-size dependent accuracy for the computed

phase functions. Once a scheme is selected, one gets the near field within the whole
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region of integration as a function of time.

The FDTD technique is then simple in concept and also efficient in numerical

computations, however, the actual situation is more complicated than stated above.

First, in order to ensure the stability of the numerical integration of the Maxwell

equations, the space and time increments must satisfy the condition [37]

c∆t ≤
[
1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2

]−1/2

that sets a lower limit to the number of nodes that are necessary to get reliable

results.

Second, any scattering process occurs in infinite space, whereas, for evident

computational reasons, the integration of the discretized Maxwell equations must be

performed within a finite region. It is, therefore, necessary to introduce appropriate

boundary conditions across the surface, which limits the region of integration to

prevent unphysical reflections of the field that would otherwise modify, even severely,

the near field [38] [39].

Of course, the field calculated as outlined above is the near field, whereas to

calculate the quantities of interest, such as the cross sections, one needs the far

field. This task is faced by means of Green’s second vector identity that ensures the

matching of the near and the far-field through integration on any suitable surface

containing the particle [34] [35].
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Finally, let us recall that since the incident field is, in general, non-

monochromatic, also the far field is non-monochromatic. Therefore, in order to

get the frequency response of the particle one has to resort to a discrete Fourier

transform so that the results of the FDTD method can be compared with those of

more conventional methods that yield the field in the frequency domain. The results

of such comparisons prove that the FDTD method achieves extremely good precision

in the calculation of the fields [4].
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Chapter 2

Theory of optical forces and optical tweezers

A fundamental aspect of the interaction between electromagnetic radiation and

matter concerns the laws of conservation of energy, linear and angular momentum.

As a consequence of the conservation of linear momentum, for example, light has

the ability to exert a force on the matter. The first to notice such mechanical effects

was probably Kepler, in 1619, noting that the direction of the tail of comets along

their path around the Sun is also due to the pressure of solar radiation exerted on

the particles that make it up. It was Maxwell, in 1873, who theoretically deduced

this optical effect. And Lebedev, Nichols, and Hull were the physicist who made the

first experimental measurements in 1901.

2.1 Conservation laws, Maxwell stress tensor, radiation force

and torque

2.1.1 General Remarks

In any experimental condition or theoretical approximation, the interaction between

matter and EM radiation is subject to the three laws of conservation: energy, linear

momentum, and angular momentum [10]. In particular, the conservation of the
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linear momentum, stated for the combined system of field and particles, plays

a fundamental role in determining the dynamical behavior of the nano-particles

through the radiation force F⃗rad [10] [15]; on the other hand, the angular momentum

conservation has an important role in the manipulation of small particles under

controlled laboratory conditions and is responsible for their partial alignment due to

radiation torque T⃗rad [10] [15].

When a monochromatic light impinges on a particle, the time-averaged optical

force and torque exerted on the object are given by:

F⃗rad =

∮
S

< TM > · n̂dS (22)

T⃗rad =

∮
S

(< TM >× r⃗) · n̂dS (23)

where the Gaussian units used and the integration is conducted over the surface S

surrounding the scattering particle, n̂ is the outward normal unit vector, r⃗ is the

vector position, and < TM >, the time-averaged Maxwell stress tensor describes the

mechanical interaction of light with matter. For our purposes, always considering

harmonic fields at angular frequency ω in a homogeneous, linear, and non-dispersive

medium, the averaged Maxwell stress tensor is [40]:

TM =
1

8π
Re

[
E⃗tot ⊗ E⃗tot + B⃗tot ⊗ B⃗tot −

1

2
(E⃗tot · E⃗tot + c2B⃗tot · B⃗tot)I

]
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where E⃗tot = E⃗i + E⃗s, B⃗tot = B⃗i + B⃗s, ⊗ represents the dyadic product and I is the

dyadic unit.

These expressions for optical force and torque can be simplified by integrating

the Maxwell stress tensor over a spherical surface of radius R which contains the

particle and considering the properties of the fields in the far zone. In fact, far from

the particle, the fields are transverse and the dyadic terms in the Maxwell stress

tensor vanishes. In this way, the resulting optical force components along a direction

characterized by the unit vector ûζ is given by:

F⃗radζ = −−r2

16π
Re

∫
Ω

(r̂ · ûζ)[n2
m(|Es|2 + 2E⃗∗

i · E⃗s]) + (|Bs|2 + 2B⃗∗
i · B⃗s])]dΩ (24)

The calculus of torque requires a well-established origin, so we choose a frame of

reference with the origin within the particle concerned. Since the dynamics of any

body is determined by its center of mass and by its principal axes of inertia, choosing

this particular set of axes as a frame of reference would greatly simplify the study of

the dynamics. The integration surface can then be chosen to be a large sphere with

a center at the origin, and we can write:

T⃗rad = −−r3

8π
Re

∫
[r̂ · (E⃗i + E⃗s)(E⃗

∗
i + E⃗∗

s )× r̂+ r̂ · (B⃗i + B⃗s)(B⃗
∗
i + B⃗∗

s )× r̂]dΩ (25)

Note that for radiation torque, the far field expression of the scattered fields cannot

be used as they are orthogonal to the radial unit vector r̂, thus providing a vanishing

result. In the following sections, for a correct calculation of the radiation torque, one
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has to retain the radial terms of the fields, which for the case of the radiation forces,

have been neglected because they vanish faster than 1/r.
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2.2 Optical Forces in T-matrix formulation

Starting from equation 24 and after some substitutions and mathematical steps,

Mishchenko et al. [41] provided the force originated from the scattering process

of a linear polarised plane wave by a spherical homogeneous particle through the

following equation:

F⃗rad =
nm
c
I0

[
σek̂I −

∫
Ω

dσs
dΩ

r̂dΩ

]
(26)

This relation shows some interesting features as it elegantly links the radiation

force to measurable optical quantities such as the extinction cross-section, forward

scattering information, and the differential scattering cross-section containing

information on the anisotropy of the particle through the asymmetry parameter

[42].

On the other hand, when we deal with scatterers more complex than the single

homogeneous sphere, such as radially symmetric non-homogeneous scatterers or

cluster, the expression of the radiation force should be rewritten in terms of the T-

matrix. By developing the fields involved in the relationships 26 in terms of spherical

vector multipoles, the components along the coordinator axis (ζ), it is found that

the radiation force can be written as the sum of two components [42][43]:

Fradζ = −F (sca)
radζ + F

(ext)
radζ (27)
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where

F
(sca)
radζ =

ϵmE
2
i

2k2m
Re

[∑
plm

∑
p′l′m′

A
(p)∗
lm A

(p′)
l′m′i

l−l′I
(pp′)
lml′m′

]
(28)

F
(ext)
radζ = −ϵmE

2
i

2k2m
Re

[∑
plm

∑
p′l′m′

W
(p)∗
lm A

(p′)
l′m′i

l−l′I
(pp′)
lml′m′

]
(29)

where Ei is the amplitude of the incident field, and:

I
(pp′)
lml′m′(û) =

∫
Ω

(r̂ · û)ip−p′Z⃗(p)∗
lm (r̂) · Z⃗(p′)

l′m′(r̂)dΩ

are matrix elements that, thanks to the orthogonal properties of the spherical

harmonics, can be calculated analytically.

We first note that in the preceding relations (27-29) the fictitious dependence on

the radius of the integrating sphere does not appear. Then we highlight that the first

component of the force depends exclusively on the coefficients of the scattered field,

while the second also depends on those of the incident field, just like the scattering

and extinction sections, hence the definition Fscat and Fext.

Another point to note is that these relationships remain valid even if the incident

field is an overlap of plane waves. This consideration will be useful in the analysis of

the optical tweezer system.
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2.2.1 Modeling the electromagnetic focused field in T-matrix approach

One of the strong points of the T-matrix formalism is its applicability to any field

that can be described as overlapping plane waves. Even an electromagnetic field due

to a laser beam focalized by an aplanatic lens can be written in these terms resorting

to the representation of angular spectrum [44]. To this end, we consider a lens of

focal length f with numerical aperture NA where nm is the refractive index of the

medium that fills the image space field. According to Novotny and Hecht [45], the

field at any point within the focal region can be written using the angular spectrum

representation as:

E⃗(r⃗) =

∫
k2x+k

2
y≤k2⊥

EPW (k̂)ûk̂e
ik⃗·r⃗dkxdky (30)

where the limits of integration ensure that only the rays that traverse the exit pupil

of the optical system are considered and EPW is a quantity related to the focal

length and to the apodization function that gives the profile of not only TEM00

but also of higher Gaussian modes TEM10 and TEM01. This representation can be

extended to the case of an image space not filled by a single homogeneous medium

but rather by two homogeneous media of different refractive indexes, separated by a

plane interface orthogonal to the optical axis, thus introducing aberration effects

that should, in principle, be considered and that represent the actual situation

used in optical tweezers [46] [47] [1]. In figure 5, we report the angular spectrum

representation for a focused TEM00 Gaussian x-polarized beam obtained by focusing

the incident field at λ=830 nm through a lens with NA=1.3.
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Figure 5: Angular spectrum representation of intensity for a TEM00 Gaussian x-polarized beam.
In panel (a), the map is for the normalized intensity in x-y plane (perpendicular to the optical
axis); (b) and (c) are the maps for the normalized intensity in z-y and z-x plane, respectively. The
wavelength is 830 nm, the numerical aperture of the lens is 1.3, and the refractive index of the
external medium is water

Once we have introduced the T-matrix approach to electromagnetic theory and

the representation of angular spectrum to model a focused field, we have all the

tools to study the behavior of an optical tweezer formally. In the following chapters,

we will introduce some particular systems where we can apply this formalism and

appreciate its power and flexibility.

2.2.2 Implementation of computing code

In order to understand the advantages and disadvantages of the various theoretical

and numerical approaches aimed at calculating the optical forces, it is necessary at

this stage to spend a few words on the architecture of the software that, in the case

of the T-matrix approach, is realized using FORTRAN95 high-level programming

language. As discussed before, the optical forces in T-matrix formalism can be

computed by calculating the amplitudes of multipole expansions that represent
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the incident and the scattered fields, see equations 29 and 28. To this end, we

have realized two numeric calculation codes, one that determines the amplitudes of

the highly focused incident field and the other that, once we have established the

properties of the scatterer, provides the amplitudes of the scattered field. These

amplitudes, which are recorded on two different service files, are then processed

by another code that provides the radiation force values at any point in the grid,

combining them according to the equations 29 and 28. This kind of code modularity

was chosen to optimize both the resources needed to perform the computation in

terms of processing speed and CPU use and the physical space for data storage.

The first code realizes the angular spectrum representation of the incident field

determining the multipole amplitudes at the points of intersection of a three-

dimensional grid in the focal region, the spacing of which is chosen appropriately

to provide a description with the desired resolution. The number of multipole

amplitudes thus obtained is a function of the L-value chosen for the truncation of

the series expansions that ensures the desired convergence of the calculus. They also

depend on the wavelength of the incident radiation, the numerical aperture (NA) of

the focusing lens, the filling factor, and the value of the dielectric constant of the

medium in which the particles are trapped. The influence of the filling factor on the

sharpness of the focus affects mostly the effects polarization of the incident field. In

fact, from 5 can be noted that the focal region in zy plane and zx plane have different

spatial widths. This part of the code is the one that requires most of the processing

time, depending on how many points are used for the description of the grid. An

increased amount of RAM memory is due to the number of plane waves needed for the
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accurate description of the focused field and the truncation value of the multipole

expansion. Typically, on an INTEL-coreI7 workstation, if we chose a truncation

value L=8, a 3D grid consisting of 51x51x51 points that use for the description of

100 plane waves, the multipolar amplitudes of the incident field can be obtained in

a time of about 6 hours, using about 1.5 Gbyte of RAM memory, with a hard disk

occupation of about 700 Mbyte. Although these performance parameters may seem

rather time and CPU-demanding, it must be considered that once the characteristics

of the optical trap have been defined (wavelength, polarization, refractive index of

the external medium, ...), the results obtained for the definition of the incident field

have a validity that does not depend on the type of particle that the radiation will be

able to manipulate. Ultimately, the set of multipolar amplitudes of the incident field

thus obtained constitutes a kind of database that can be recalled and used whenever

the optical trap has those given characteristics.

The second code, based on T-matrix approaches, computes not only the cross-

section of the scatterer for that given wavelength but stores in another service file

all the scattering amplitudes, whose number depends on the L-value chosen for the

truncation of the series expansion. In most cases, the running time and memory

requirement of this code is very short and depends on the complexity of the scatterer

whose properties you want to study. Typically, on a INTEL-coreI7 workstation,

if we choose a truncation value L=8 that corresponds to study particles with size

parameter <5, for a sphere, even stratified, the results are obtained within a few

seconds while, for a cluster composed of no more than 10 spheres, the time spent is

less than 3 minutes.
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Therefore, when it is necessary to carry out several simulations in which the

geometries and the composition of the scatterer are modified, for a given type of

optical trap, the code based on the T-matrix approach has excellent reliability [15],

great versatility and excellent performance in terms of computing time and CPU

resources.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

53



2.3 Optical Forces in Dipole Approximation

2.3 Optical Forces in Dipole Approximation

It can be shown that the optical forces in such a system can be written in the form

of [10]:

F⃗DA =
1

4
Re{αp}∇|Ei|2 +

σext
c
S⃗i −

1

2
σextc∇× s⃗d

where:

S⃗i =
c

8π
Re{E⃗i × B⃗∗

i }

s⃗d = i
1

8πω
E⃗i × E⃗∗

i

are the time average of the Poynting vector and the time average of the spin density of

the incident wave. Each of the three parts that make up the equation has particular

characteristics:

• Gradient force: depends on the intensity of the field and is a conservative

force. It causes the body to move towards or away from the areas of greatest

intensity, depending on whether its polarizability is positive or negative. It can

be written in terms of the intensity of the electric field as follows:

F⃗G
DA =

1

2
Re{αp}∇I(r) (31)

being I(r) = 1
2
nmc|E⃗(r⃗)|2.

• Scattering force: depends on the Poynting vector relative to the incident

radiation and has the same direction; it is a non-conservative force. It’s caused

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

54



2.3 Optical Forces in Dipole Approximation

by the processes of transferring the moment of the field to the body, in fact, it

is also proportional to the extinction cross-section:

F⃗ S
DA =

nm
c
σeI(r) (32)

• Spin-curl force: this is also a non-conservative force and stems from the

polarization gradient in the incident field.

In the following, we will explicitly formulate the scattering and gradient force due to

interaction with a laser beam.

2.3.1 Modeling the electromagnetic focused field in dipole

approximation

Consider an incident laser beam with a typical Gaussian intensity profile that

propagates along the z-axis [15] as in figure 6, in paraxial approximation, that is

when all rays entering or leaving a centered optical system propagate from the object

plane to the image plane remaining confined in a region close to the optical axis, the

complex electric field is represented by:

E⃗i(ρ, z) = E⃗0
ω0

ω(z)
e
− ρ2

ω(z)2 eiΦ(z)

where ρ is the radial coordinate, E⃗0 is a vector in x-y plan specifying the amplitude,

phase, and polarization of the beam, ω0 is the waist radius, w(z) = ω0

√
1 + z2

z20
is
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Figure 6: Intensity profile of a Gaussian beam (a) in x,y plane perpendicular to optical axis; (b)
along optical axis. [1]

the beam width, where z0 is the Rayleigh range which denotes the distance from the

beam waist at z = 0 to where the beam width increases by a factor
√
2.

The phase Φ(z) that enters in the second exponential factor depends on the

wavefront radius and on the phase correction that happens as the beam propagates

through its focus [1]. The intensity of the beam is then:

I(ρ, z) =
1

2
nmc|E⃗(r⃗)|2 = I0

ω2
0

ω(z)
e
− 2ρ2

ω(z)2

From equation 31 we can determine the x, y, and z components of the gradient force,

which have the following expressions:

FG
DA,x(x, 0, 0) =

2πnm
cϵm

Re(α0)I0
ω2
0

ω2
(
−4x

ω2
)e−2 x2

ω2

FG
DA,y(0, y, 0) =

2πnm
cϵm

Re(α0)I0
ω2
0

ω2
(
−4y

ω2
)e−2 y2

ω2
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FG
DA,z(0, 0, z) =

4πnm
cϵm

Re(α0)I0
ω4
0

ω4zR2
(z − z0)

2.3.2 Implementation of computing code

The fully analytical approach offered by the dipole approximation theory (DA) allows

the calculation of optical forces by using simple numerical calculation scripts on a

programming platform that uses high-level languages. The simulations in dipole

approximation that will be presented in the following were carried out using the

Matlab programming environment, and, as long as the size parameter x = kma =

2πnm

λ0
a << 1 to ensure the validity of DA approach, the numerical estimates of optical

forces and trap stiffness can be considered reliable.

In this regard, to have an immediate view on the error that is introduced when

the DA approach loses its validity, we report in figure 7 the trap stiffness, that is,

the slope of trapping force, calculated along the optical axes in the focal point as a

function of the radius a for a dielectric sphere. The curve obtained in DA (dotted

line) deviates significantly from that obtained by applying the full scattering theory

based on the T-matrix approach (solid red line).
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Figure 7: Trap stiffness along optical axes produced by a 10 mW laser beam of wavelength λ =
632 nm focused by a 1.2 NA objective on a dielectric sphere of radius a (np = 1.50) in water. The
solid line represents the exact electromagnetic calculation. The dipole approximation (dotted line)
works for small spheres (a << 1). The geometrical optics approximation (dashed line) works for
large spheres (a >> 1). Figure from [1]
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2.4 Optical Forces in Finite Difference Time Domain

The computation of optical forces exerted on a nano-structure by the electromagnetic

field realized in the FDTD scheme follows two different approaches: the integration

of Maxwell stress tensor over a closed surface and the volumetric technique.

2.4.1 Maxwell Stress Tensor technique

In section 2.1, it has been shown that the conservation laws determine the dynamical

behavior of nano-particles so that the time-averaged force F on a particle due to

harmonic fields, see equation 23, can be calculated from the Maxwell Stress Tensor,

and the net force can be found by integrating numerically this quantity over a closed

surface surrounding the particle. In Lumerical implementation for the calculus of

this force, it is possible to choose a 2D simulation or a 3D simulation, activating 1D

monitors and 2D monitors, respectively, in this way is possible to record the fields

on this surface.

The tool to calculate the force is named tweezer.fsp, which contains an analysis

group named optical − force − 2D. The analysis group contains four identical

subgroups whose analysis scripts calculate the components of the stress tensor from

the simulation. The analysis script of the main group integrates the stress tensor to

provide the total force on the particle.
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2.4.2 Volumetric technique

The starting point of this approach is to consider that the force on a charged particle

in the presence of an electric and magnetic field is given by Lorentz’s equation:

F⃗ = qE⃗ + qv⃗ × B⃗

where q, v⃗, E⃗, and B⃗ are, respectively, the charge, velocity, electric field, and

magnetic field.

In a medium with charge per unit volume and current density, the force per unit

volume is given by

F⃗V = ρE⃗ + ρJ⃗ × B⃗

where ρ is the total charge per unit volume and J⃗ is the total current density.

From Maxwell’s equations, these quantities are given by

ρ = ϵ0∇ · E⃗

J⃗ = −∂P⃗
∂t

where P⃗ is the polarization vector.

In Lumerical’s FDTD solver, all the material properties are included in the

permittivity. As a result, there is no free current density and no free charge, therefore

using a relative permittivity equal to 1 and a free current density of J⃗ = σE⃗, in the
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frequency domain and with Lumerical’s sign convention of P⃗ (ω) =
∫
eiωtP⃗ (t), we

have J⃗(ω) = −iωP⃗ (ω). Due to the preceding relations, the total force per unit

volume exerted on the material, in the background with relative permittivity ϵb is

(note that Lumerical uses SI units):

F⃗v = ϵ0ϵb(∇ · E⃗)E⃗ − iωP⃗ × B⃗ = ϵbϵ0(∇ · E⃗)E⃗ − iωϵ0(ϵr − ϵb)E⃗ × B⃗

ϵr being relative permittivity.

As reported in the technical notes of Lumerical software, the two techniques

give the same result within numerical error, but each has its own strengths and

weaknesses. Here we report the key issues of strengths and weaknesses:

Memory: the MST technique requires less memory because it only collects field

data on the surface of the box.

Numerical noise: The Volumetric technique is less sensitive to numerical noise,

making it the better choice when the force is very small (small index contrast, very

tiny particles).

Mesh: The Volumetric technique is sensitive to the number of mesh points. The

results become less reliable if the mesh is too coarse.
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2.4.3 Modeling the electromagnetic focused field in FDTD

A focused electromagnetic Gaussian beam is modeled starting from the description of

a plane wave source. Plane waves are used to inject laterally-uniform electromagnetic

energy from one side of the source region. In two-dimensional simulations, the plane

wave source injects along a line, while in three-dimensional simulations, the plane

wave source injects along a plane (see figure 8 for the geometry). It is also possible

to inject a plane wave at a chosen angle.

The plane wave source is actually the same object as the Gaussian source, with the

only difference being the source shape settings. By default, the Gaussian sources use

a scalar beam approximation for the electric field, which is valid as long as the waist

beam diameter is much larger than the diffraction limit. The scalar approximation

assumes that the fields in the direction of propagation are zero. For a highly focused

beam, there is also a thin lens source that will inject a fully vectorial beam. The

cross-section of this beam will be a Gaussian if the lens is not filled and will be a

Sinc function if the lens is filled. In each case, the beams are injected along a line

perpendicular to the propagation direction and are clipped at the edges of the source.

For uniform illumination (filled lens), the field distribution is precisely the same as

described in Mansuripur’s papers [48], [49], [50].

As stated in these papers, it must be noted that in non-uniform illumination

at a very high numerical aperture, there are some subtle differences depending on

whether the incident beam is a Gaussian in real space or in k-space. This difference
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Figure 8: Sketch of the geometry of incident plane wave (upper) and of the Gaussian beam (lower)

is rarely of any practical importance because other factors, such as the non-ideal lens

properties, become important at these very high numerical aperture systems.

2.4.4 Implementation of computing code

The implementation of the FDTD approach used in the Lumerical software package

provides a powerful tool for understanding the complex interaction between light

and matter, including the calculation of optical forces. These simulations can

help researchers design and optimize optical systems for various applications, from

optical trapping and manipulation to biomedical imaging and sensing. The principal

advantages of this implementation are: accuracy, efficiency, flexibility, and the

availability of a built-in visualization tool.

• Flexibility: Lumerical simulations are flexible and can be used to model various

optical systems, from simple two-dimensional structures to complex three-

dimensional systems with multiple materials and geometries. This makes it an
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ideal tool for designing and optimizing optical traps and other nanophotonic

devices.

• Accuracy: Lumerical simulations are highly accurate, as they directly

solve Maxwell’s equations without simplifying assumptions. It means that

FDTD can capture complex phenomena such as scattering, diffraction, and

interference, which are challenging to model using other methods.

• Efficiency: Lumerical simulations are computationally efficient, as they only

require the discretization of the electromagnetic fields and the application of

finite-difference approximations. This makes it possible to simulate large-scale

systems with high accuracy and without requiring extensive computational

resources.

• Visualization: Lumerical simulations provide a powerful visualization tool for

understanding the behavior of light in optical systems. By visualizing the

electric and magnetic fields at each point in the system, it is possible to gain

insight into the physical mechanisms underlying the optical forces and optimize

their designs accordingly.

In Lumerical, the calculation of optical forces on a spherical model involves several

steps:

1. Set up the simulation geometry: this involves defining the size and shape of

the simulation region, as well as the properties of the materials in the simulation,

such as the refractive index and absorption coefficient. In our calculation, we used a
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3D FDTD simulation region that, in all cases, was not larger than 1 micron. For this

region it is then necessary to define a coarse mesh grid on the sides of which the fields

will be calculated. At this level is necessary to specify also the boundary conditions,

which can be either periodic or non-periodic. For non-periodic boundaries, as in the

present case, we use the Perfectly Matched Layers (PML) boundary condition that

absorb the electromagnetic waves and prevent reflections from the boundaries.

2. Define the incident wave: this step is required to establish the polarization,

wavelength, and power of the incident wave. In the present simulations, we use the

Gaussian source, which also requires the definition of the Numerical Aperture of the

focusing lens, distance from focus, and the power of the incident wave.

3. Create the model: in our case, we considered spheres, so we used the models

already present in the libraries of Lumerical. To define the model, we define the size

and position of the sphere, as well as its optical properties. The optical properties of

the sphere can be specified using its refractive index and absorption coefficient. To

obtain an accurate description of the optical forces exerted on the nanostructure, it

is necessary to narrow the calculation grid at the position of the scatterer. For this

reason, the software gives the possibility to define a fine-mesh grid by varying the

spacing between the calculation points.

4. Run the simulation: once the simulation geometry and properties have been

defined, the FDTD simulation is run in Lumerical, establishing the number of points

at which to perform the simulation. During the simulation, the electric and magnetic

fields at each point in the simulation region are calculated iteratively. These fields are
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used to calculate the optical forces acting on the spherical model through a built-in

application that gives us the possibility to calculate them through the Maxwell stress

tensor or through the volumetric technique. In every case, we used the volumetric

technique.
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Chapter 3

Numerical comparison on representative case studies

In this chapter we present some significant results concerning the comparison between

the analytical and numerical approaches aimed to simulate the radiation force acting

on nano-structures. In the simulations, the wavelength of the incident field is λ=830

nm and, as an external medium where nano-structures can be trapped, we choose

water, with refractive index nm=1.33, or air, with refractive index nm=1. Several

cases were considered for the purpose of comparison, including:

• Spherical nano-particles with two different radii: 5 nm and 50 nm, made of

polystyrene (np=1.57), in air.

• Spherical nano-particle with rp=100 nm, in water, made of a) silica (np=2.4),

representative of a scatterer with higher optical contrast, and b) polystyrene

(np=1.57) representative of a scatterer with low optical contrast.

• Dimer: made of two spheres with a radius of 100 nm made of silica (np=2.4)

immersed in water in two different orientations, representative of a non-

spherical scatterer with higher optical contrast.
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Figure 9: Intensity maps for the incident focalized Gaussian TEM00 beam as calculated in the
T-matrix formalism. The external medium is water.

3.1 Numerical results for the focused incident field

First of all, in figures 9 and 11 (left) and figures 10 and 11 (right), we report the

normalized intensity maps and field profiles where we consider as external medium,

in the first case, water (nm = 1.33), and in the second case, air.

It is necessary at this point to note that, despite the good general agreement

between the three different methodologies in the description of the incident-focused

field, there are some important differences that, in principle, can affect both the

determination of the trapping position and the calculation of trap constants, physical

quantities that usually are compared with data taken from a real experiment of

optical tweezers.

For the angular spectrum representation, we chose, in any case, the filling factor f,

that is, the rate between the beam waist radius and the aperture radius of the lens,

equal to 2. For figures 9 and 11 (left), NA=1.3 while for figures 10 and 11 (right),

NA=0.9. To better compare the results for radiation force, in Lumerical simulation,
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Figure 10: Intensity maps for the incident focalized Gaussian TEM00 beam as calculated in the
T-matrix formalism. The propagating external medium is air.

this choice corresponds to assume a filling factor f=1.875 corresponding to a beam

waist radius ω0 = 0.51 λ0
NA

, the same parameter that enters in the definition of the

incident focalized field as presented in section 2.3.1.

The first question concerns the dependence of the distribution of field intensities

on the polarization of the electromagnetic field. By comparing the field maps on the

zx plane with that obtained on the zy plane in figure 5, we notice that the polarization

dependence is evident as far as we use the angular spectrum representation. In

fact, depending on the value of the filling factor, as far as it increases, the field

confinement increases as well at the focus of the focal spot, becoming more and

more elliptical. When the incident field is computed through equations reported in

section 2.3.1 (in the paraxial limit), the spot is perfectly circular while a strongly

focused beam has a spot that is elongated in the direction of polarization. For this

reason, in a typical optical trapping experiment, in which it is necessary to have

higher spatially confined light, we need to take into account the vector nature of the

fields as it is properly done by the angular spectrum representation as implemented
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Figure 11: Normalized Intensity profile for the incident focalized Gaussian TEM00 beam as
calculated in the T-matrix formalism, FDTD approach as implemented in Lumerical and Dipole
Approximation. On the left, the propagating external medium is air, and the profiles are computed
in the focal region along x, for y=0 and z=0; the same on the right but for water.

in the T-matrix approach. The lack of this characteristic, linked to the nature of

the electromagnetic field, while it may not have important consequences as regards

the possibility of trapping and manipulation of nano-structures, on the other hand,

significantly alters the dynamic behavior of non-homogeneous and/or elongated nano-

structures that can rotate possibly aligning with the direction of polarization of the

field [51] [40].

The other issue is related to the extension of the focal region along the optical

axis that, due to the paraxial approximation that provides the equations of section

2.3.1, is overestimated. This results in weaker radiation confinement in the focal

region along the optical axis that can, at some extent, alter the dynamics of trapped

nanostructures.
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3.2 Numerical results for the radiation force

The first results we want to discuss concern the role played by the size of the spherical

nano-structure in consideration of the accuracy of the optical forces simulations and

performance in terms of computing time and CPU resources.

For FDTD simulation, on the basis of the strengths and weaknesses declared on

technical notes, we decide to use the volumetric technique to determine the optical

force as this approach is less sensitive to numerical noise, making it the better choice

when the force is very small as in all our cases.

For T-matrix simulation, we run the jobs using a truncation of a series of multipole

expansions to the order l=8 to ensure a suitable convergence.

In figures 12 and 13, we show the numerical comparison for the optical forces

considering a single sphere with two different dimensions: in figure 12, we consider a

radius of 5 nm; in figure 13 we consider a radius of 50 nm. In all cases, the spheres

are illuminated by a TEM00 Gaussian beam propagating in the air along z-axes. The

two panels regard the different numerical apertures of the focusing lens, addressing

in this way two possible experimental situations, the first for optical tweezers with a

lower spatial confinement of the electromagnetic field and the second with a higher

spatial confinement. It is possible to note that, especially in the case of the 5 nm

sphere, the agreement between the numerical data is excellent, even if the evaluation

of the gradients of the linear part of the graph near the point of entrapment leads, for

the three methods, to an estimate of the stiffness that can also differ substantially.
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Figure 12: Optical forces on a nano-sphere along the coordinate axis due to a TEM00 Gaussian
beam propagating in air along z-axes. The wavelength is λ=830 nm. The sphere has a radius of
rp=5nm and a refractive index of np=1.57. In the left panel, there is the numerical comparison for
the results obtained in the T-matrix formalism, FDTD approach as implemented in Lumerical and
Dipole Approximation, when the numerical aperture of the focusing lens is NA=0.3. On the right,
the numerical comparison is for the optical forces for a numerical aperture of the focusing lens of
NA=0.9.

In the case of the 50 nm sphere, we note that when the trap is made with a

focusing lens of numerical aperture NA=0.3, the T-matrix and FDTD simulations

show us that the sphere is not trapped, while a different result is obtained in the case

the simulation is performed in dipole approximation. This discrepancy is mainly due

to the fact that the simulations of the optical forces in dipole approximation provide

reliable results as long as the condition x«1 is met: in this case, the size parameter

is x=0.38.

In figures 14 and 16, we show the results regarding a 100 nm sphere in water in

which we change the refractive index to consider the different behavior between a

lower optical contrast scatterer, np=1.57, and a scatterer with higher optical contrast,

np=2.4. Also, in this case, the FDTD simulations and those made with T-Matrix
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Figure 13: Optical forces on a nano-sphere along the coordinate axis due to a TEM00 Gaussian
beam propagating in air along z-axes. The wavelength is λ=830 nm. The sphere has a radius of
rp=50nm and a refractive index of np=1.57. In the left panel, there is the numerical comparison
for the results obtained in the T-matrix formalism, FDTD approach as implemented in Lumerical
and Dipole Approximation, when the numerical aperture of the focusing lens is NA=0.3. On the
right, the numerical comparison is for the optical forces for a numerical aperture of the focusing
lens of NA=0.9.

Figure 14: Optical forces on a nano-sphere along the coordinate axis due to a TEM00 Gaussian
beam propagating in water along z-axes. The wavelength is λ=830 nm. The sphere has a radius of
rp=100nm and a refractive index of np=1.57. The numerical comparison of the results obtained in
the T-matrix formalism, FDTD approach as implemented in Lumerical and Dipole Approximation,
regards the case in which the numerical aperture of the focusing lens is NA=1.3.
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Figure 15: Optical forces on a nano-sphere along the coordinate axis due to a TEM00 Gaussian
beam propagating in water along z-axes. The wavelength is λ=830 nm. The sphere has a radius of
rp=100nm and a refractive index of np=2.4. The numerical comparison of the results obtained in
the T-matrix formalism, FDTD approach as implemented in Lumerical and Dipole Approximation,
regards the case in which the numerical aperture of the focusing lens is NA=1.3.

have an excellent agreement, better than for the case for smaller scatterers, and the

discrepancies obtained in dipole approximation are always due to the size parameter

that now is about 0.8. The best agreement that is obtained in the case of larger

nanostructures is essentially related to the choice of the coarse and fine mesh grid. If,

in principle, the resulting discrepancies for smaller nanostructures can be eliminated

by increasing the calculation points grid, this solution worsens the performance of the

simulation not only in terms of time and memory resources but, above all, because

the numerical rounding becomes relevant.

The last numerical comparison concerns the case of a dimer composed of two

equal spheres with radius r=100 nm and refractive index n=2.4. The dimer in

the upper panel of figure 17 is placed with the axis joining the centers along the

x-axis, while in the bottom panel, the axis is directed along the axis of radiation

propagation. Moreover, it was considered that the spheres that make up the dimer

are not symmetrical with respect to the nominal focal point placed at x=0, y=0, and

z=0.
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Figure 16: Optical forces on a nano-sphere along the coordinate axis due to a TEM00 Gaussian
beam propagating in water along z-axes. The wavelength is λ=830 nm. The sphere has a radius of
rp=100nm and a refractive index of np=2.4. The numerical comparison of the results obtained in
the T-matrix formalism, FDTD approach as implemented in Lumerical and Dipole Approximation,
regards the case in which the numerical aperture of the focusing lens is NA=1.3.

Figure 17: Optical forces on a 2-sphere cluster due to a TEM00 Gaussian beam propagating in water
along z-axes. The wavelength is λ=830 nm. The spheres have a radius of rp=100nm and a refractive
index of np=1.57. The numerical comparison of the results obtained in the T-matrix formalism,
FDTD approach as implemented in Lumerical, and the curves obtained in Dipole Approximation
are for the equivalent-volume sphere with r

(e)
p =126 nm. The numerical aperture of the focusing

lens is NA=1.3.
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Moreover, it is considered that the spheres in the dimer are not symmetrical

with respect to the nominal focal point at x=0, y=0, and z=0, as is evident from

the analysis of the x-component of figure 17, upper panel. Again we compare the

optical forces calculated according to the FDTD and the T-Matrix approaches. For

comparison, in the figures, we also report the optical force calculated in dipole

approximation for the equivalent-volume sphere with r(e)p =126 nm, showing that the

optical forces of elongated nanostructures cannot be simulated using simple spherical

symmetry models, since this latter, as is evident from the figures, do not correctly

describe some specific characteristics.

It is necessary at this point to make some general considerations regarding the

performance of the simulations in FDTD as implemented in the Lumerical software

package. For this reason, in the following, we report some interesting data on the

performance of the 100 nm sphere simulations.

To simulate the x-component of optical force in the chosen region that span

the positions in the range (-1 µm +1 µm) we have required 30 equally distributed

calculation points. To get fair results, we have defined a coarse meshgrid with a

spacing of 25 nm and, around the nanosphere, a fine meshgrid with a spacing of 8

nm. For the 30 points needed for the simulation, the software allocated about 4.3

Gbyte of memory for the definition of the geometry and 2.8 Gbyte for the actual

simulation of the optical force. To execute a job run, that is, to get the numerical

result for the x-component of optical force, the software took a calculation time of

about 4 hours on a workstation INTEL CORE i9. These performance values become
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extremely critical in the case of the 5 nm sphere simulation. In this case, the adopted

fine meshgrid has a spacing of 0.8 nm, and the execution time was of more than 60

hours.

3.3 Numerical comparison: comments and conclusions

The transition matrix (T-Matrix) method and the finite-difference time-domain

(FDTD) method are widely used numerical techniques for studying the interaction

of electromagnetic waves with particles, including calculating optical forces. Here

are some key differences between the two approaches:

1. Geometrical constraints : The FDTD method is typically better suited for handling

non-spherical or non-symmetric particle geometries as far as the geometrically

complex nano-structure cannot be simulated as an aggregate, whereas the T-Matrix

approach, as implemented by a code that makes use of vector multipole field

expansion, is more suitable for spherical particles in a wide range of size parameters

and when the geometry can be simulated as an aggregate of different spheres, possibly

also radially non-homogeneous.

2. Speed : In the studied cases, the FDTD method, as far as requires less

computational resources, proves to be slower than the T-Matrix method. This is

because the FDTD method is based on solving iteratively the Maxwell’s equations

on a numerical grid, while our implementation of T-Matrix approaches is fast as it

involves the analytic complex numerical integration necessary to calculate the forces,

which results in the computation of incident and scattered coefficients.
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3. Accuracy : The T-Matrix method can be considered more accurate than the

FDTD method for calculating optical forces, particularly for spherical nanostructure

and/or their aggregate. This is because the T-Matrix method carefully describes the

electromagnetic interaction, also including multiple scattering effects.

4. Physical insights : The T-Matrix method provides physical insights into the

scattering process, including information on the angular distribution of scattered

light and the polarization of the scattered light. The FDTD method is a black-box

approach and provides less physical insight.

5. Flexibility : The FDTD and T-Matrix methods are very flexible in terms of their

ability to handle a wide range of material properties, such as anisotropic materials

and dispersive materials. However, the T-Matrix method is generally limited to

handling linear materials or systems that possess sharp edges.

In summary, the T-Matrix and the FDTD methods have their advantages and

limitations, and the choice of which method to use depends on the specific application

and the geometrical and material properties of the particle under study.

Here are some other differences between the T-Matrix method and the FDTD

method for calculating optical forces:

• Near-field vs. far-field interactions: The T-Matrix method is generally

more suitable for calculating near-field interactions between particles and

electromagnetic waves, whereas the FDTD method is more helpful in studying

far-field interactions. This is due to the fact that the T-Matrix approach is

based on the solution for the particle’s scattering coefficients, which provides
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information on the electromagnetic field in the near-field region around the

particle. The FDTD method, on the other hand, is typically used to simulate

the propagation of electromagnetic waves in the far-field region, as when

calculating scattering or diffraction patterns.

• Boundary conditions: The FDTD method, in contrast to what is necessary

for the T-Matrix approach, requires specifying the boundary conditions at

the edges of the computational domain, which can be challenging for complex

geometries or non-uniform materials.

• Multiple scattering effects: The T-Matrix method can be extended to handle

various scattering events, which can be important for understanding the

interaction of light with densely packed or clustered particles. The FDTD

method, on the other hand, typically assumes that the particles are well-

separated and does not explicitly account for multiple scattering effects.

Overall, the choice between the T-Matrix method and the FDTD method for

calculating optical forces, regardless of the simulation performance, will depend

on the specific situation, including the geometrical and material properties of the

particles, the desired level of accuracy, and the computational resources available.

In the next chapters, due to the complexities of simulations that involve large

and non-homogeneous spherical scatterers, spherical monomers with inclusions,

aggregates with different morphology, and poly-dispersion of metal nano-particles,

we use almost exclusively the simulation codes based on T-Matrix approach.
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Chapter 4

Modeling optical forces for space tweezers

applications

The investigation of dust grains in space is an important area of research, as

these particles play a dominant role in the formation and evolution of planetary

systems. However, studying dust grains in space poses several challenges, such as

their small size and irregular shape, which makes it difficult to manipulate and

observe them. In recent years, optical tweezers have emerged as a promising tool for

studying small particles in various contexts, including biology and materials science.

Cosmic dust refers to small, solid particles typically ranging from a few nanometers

to several tenths of millimeters. These particles are found dispersed throughout

the interstellar medium and interplanetary space within the solar system. The

formation of interstellar dust particles is a multifaceted phenomenon that arises from

a complex interplay of diverse astrophysical processes associated with the life cycles

of successive generations of stars. These intricate mechanisms include the ejection

of dust particles through various channels, such as radiation pressure, solar wind,

and explosive events that occur during the final stages of stellar evolution or the

shedding of outer layers [52, 53, 54]. These processes release different dust particles

with various physical and chemical properties that play a crucial role in shaping

the evolution of galaxies and the interstellar medium. The investigation of cosmic
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dust has emerged as a vital area of interest within the astrophysical sciences. It

is fueled by its pivotal role in different cycling processes that operate throughout

the universe. In this context, interplanetary dust has gained significant attention

as a rich source of scientific inquiry. Composed of small, solid particles that arise

through various mechanisms, including collisions between celestial bodies and the

sublimation of icy bodies [55], this dust plays a critical role in shaping the dynamics

of the interplanetary environment and influencing the evolution of planetary systems.

As such, its study has become an essential focus of many research efforts to enhance

our understanding of the complex astrophysical processes that govern the universe.

Interplanetary dust is a valuable source of information for astrophysical research,

as it provides an opportunity for direct analysis of these elusive particles through

various sample-return missions. These missions offer a unique tool for studying the

physical and chemical properties of interplanetary dust in detail, which is impossible

through remote observations alone. The samples are collected from various sources

within the solar system, including the interplanetary medium, planets, and minor

bodies [56, 57, 58], as well as from the Earth’s stratosphere [59, 60] and surface

in the form of micrometeorites [61]. To gain insights into the properties of these

particles, the samples are subjected to advanced analytical techniques at terrestrial

facilities, as some of the necessary instruments are too large to be deployed in

space [62]. The resulting data has contributed significantly to our understanding

of the origins and distribution of interplanetary dust, enabling us to develop a more

comprehensive picture of the complex astrophysical processes that shape our solar

system. The current chapter explores the precise calculation of optical forces in the
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T-matrix formalism, particularly emphasizing the pivotal influence of composition

and complex morphology in the optical trapping of cosmic dust particles. By

shedding light on these fundamental aspects of optical manipulation, we aim to

advance our understanding of the underlying physics and open up new possibilities

for the application of optical tweezers in a range of extraterrestrial environments.

Specifically, our findings hold important implications for using optical tweezers in

curation facilities for sample return missions, where accurate optical trapping can

enable the manipulation and analysis of tiny, delicate particles that may hold crucial

clues to the origins and evolution of our solar system.

4.1 Space Tweezers

Optical Tweezer is a potential application for studying dust grains in space, such

as characterizing the physical properties of grains and their interactions with other

particles. Despite the impressive advances in optical trapping techniques and their

application in many research fields, their use in planetary exploration has yet to

be fully realized, although it has been considered by organizations such as NASA

[63]. Optical trapping technology for the collection and in-situ analysis or return

to Earth of a wide range of extraterrestrial particles would provide unprecedented

insights into space materials currently beyond our reach. For example, volatile

dust components that cannot be detected in situ by instruments such as GIADA,

MIDAS, and COSIMA on the Rosetta/ESA mission or that are subject to biases

due to sample collection media contamination, such as the cometary dust samples
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retrieved by the Stardust/NASA space probe [64, 65] and trapped in aerogel.

Therefore, the development and implementation of optical trapping techniques for

planetary exploration would offer a unique opportunity to expand our understanding

of the composition and properties of extraterrestrial materials, unlocking new

avenues of scientific exploration in the field of planetary science. Within the field

of space exploration, the Space Tweezers project (https://www.spacetweezers.org)

has emerged to develop optical tweezers (OT) methodologies for trapping and

spectroscopically characterizing extraterrestrial dust particles and their analogs using

Raman tweezers. The results of this study will establish a firm foundation for the

future use of OT techniques in the exploration of the solar system, including the

analysis of cometary particles, the volatile components of such particles, and the dust

particles found in the Martian atmosphere and on the Martian and Lunar surfaces.

Additionally, the use of OT in preliminary sample characterization in curatorial

facilities for samples returned from space missions will be strategically valuable.

4.2 The Complexity of Solar System Dust

A significant amount of dust particles characterizes the interplanetary space in the

solar system. This phenomenon is evident to the unaided eye through the Zodiacal

Light, a faint cone of light visible above the eastern horizon before sunrise or

above the western horizon after sunset. Similar to how the Milky Way showcases

the multitude of stars comprising our galaxy, the Zodiacal Light [11] displays a

vast quantity of fine dust particles that scatter solar radiation throughout the
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interplanetary space of the solar system. The interplanetary dust complex consists

of microscopic (mainly rocky) particles, typically less than a few millimeters in size,

called micrometeoroids, moving in the interplanetary space of the solar system [66].

Dust is produced by collisions among solid bodies [67, 68], by disruptions of icy

bodies, and by cometary activity [69, 70]. As such, the interplanetary dust complex

derives from Cosmo chemical analyses of samples recovered from Earth’s 1) surface,

e.g., micrometeorites collected in Antarctica [71, 72]; 2) stratosphere, by balloon born

instruments as eg., DUSTER, designed for a non-destructive and uncontaminated

collection of solid particles from tens of microns down to 200 nm in size [73] and

by stratospheric NASA/ aircraft passive sticking on silicon oil coated plates [74].

A critical contribution is also given by laboratory analyses of samples [64, 65]. In

addition, cometary dust was studied in situ from the onset of cometary activity to

its cessation after perihelion by the Rosetta/ESA space mission [75, 76].

4.3 Optical forces on dust particles

4.3.1 Models for dust particles

In an astrophysical environment, the variety of dust particles necessitates the

development of sophisticated models to calculate the optical forces required for space

tweezers applications. We consider several models of extraterrestrial dust with shape

and composition inspired by interstellar particles, DUSTER samples [81], and Moon

or Mars dust analogs. Some examples are shown in figure 18. However, it is clear
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Figure 18: Scattering models with shape and composition inspired by interstellar, interplanetary
(DUSTER mission [77]), and planetary [78] particles. On the top, the models emulate hypothetical
interstellar dust grains whose constituents are olivine and aliphatic carbon. In (a) and (b), the
constituent’s refractive indexes are mixed according to the Bruggeman criterion. Instead, in (c)
and (d), the olivine is considered covered by a carbon layer. In (e), the model of a silica particle
arranged in quenched melt spheres is shown in the FESEM image [77] (f). In (g), the model of
condensed Ca[O] nanograins that are accreted onto a larger melted aggregate of tiny carbonate
grains shown in the FESEM image [77] (h). The larger sphere is calcite, and the other spheres are
CaO. In (i), a spherical model of the particle Fe, Mg-rich ’TP2’ [79], in which an effective refractive
index is considered by mixing iron (67%) and magnesium (33%). In (j), a spherical model of Martian
hematite [78]. In (k), a spherical model of Lunar regolith [80]. In (l), a model of an ellipsoidal
fassaite is shown in the FESEM image (m). Here, an effective refractive index is considered by
mixing silica (53%), CaO (27%), FeO (10%), Al2O3 (10%). (from Ref. [11]).
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that the diversity of dust particles in an astrophysical context implies a richness of

models that need to be developed to calculate optical forces posing a computational

challenge. While for model spherical particles, such forces can be calculated by using

exact electromagnetic solutions of the scattering problem, realistic dust grains are

far from exhibiting these simple shapes, as shown in Fig. 18. Aiming to replicate

realistic dust scattering properties, different model particles have been proposed that

include aggregates, stratified, agglomerate debris, or Gaussian random particles.

While the use of these more sophisticated model geometries represents better the

physical reality, the increased detail in the morphology comes with the drawback

of a higher demand for computational power, limiting the number of configurations

that can be numerically explored.

4.3.2 Modelling optical trapping of dust particles in laboratory optical

tweezers

From the experimental point of view, optical tweezers have been mostly employed

to trap and manipulate micron-sized objects in a liquid environment rather than in

air or in a vacuum. This is because liquid media minimize the effects of external

perturbations on a trapped particle and the effect of inertia on its dynamics, while

trapping in air or vacuum is more challenging. In fact, the trapping stability can

be affected by external perturbations generated by airflows, acoustic shocks, thermal

drift, mechanical vibrations, and even by the intensity noise of the trapping laser.

Furthermore, liquid media can suspend the particles for a long time before and
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after trapping, allowing the selection and trapping of a specific single particle over

a multitude. For these reasons, in Ref. [6], some novel experiments on optical

trapping and spectroscopic characterization of cosmic dust particles and analogs

have been achieved in a liquid environment. We performed accurate optical trapping

calculations in the T-matrix formalism, highlighting the key role of composition and

complex morphology in the optical trapping of these cosmic dust particles.

The samples trapped in the CNR-IPCF laboratory [6] have known textures and

mineralogic compositions. The aim is to use this information to model the optical

trapping properties of cosmic dust particles and analogs.

The samples considered have terrestrial and extraterrestrial origins. They are

(1) a hawaiite from Etna volcano in Italy (HE-1), (2) the CV3-OxA carbonaceous

chondrite Allende (A-1), and (3) a lunar poly-mixture regolith breccia meteorite

found in Antarctica (DEW 12007) [82]. The mineralogy composition of these samples

is shown in figure 19.

For the experimental investigation of the optical trapping properties of single

grain dust particles, a home-built optical tweezers were used. An optical trap is

generated by highly focusing a laser beam through an objective, the trajectory of

the trapped particle is then acquired by a quadrant photodiode and analyzed by

a computer to characterize optical forces and rotations arising from the interaction

of the particle with light. From these measurements, the stiffnesses of the effective

optical trapping potential are obtained experimentally. These quantities can then be

compared with our T-matrix calculations.
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Figure 19: XRD results for the mineralogy of the samples HE-HA Hawaiite, Allende-CV OxA,
DEW 12007-Lunar regolith breccia and the compositions of the samples with their percentages
(Done in CISUP, Pisa University).

To accurately calculate the optical trapping of dust particles using the T-matrix

formalism, following the dimensions given by the SEM images (Fig. 20), we first

modeled the particles as microspheres with a diameter close to their average size of 1

µm, despite their irregular shape. The incident radiation was modeled to reproduce

the characteristics of the laser beam used in the experiments as a Gaussian laser beam

with a wavelength λ = 830 nm and a power P=50 mW, focused by a NA objective

for air NA=0.9, for water NA=1.3. We modeled the particles taking proper account

of their mineral composition, and adopted two strategies. In the first case, we used a

single sphere model, see figure 21 panel (a), with an effective refractive index obtained
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Figure 20: Optical microscope images (a) HE-HA Hawaiite Diameter 2.91 µm (b) Allende-CV
OxA Diameter 1.32 µm (c) DEW 12007-Lunar regolith breccia Diameter 1.05 µm ( Done in CNR
Messina)

Figure 21: (a) Single sphere with an effective refractive index obtained according to the Bruggeman
Mixing Rule (b) Non-homogeneous distribution where the external sphere is made by the dominant
material in the mixture, while the inclusions are made of materials representative of the variety of
materials resulting from XRD analysis.

according to the Bruggeman Mixing rule [83]. In the second model, we used a sphere

composed of the material mostly present in the mixture, containing some inclusions,

see figure 21 panel (b). The size and the composition of these inclusions are chosen

in such a way that they can better represent the variety of materials resulting from

XRD analysis, see table 19 for reference.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

89



4.3 Optical forces on dust particles

The values used for the mixing were summarized in Table 22. The refractive

index of olivine was provided by Draine and Li, while that of carbon was provided

by Ashok et al. [84, 85]. The inclusions are made of the secondary constituents, as

listed below:

• HE-1-Hawaite: Two inclusions made of olivine, each having a volume fraction

of 8%, and two inclusions of magnetite, each having a volume fraction of 1%.

• Allende CV3 OxA: Two inclusions made of clinoenstatite and enstatite, each

having a volume fraction of 12%, and two inclusions of diopside and pigeonite

, each having a volume fraction of 8% (see Table 19).

• DEW 12007-Lunar Meteorite: Two inclusions made of olivine, each having

a volume fraction of 10%, and two inclusions of ilmenite, each having a volume

fraction of 2%.
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Figure 22: Refractive index and dielectric constants calculated using the Bruggman mixing Rule for
HE-1-Hawaite, Allende CV3 OxA, and DEW 12007-Lunar Meteorite. The refractive indices used
were provided from [84, 85, 86, 87, 88, 89]
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4.3.3 Results

We conducted a study to analyze the trapping stiffnesses of three samples: HE-1-

Hawaite, Allende CV3 OxA, and DEW 12007-Lunar Meteorite, when these scatterers

are immersed in water and air, see figure 23. Here, we consider for the simulation

nanospheres with d=1µm and used for dielectric constants the data reported in

table 22. These dielectric constants were calculated through the Bruggman mixing

rule, starting from the dielectric constants of the single material components. By

analyzing figure 23 (b), (d) and (f), these kind of nanoparticles are all trapped when

they are immersed in water, as Qz goes to 0 with a negative gradient. In the case

that the external medium is air, even if the efficiencies Qx, Qy are able to confine

the scatterers, the radiation force, Qz, pushes out the particles as it never reaches 0.

In Figure 24, we present the transverse, x, y, and longitudinal, z, stiffnesses

as a function of the particle radius when the scatterers are immersed in water.

Additionally, we found that the stiffnesses decreased almost linearly with the radius

for all considered cases. The difference between the stiffnesses along the x and y

directions can be attributed to the polarization of the incident field, as we used a

Gaussian beam TEM00 x-polarized field. Typically, the stiffnesses values along the z

direction were lower than those along the x and y directions, as the radiation pressure

tends to destabilize the particle along the z-axis. For the model presented in figure

21 (b), which takes into account the real dis-homogeneity of the simulated grain, we

were able to compare the theoretical results with the experimental ones. For this

reason, we report the results obtained in the next section.
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4.3 Optical forces on dust particles

Figure 23: The trapping efficiencies ( Qx, Qy, Qz) of these three samples (a) and (b) HE-1-
Hawaite, (c) and (d) Allende CV3 OxA, and (e) and (f) DEW 12007-Lunar Meteorite respectively
in air (nm=1) and in water (nm=1.33) in the transverse, x, y, and longitudinal, z, directions, as a
function of displacement from the nominal paraxial focus.
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Figure 24: Trapping stiffness kx, ky, kz as a function of the particle radius in the transverse, x, y,
and longitudinal, z, directions, for the three samples (a) HE-1-Hawaite, (b) Allende CV3 OxA, and
(c) DEW 12007-Lunar Meteorite immersed in water.
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4.3.4 Comparison with experiments

In order to compare the experimental results with our theoretical simulations, we

consider particle models emulating the dust grains of the lunar meteorite DEW

12007. Although all the trapped dust grains showed irregular shapes, for simplicity,

we modelled our particles as micro-spheres having an average diameter d = 1 µm with

a refractive index given by the Bruggeman mixing rule for the constituent minerals

of DEW 12007 (as shown in Fig. 21 and Fig. 25).

Here we consider a laser beam tightly focused by a high-NA objective (NA=1.3),

mimicking the experimental conditions used during the investigation of the lunar dust

grains in Ref. [6]. In figure 25(a), we show the theoretical transversal and longitudinal

trap efficiencies defined respectively as Qth
xy = (F opt

x +F opt
y )/2Pw and Qth

z = F opt
z /Pw.

Thereafter, we refined our particle model to take into account the anisotropy and

heterogeneity of the real dust grains. We still considered a homogeneous sphere,

with a refractive index obtained according to the Bruggeman mixing rule, but now

we add 4 spherical inclusions, 25(b) inset. These inclusions are made of the secondary

constituents of the lunar meteorite, in particular, we consider 2 inclusions made of

olivine having a 10% each of the total volume of the modelled grain, and 2 inclusions

of ilmenite with a 2% each of the total volume. Similarly to the previous model, we

calculate the optical forces and the theoretical longitudinal trap efficiency Qth
z , as

shown in Fig. 25(b). Here it is possible to notice how the trap efficiency is affected

by the internal structure of a dust grain, presenting several equilibrium points with

Qth
z = 0, and only two stable equilibrium points at x = −0.38 and x = 0.75 µm,
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conversely, the homogeneous model was showing an only stable equilibrium point at

x = 0 µm, Fig. 25(a,b).

After computing the theoretical optical forces acting on our model particles

and their stiffnesses, we compare the theoretical and experimental mean transverse

stiffness efficiencies qxy = (qx + qy)/2 and longitudinal stiffness qz, Fig.25(c), to

validate our theoretical model. In figure 25c, it is possible to notice a fairly good

agreement between the theoretical and experimental values of the stiffness efficiencies

qth and qex, validating the theoretical model used for the calculation of optical forces

acting on cosmic dust. The small discrepancies are due to the spherical shape used in

our model which is a simplification of the complex particle shape, mass distribution,

and mineral composition.
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0.75
-0.38

Figure 25: Comparison with experimental results of Ref. [6]. a) Dark blue line represents the
theoretical trap efficiency Qth

z along the longitudinal direction z with x = y = 0. Black line
represents the theoretical trap efficiency Qth

xy along the transversal direction x − y with z = 0. In
the inset is shown the theoretical particle, modelled as a micro-sphere with a homogeneous refractive
index according to the Bruggeman mixing rule. Light blue line is a reference line at y = 0. b) Dark
blue line and black line represent the theoretical trap efficiency Qth

z and Qth
xy, respectively, for

the particle model showed in the inset. Here the particle is modelled as a micro-sphere with a
homogeneous refractive index according to the Bruggeman mixing rule and has 4 inclusions made
of the secondary constituents of the lunar meteorite, 2 inclusions made of Olivine having a 10%
each of the total volume and 2 inclusions of Ilmenite with a 2% each of the volume. Qth

z presents
only two stable equilibrium points at x = −0.38 and x = 0.75 µm, but, according to our forces
calculations, only at x = 0.75 µm trapping along the x and y direction is possible. c) Theoretical
(lines) and experimental (dots) stiffness efficiencies qxy and qz within the transversal plane x − y
and along the longitudinal direction z, respectively. Blue lines and dots represent the theoretical
and experimental efficiency qthxy and qexxy respectively, along the transversal direction x−y, while the
black lines and dots represent the theoretical and experimental efficiency qthz and qexz respectively,
along the longitudinal direction z.
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Chapter 5

On the optical properties of Ag-Au colloidal alloys

In this chapter we present simulations regarding the optical response in the UV-Vis

range of colloidal Ag-Au solutions, obtained through a laser ablation process with

controlled parameters, applying the T-matrix approach [13] [12]. Through these

simulations, as long as the particles formed in the experiment can be considered

spherical monomers (possibly aggregated), it is possible to understand with no

ambiguity whether from the peculiar shape of the UV-Vis spectra of nano- composites

can be extracted information related to the effective formation of a metal alloy. In

addition, our theoretical approach, once fed by the appropriate optical constants,

allows a reliable design of the surface plasmon resonance (SPR) of the nanoparticles

(NPs) that constitute the colloids according to the main process parameters, namely

the composition of the Ag-Au mechanical mixture leading to the alloy, and the NP

average size.

The samples we theoretically studied are:

(a) elemental colloidal suspensions of Ag and Au NPs (from now on referred to as

e-Ag and e-Au) prepared using PLAL in distilled water, using a pulsed laser at 532

nm wavelength. In figures 26 (a) and (b) we show the SEM picture we used to

characterize the size and the morphology for the as-prepared colloidal dispersion

(b) physical mixtures constituted taking selected volume fractions from the elemental
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Figure 26: Elemental NPs prepared by PLAL at f = 10 Hz, t = 20 min, F = 1.5 J cm−2: a), e-Ag;
b), e-Au. Elemental NPs re-irradiated at f = 10 Hz, t = 120 min, F = 1.2 J cm−2: c), r-Ag; d),
r-Au. (f is the laser repetition rate, F is the laser fluence and t is the exposure time)

colloids and mixing them.

(c) re-irradiated of both elemental colloids (from now on referred to as r-Ag and r-

Au), see figures 26 (c) and (d), and physical mixtures through the laser source used

for the synthesis, at the same wavelength, for 120 minutes at the laser fluence of 1.2

J cm−2. In figure 27, we show the representative morphology and size histogram of

m-Ag50Au50 (physical mixture, panel a) and the typical morphology of r-Ag50Au50

(re-irradiated NP mixture, panels b, and c)

We recall here that through the definition of the normalized scattering amplitude,

see equation 1.3.3, it is possible to define the extinction cross section (equation 1.3.3)

that is the key quantity that enters in the simulations for the UV-Vis spectra obtained

for the samples briefly described above. For clarity, in the following, we will discuss

the obtained results by discussing individually all the different studied cases.
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5.1 Simulations of the UV-Vis spectra for pure metal colloids (e-Ag and e-Au)

Figure 27: Representative morphology and size histogram of m-Ag50Au50 (physical mixture, panel
a); typical morphology of r-Ag50Au50 (re-irradiated NP mixture, panels b and c); TEM high
magnification pictures of selected NPs (panel d).

5.1 Simulations of the UV-Vis spectra for pure metal colloids

(e-Ag and e-Au)

In Figure 28, we collect the optical properties of the elemental NPs as represented by

the extinction spectra, both measured (red lines, experiment) and calculated (blue

lines, theory). For as-prepared Ag NPs (e-Ag), a single peak centered at 407 nm with

FWHM of 70 nm is a marker of isolated, spherical particles (Figure 28a). Figure

28c shows the extinction spectrum of as-prepared Au NPs (e-Au), a single feature

peaked at 526 nm, with FWHM of about 80 nm. After the laser re-irradiation (120

min) for both metals, we observe a slight blue shift of SPR (for Ag, from 407 down

to 400nm; for Au, from 526 to 522 nm). Particularly, the FWHM decreases to 55

nm for Ag and remains almost unchanged for Au (Figure 28d). In agreement with
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recent observations [90, 91, 92] we conclude that re-irradiation with ns laser pulses

produces a consistent particle fragmentation in the colloids of both metals.

Figure 28: Extinction spectra of elemental NPs: Ag (as prepared, e-Ag panel a; re-irradiated, r-Ag
panel b) and Au (as prepared, e-Au panel c; re-irradiated, r-Au panel d). In all panels red curves,
labeled experiment, refer to experimental data; blue curves, labeled theory, refer to best fits from
theory – see Methods.

Now, as regards the theoretical UV-Vis spectra obtained for the two elemental

samples, we consider that the e-Ag and e-Au colloids are polydispersed in size and,

in the limit of low dilution, we determine the optical properties of both elemental

colloids through a weighted average of particles sizes, from rmin = 1 nm to rmax =

300 nm, of single particle extinction cross-sections calculated as briefly reported in

the preceding section

⟨σext⟩ =
∫ rmax

rmin

dr n(r)σext(r) (33)
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5.1 Simulations of the UV-Vis spectra for pure metal colloids (e-Ag and e-Au)

rav (nm) σ rmin (nm) rmax (nm)
e-Ag 30 1.5 1 300
r-Ag 25 1.3 1 300
e-Au 30 2 1 100
r-Au 15 2 1 100

Table 1: Values of the parameters obtained through the best fit procedure of the experimental
data shown in Figure 28.

As suggested by the sampling in size, we choose a simple analytical function of the

log-normal [4] type:

n(r) ∝ r−1 exp

[
−(ln r − ln rm)

2

2(lnσm)2

]
(34)

to fit the experimental data. In the present simulations, the optical constants for

both an Au NP and an Ag NP are those derived from the work of Johnson and

Christy [93].

The results of the theoretical analysis are plotted together with the experimental

spectra in Figure 28a,b for Ag NPs before and after the laser re-irradiation and in

Figure 28c,d for Au NPs. From Figure 28 and Table 1, where we report the best fit

parameters obtained with the above described theoretical procedure, we notice that

the further fragmentation of the elemental NPs due to re-irradiation is confirmed by

the accuracy of our theoretical computation. Overall, our theoretical approach is in

agreement with the experimental data for all elemental samples.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

102



5.2 Simulations of the UV-Vis spectra for mixtures of the elemental colloids

5.2 Simulations of the UV-Vis spectra for mixtures of the

elemental colloids

In Figure 29, we show the comparison between the Uv-Vis spectra for the colloids

of the equiatomic m-Ag50Au50 mixture and of their re-irradiated counterparts, r-

Ag50Au50. The first curve (blue line, labelled m-Ag50Au50) displays two peaks, one

centered at about 398 nm (FWHM 48 nm), due to e-Ag NPs, the second at 511

nm (FWHM 35 nm), due to e-Au NPs. Even if the shape of both peaks indicates

the presence of isolated, spherical NPs, the mixed sample shows new features as

compared to the extinction spectra of the colloids in Figure 28. The SPR peaks are

shifted towards lower wavelengths: from 407 nm to 398 nm for e-Ag and from 526

nm to 511 nm for e-Au. Peaks are also narrower: the FWHM changes from 70 nm

to 48 nm for e-Ag, and from 80 nm to 35 nm for e-Au. This led us to theoretically

analyze the spectra of purely mixed samples to understand the nature of the above

changes. The spectrum of the re-irradiated colloids (red line labelled r-Ag50Au50 in

Figure 29), consists of a single peak centered at 504 nm (FWHM 52 nm). Thus the

optical signal from Ag NPs disappeared, and the one from Au NPs is blue-shifted and

broadened, lying between those of e-Ag and e-Au [94, 95]. Its displacement toward

the Au feature is likely to indicate that the composition of the NPs is enriched in Au,

similarly to what was reported in references [94, 95]. The result of the re-irradiation

indicates that the NPs underwent a drastic change leading to the formation of a

nano-alloy [96, 97, 98].
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5.2 Simulations of the UV-Vis spectra for mixtures of the elemental colloids

Figure 29: Extinction spectra of: the initial Ag50Au50 equiatomic physical mixture (m-Ag50 Au50)
of the as-prepared colloids, blue line, and the re-irradiated colloids (r-Ag50Au50), red line. Notice
that the two features due to Ag and Au isolated, spherical NPs in m-Ag50Au50 reduce to a single
feature in r-Ag50Au50, blue-shifted with respect to the SPR of the initial e-Au colloid.
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5.2 Simulations of the UV-Vis spectra for mixtures of the elemental colloids

Figure 30: Extinction spectra from the experiment (red line) and simulation (blue line) for three m-
AgxAu100−x mixed colloids of different stoichiometry, spanning the composition range: m-Ag75Au25

(a); m-Ag50Au50 (b); m-Ag25Au75 (c).

In Figure 30, we report the UV-Vis and the simulated extinction spectra of m-

AgxAu100−x colloids for selected x values. The reported simulations make use of

information on the average NP size as in Table 1.

Here we notice further effects: (1) the relative intensity of the peak at about

400 nm, associated to Ag NPs, increases on increasing Ag content, (2) the Ag peak

undergoes a gradual red shift from 398 nm to 406 nm, (3) the Au NP feature shifts

progressively from 515 nm to 507 nm on lowering the Au content. This is further

confirmation that the surface plasmon characteristics of Ag and Au colloids strongly

depend on the stoichiometric ratio of the mixture [96, 94]. Electron microscopy

images show that in the Au-Ag mixtures, the NPs have a tendency to join together

(see Figure 27a).
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colloids

The observed shifts can be theoretically justified by supposing that, upon mixing,

there is a weak interaction, due to nanoscale forces mainly of electrostatic nature [99],

between the particles that make up the mixture. This interaction also studied from

the experimental point of view [96], is related to the high activity of Ag NPs that has

been shown to depend on the wavelength of the laser radiation used in the synthesis

[96]. Moreover, the change in the broadening of the plasmon band compared with

that obtained for elemental colloids indicates the collective nature of the SPR of the

mixed sample[100]. In the simulation, we focused on the electromagnetic interaction

via the multiple scattering effects that come into play in the mixed sample. To take

into account these effects, we calculate the optical properties (σext) through the T-

matrix approach, referring to the simplest form of aggregation: a dimer consisting of

an Ag sphere and an Au sphere. By varying the distance between the monomers that

make up such a binary system and by mediating over all the possible orientations,

it was possible to take into account such shifts that are a fingerprint of multiple

scattering interactions between the monomers that constitute the dimer.

5.3 Simulations of the UV-Vis spectra for re-irradiated

mixtures of elemental colloids

Here we present the simulations obtained for the re-irradiated samples made by

mixing e-Au and e-Ag colloids, where the Ag fraction ranges from 25% to 75%. From

the analysis of the experimental data (see Figure 29 for the equiatomic composition

case), we observe the disappearance of the lowest frequency peak, which we previously
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colloids

assigned to Ag NPs. The question that arises is which chemical-physical process

is responsible for this behavior. The experiment demonstrates, in agreement with

assessed literature [94, 95], that after the re-irradiation, particles with different

optical properties to those of e-NPs were formed. We aim to demonstrate that

our theoretical approach can discriminate whether such particles are:

(1) core-shell NPs;

(2) NPs with optical properties that can be derived in terms of an effective

dielectric constant following Bruggeman effective medium approximation (EMA)

[83];

(3) a new kind of NPs, the optical properties of which can be simulated assuming

that re-irradiation led to the formation of Ag-Au alloys. In this case, we consider

two different models for the dielectric constant: the model of Rioux et al [101], which

we refer as analytic model, and the model of Pena-Rodriguez et al. [102].
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colloids

Figure 31: Extinction spectra for Ag50Au50, from different models: Au-Ag core-shell, Au shell,
4.12 nm (red line); Au-Ag core-shell, Ag shell, 4.12 nm (black dashed line); Ag50Au50 with the
dielectric optical constant coming from Bruggeman’s mixing rule (green line); Ag50Au50 with the
dielectric optical constant coming from analytic model [101] (red dashed line); the blue line refers
to experimental extinction spectrum of r-Ag50Au50 colloids.

In Figure 31 we present the computed normalized absorption for different

nanospheres with diameter r = 20 nm, compared with the experimental spectrum

for the colloid r-Ag50Au50.

The curves are obtained for a core-shell spherical NP for homogeneous spheres

using both Bruggeman’s EMA (Effective Medium Approximation) and dielectric

optical constant coming from the analytic model [101]. The core-shell NP is

constituted by a shell, the volume of which is 50% of the total volume, and we

consider both the case of Au-core with Ag-shell and Ag-core with Au-shell. In the
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5.3 Simulations of the UV-Vis spectra for re-irradiated mixtures of elemental
colloids

simulation, we adopted for Ag and Au the Johnson and Christy dielectric constants

[93]. The Bruggeman’s effective dielectric constant is derived for a mixture of 50%

Ag and 50% Au. In Figure 31 we notice that the absorption spectra for the three

above models (red and black dashed curves, green curve, and red dashed curve) are

very far from the experimental data. As expected, in the first case, the layered

structure introduces a further peak due to the presence of the core that marks the

optical behavior. Bruggeman’s model gives an absorption spectrum with a behavior

that is, as expected, an intermediate result between those of the two core-shell

spectra. Also, the result obtained by Rioux’s analytic model (red dashed curve)

presented in Figure 31 is far from the experimental data. All such unsatisfactory

results indicate that the re-irradiation of the sample results in colloids made of

NPs with optical properties that can no longer be described through the dielectric

functions that make use of a mixing rule based on Johnson and Christy results or on

a multi-parametric modification of Drude-Lorentz model. Indeed, any mixing rule

ultimately tends to preserve the main physical characteristics of the noble metals

used in the experiment. For these reasons, we resort to the optical constants for real

Ag-Au alloys obtained from spectroscopic ellipsometry measurements on thin films

fabricated by electron beam evaporation [102]. The ellipsometric spectra of thin films

of Ag-Au alloys with different compositions were analyzed by an analytical procedure

based on Kramers-Kronig (K-K) compliant cubic B-splines [103], this way ensuring

the physical meaning of the obtained complex dielectric function. A three-phase

multilayer model was assumed in which the second layer, modeled as a Bruggeman’s

mixture of voids and Ag-Au islands, simulates the film surface with its roughness,
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Figure 32: Real (n, panel a) and imaginary (κ, panel c) parts of the refractive index as functions
of the wavelength for re-irradiated r-Ag-Au colloids of different composition: red line r-Ag25Au75;
blue line r-Ag50Au50; green line Ag75Ag25; data for pure Ag and Au (e-Ag and e-Au) are reported.
In panels b and d, the same as in panels a and c, calculated from Bruggeman’s mixing rule.

lying between the ambient and the high-density region of the alloy film [102]. In

Figure 32a and 32c, we display the values of the real (n) and imaginary (κ) parts of

the refractive index corresponding to the r-Ag-Au alloys we prepared re-irradiating

colloid mixtures containing (i) 25%Ag-75%Au (red line), (ii) 50%Ag-50%Au (blue

line) and (iii) 75%Ag-25%Au (green line) together with the real and imaginary parts

of the refractive index of the pure noble metals [93]. For comparison, in Figure 32b

and 32d, we show the values of n and κ obtained with Bruggeman’s mixing rule for

the same systems.

We remark a couple of peculiarities in the trend of the refractive index as a

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

110



5.3 Simulations of the UV-Vis spectra for re-irradiated mixtures of elemental
colloids

function of the wavelength as the composition changes: first, for the alloy, the onset

of interband transitions shifts significantly from ≈500 nm in pure Au to ≈315 nm

for pure Ag unlike what happens for the mixing rule; and second, in the near IR

region for the alloy there is a non-linear behavior in the real part of the refractive

index that leads to values of n larger than those for pure metals. The physical

reason for the presence of this shift is the variation of the number density of the

minority constituent of the material. Since such atoms act as scattering centers, a

variation in the resistivity of the material and, ultimately, in the damping constant

is induced. The damping constant reaches its maximum value for the composition

Ag 50% - Au 50% [104]. The non-linear behavior at near IR is caused by the

difference in electronegativity between Ag and Au, resulting in a considerable transfer

of electronic density from Ag to Au. This charge transfer stresses and modifies the

lattice, producing additional damping.

In Figure 33, we report the normalized experimental UV-Vis absorbance in good

agreement with the calculated values for the re-irradiated mixtures with different

compositions. For the simulated absorbance, we adopted the previously discussed

model for the dielectric constant of the alloy and, also in this case, we considered a

log-normal distribution in size (see Eqs. 33, 34). In Table 2, we report the parameters

obtained in the best-fit procedure. We underline that, as a secondary effect of the

re-irradiation procedure, the obtained colloids undergo a further NP fragmentation

so that a narrower size distribution results as compared to that used for the best fit

of Figure 28.

Analytical and Numerical Approaches for Light Scattering by Nanostructured
Materials

111



5.3 Simulations of the UV-Vis spectra for re-irradiated mixtures of elemental
colloids

Figure 33: Experimental (red line) and calculated (blue line) normalized extinction spectra of
re-irradiated colloids of different composition: r-Ag75Au25 (a); r-Ag50Au50 (b); r-Ag75Ag25 (c).

rav (nm) σ rmin (nm) rmax (nm)
25%Au-75%Ag 10 2 1 100
50%Au-50%Ag 10 2 1 100
75%Au-25%Ag 10 2.5 1 100

Table 2: Values of the parameters obtained through the best-fit procedure of the experimental
data are shown in Figure 33.
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Conclusions

Conclusions

This thesis discusses some of the most used analytical and numerical approaches

to address the scattering problem. The choice of the best method to use is crucial

for the solution of the problem and depends on the composition and morphology of

the system under study, on the wavelength range under investigation, on the desired

level of accuracy, and on the available computational resources. Throughout this

thesis we compare the potentials of an analytical and numerical approach based

on the multipole field expansion of the electromagnetic fields, namely the T-matrix

method, with numerical approaches based on finite elements methods, specifically the

FDTD method. In some situations also the use of approximate approaches may give

a useful insight into the physics of light scattering. For this reason we also discuss

the dipole approximation and the scattering regime in which it can be reasonably

applied.

A throughout discussion is devoted to the theory of optical trapping and optical

tweezers which in recent years have found relevant applications in many fields, from

biology to soft matter, ultra-sensitive spectroscopy, atomic physics, nanophotonics,

and nanomedicine [9]. Also in this case we compare the potential of T-matrix,

FDTD and dipole approximation for calculating optical forces, showing a numerical

comparison between the different approaches.

In recent years optical tweezers have found application to study dust particles

of astrophysical interest and to characterize their opto-mechanical behaviour (space
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tweezers) [11]. The study of cosmic dust, in the form of interstellar, interplanetary,

and planetary dust particles has gained much relevance in the last decades since

it has been finally recognized its crucial role in many processes, going from planet

and star formation to the ignition of a potentially life-bearing chemistry. We show

how the T-matrix method can be applied to model and calculate the optical forces

acting on cosmic dust analogues, highlighting the key role played by dust composition

and morphology for optical trapping. This study provides significant insights into

the potential applications of optical tweezers for analyzing particulate matter in the

solar system. The techniques explored in this research could be extended to the study

of cometary particles, including their volatile components, as well as dust particles

in the Martian atmosphere and on the surfaces of both Mars and the Moon. Such

applications could be crucial for "clean" handling and preliminary characterization

of planetary particulate matter in curation facilities, paving the way for future space

exploration and in-situ analysis of planetary bodies [6].

Finally, we present some simulations related to the UV-Vis optical response

of Ag-Au colloidal solutions obtained through laser ablation with specific control

parameters. To accomplish this, we utilize the T-matrix approach developing a

theoretical model based on the Mie theory to explain the experimental observations,

taking into account the core-shell structure of the nanoparticles and the interaction

between the plasmon resonances of Ag and Au. Our model predicts the position

and intensity of the plasmon peaks as a function of the molar ratio of Ag to Au,

which is consistent with the experimental data. Our study provides insights into

the optical properties of Ag-Au colloidal alloys and their potential applications in
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nanotechnology. Our theoretical analysis contributes to a better understanding of the

underlying physical mechanisms that govern the optical properties of these materials

[12]. Further research could explore the effects of other variables, such as particle size

and shape, on the optical properties of Ag-Au colloidal alloys and could investigate

the use of other theoretical models to describe their behavior.
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