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Abstract. In this paper, we introduce and study some subsets in mixed
neutrosophic topological spaces and obtain some of their basic properties.
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1. Notations and terminology

The impact of fuzzy set theory and its applications have been great in almost all
aspects of mathematics since its advent and introduction by Zadeh [1]. The theory
of fuzzy topological space was introduced and developed by Chang [2] and since
then various notions in classical topology have been extended into the context of
fuzzy topological space. The idea of ”intuitionistic fuzzy set” was first published
by Atanassov [3] and some research in this respect have been done by him and
his colleagues [4, 5, 6]. Later, this concept was generalized to ”intuitionistic L -
fuzzy sets” by Atanassov and Stoeva [7]. Smarandache introduced the important
and useful concepts of neutrosophy and neutrosophic set [8, 9]. The concepts of
neutrosophic crisp set and neutrosophic crisp topological space were introduced by
Salama and Alblowi [10]. The rudimentary notions and basic results related to
neutrosophic topological spaces were introduced and discussed by Dhavaseelan et
al. [11].

In this paper, after introducing mixed neutrosophic topological spaces, we present
some of their properties. Then, we offer some new notions of mixed generalized open
and closed sets and discuss some of their features. Moreover, we obtain some results
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related to the extremally disconnectedness in the context of mixed neutrosophic
topological spaces. Here we begin to mention some well-known notions.

Definition 1.1. Let T, I, F be real standard or non standard subsets of ]0−, 1+[
with supT = tsup, infT = tinf , supI = isup, infI = iinf , supF = fsup, infF = finf ,

n− sup = tsup + isup + fsup, n− inf = tinf + iinf + finf .
Then T, I, F are called neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutrosophic set A is an object
having the form A = {⟨x, µ

A
(x), σ

A
(x), γ

A
(x)⟩ : x ∈ X}, where µ

A
(x), σ

A
(x) and

γ
A
(x) which represents the degree of membership function (namely µ

A
(x)), the

degree of indeterminacy (namely σ
A
(x)) and the degree of nonmembership (namely

γ
A
(x)) respectively of each element x ∈ X to the set A.

Remark 1.3. (1) A neutrosophic set A = {⟨x, µ
A
(x), σ

A
(x), γ

A
(x)⟩ : x ∈ X} can

be identified to an ordered triple ⟨µ
A
, σ

A
, γ

A
⟩ in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = ⟨µ
A
, σ

A
, γ

A
⟩ for the

neutrosophic set A = {⟨x, µ
A
(x), σ

A
(x), γ

A
(x)⟩ : x ∈ X}.

Definition 1.4. Let X be a nonempty set and the neutrosophic sets A and B in
the form
A = {⟨x, µ

A
(x), σ

A
(x), γ

A
(x)⟩ : x ∈ X}, B = {⟨x, µ

B
(x), σ

B
(x), γ

B
(x)⟩ : x ∈ X}.

Then
(i) A ⊆ B iff µ

A
(x) ≤ µ

B
(x), σ

A
(x) ≤ σ

B
(x) and γ

A
(x) ≥ γ

B
(x) for all x ∈ X,

(ii) A = B iff A ⊆ B and B ⊆ A,
(iii) Ā = {⟨x, γ

A
(x), σ

A
(x), µ

A
(x)⟩ : x ∈ X} [The complement of A],

(iv) A ∩B = {⟨x, µ
A
(x) ∧ µ

B
(x), σ

A
(x) ∧ σ

B
(x), γ

A
(x) ∨ γ

B
(x)⟩ : x ∈ X},

(v) A ∪B = {⟨x, µ
A
(x) ∨ µ

B
(x), σ

A
(x) ∨ σ

B
(x), γ

A
(x) ∧ γ

B
(x)⟩ : x ∈ X},

(vi) [ ]A = {⟨x, µ
A
(x), σ

A
(x), 1− µ

A
(x)⟩ : x ∈ X},

(vii) ⟨⟩A = {⟨x, 1− γ
A
(x), σ

A
(x), γ

A
(x)⟩ : x ∈ X}.

Definition 1.5. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X.
Then

(i)
⋂
Ai = {⟨x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)⟩ : x ∈ X},

(ii)
⋃
Ai = {⟨x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)⟩ : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic
topological spaces, we must introduce the neutrosophic sets 0

N
and 1

N
in X as

follows.

Definition 1.6. 0
N
= {⟨x, 0, 0, 1⟩ : x ∈ X} and 1

N
= {⟨x, 1, 1, 0⟩ : x ∈ X}.

Definition 1.7. [10]A neutrosophic topology on a nonempty set X is a family τ of
neutrosophic subsets of X which satisfies the following three conditions:

(i) 0
N
, 1

N
∈ τ ,

(ii) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ,
(iii) ∪Gi ∈ τ for arbitrary family {Gi | i ∈ Λ} ⊆ τ .

The pair (X, τ) is called a neutrosophic topological space.

Definition 1.8. Members of τ are called neutrosophic open sets and the complement
of neutrosophic open sets are called neutrosophic closed sets, where the complement
of a neutrosophic set A, denoted by Ac, is 1−A.

286
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2. Some mixed neutrosophic sets

Definition 2.1. Let (X, τ1) and (X, τ2) be two neutrosophic topological spaces.
Then the system (X, τ1, τ2) is called a mixed neutrosophic topological space.

Remark 2.2. Here we denote the interior and the closure operators by Int and Cl
respectively. If A ∈ τ1 or A ∈ τ2, this means that A = Int1(A) (A is open with
respect to τ1) or A = Int2(A) (A is open with respect to τ2). A is closed with
respect to τ1 iff A = Cl1(A), and also A is closed with respect to τ2 iff A = Cl2(A).

Definition 2.3. A subset A of a mixed neutrosophic topological space (X, τ1, τ2) is
said to be:

(i) (τi, τj)-regular open, if A = Inti(Clj(A)),
(ii) (τi, τj)-semiopen, if A ⊂ Clj(Inti(A)),
(iii) (τi, τj)-preopen, if A ⊂ Inti(Clj(A)),
(iv) (τi, τj)-α-open, if A ⊂ Inti(Clj(Inti(A))),
(v) (τi, τj)-b-open, if A ⊂ Inti(Clj(A)) ∪ Clj(Inti(A)),
(vi) (τi, τj)-β-open, if A ⊂ Clj(Inti(Clj(A))),
(vii) (τi, τj)-δ-open, if Inti(Clj(A)) ⊂ Clj(Inti(A)),

where i, j = 1, 2 and i ̸= j.

The complement of an (i, j)-semiopen (resp. (i, j)-preopen, (i, j)-b-open, (i, j)-
β-open, (i, j)-regular open) set is called an (i, j)-semiclosed (resp. (i, j)-preclosed,
(i, j)-b-closed, (i, j)-β-closed, (i, j)-regular closed) set.

The family of all (i, j)-regular open (resp. (i, j)-preopen, (i, j)-semiopen, (i, j)-
b-open, (i, j)-β-open, (i, j)-regular closed, (i, j)-preclosed, (i, j)-semiclosed, (i, j)-b-
closed, (i, j)-β-closed) subsets of (X, τ1, τ2) is denoted by (i, j)-RO(X) (resp. (i, j)-
PO(X), (i, j)-SO(X), (i, j)-BO(X), (i, j)-βO(X), (i, j)-RC(X), (i, j)-PC(X), (i, j)-
SC(X), (i, j)-BC(X), (i, j)-βC(X)).

Theorem 2.4. Let A and B be neutrosophic subsets of (X, τ1, τ2).

(1) A is (τ1, τ2)-semiopen if and only if Cl2(A) = Cl2(Int1(A)).
(2) A is (τ2, τ1)-semiopen if and only if Cl1(A) = Cl1(Int2(A)).
(3) If A ∈ τ1 and B is (τ1, τ2)-preopen, then A ∩B is (τ1, τ2)-preopen.
(4) If A ∈ τ2 and B is (τ2, τ1)-preopen, then A ∩B is (τ2, τ1)-preopen.

Proof. We prove only (1) since they follow from definition 2.3 and Remark 2.2. Since
A is (τ1, τ2)-semiopen, then we have A ⊂ Cl2(Int1(A)). If we impose Cl2 on both
sides, then we get Cl2(A) = Cl2(Int1(A)). Conversely if Cl2(A) = Cl2(Int1(A)),
then it is clear that A ⊂ Cl2(Int1(A)). □

Theorem 2.5. Let A and B be any two neutrosophic subsets of a mixed neutrosophic
topological space (X, τ1, τ2).

(1) If A is a (τ1, τ2)-semiopen set or B is a (τ1, τ2)-semiopen set, then

Int1(Cl2(A ∩B)) = Int1(Cl2(A)) ∩ Int1(Cl2(B)).

(2) If A is a (τ2, τ1)-semiopen set or B is a (τ2, τ1)-semiopen set, then

Int2(Cl1(A ∩B)) = Int2(Cl1(A)) ∩ Int2(Cl1(B)).
287
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Proof. (1) Suppose A is a (τ1, τ2)-semiopen set. Then Cl2(A) = Cl2(Int1(A)). Note
that Int1(Cl2(A ∩B)) ⊂ Int1(Cl2(A)) ∩ Int1(Cl2(B)). Thus we have

Int1(Cl2(A)) ∩ Int1(Cl2(B)) = Int1(Cl2(A) ∩ Int1(Cl2(B)))
= Int1(Cl2(Int1(A)) ∩ Int1(Cl2(B)))
⊂ Int1(Cl2(Int1(A) ∩ Int1(Cl2(B)))
= Int1(Cl2(Int1(A) ∩ Cl2(B))))
⊂ Int1(Cl2(Int1(Cl2(Int1(A ∩B)))))
⊂ Int1(Cl2(Int1(Cl2(A ∩B))))
= Int1(Cl2(A ∩B)).

(2) The proof is analogous. □

Theorem 2.6. Let A and B be any two neutrosophic subsets of a mixed neutrosophic
topological space (X, τ1, τ2).

(1) If B is a (τ1, τ2)-α-open set if and only if there exists B ∈ τ1 such that
A ⊂ B ⊂ Int1(Cl2(A)).

(2) If A is a (τ1, τ2)-α-open set and A ⊂ B ⊂ Int1(Cl2(A)), then A is (τ1, τ2)-α-
open set.

(3) If B is a (τ2, τ1)-α-open set if and only if there exists B ∈ τ2 such that
A ⊂ B ⊂ Int2(Cl1(A)).

(4) If A is a (τ2, τ1)-α-open set and A ⊂ B ⊂ Int2(Cl1(A)), then A is (τ2, τ1)-α-
open set.

Proof. (1) Suppose B is a (τ1, τ2)-α-open set and let Int1(A) = B. Then clearly,
B ∈ τ1 and B ⊂ A ⊂ Int1(Cl2(Int1(A))) = Int1(Cl2(A)).

Conversely, suppose the necessary condition holds. Then Int1(B) = B ⊂ Int1(A)).
Thus A ⊂ Int1(Cl2(Int1(B))) ⊂ Int1(Cl2(Int1(A))). So B is a (τ1, τ2)-α-open set.

The other proofs can be carried on by the same token. □

Theorem 2.7. Let A and B be any two neutrosophic subsets of a mixed neutrosophic
topological space (X, τ1, τ2).

(1) If A is a (τ1, τ2)-α-open set and B is a (τ1, τ2)-β-open set, then A ∩ B is a
(τ1, τ2)-β-open set.

(2) If A is a (τ2, τ1)-α-open set and B is a (τ2, τ1)-β-open set, then A ∩ B is a
(τ2, τ1)-β-open set.

(3) If A is a (τ1, τ2)-α-open set and B is a (τ1, τ2)-semiopen set, then A∩B is a
(τ1, τ2)-semiopen set.

(4) If A is a (τ2, τ1)-α-open set and B is a (τ2, τ1)-semiopen set, then A∩B is a
(τ2, τ1)-semiopen set.

Proof. (1) Suppose A is a (τ1, τ2)-α-open set and B is a (τ1, τ2)-β-open set. Then
we have

A ∩B ⊂ Int1(Cl2(Int1(A))) ∩ Cl2(Int1(Cl2(B)))
⊂ Cl2(Int1(Cl2(Int1(A))) ∩ Int1(Cl2(B)))
= Cl2(Int1(Cl2(Int1(A)) ∩ Int1(Cl2(B))))
⊂ Cl2(Int1(Cl2(Int1(A) ∩ Int1(Cl2(B)))))
= Cl2(Int1(Cl2(Int1(Int1(A) ∩ Cl2(B)))))
⊂ Cl2(Int1(Cl2(Int1(Cl2(Int1(A) ∩B)))))
⊂ Cl2(Int1(Cl2 Int1(Cl2(A ∩B))))
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⊂ Cl2(Int1(Cl2(A ∩B))).
Thus A ∩B is a (τ1, τ2)-β-open set.

The other proofs are analogous. □

Theorem 2.8. Let A be a neutrosophic subset of a mixed neutrosophic topological
space (X, τ1, τ2). Then

(1) A is (τ1, τ2)-semiclosed if and only if Int2(Cl1(A)) ⊂ A,
(2) A is (τ2, τ1)-semiclosed if and only if Int1(Cl2(A)) ⊂ A,
(3) A is (τ1, τ2)-preclosed if and only if Cl1(Int2(A)) ⊂ A,
(4) A is (τ2, τ1)-preclosed if and only if Cl1(Int2(A)) ⊂ A,
(5) A is (τ1, τ2)-α-closed if and only if Cl2(Int1(Cl2(A))) ⊂ A,
(6) A is (τ2, τ1)-α-closed if and only if Cl1(Int2(Cl1(A))) ⊂ A,
(7) A is (τ1, τ2)-β-closed if and only if Int2(Cl1(Int2(A))) ⊂ A,
(8) A is (τ2, τ1)-β-closed if and only if Cl1(Int2(Cl1(A))) ⊂ A.

Proof. The proofs follow from the respective definitions. □

Lemma 2.9. Let A be a neutrosophic subset of a mixed neutrosophic topological
space (X, τ1, τ2). Then

(1) Cli(Intj(A)) = Cli(Intj(Cli(Intj(A)))),
(2) Inti(Clj(A)) = Inti(Clj(Inti(Clj(A)))).

Proof. (1) Clearly, the following holds Intj(A) ⊂ Cli(Intj(A)). Then we get

Intj(Intj(A)) = Intj(A) ⊂ Intj(Cli(Intj(A))).

Thus Cli(Intj(A)) ⊂ Cli(Intj(Cli(Intj(A)))).
Conversely, one has that Intj(Cli(Intj(A))) ⊂ Cli(Intj(A)). Then we have

Cli(Intj(Cli(Intj(A)))) ⊂ Cli(Cli(Intj(A))) = Cli(Intj(A)).

So the proof is complete.
(2) The proof is dual to (1). □

Proposition 2.10. (1) Every (τi, τj)-α-open set is (τi, τj)-semiopen.
(2) Every (τi, τj)-semiopen set is (τi, τj)-b-open.

Proof. The proof follows from the definitions. □

Corollary 2.11. (1) Every (τi, τj)-semiopen set is (τi, τj)-δ-open.
(2) Every (τi, τj)-semiopen set is (τi, τj)-b-open.

Remark 2.12. It is clear that (τi, τj)-semiopenness and (τi, τj)-preopen-
ness are independent notions.

Theorem 2.13. If {Aα}α∈∆ is the collection of (τi, τj)-semiopen sets of (X, τ1, τ2),
then

⋃
α∈∆ Aα is also a (τi, τj)-semiopen set.

Proof. Since eachAα is (τi, τj)-semiopen andAα ⊂ Aα, ∪
α∈∆

Aα ⊂ Clj(Inti( ∪
α∈∆

Aα)).

Then
⋃

α∈∆ Aα is also a (τi, τj)-semiopen set in (X, τ1, τ2). □

Proposition 2.14. A subset A of X is (τi, τj)-semiopen if and only if Clj(A) =
Clj(Inti(A)).
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Proof. SupposeA ∈ (τi, τj)-SO(X). Then we haveA ⊂ Clj(Inti(A)). Thus Clj(A) ⊂
Clj(Inti(A)). So Clj(A) = Clj(Inti(A)).

The converse is obvious. □

Corollary 2.15. If A is a nonempty (τi, τj)-semiopen set, then Inti(A) ̸= ∅.

Proof. SinceA is (τi, τj)-semiopen, by Proposition 2.14, we have Clj(A) = Clj(Inti(A)).
Assume that Inti(A) = ∅. Then we have Clj(A) = ∅. Thus A = ∅. This is contrary
to the hypothesis. So Inti(A) ̸= ∅. □

Proposition 2.16. A subset A is (τi, τj)-semiopen if and only if there exists U ∈ τi
such that U ⊂ A ⊂ Clj(U).

Proof. Suppose A ∈ (τi, τj)-SO(X). Then we have A ⊂ Clj(Int(A)). Take Inti(A) =
U . Then U ⊂ A ⊂ Clj(U).

Conversely, suppose the necessary condition holds. Since U ⊂ A, U ⊂ Inti(A).
Then Clj(U) ⊂ Clj(Inti(A)). Thus A ⊂ Clj(Inti(A)). □

Proposition 2.17. If A is a (τi, τj)-semiopen set in a mixed neutrosophic topological
space (X, τ1, τ2) and A ⊂ B ⊂ Clj(A), then B is a (τi, τj)-semiopen set in (X, τ1, τ2).

Proof. Suppose A is a (τi, τj)-semiopen set and A ⊂ B ⊂ Clj(A). Since A is (τi, τj)-
semiopen, there exists a τi-open set U such that U ⊂ A ⊂ Clj(U). Since A ⊂
B ⊂ Clj(A), we have U ⊂ A ⊂ B ⊂ Clj(A) ⊂ Clj(Clj(U)) = Clj(U). Then
U ⊂ B ⊂ Clj(U). Thus by Proposition 2.16, B ∈ (τi, τj)-SO(X). □

Theorem 2.18. A subset A of X is (τi, τj)-semiopen if and only if it is both (τi, τj)-
δ-open and (τi, τj)-β-preopen.

Proof. SupposeA is a (τi, τj)-semiopen set. ThenA ⊂ Clj(Inti(A)) ⊂ Clj(Inti(Clj(A))).
This shows thatA is (τi, τj)-β-open. Moreover, Inti(Clj(A)) ⊂ Clj(A) ⊂ Clj(Inti(A)).
Thus A is (τi, τj)-δ-open.

Conversely, suppose A is (τi, τj)-δ-open and (τi, τj)-β-open set. Then we have
Inti(Clj(A)) ⊂ Clj(Inti(A)). Thus Clj(Inti(Clj(A))) ⊂ Clj(Inti(A)). Since A is
(τi, τj)-β-open, we have A ⊂ Clj(Inti(Clj(A))) ⊂ Clj(Inti(A)) and A ⊂ Clj(Inti(A)).
So A is a (τi, τj)-semiopen set. □

Theorem 2.19. A subset A of X is (τi, τj)-semiclosed if and only if there exists a
τj-closed set F such that Inti(F ) ⊂ A ⊂ F .

Proof. Suppose A is (τi, τj)-semiclosed. Then Inti(Clj(A)) ⊂ A. Let F = Clj(A).
Then F is τj-closed set such that Inti(F ) ⊂ A ⊂ F .

Conversely, let F be a τj-closed set such that Inti(F ) ⊂ A ⊂ F . But F ⊃
Clj(A). Then Inti(F ) ⊃ Inti(Clj(A)). Thus Inti(Clj(A)) ⊂ A. So A is (τi, τj)-
semiclosed. □

Proposition 2.20. A subset A of X is (τi, τj)-β-closed and (τi, τj)-δ-open, then it
is (τi, τj)-semiclosed.

Proof. The proof follows from the definitions. □

Theorem 2.21. Arbitrary intersection of (τi, τj)-semiclosed sets is always (τi, τj)-
semiclosed.
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Proof. Follows from Theorem 2.13. □

Definition 2.22. LetA be subset of a mixed neutrosophic topological space (X, τ1, τ2).
Then

(i) the (τi, τj)-semiclosure of A, denoted by (τi, τj)-sCl(A), is defined as the
intersection of all (τi, τj)-semiclosed sets containing A, i.e.,

(τi, τj)-sCl(A) =
⋂
{F : F is (τi, τj)-semiclosed and A ⊂ F},

(ii) the (τi, τj)-semiinterior of A, denoted by (τi, τj)-s Int(A), is defined as the
union of all (τi, τj)-semiopen sets contained in A, i.e.,

(τi, τj)-s Int(A) =
⋃
{U : U is (τi, τj)-semiopen and U ⊂ A}.

Theorem 2.23. For a subset A of X, the following hold:

(1) (τi, τj)-sCl(A) = A ∪ Inti(Clj(A)),
(2) (τi, τj)-s Int(A) = A ∩ Cli(Intj(A)).

Proof. The proof follows from the definitions. □

3. Extremally disconnected mixed neutrosophic topological spaces

Definition 3.1. A mixed neutrosophic topological space (X, τ1, τ2) is said to be:
(i) (τi, τj)-extremally disconnected, if τj-closure of every τi-open set is τi-open in

X,
(ii) pairwise extremally disconnetcted, if (X, τ1, τ2) is (τ1, τ2)-extremally discon-

nected and (τ2, τ1)-extremally disconnected.

Theorem 3.2. A mixed neutrosophic topological space (X, τ1, τ2) is pairwise ex-
tremally disconnected if and only if for each τi-open set A and each τj-open set B
such that A ∩B = ∅, τj-Cl(A) ∩ τi-Cl(B) = ∅.

Proof. Suppose (X, τ1, τ2) is pairwise extremally disconnected. Let A and B, re-
spectively, be τ1-open and τ2-open sets such that A ∩ B = ∅. Then τj-Cl(A) ∈ τi.
Thus τj-Cl(A) ∩ τi-Cl(B) = ∅.

Conversely, suppose the necessary conditions hold and let U be a τi-open set in
X. Then X\τj-Cl(U) is τj-open in X. Now, we have

U ∩ (X\τj-Cl(U)) = ∅
⇒ τj-Cl(U) ∩ τi-Cl(X\τj-Cl(U))
⇒ τi-Cl(X\τj-Cl(U)) ⊂ X\τj-Cl(U)
⇒ τi-Cl(X\τj-Cl(U)) = X\τj-Cl(U)
⇒ (X\τj-Cl(U)) is τi-closed
⇒ τj-Cl(U) is τi-open.

Thus (X, τ1, τ2) is (τi, τj)-extremally disconnected. Similarly, (X, τ1, τ2) is (τj , τi)-
extremally disconnected. So (X, τ1, τ2) is pairwise extremally disconnected. □

Theorem 3.3. The following are equivalent for a mixed neutrosophic topological
space (X, τ1, τ2):

(1) (X, τ1, τ2) is pairwise extremally disconnected,
(2) for each (τj , τi)-semiopen set A in X, τj-Cl(A) is τi-open set,
(3) for each (τi, τj)-semiopen set A in X, (τj , τi)-sCl(A) is τi-open set,
(4) for each (τi, τj)-semiopen set A and each (τj , τi)-semiopen set B with A∩B =

∅, τj-Cl(A) ∩ τi-Cl(B) = ∅,
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(5) for each (τj , τi)-semiopen set A in X, τj-Cl(A) = (τj , τi)-sCl(A),
(6) for each (τi, τj)-semiopen set A in X, (τj , τi)-sCl(A) is τj-closed set,
(7) for each (τi, τj)-semiclosed set A in X, τj-Int(A) = (τj , τi)-s Int(A),
(8) for each (τi, τj)-semiclosed set A in X, (τj , τi)-s Int(A) is τj-open set.

Proof. (1) ⇒ (2): Clear.
(1) ⇒ (5): Since (τj , τi)-sCl(A) ⊂ τj-Cl(A) for any set A of X, it is sufficient

to show that (τj , τi)-sCl(A) ⊃ τj-Cl(A) for any (τi, τj)-semiopen set A of X. Let
x /∈ (τj , τi)-sCl(A). Then there exists a (τj , τi)-semiopen set W with x ∈ W such
that W ∩ A = ∅. Thus τj-Int(W ) and τi-Int(A) are, respectively, τj-open and
τi-open such that τj-Int(X) ∩ τi-Int(A) = ∅. By Theorem 3.2, we get

τi-Cl(τj-Int(W )) ∩ τj-Cl(τi-Int(A)) = ∅.
So x /∈ τj-Cl(τi-Int(A)) = τj-Cl(A). Hence τj-Cl(A) ⊂ (τj , τi)-sCl(A).

(5) ⇒ (6): Obvious.
(6) ⇒ (5): For any set A in X, A ⊂ (τj , τi)-sCl(A) ⊂ τj-Cl(A). Then we have

τj-Cl(A) = τj-Cl((τj , τi)-sCl(A)).
Since A is (τi, τj)-semiopen, by (6), (τj , τi)-sCl(A) is τj-closed. Thus τj-Cl(A) =
(τj , τi)-sCl(A).

(6) ⇔ (8): Clear.
(7) ⇒ (8): Obvious.
(8) ⇒ (7): For any subset A of X, τj-Int(A) ⊂ (τj , τi)-s Int(A) ⊂ A. Then

τj-Int(A) = τj-Int((τj , τi)-s Int(A)).
Since A is (τi, τj)-semiclosed, by (8), (τj , τi)-s Int(A) is τj-open. Thus τj-Int(A) =
(τj , τi)-s Int(A).

(1) ⇒ (4): Let A be a (τi, τj)-open set and B a (τj , τi)-semiopen set such that
A ∩B = ∅. Then τi-Int(A) ∩ τj-Int(B) = ∅. Thus by Theorem 3.2,

τj-Cl(τj-Int(A)) ∩ τi-Cl(τj-Int(B)) = ∅.
So τj-Cl(A) ∩ τi-Cl(B) = ∅.

(4) ⇒ (2): Let A be a (τi, τj)-semiopen subset of X. Then X\τj-Cl(A) is (τj , τi)-
semiopen and A ∩ (X\τj-Cl(A)). Thus by (4), τj-Cl(A) ∩ τi-Cl(X\τj-Cl(A)) = ∅
which implies τj-Cl(A) ⊂ τi-Int(τj-Cl(A)). So τj-Cl(A) = τi-Int(τj-Cl(A)). Hence
τj-Cl(A) is τi-open in X.

(5) ⇒ (4): Let A be a (τi, τj)-semiopen set and B be a (τj , τi)-semiopen set
such that A ∩ B = ∅. Then (τj , τi)-sCl(A) is (τi, τj)-semiopen and (τi, τj)-sCl(B)
is (τj , τi)-semiopen in X. Thus (τj , τi)-sCl(A) ∩ (τj , τi)-sCl(B) = ∅. So By (5),
τj-Cl(A) ∩ τi-Cl(B) = ∅.

(1) ⇒ (3): Clear.
(3) ⇒ (1): Let A be a τi-open set in (X, τ1, τ2). It is sufficient to prove that

τj-Cl(A) = (τj , τi)-sCl(A). Obviously, (τj , τi)-sCl(A) ⊂ τj-Cl(A). Let x /∈ (τj , τi)-
sCl(A). Then there exists a (τj , τi)-semiopen set U with x ∈ U such that A∩U = ∅.
Thus (τi, τj)-sCl(U) ⊂ (τi, τj)-sCl(X\A) = X\A. So (τi, τj)-sCl(U)∩A = ∅. Since
(τi, τj)-sCl(U) is a τj-open set with x ∈ (τi, τj)-sCl(U), x /∈ τj-Cl(A). Hence τj-
Cl(A) ⊂ (τj , τi)-Cl(A). □

Definition 3.4. A point x in a mixed neutrosophic toplogical space (X, τ1, τ2) is
said to be a (τi, τj)-θ-cluster point of a set A, if for every τi-open, say, U containing
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x, τj-Cl(U) ∩ A ̸= ∅. The set of all (τi, τj)-θ-closure of A and will be denoted by
(τi, τj)-Clθ(A). A set A is called (τi, τj)-θ-closed, if A = (τi, τj)-Clθ(A).

Lemma 3.5. For any (τj , τi)-preopen set A in a mixed neutrosophic topological
space (X, τ1, τ2), τi-Cl(A) = (τi, τj)-Clθ(A).

Proof. It is obvious that τi-Cl(A) ⊂ (τi, τj)-Clθ(A) for any subset A of (X, τ1, τ2).
Then it remains to be shown that (τi, τj)-Clθ(A) ⊂ τi-Cl(A). If x /∈ τi-Cl(A), then
there exists a τi-open set U containing x such that U∩A = ∅. Thus U∩τi-Cl(A) = ∅.
But U ∩ τj-Int(τi-Cl(A)) = ∅ which implies τj-Cl(U) ∩ τj-Int(τi-Cl(A)) = ∅ and
so τj-Cl(U) ∩ A = ∅ since A is (τj , τi)-preopen. Hence x /∈ (τj , τi)-Clθ(A) and
consequently (τj , τi)-Clθ(A) ⊂ τi-Cl(A). □

Theorem 3.6. The following are equivalent for a mixed neutrosophic topological
space (X, τ1, τ2):

(1) (X, τ1, τ2) is pairwise extremally disconnected,
(2) the τj-closure of every (τi, τj)-β-open set of X is τi-open set,
(3) the (τj , τi)-θ-closure of every (τi, τj)-preopen set of X is τi-open set,
(4) the τj-closure of every (τi, τj)-preopen set of X is τi-open set.

Proof. (1) ⇒ (2): Let A be a (τi, τj)-β-open set. Then we have
τj-Cl(A) = τj-Cl(τi-Int(τj-Cl(A))).

Since (X, τ1, τ2) is pairwise extremally disconnected, τj-Cl(A) is a τi-open set.
(2) ⇒ (4): Follows from the fact that every (τi, τj)-preopen set is (τi, τj)-β-open.

(4) ⇒ (1): Clear.
(3) ⇔ (4): Follows from Lemma 3.5. □

Theorem 3.7. A mixed neutrosophic topological space (X, τ1, τ2) is pairwise ex-
tremally disconnected if and only if every (τi, τj)-semiopen set is a (τi, τj)-preopen
set.

Proof. Suppose (X, τ1, τ2) is pairwise extremally disconnected and let A be a (τi, τj)-
semiopen set. Then A ⊂ τj-Cl(τi-Int(A)). Since X is pairwise extremally discon-
nected, τj-Cl(τi-Int(A)) is a τi-open set. Thus we have

A ⊂ τj-Cl(τi-Int(A)) = τi-Int(τj-Cl(τi-Int(A))) ⊂ τi-Int(τj-Cl(A)).
So A is a (τi, τj)-preopen set.

Conversely, Suppose the necessary condition holds and let A be a τi-open set.
Since τj-Cl(A) = τj-Cl(τi-Int(A)), we have τj-Cl(A) = τj-Cl(τi-Int(τj-Cl(A))). Then
τj-Cl(A) is (τj , τi)-regular closed. Thus A is (τi, τj)-semiopen. By the hypothesis, A
is (τi, τj)-propen. So τj-Cl(A) = τi-Int(τj-Cl(A)). Hence τj-Cl(A) is τi-open in X.
Therefore X is pairwise extremally disconnected. □

Lemma 3.8. For a subset A of a mixed neutrosophic topological space (X, τ1, τ2),

(1) τj-Int(τi-Cl(A)) ⊂ (τi, τj)-sCl(A),
(2) τj-Int((τi, τj)-sCl(A)) = τj-Int(τi-Cl(A)).

Proof. (1) Since (τi, τj)-sCl(A) is (τi, τj)-semiclosed, there exists a τi-closed set U
in X such that τj-Int(U) ⊂ (τi, τj)-sCl(A) ⊂ U . Then we have
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τj-Int(U) ⊂ (τi, τj)-sCl(A) ⊂ τi-Cl(A) ⊂ U .
Thus τj-Int(U) ⊂ τj-Int(τi-Cl(A)) ⊂ τj-Int(U). So τj-Int(τi-Cl(A)) ⊂ (τi, τj)-
sCl(A).

(2) Follows easily from (1). □

Theorem 3.9. Let A be a subset of a mixed neutrosophic topological space (X, τ1, τ2).
Then A is (τi, τj)-regular open if and only if A is τi-open and τj-closed.

Proof. Suppose A is a (τi, τj)-regular open set of a bitoplogical space (X, τ1, τ2).
Then τi-Int(τj-Cl(A)) = A. Now, X\τj-Cl(A) and A are, respectively, τj-open and
τi-open such that (X\τj-Cl(A)) ∩ A = ∅. Since (X, τ1, τ2) is pairwise extremally
disconnected, by Theorem 3.2, τi-Cl(X\τj-Cl(A))∩τj-Cl(A) = ∅. Thus τi-Cl(X\τj-
Cl(A)) = X\τj-Cl(A) and X\τj-Cl(A) is τi-closed. So τj-Cl(A) is τi-open. Hence
τj-Cl(A) = τi-Int(τj-Cl(A)) = A is τi-open and τj-closed.

The converse is clear. □

Lemma 3.10. Let A be a subset of a mixed neutrosophic topological space (X, τ1, τ2).
Then we have

(1) A is (τi, τj)-preopen if and only if (τj , τi)-sCl(A) = τi-Int(τj-Cl(A)),
(2) A is (τi, τj)-preopen if and only if (τj , τi)-sCl(A) is (τi, τj)-regular open,
(3) A is (τi, τj)-regular open if and only if A is (τi, τj)-preopen and (τj , τi)-

semiclosed.

Proof. (1) Suppose A is a (τi, τj)-preopen set. Then we have
(τj , τi)-sCl(A) ⊂ (τj , τi)-sCl(τi-Int(τj-Cl(A))).

Since τi-Int(τj-Cl(A)) is (τj , τi)-semiclosed, (τj , τi)-sCl(A) ⊂ τi-Int(τj-Cl(A)). Then
by Lemma 3.8 (1), (τj , τi)-sCl(A) = τi-Int(τj-Cl(A)).

The converse is obvious.
(2) Suppose (τj , τi)-sCl(A) is a (τi, τj)-regular open set. Then we have

(τj , τi)-sCl(A) = τi-Int(τj-Cl(τj , τi)-sCl(A)).
Thus (τj , τi)-sCl(A) ⊂ τi-Int(τj-Cl(τj-Cl(A))) = τi- Int(τj-Cl(A)). So by Lemma
3.8 (1), we have (τj , τi)-sCl(A) = τi-Int(τj-Cl(A)). Hence A is a (τi, τj)-preopen set
from (1).

The converse follows from (1).
(3) Suppose A is a (τi, τj)-preopen and a (τj , τi)-semiclosed set. Then by (2), A

is (τi, τj)-regular open in X.
Conversely, suppose A is a (τi, τj)-regular open set. Then A = τi-Int(τj-Cl(A)).

Thus τi-Int(τj-Cl(A)) = (τj , τi)-sCl(A) = A. So A is (τi, τj)-preopen and (τj , τi)-
semiclosed. □

Theorem 3.11. In a mixed neutrosophic topological space (X, τ1, τ2), the following
are equivalent:

(1) X is pairwise extremally disconnected,
(2) (τj , τi)-sCl(A) = (τj , τi)-Clθ(A) for every (τi, τj)-preopen (or (τi, τj)-semiopen)

set A in X,
(3) (τj , τi)-sCl(A) = τj-Cl(A) for every (τi, τj)-β-open set A in X.

Proof. (1) ⇒ (2): Since (τj , τi)-sCl(A) ⊂ (τj , τi)-Clθ(A) for any subset A of X, it
is sufficient to show that (τj , τi)-Clθ(A) ⊂ (τj , τi)-sCl(A) for any (τi, τj)-preopen or
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(τi, τj)-semiopen set A of X. Let x /∈ (τj , τi)-sCl(A). Then there exists a (τj , τi)-
semiopen set U with x ∈ U such that U ∩ A = ∅. Thus there exists a τj-open set
V such that V ⊂ U ⊂ τj-Cl(V ) with V ∩ A = ∅ which implies V ∩ τj-Cl(A) = ∅.
This means V ∩ τi-Int(τj-Cl(A)) = ∅. So τi-Cl(V ) ∩ τi-Int(τj-Cl(A)) = ∅. Now, if
A is (τi, τj)-preopen, then A ⊂ τi-Int(τj-Cl(A)) and thus τi-Cl(V ) ∩ A = ∅. If A is
(τi, τj)-semiopen, since X is pairwise extremally disconnected, τi-Cl(V ) is τj-open
and thus τi-Cl(V )∩ τj-Cl(τi-Int(τj-Cl(A))) = ∅ which implies τi-Cl(V )∩A = ∅. So
in any case, x /∈ (τj , τi)-Clθ(A).

(2) ⇒ (1): First let A be a (τi, τj)-preopen set in X. By Lemmas 3.10 and 3.5, we
have τi-Int(τj-Cl(A)) = (τj , τi)-sCl(A) = (τj , τi)-Clθ(A) = τj-Cl(A). Then τj-Cl(A)
is τi-open. Thus by Theorem 3.6, X is pairwise extremally disconnected. Next, let
A be a (τi, τj)-semiopen set in X. Then we have

(τj , τi)-Cl(A) ⊂ τj-Cl(A) ⊂ (τj , τi)-Clθ(A) = (τj , τi)-sCl(A).
Thus (τj , τi)-sCl(A) = τj-Cl(A). So X is pairwise extremally disconnected from
Theorem 3.6.

(1) ⇒ (3): Let A be a (τi, τj)-β-open set in X. Since X is pairwise extremally
disconnected, by Theorem 3.6, τj-Cl(A) is τi-open in X. Then by Lemma 3.10,
(τj , τi)-sCl(A) = τj-Cl(A).

(3) ⇒(1): Let U and V , respectively, be τi-open and τj-open sets such that
U ∩ V = ∅. Then U ⊂ X\V which implies (τj , τi)-sCl(U) ⊂ (τj , τi)-sCl(X\V ) =
X\V . Thus (τj , τi)-sCl(U)∩V = ∅. Since (τj , τi)-sCl(U) is (τi, τj)-semiopen in X,
(τj , τi)-sCl(U)∩ (τi, τj)-sCl(V ) = ∅. So by (3), τj-Cl(U)∩ τi-Cl(V ) = ∅. Hence by
Theorem 3.2, X is pairwise extremally disconnected. □

Theorem 3.12. In a mixed neutrosophic topological space (X, τ1, τ2), the following
are equivalent:

(1) X is pairwise extremally disconnected,
(2) for each (τi, τj)-β-open set A in X and each (τj , τi)-semiopen set B in X such

that A ∩B = ∅, τi-Cl(A) ∩ τj-Cl(B) = ∅,
(3) for each (τi, τj)-preopen set A in X and each (τj , τi)-semiopen set B in X

such that A ∩B = ∅, τi-Cl(A) ∩ τ − j-Cl(B) = ∅.

Proof. (1)⇒ (2): Let A be a (τi, τj)-β-open set and B a (τj , τi)-semiopen set such
that A ∩ B = ∅. Then A ∩ τj-Int(B) = ∅. Thus τj-Cl(A) ∩ τj-Int(B) = ∅. By
Theorem 3.6, τj-Cl(A) is a τi-open set in X. So τj-Cl(A) ∩ τi-Cl(τj-Int(B)) = ∅.
Since B is (τj , τi)-semiopen in X, τi-Cl(B) = τi-Cl(τj-Int(B)). Hence τj-Cl(A)∩ τi-
Cl(B) = ∅.

(2) ⇒ (3): Straightforward.
(3) ⇒ (1): Let A be a τi-open set and B a τj-open set such that A∩B = ∅. Since

every τi-open set is a (τi, τj)-semiopen set and every τj-open set is a (τi, τj)-semiopen
set and every τj-open set is a (τj , τi)-preopen set, τj-Cl(A) ∩ τi-Cl(B) = ∅. Then
by Theorem 3.2, X is pairwise extremally disconnected. □

4. conclusion

We have introduced not only the notion of mixed neutrosophic topological space
but also several generalized open sets in the context of such spaces. We obtained
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many new, useful and important properties. The notion of extremally disconnected-
ness is also introduced, characterized and discussed with respect to some generalized
open sets. The fertile ground of Mixed neutrosophic topological spaces demands
more research for example with respect to separation axioms, compactness, multi-
functions, different types of continuities and decision-making problems, to name a
few.

Acknowledgement. The authors thank the referees for their constructive com-
ments and suggestions. The second author thanks Gruppo Nazionale per le Strutture
Algebriche, Geometriche e le loro Applicazioni (G.N.S.A.G.A.) of Istituto Nazionale
di Alta Matematica (INdAM) “F. Severi”, Italy.

References

[1] Zadeh, L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
[3] K. Atanassov, lntuitionistic fuzzy sets, in: V. Sgurev, Ed., VII ITKR’s Session, Sofia (June

1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences, 1984).

[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
[5] K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88,

Sofia, 1988.

[6] K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: Polish Syrup. on Interval & Fuzzy
Mathematics, Poznan, (August 1983) 23–26.

[7] K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets, in: R. Trappl, Ed., Cybernetics and
System Research, Vol. 2 (Elsevier, Amsterdam, 1984) 539–540.

[8] F. Smarandache, Neutrosophy and neutrosophic Logic, First International Conference on

Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico,
Gallup, NM 87301, USA 2002.

[9] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic

Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
[10] A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR

Journal of Mathematics 3 (4) (2012) 31–35.

[11] R. Dhavaseelan and S. Jafari, Generalized neutrosophic closed sets, New Trends in Neutro-
sophic Theory and Applications, Vol.II, Florentin Smarandache, Surapati Pramanik (Editors),

Pons Editions Brussels, Belgium, EU 2018 245–258.

S. Jafari (jafaripersia@gmail.com,saeidjafari@topositus.com)
Dr.rer.nat in Mathematics (Graz University of Technology-Graz, Austria)
Mathematical and Physical Science Foundation, Sidevej 5, 4200 Slagelse Denmark

G. Nordo (giorgio.nordo@unime.it)
Dipartimento di Scienze Matematiche Informatiche Scienze Fisiche Scienze della
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