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Abstract

Light can interact with matter in a variety of ways. When the
electromagnetic field is confined in a cavity, larger light-matter coupling
strengths can be achieved, which opens the possibility to discover
unconventional phenomena that are usually impossible to observe.
When the coupling strength is comparable to the frequency of the
electromagnetic field, the so-called ultrastrong coupling (USC) regime
is reached. In this regime, the rotating wave approximation (RWA)
is no longer valid, and the interaction between light and matter must
be treated in a non-perturbative way. Moreover, the number of
total particles is no longer conserved, meaning that several processes
(or virtual transitions behind them) can create particles (or virtual
particles) from the vacuum. Nevertheless, in this regime, several
theoretical issues arise. For example, the number of photons in the
ground state acquires a non-negligible value, which means that, in
principle, the cavity can emit photons even in the lowest energy
state, which is unphysical. A breakdown of gauge invariance also
occurs, suggesting that the standard approach must be treated properly.
Furthermore, the standard way to describe open quantum systems in
Markovian baths must be revised, since the subsystems in this regime
are strongly correlated.

In this Thesis, we explore the context of light-matter interaction,
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Abstract

showing how these issues can be interpreted and fixed. We start
by defining the basics of light-matter interaction. Starting from a
Lagrangian approach, we derive the most two common gauges in cavity
QED: the Coulomb gauge and the multipolar gauge (also known as
dipole gauge in the case of a constant vector potential). We then pass
in the Hamiltonian framework, deriving a full quantum treatment of
light-matter interaction.

Compared to the quantum harmonic oscillator, which has a linear
energy spectrum, matter systems usually present non-linear energy
spectra. Thus, a truncation of the Hilbert space to the lowest energy
levels can simplify the treatment of the system, leading to the quantum
Rabi model in the case of a two-level atom in interaction with a
single-mode cavity field. However, this truncation process leads to
the breakdown of gauge invariance. Specifically, the Coulomb gauge
reproduces different results concerning those in the dipole gauge or
even in the non-truncated system Hamiltonian. We show that this
breakdown is due to the non-locality that the matter potential acquires
when performing the projection into the lowest energy states. To
overcome this issue, the correct Coulomb gauge can be obtained through
a generalized minimal coupling replacement, which is introduced after
the truncation and not before.

The dipole gauge, however, is not always well defined. Indeed,
in this frame, the minimal coupling replacement is performed in the
photonic part of the Hamiltonian rather than in the matter part. Thus,
the conjugate momentum of the vector potential is different from the
standard one and contains the polarization vector of the matter system.
Everything related to the electric field must be redefined in this gauge
because the electric field is no longer the conjugate momentum of the
vector potential. This includes photodetection, the interaction with an
external environment, pure dephasing effects, and photon condensation.

In this Thesis, we will focus on all these topics. First, we will show
how to define the photodetection. Specifically, following Glauber’s
theory, it is defined as the product of the negative and positive frequency
parts of the electric field. In the absence of any interaction with

xiv



the matter, the negative and positive frequency parts correspond to
the creation and destruction operator, respectively. However, when
the interaction becomes relevant, this is no longer true. Moreover,
we will derive a generalized master equation, which, compared to
the standard one, is derived with a minimal amount of assumptions:
the Born and Markov approximations. Using the standard master
equation in the USC regime leads to a finite number of photons at
the steady state, even at zero temperature, and with the correct
photodetection operators. We then apply this solid approach to an
incoherent pumping process, showing how thermal excitations of the
atom can be detected from an emission spectrum of the electromagnetic
field. We apply this framework also to coherent pumping, showing the
peculiar effect of spontaneous scattering of Raman photons without
vibrational degrees of freedom. As mentioned above, this process can
be observed only when the number of particles is not conserved (i.e.,
the USC regime). We then study the effect of pure dephasing in
the USC regime, showing a gauge-invariant treatment of this process,
demonstrating also here that the standard approach is no longer valid
when the light-matter coupling strength is comparable to the frequency
of the electromagnetic field. Finally, we study the phenomenon of
photon condensation (or superradiant phase transition), where the
ground state acquires a macroscopic number of coherent photons. We
prove that this phenomenon can not be achieved in the absence of a
magnetic field, showing that previous works that claim the existence
of this phenomenon used gauge-dependent approaches.
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CHAPTER 1

The basics of light-matter
interaction

It is well-known that light and matter interact with each other. We
know that a charged particle immersed in an electric field is subject
to a force F = qE, where q is the charge of the particle and E is the
electric field. The same particle also interacts with a magnetic field
with a force F = q(v × B), where v and B are the velocity of the
particles and the magnetic field, respectively.

Although we have already identified more or less what is called
“matter”, someone lacking knowledge in physics could encounter
difficulty in identifying the representation of light described above.
This definition will be explained later.

The task of this chapter is to give some elementary information
about light-matter interaction and to introduce also some problems
that might emerge with a wrong theoretical description.
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1. The basics of light-matter interaction

1.1 What is matter?

If we ask someone what matter is, he may answer that it is anything
that has mass and occupies space1. In other words: a table, a book,
a glass, a hydrogen atom, an electron. All these objects are classified
as matter, and, following Newton’s second law, all of them obey the
formula F = ma, where a is the acceleration of the object.

This intuitive idea of matter, of elementary particles or compounds
of them, is in part modified by quantum mechanics, where any material
system behaves like a wave. They obey certain wave equations, e.g.,
the Schrödinger equation

iℏ
∂

∂t
ψ(r, t) = − ℏ2

2m∇2ψ(r, t) + V (r)ψ(r, t) , (1.1)

where ℏ is the reduced Planck constant, V (r) is the potential, and ψ(r, t)
is the system wavefunction. The solutions of this differential equation
are called eigenstates of the system and depend on the potential V (r).

The right-hand side of Eq. (1.1) is the result of the application
of the system Hamiltonian to the wavefunction, in other words,
iℏ ∂/∂t ψ(r, t) = Ĥψ(r, t), where

Ĥ = − ℏ2

2m∇2 + V (r) . (1.2)

If the system is assumed to oscillate as e−iEt, where E is the system
energy, we can solve the time-independent part of the Schrödinger
equation Ĥψ = Eψ.

1.1.1 The quantum harmonic oscillator

As an example, here we consider the quantum harmonic oscillator.
Classically, the harmonic oscillator is defined as a system subject to

1We may continue to explain what are mass and space, but we limit ourselves
to leave the reader with the standard and intuitive idea he already has.
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1.1. What is matter?

the force F = −kr, where k is the elastic constant. In other words, the
force is proportional to the displacement from a stable point (in this
case the origin).

Following the relation F = −∇V (r), we can say that the
corresponding potential is V (r) = k/2 r2. Inserting it inside Eq. (1.1),
and considering only the one-dimensional case, we obtain the following
eigenstates

ψn(x) = 1√
2nn!

(
mω

πℏ

)1/4
e− mωx2

2ℏ Hn

(√
mω

ℏ
x

)
, (1.3)

where ω =
√
k/m is the resonance frequency of the oscillator and Hn

is the n-th Hermite polynomial.
A useful way to describe the quantum harmonic oscillator is by

using the ladder operators

â =
√
mω

2ℏ

(
x̂+ i

1
mω

p̂

)
(1.4a)

â† =
√
mω

2ℏ

(
x̂− i

1
mω

p̂

)
, (1.4b)

note that the position x̂ and conjugate momentum p̂ are operators too.
If we now write the eigenstates in Eq. (1.3) in the bra-ket notation
(ψn → |n⟩), the ladder operators allow us to move from one eigenstate
to the next or previous one:

â |n⟩ =
√
n |n− 1⟩ (1.5a)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (1.5b)

and it is straightforward to recognize the creation (â†) and annihilation
(â) operators. In this framework the system Hamiltonian in Eq. (1.2)
of the quantum harmonic oscillator becomes

Ĥ = ℏω
(
â†â+ 1

2

)
. (1.6)
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1. The basics of light-matter interaction
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Figure 1.1: First eigenstates of one-dimensional the quantum harmonic oscillator,
each of them vertically shifted by the corresponding eigenvalue. The grey-filled
curve corresponds to a coherent state with α = −

√
2. The used parameter are

m = 1, ω = 1, and ℏ = 1.

It is worth introducing the coherent state |α⟩ of the harmonic
oscillator, defined as the eigenstate of the destroy operator, with
eigenvalue α, in other words, â |α⟩ = α |α⟩. It can be expressed
analytically in terms of the eigenstates of the quantum harmonic
oscillator

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ , (1.7)

and it can be seen as the most classic-like state since it has the minimum
uncertainty ∆x∆p = ℏ/2.

Figure 1.1 shows the first eigenstates of the quantum harmonic
oscillator, each of them vertically shifted by the respective energy,
while the grey-filled curve is a coherent state with α = −

√
2. The

black dashed curve is the potential, choosing k = 1, m = 1, and ℏ = 1.
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1.1. What is matter?

It is worth noting that also the groundstate |0⟩ has a nonzero energy
(E0 = ℏω/2). This figure and most of other figures in this Thesis are
obtained by using the Julia code, and a dedicated GitHub repository
is available [11].

Although the quantum harmonic oscillator analogues can be seen in
various scenarios (see, e.g., the quantum behavior of the electromagnetic
field in Section 1.2), matter is often described by different Hamiltonians
(e.g., that of the hydrogen atom) which may present nonlinear behaviors
and energies not exactly equally spaced. Indeed, in this Thesis we will
deal mostly with this kind of systems, which allow us to concentrate
only to a few energy states (two o three) due to the high nonlinearity.

1.1.2 The double-well potential

One of the most intuitive systems that can be described by a nonlinear
Hamiltonian is the double-well potential. Indeed, under certain
parameters, the two lowest energy states of the system correspond to
the symmetric and the antisymmetric superposition of the left and
right side of the potential, making an ideal two-level system (TLS).

The potential of the one-dimensional double-well system is

V (x) = −µ

2x
2 + λ

4x
4 , (1.8)

where µ, λ > 0 are the parameters of the potential. The potential and
the first eigenstates for m = 1, µ = 150 and λ = 300 are depicted in
Figure 1.2. The black dashed line represents the potential V (x), while
the first three eigenstates of the system are represented by the colored
lines, each one being vertically offset by its corresponding eigenvalue.
It’s evident that the energy difference between the first two states |ψ0⟩
and |ψ1⟩ is significantly less than that between the second and third
states, indicating a high degree of anharmonicity.

It is often useful to reduce the Hamiltonian of the double-well
system to a two-level system, which is a system with only two energy
levels. Indeed, by performing the projection P̂ = |ψ0⟩⟨ψ0| + |ψ1⟩⟨ψ1|,

5



1. The basics of light-matter interaction

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−20

−15

−10

−5

0

5

10

V (x)

|ψ0〉

|ψ1〉

Figure 1.2: Double-well potential for m = 1, µ = 150 and λ = 300. The black
dashed curve is the potential V (x), the colored lines are the first three eigenstates
of the system, each vertically shifted by the corresponding eigenvalue. As can be
seen, the difference in energy between the first two states is much smaller than the
difference between the second and the third one, showing an high anharmonicity.

the Hamiltonian of the double-well system reduces to

ĤTL = P̂

[
p̂2

2m + V (x̂)
]
P̂ = ℏω1,0

2 σ̂z , (1.9)

where ω1,0 = ω1 − ω0 is the frequency difference between the first two
energy levels, and σ̂z = |ψ1⟩⟨ψ1| − |ψ0⟩⟨ψ0| is the Pauli matrix. The
eigenstates of the Hamiltonian in Eq. (1.9) are the symmetric and
antisymmetric superposition of the left and right side of the potential,
respectively

|ψ0⟩ = 1√
2

(|ψL⟩ + |ψR⟩) (1.10a)

|ψ1⟩ = 1√
2

(|ψL⟩ − |ψR⟩) . (1.10b)
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1.2. What is light?

1.2 What is light?

A person lacking knowledge in physics might be more confused than
before in understanding the concept of matter, probably due to the
wave behavior introduced by quantum mechanics. Here, instead, we
clarify what physicists usually call “light”, which should be much easier
to understand. We start by introducing the classical view, defining
the relationships between the electric and magnetic fields, which are
expressed by the Maxwell equations. We then introduce the quantum
point of view of light, showing that it can be seen as an infinite amount
of quantum harmonic oscillators.

1.2.1 The classical concept of light

Classically, light is an electromagnetic wave, that can travel in the
vacuum at the speed of c = 299792458 m/s. The wave nature of light
comes from the Maxwell equations

∇ × E + ∂B
∂t

= 0 (1.11a)

∇ × H − ∂D
∂t

= J (1.11b)

∇ · D = ρ (1.11c)
∇ · B = 0 , (1.11d)

where J and ρ are the density current and the density of charge,
respectively. In the empty space both J and ρ are null, while D = ε0E
and B = µ0H, with ε0 the electric permittivity and µ0 the magnetic
permeability in the vacuum.

The Maxwell equations written above are still valid if we express
the fields in terms of a vector potential A(r, t) and a scalar potential
ϕ(r, t)

E = −∂A
∂t

− ∇ϕ (1.12a)

B = ∇ × A , (1.12b)

7



1. The basics of light-matter interaction

and Eqs. (1.11a) to (1.11d) remain unchanged under a gauge
transformation

A′ = A + ∇χ , ϕ′ = ϕ− ∂χ

∂t
, (1.13)

with χ = χ(r, t) any scalar function. As a result, we can choose ϕ = 0
and ∇ · A = 0, known as the Coulomb gauge. Substituting Eq. (1.12a)
and (1.12b) into Eq. (1.11b), and taking advantage of the Coulomb
gauge conditions and the vector identity ∇×∇×A = ∇(∇·A−∇2A),
we obtain (

∇2 − 1
c2
∂2

∂t2

)
A(r, t) = 0 , (1.14)

which is the well-known wave equation of light. Here c = (µ0ε0)−1/2 =
299792458 m/s is the speed of light in the vacuum. The vector potential
A(r, t), which intrinsically contains both the electric and magnetic
field, oscillates in space and time. Thus, as stated previously, light is
an electromagnetic wave.

1.2.2 The quantum concept of light

We now promote light to a quantum object by simply placing a
small cap over the symbols E → Ê, B → B̂ and A → Â. Joking
aside, quantization of the electromagnetic field is a relatively intuitive
procedure, since waves, by their nature, have a connection to the
properties of the harmonic oscillator. We start by writing the total
energy stored in the electromagnetic field

E = 1
2

∫
V

d3r
(
ε0E2 + 1

µ0
B2
)
, (1.15)

where the spatial integration is performed in the volume V in which
the field is considered. It can be the whole space or a finite volume of
a specific geometry. Here we consider the field within a cubic volume
of side L with periodic boundary conditions. If we write A(r, t) as

8



1.2. What is light?

a product of a spatial and a temporal part, the spatial part of the
solution of Eq. (1.14) is a plane wave of the form e±ik·r, where k is
the wavevector, and the temporal part is e∓iωt, where ω = c|k| is the
angular frequency. The spatial part is periodic in the volume V , and
the temporal part is periodic in the time interval T = 2π/ω. Because
of the boundary conditions, the allowed values of k are restricted to
kx = 2πnx/L, ky = 2πny/L, and kz = 2πnz/L, where nx, ny, and nz

are integers. To account for the vector character of A we introduce
the unitary polarization vector ek,λ, which has to be orthogonal to k
to satisfy ∇ · A = 0. Here, the index λ refers to the polarization of the
wave. Now the vector potential can be written as

A(r, t) =
∑
k,λ

[
Ak,λ(t)uk,λ(r) +A∗

k,λ(t)u∗
k,λ(r)

]
, (1.16)

where the spatial functions are of the form uk,λ(r) = ek,λe
ik·r, and

they are mutually orthogonal

1
V

∫
V

d3r uk,λ(r) · uk′,λ′(r) = δk,k′δλ,λ′ . (1.17)

while the temporal functions must satisfy the differential equation

Äk,λ(t) + ω2
kAk,λ(t) = 0 , (1.18)

with ωk = c|k| the angular frequency of the wave. The solution of this
equation is of the form Ak,λ(t) = A0

k,λe
−iωkt, where A0

k,λ is a complex
constant. Following the relations of the electric and magnetic field in
Eqs. (1.12a) and (1.12b), we can write the electric and magnetic field
operators as

Ê(r, t) = i
∑
k,λ

[
ωkAk,λ(t)uk,λ(r) − ωkA

∗
k,λ(t)u∗

k,λ(r)
]

(1.19a)

B̂(r, t) = i
∑
k,λ

k ×
[
Ak,λ(t)uk,λ(r) +A∗

k,λ(t)u∗
k,λ(r)

]
. (1.19b)
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1. The basics of light-matter interaction

Using the expansion of A in Eq. (1.16) and the orthogonality of
the spatial functions in Eq. (1.17), we can write the energy stored in
the electromagnetic field in Eq. (1.15) as

E = ε0V
∑
k,λ

ω2
k

(
A0

k,λA
0∗
k,λ +A0∗

k,λA
0
k,λ

)
= 2ε0V

∑
k,λ

ω2
k

∣∣∣A0
k,λ

∣∣∣2 . (1.20)

By writing A0
k,λ =

√
ℏ

2ε0V ωk
ak,λ, we can write the energy in Eq. (1.20)

as
E =

∑
k,λ

ℏωk
(
ak,λa

∗
k,λ + a∗

k,λak,λ

)
, (1.21)

and, by performing a change of variables from ak,λ and its complex
conjugate to the real variables qk,λ and pk,λ, where

qk,λ =
√

ℏ
2ωk

(
ak,λ + a∗

k,λ

)
(1.22a)

pk,λ = −i

√
ℏωk

2
(
ak,λ − a∗

k,λ

)
, (1.22b)

the electromagnetic energy becomes

E = 1
2
∑
k,λ

(
p2

k,λ + ω2
kq

2
k,λ

)
, (1.23)

which resembles the Hamiltonian of a quantum harmonic oscillator
with unitary mass and frequency ωk, with qk,λ and pk,λ the position
and momentum operators, respectively.

Up to now we have manipulated the classical equations of light to
reach Eq. (1.23), which is a sum of uncoupled harmonic oscillators. The
quantization of the electromagnetic field is performed by promoting
the position and momentum to quantum operators qk,λ → q̂k,λ and
pk,λ → p̂k,λ, which satisfy the commutation relations[
q̂k,λ, p̂k′,λ′

]
= iℏδk,k′δλ,λ′ ,

[
q̂k,λ, q̂k′,λ′

]
=
[
p̂k,λ, p̂k′,λ′

]
= 0 . (1.24)

10



1.2. What is light?

Furthermore, also the classical coefficients ak,λ are automatically
promoted to quantum operators âk,λ, because of the relations in
Eqs. (1.22a) and (1.22b). The resulting operators âk,λ and â†

k,λ are
the annihilation and creation operators of the electromagnetic field,
respectively. Using the commutation relations in Eq. (1.24), we obtain
the usual commutation relations of the ladder operators[

âk,λ, â
†
k′,λ′

]
= δk,k′δλ,λ′ ,

[
âk,λ, âk′,λ′

]
=
[
â†

k,λ, â
†
k′,λ′

]
= 0 , (1.25)

and the total Hamiltonian of the electromagnetic field finally becomes

Ĥ =
∑
k,λ

ℏωk

(
â†

k,λâk,λ + 1
2

)
. (1.26)

As ironically stated at the beginning of this section, we have
quantized the electromagnetic field by simply placing a small cap
over the symbols E → Ê, B → B̂ and A → Â. Thus, we finally have

Â(r, t) =
∑
k,λ

√
ℏ

2ε0V ωk
ek,λ

(
âk,λe

i(k·r−ωkt) + h.c.
)

(1.27a)

Ê(r, t) = i
∑
k,λ

√
ℏωk
2ε0V

ek,λ

(
âk,λe

i(k·r−ωkt) − h.c.
)

(1.27b)

B̂(r, t) = i
∑
k,λ

√
ℏ

2ε0V ωk
k × ek,λ

(
âk,λe

i(k·r−ωkt) + h.c.
)
. (1.27c)

1.2.3 Field quantization in a cavity

The prototypical example of confined electromagnetic field is the one-
dimensional cavity, which is a region of space enclosed by perfectly
reflecting walls. As in the previous section, the solution of the spatial
part of the Maxwell equation in Eqs. (1.11a) to (1.11d) under this
boundary conditions leads to an infinite and discrete set of solutions.

As sketched in Fig. 1.3, in the case of linear polarization of the
electromagnetic field, their spatial part is of the form E(r, t) =

11



1. The basics of light-matter interaction

z

x

y

Figure 1.3: First three modes of the electromagnetic field A(r) in a cavity. The
blue, red and green curves represent the first, second and third mode, respectively.

exE(z, t), B(r, t) = k × exB(z, t) = eyB(z, t), and A(r, t) = exA(z, t),
where ex and ey are the unitary vectors along the x and y axis,
respectively. Imposing the boundary conditions E(0, t) = E(L, t) = 0
that the electric field vanishes at the walls, we can write the spatial
solution of the form sin(knz), with kn = nπ/L and n = 1, 2, . . . , and
each spatial solution has the frequency ωn = ckn. The quantized fields
become

Ân(r) =
√

ℏ
ε0V ωn

ex sin(knz)
(
ân + â†

n

)
(1.28a)

Ên(r) = − i

√
ℏωn

ε0V
ex sin(knz)

(
ân − â†

n

)
(1.28b)

B̂n(r) =1
c

√
ℏωn

ε0V
ey cos(knz)

(
ân + â†

n

)
. (1.28c)

When the electromagnetic field inside a cavity interacts with a two-level
system with resonance frequency ωeg, we can assume that only one
mode of the cavity is near resonance with the two-level system. In
this conditions we can consider only one mode of the electromagnetic
field, and the Hamiltonian becomes that of a single quantum harmonic
oscillator

Ĥn = ℏωn

(
â†

nân + 1
2

)
. (1.29)

It is worth noting the dependence of the amplitude of the
electromagnetic field in Eqs. (1.28a) to (1.28c) on the volume V of the

12



1.3. The interaction between light and matter

cavity. Reducing the volume of the cavity will increase the amplitude of
the field, and this will be useful for achieving large light-matter coupling
and the ultrastrong coupling regime, as we will see in Section 1.4.2.

1.3 The interaction between light and matter

The physics behind the Maxwell equation expressed in Eqs. (1.11a)
to (1.11d) can be described, in the case of a single particle interacting
with the electromagnetic field, by the following Lagrangian [12, 13]

L(q, q̇,A, Ȧ) = 1
2mq̇2 +

∫
V

L (q, q̇,A(r), Ȧ(r), ϕ(r)) d3r , (1.30)

where the first term is the kinetic energy of the particle, and the second
term inside the integral is the Lagrangian density of the electromagnetic
field

L (q, q̇,A(r), Ȧ(r), ϕ(r)) =ε0
2

[(
Ȧ + ∇ϕ

)2
− c2 (∇ × A)2

]
+ J(r) · A(r) − ρ(r)ϕ(r) .

(1.31)

Here m is the particle mass, q and q̇ are the position and velocity of
the particle, respectively, while J(r) and ρ(r) are the density current
and the density of charge, respectively.

It is worth noting that the Lagrangian written above is in an
arbitrary gauge, considering the electric and magnetic fields as in
Eqs. (1.12a) and (1.12b). This automatically ensures that Eqs. (1.11a)
and (1.11d) are satisfied. In the case of a single electron, with a fixed
proton at the origin (hydrogen atom), we have

J(r) = −eq̇δ(r − q) , ρ(r) = qδ(r − q) + eδ(r) , (1.32)

where −e is the charge of the electron. They clearly satisfy the
continuity equation

∇ · J + ρ̇ = 0 . (1.33)

13



1. The basics of light-matter interaction

The Maxwell equation in Eq. (1.11b) can be obtained from the
Euler-Lagrange equation with respect to A, which is

d
dt
∂L

∂Ȧ
− ∂L

∂A = 0 . (1.34)

Indeed, we obtain

c2∇ (∇ · A) − c2∇2A + ∇ϕ̇+ Ä − J
ε0

= 0 , (1.35)

which is identical to Eq. (1.11b). The fourth and final Maxwell equation
in Eq. (1.11c) follows upon taking the divergence of Eq. (1.33) and
using the definition of J and ρ in Eq. (1.32).

For the particle motion, the Lorentz force is derived from the
Euler-Lagrange equation with respect to q, which leads to

mq̈ = −e (E + q̇ × B) . (1.36)

As can be seen in the definition of the Lagrangian in Eq. (1.30),
q and A are the only independent dynamical variables, with ϕ
determinable via them by the equations of motion. The momenta
conjugate to q and A are

p = ∂L

∂q̇ = mq̇ − eA(q) (1.37a)

Π(r) = ∂L

∂Ȧ
= −ε0E(r) , (1.37b)

and the canonical procedure yields the Hamiltonian

H = p · q̇ +
∫

V
d3r

[
Π(r) · Ȧ(r)

]
− L , (1.38)

which leads to

H = 1
2m (p + eA)2 + 1

2

∫
V

d3r
(

Π2

ε0
+ B2

µ0

)
. (1.39)
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1.3. The interaction between light and matter

In the equation written above, there is an extra term equal to∫
V

d3r [(∇ · Π + ρ)ϕ] ,

but, it is clear from Eqs. (1.11c) and (1.37b) that this term is identically
zero.

1.3.1 General gauge transformation

As previously stated in Eq. (1.13), we can perform a gauge transforma-
tion of the form

A′(r) = A(r) − ∇χ(r) , ϕ′(r) = ϕ(r) + χ̇(r) , (1.40)

leaving the fields and particle equations of motion unchanged. Here
χ(r) is an arbitrary scalar function, called generating function. It is
moreover useful to introduce a gauge density χ̃ such that

χ(r) =
∫

V
d3r′ χ̃(r, r′, {A(r′)}) , (1.41)

which will be written in the shorthand form χ̃(r, r′) in the subsequent
equations.

The Lagrangian density L ′ in the new gauge is given by Eq. (1.31)
but with the old potentials replaced by the new ones

L ′ =L (q, q̇,A′(r), Ȧ′(r), ϕ′(r))
= L (q, q̇,A(r) − ∇χ(r), Ȧ(r) − ∇χ̇(r), ϕ(r) + χ̇(r)) .

Thus from Eqs. (1.30) and (1.31) we have

L′ = L−
∫

V
d3r [J · ∇χ+ ρχ̇] , (1.42)

and, since χ̃ depends on the time through A, we have

L′ =L+ eq̇ · ∇χ(q) −
∫

V
d3r ρ(r)

∫
V

d3r′ ∂χ̃(r, r′)
∂A(r′) · Ȧ(r′)

= L+ eq̇ · ∇χ(q) −
∫

V
d3r Ȧ(r) ·

∫
V

d3r′ ∂χ̃(r, r′)
∂A(r) ρ(r′) .

(1.43)
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We now continue to take q and A as the canonical variables, while
the conjugate momenta become

p′ = ∂L′

∂q̇ = mq̇ − eA(q) + e∇χ(q) (1.44a)

Π′(r) = ∂L′

∂Ȧ
= ε0

[
Ȧ(r) + ∇ϕ(r)

]
− P(r) , (1.44b)

where we have introduced the polarization density

P(r) =
∫

V
d3r′ ∂χ̃(r, r′)

∂A(r) ρ(r′) . (1.45)

By comparison with the original conjugate momenta p and Π(r) of
the old Lagrangian L in Eqs. (1.37a) and (1.37b), the new momenta
are related to the old ones by

p′ = p + e∇χ(q) (1.46a)
Π′(r) = Π(r) − P(r) . (1.46b)

The new Hamiltonian H ′ is obtained from the same procedure as in
Eq. (1.38), and it is given by

H ′ = 1
2m

(
p′ + eA − e∇χ

)2 + 1
2

∫
V

d3r
(

(Π′ + P)2

ε0
+ B′2

µ0

)
, (1.47)

and it is straightforward to verify that the equations of motion for q
and A are unchanged.

The vector potential can be separated by a longitudinal and
transverse part

A = A∥(r) + A⊥(r) , (1.48)
where, by using the longitudinal and transverse delta functions, we
have

A∥
i (r) =

∑
j

∫
V

d3r′Aj(r′)δ∥
ij(r − r′) (1.49a)

A⊥
i (r) =

∑
j

∫
V

d3r′Aj(r′)δ⊥
ij(r − r′) . (1.49b)
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1.3. The interaction between light and matter

The two parts satisfy the relations

∇ × A∥(r) = 0 (1.50a)
∇ · A⊥(r) = 0 . (1.50b)

Thus, it is clear that the general gauge transformation in Eq. (1.40)
changes only the longitudinal component A∥ of the vector potential,
while the transverse component A⊥ remains unchanged. In the next
discussion below, we will explicitly derive the form of χ for two of the
most used gauges, namely the Coulomb gauge and the Power-Zienau-
Woolley (P.Z.W.) gauge.

1.3.2 Coulomb gauge

The Coulomb gauge corresponds to a frame in which the particle
momentum p is coupled to only the transverse part of the vector
potential A⊥. The generating function χ is given by

∇χC(r) = A∥(r) , (1.51)

and the transformed vector potential has

A∥
C(r) = 0 , ∇ · AC(r) = 0 . (1.52)

The required generator of the Coulomb gauge is therefore [13]

χC(r) = 1
4π
∑

j

∫
V

d3r′Aj(r′)∇′
j

1
|r − r′|

, (1.53)

and the polarization in the Coulomb gauge becomes

PC j(r) = 1
4π∇j

∫
V

d3r′ ρ(r′) 1
|r − r′|

, (1.54)

and thus
PC(r) = −ε0E∥(r) , (1.55)
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which satisfies the relation

∇ · PC(r) = −ρ(r) . (1.56)

The momentum conjugate to AC is obtained from Eqs. (1.44b)
and (1.55) and it is given by

ΠC(r) = −ε0E(r) + ε0E∥(r) = −ε0E⊥(r) , (1.57)

which gives the transverse electric field.
The Hamiltonian can be written in the Coulomb gauge by using

Eqs. (1.47), (1.55) and (1.57). Moreover, by expanding the integral
involving ΠC and PC , and considering that the contribution of their
dot product is zero since they are a transverse vector and a longitudinal
vector, respectively, we obtain

HC = 1
2m

(
p + eA⊥

)2
+ 1

2

∫
V

d3r
(

Π2
C

ε0
+ B2

C

µ0

)

+ 1
2ε0

∫
V

d3r P2
C ,

(1.58)

To derive the exact form of the last term in the equation written above,
we can use the charge density considered in Eq. (1.32) and the relation
in Eq. (1.54), which leads to

PC j(r) = − e

4π∇j

( 1
|q − r|

− 1
r

)
, (1.59)

and the last term of Eq. (1.58) represents the Coulomb energies of the
charged particles

1
2ε0

∫
V

d3r P2
C = − e2

4πε0|q|
+ infinite electron self energy . (1.60)

Note that the Coulomb potential between the two charged particles
(where the proton was considered fixed at the origin) was not introduced
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1.3. The interaction between light and matter

in the initial Lagrangian, but it emerged through the interaction with
the electromagnetic field.

To promote these fields to quantum operators, we can use the same
procedure as in Section 1.2.2 for the quantization of the electromagnetic
field. By promoting q, p, AC and ΠC to operators, we obtain the
following commutation relations

[q̂i, p̂C j ] = iℏδij ,
[
Âi(r), Π̂C j(r′)

]
= iℏδ⊥

ij(r − r′) , (1.61)

1.3.3 Power-Zienau-Woolley gauge

The Power-Zienau-Woolley (P.Z.W.) is sometimes called the multipolar
gauge [14]. Let’s consider the following polarization vector

PM (r) = −e
∫ 1

0
dλqδ(r − λq) , (1.62)

and we can see that [13]

∇ · PM (r) = eδ(r − q) − eδ(r) = −ρ(r) . (1.63)

By explicitly introducing the dependence of the polarization vector
on the position of the particle q, PM (r,q), the gauge generator density
χ̃M of the P.Z.W. gauge can be derived from Eqs. (1.45) and (1.62)
and the charge density in Eq. (1.32), and it is given by

χ̃M (r, r′) = 1
e

A(r′) · PM (r, r′) . (1.64)

The gauge generator χM is then obtained from Eqs. (1.41) and (1.64)
and it is given by

χM (r) = −
∫

V
d3r′

∫ 1

0
dλA(r′) · rδ(r′ − λr) , (1.65)

and the respective gradient is

∇χM (r) = A(r) − 1
e

∫
V

d3r′ θ(r′, r) × B(r′) , (1.66)
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where
θ(r′,q) = −e

∫ 1

0
dλλqδ(r′ − λq) . (1.67)

Using Eqs. (1.13) and (1.66), the vector potential in the P.Z.W.
gauge is given by

AM (r) = 1
e

∫
V

d3r′ θ(r′, r) × B(r′) , (1.68)

which, in the special case where B = 0, AM (r) = 0. However, in
general we have that the divergence is not zero ∇ · AM (r) ̸= 0, in
contrary to the Coulomb gauge case.

The conjugate momentum to AM is obtained from Eq. (1.44b)

ΠM (r) = −ε0E(r) − PM (r) = −D(r) , (1.69)

where D(r) is the electric displacement field. The Hamiltonian in
the P.Z.W. gauge can be once again derived from the canonical
transformation in Eq. (1.47), and it is given by

HM = 1
2m (p + eAM )2 + 1

2

∫
V

d3r
(

Π2
M

ε0
+ B2

M

µ0

)

+ 1
2ε0

∫
V

d3r P2
M + 1

ε0

∫
V

d3r PM · ΠM .

(1.70)

For the quantization procedure, we have the same commutation
relations as in Eq. (1.61)

[q̂i, p̂M j ] = iℏδij ,
[
Âi(r), Π̂M j(r′)

]
= iℏδ⊥

ij(r − r′) . (1.71)

Indeed, the vector potential A remains arbitrary, but its longitudinal
part dows not affect the commutation relations because of the
transversality of ΠM . Thus, despite A∥ is not zero, it does not affect
the dynamics.
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1.3. The interaction between light and matter

1.3.4 Gauge transformations in quantum mechanics

In quantum mechanics, the gauge transformations are performed by
a unitary transformation directly acting on the Hamiltonian and
the wave function. It is simple to understand why, since the gauge
transformations leave the Maxwell equations (and so the dynamics
behind them) unchanged, such transformations should not affect
the physical observables (expectation values of the operators), the
Schrödinger equation and the probability density. The Schrödinger
equation says that, for the Hamiltonian in Eq. (1.39) and a quantum
state |ψ⟩, the time evolution of the state is given by

iℏ
∂

∂t
|ψ⟩ = Ĥ |ψ⟩ . (1.72)

Consider now a unitary transformation which leads to a new Hamilto-
nian ĤU and a new state |ψ⟩U given by

ĤU = ÛĤÛ † , |ψ⟩U = Û |ψ⟩ , (1.73)

any expectation value of an operator Ô is unchanged

⟨ψ| Ô |ψ⟩ = ⟨ψ| Û †Û ÔÛ †Û |ψ⟩ = ⟨ψ|U ÔU |ψ⟩U . (1.74)

We now show that, when Û = exp(−iΛ̂) where Λ̂ = −eχC(q̂)/ℏ or
Λ̂ = −eχM (q̂)/ℏ, we obtain the Hamiltonian in the Coulomb gauge
in Eq. (1.58) and the Hamiltonian in the P.Z.W. gauge in Eq. (1.70),
respectively. We first note that Λ̂ depends only on q̂ and Â, but not on
their conjugate momenta p̂ and Π̂. Thus, this unitary transformation
changes only the momenta and not the coordinates

ĤU =ÛĤ(q̂, p̂, Â, Π̂)Û †

= Ĥ(q̂, Û p̂Û †, Â, ÛΠ̂Û †) = Ĥ(q̂, p̂U , Â, Π̂U ) .
(1.75)

By taking for example Λ̂ = −eχM (q̂)/ℏ, we have for p̂

p̂U =Û p̂Û † = p̂ − i
[
Λ̂, p̂

]
+ i2

2!
[
Λ̂,
[
Λ̂, p̂

]]
+ . . .

= p̂ + e∇χM (q̂) ,
(1.76)
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where we have used the Baker-Campbell-Hausdorff formula
exp(Â) B̂ exp(−Â) = B̂ + [Â, B̂] + 1

2! [Â, [Â, B̂]] + . . . and Eq. (1.71)
for the commutator [Λ̂, p̂]. In Eq. (1.76), the terms with higher order
in Λ̂ are zero because Λ̂ depends only on q̂. Thus, we have that
p̂U = p̂ + e∇χM (q̂), which is the momentum in the P.Z.W. gauge in
Eq. (1.46a). Similarly, we can show that Π̂U = Π̂ − P̂M (r̂), which is
the momentum in the P.Z.W. gauge in Eq. (1.46b).

1.4 The interaction of light with a two-level atom

In this section we consider an electron in a one-dimensional double-well
potential, like in Section 1.1.2, and we couple it to a single mode of the
electromagnetic field (e.g., a cavity mode as in Section 1.2.3). We start
by writing the Hamiltonian in the Coulomb gauge, as in Eq. (1.58)

ĤC = 1
2m

[
p̂+ eÂx

]2
+ V (x̂) + ℏωcâ

†â , (1.77)

where Âx = A0(â + â†) with A0 =
√
ℏ/(ε0V ωc) sin(kxz0) is the x

component of the vector potential expressed in Eq. (1.28a), which is
evaluated at the position of the electron z0 (since we are assuming that
it can only move in the x direction). Moreover, ωc is the resonance
frequency of the electromagnetic field, and V (x) = −µ/2x2 + λ/4x4 is
the double-well potential as in Eq. (1.8).

Under these conditions, the vector potential is constant with respect
to the electron, meaning we are under the dipole approximation2. In
this case, we can write the Hamiltonian in the P.Z.W. gauge through
the unitary transformation ĤD = T̂ ĤC T̂

†, where

T̂ = exp
(
i
e

ℏ
x̂Âx

)
, (1.78)

2In this case this is trivial, since we are limited to only one dimension and the
field varies in another dimension (z in this case).
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1.4. The interaction of light with a two-level atom

obtaining

ĤD = 1
2mp̂2 + V (x̂) + ℏωcâ

†â

+ ieωcA0
(
â− â†

)
x̂+ e2A2

0ωc

ℏ
x̂2 .

(1.79)

In the case of constant vector potential, the P.Z.W. gauge is usually
called the dipole gauge [12, 15]. Now, as in Section 1.1.2, we assume
that the double-well potential is such that the bounded electron has
the first two energy levels (|g⟩ and |e⟩) well separated from the others,
allowing to perform the two levels approximation through the projection
operator P̂ = |g⟩⟨g|+|e⟩⟨e|, and we obtain the Hamiltonian in the dipole
gauge projected

ĤD =P̂ ĤDP̂

=ℏωeg

2 σ̂z + ℏωcâ
†â− iℏgD

(
â− â†

)
σ̂x +

e2A2
0ωcx

2
eg

ℏ
,

(1.80)

where gD = −eωcA0xeg/ℏ (with xeg = ⟨e|x̂|g⟩) is the dipole coupling
constant, and ωeg = (Ee − Eg)/ℏ is the transition frequency between
the two levels. The last term in Eq. (1.80) is a constant energy shift,
since P̂ x̂2P̂ = x2

eg(|g⟩⟨g| + |e⟩⟨e|) for the parity symmetry of the system
V (x) = V (−x), and it can be neglected.

1.4.1 The Jaynes-Cummings model

The Hamiltonian in Eq. (1.80) describes the quantum Rabi model
(QRM), which is the full quantum treatment of the semiclassical model
of a two-level system interacting with an oscillating classical field [16].
However, when the coupling strength g is much smaller than the energy
separation between the two levels (g ≪ ωeg), we can perform the
rotating wave approximation (RWA) by neglecting the counter-rotating
terms âσ̂− and â†σ̂+, obtaining the well-known Jaynes-Cummings (JC)
model [17]

ĤJC = ℏωeg

2 σ̂z + ℏωcâ
†â+ ℏg

(
âσ̂+ + â†σ̂−

)
, (1.81)
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where we performed a unitary transformation â → iâ. Withing this
approximation, the eigenstates can be found analytically [18]. Indeed,
the JC Hamiltonian can be block-diagonalized, obtaining the following
set of eigenstates

|n,+⟩ = cos
(
αn

2

)
|n, e⟩ + sin

(
αn

2

)
|n+ 1, g⟩

|n,−⟩ = sin
(
αn

2

)
|n, e⟩ − cos

(
αn

2

)
|n+ 1, g⟩ ,

(1.82)

where αn = arctan[2g
√
n+ 1/(ωeg − ωc)]. The corresponding

eigenvalues are

En,± = ℏωc(n+ 1
2) ± 1

2ℏ
√

(ωeg − ωc)2 + 4g2(n+ 1) . (1.83)

The Jaynes-Cummings model in Eq. (1.81) conserves the total
number of particles ([ĤJC , â

†â + σ̂+σ̂−] = 0) and the parity of the
system ([ĤJC , Π̂(ϕ)] = 0), where Π̂(ϕ) = exp

[
iϕ(â†â+ σ̂+σ̂−)

]
is the

parity operator and ϕ is an arbitrary phase [19].
The dynamics of the Jaynes-Cummings Hamiltonian is quite simple

to understand. If we consider the resonance condition ωc = ωeg and we
start with the state |n, e⟩, the system will oscillate between |n, e⟩ and
|n+ 1, g⟩ with a frequency g

√
n+ 1. This means that the probability to

find the atom in the excited state oscillates like Pe(t) = cos2(g
√
n+ 1t),

which is the so-called Rabi oscillation. The vacuum Rabi oscillation is
a coherent oscillation between the two states, and it is a consequence
of the coherent coupling between the two levels.

The main antagonist of this coherent oscillation is the dissipation,
which is always present when considering the interaction with an
environment. If we call γ the dissipation rate of the system, we can
set a scale regime as a function of the ratio g/γ. When this ratio is
smaller than one we are the the so called weak coupling regime, while
when it is larger than one we are in the strong coupling regime. The
Rabi oscillations can be seen only in the strong coupling regime, since
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1.4. The interaction of light with a two-level atom

(b)(a)

Figure 1.4: Scale of regimes of light-matter interaction, comparing the coupling
strength g to the dissipation rates γ, κ of the cavity and the atom, respectively.
(a) Weak coupling: experimental demonstration of full control of the spontaneous-
emission dynamics of single quantum dots (QDs) interacting with a photonic-crystal
nanocavity [20]. The plot shows the micro-photoluminescence of InGaAs QDs in
different situations: when they match the cavity frequency, when they don’t, and
when there is no cavity at all. Compared with the case without any cavity, the QDs
decay more quickly in a resonant cavity and more slowly in an off-resonant cavity.
This is an example of the Purcell effect. (b) Strong coupling: vacuum (n = 0) Rabi
oscillations of Rydberg atoms coupled to a superconducting microwave cavity [21].
The plot shows the probability of finding the atom in the excited state as a function
of time. The oscillations are a consequence of the coherent coupling between the
two systems, and the damping is due to the dissipation.

in the weak coupling regime the dissipation is too strong to allow
the coherent oscillation between the two systems. In 1983 Haroche
and co-workers were able to observe the Rabi oscillation for the first
time, using a collection of Rydberg atoms in a microwave cavity [22].
The strong coupling was soon also achieved in several experimental
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1. The basics of light-matter interaction

architectures, involving single atoms interacting with microwave and
optical cavities [21, 23, 24], quasi-2D electronic excitations (Wannier
excitons) [25], quantum dots [26] and superconducting circuits [27].
Although the weak coupling regime might be considered less interesting,
it can give rise to a rich collection of interesting phenomena, such as
the Purcell effect, which is the enhancement or the suppression of
the spontaneous emission of an atom in a cavity [28, 29]. Indeed, as
shown in Fig. 1.4 (a), the spontaneous emission of a quantum dot can
be enhanced or suppressed by placing it in a resonant or off-resonant
cavity, respectively [20]. Compared with the case without any cavity,
the QDs decay more quickly in a resonant cavity (which enhances the
density of states that the QDs can decay to) and more slowly in an
off-resonant cavity (which shields the QD from the environment). This
is an example of the Purcell effect. On the other hand, in the strong
coupling regime, the coherent coupling between the two systems gives
rise to the so-called vacuum Rabi oscillations, as shown in Fig. 1.4 (b).
The oscillations are a consequence of the coherent coupling between
the two systems, and the damping is due to the dissipation.

If in one hand the ratio g/γ between the coupling strength and
the dissipation rate is important to let the coherences observable, it
is not a good scale for describing the relative strength. Indeed, in all
the experimental observations we cited up to now, the largest value of
coupling strength was three orders of magnitude smaller than the bare
energies of the system. For this reason, the ratio η = g/ω can give us
more information about the system itself. Indeed, we have already seen
that the RWA is a valid valid approximation when the coupling strength
is much smaller than the energy separation between the two levels.
But when this condition does not hold anymore, and we have g ≃ ω,
the properties of the interacting system can change dramatically. For
instance, by using the quantum Rabi Hamiltonian in Eq. (1.80), which
still contains the counter rotating terms, we can see that the number of
total excitations is no longer conserved [ĤD, â

†â+ σ̂+σ̂−] ̸= 0. Allowing
the system to present several peculiar phenomena, involving virtual
photons, creation of particles from the vacuum, and so on. This is
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1.4. The interaction of light with a two-level atom

only an anticipation of what we will see in the next sections, where we
will concentrate on two other regimes of light-matter interaction: the
ultrastrong coupling regime (USC) and the deep strong coupling regime
(DSC), which are characterized by η ≃ 1/10 and η > 1, respectively.

1.4.2 The ultrastrong coupling regime

In the previous discussion, we anticipated the concept of ultrastrong
and deep strong coupling regimes. Although reaching this regimes is not
easy, in the last decades there was an increasing interest in achieving
larger η values [30, 31]. The choice was to consider the coupling of
many atoms to the same cavity mode, as correctly predicted by the
Dicke model [32], this leads to enhanced coupling that scales with the
square root of the number of dipoles g ∝

√
N . The second choice was

to use different degrees of freedom, whose coupling is not bounded by
the small value of the fine structure constant α ≃ 1/137, which is the
natural dimensionless parameter emerging in a perturbative treatment
in quantum electrodynamics (QED).

The first path was investigated, where the possibility of achieving
the USC regime could be observed in intersubband polaritons, due
to the large number of electrons [35]. In 2009, the USC regime was
observed for the first time in a microcavity-embedded doped GaAs
quantum wells with η ≃ 0.11. The second path was mainly investigated
in the context of superconducting circuits, where in 2010 a normalized
coupling up to η ≃ 0.12 was obtained [33, 36].

Fig. 1.5 shows two main experimental results for the observation of
USC and DSC. In Fig. 1.5(a) a microwave spectroscopy was performed
on a system featuring a superconducting flux qubit connected to a
coplanar-waveguide resonator [33]. The plot illustrates the cavity’s
transmission as a function of the probe frequency, denoted as ωprobe,
and the flux offset, which adjusts the qubit’s frequency. This distinctive
avoided level crossing indicates a process that doesn’t conserve the
total number of excitations. It describes the interaction between a
state initially containing a single photon in the third resonator mode
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(b)(a)

Figure 1.5: Scale of regimes of light-matter interaction, comparing the coupling
strength g to the bare energies ω of the cavity and the atom. (a) Ultrastrong coupling:
microwave spectroscopy of a system with a superconducting flux qubit coupled to
a coplanar-waveguide resonator [33]. The plot shows the cavity transmission as a
function of probe frequency ωprobe and flux offset, which tunes the qubit frequency.
This avoided level crossing is a signature of a process that does not conserve the
total number of excitations, since it describes the interaction between a first state
that has a single photon in the third resonator mode and a second one that has
one qubit excitation and one photon in the first resonator mode. (b) Deep strong
coupling: magneto-THz transmission measurements on a THz metamaterial coupled
to the cyclotron resonance of a 2D electron gas [34]. The splitting between the
lower polariton (LP) and upper polariton (UP) levels in the point of the arrow is a
measure of the coupling strength. In this work, a record η = 1.43 was reached.

and another state with one qubit excitation and one photon in the first
resonator mode. This process is a signature of the USC regime, since it
is a direct consequence of the counter-rotating terms. Fig. 1.5(b) shows
the magneto-THz transmission measurements that were conducted
on a THz metamaterial coupled to the cyclotron resonance of a 2D
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electron gas [34]. The separation between the lower polariton (LP) and
upper polariton (UP) levels at the arrow’s location serves as a measure
of the strength of the coupling. In this study, an impressive η = 1.43
coupling strength was achieved, which is currently the larges value ever
reported.

Nowadays, this regime has been achieved in a great variety of
systems and settings [30, 31]. The experimental progress in USC physics
has motivated many studies showing interesting new effects enabled
or boosted by this regime [36–71], predicting a changing in ground
state chemical reactions [64], observing a modification of the ground
state current resistivity [65]. Several studies explored higher-order
processes [48, 49, 53, 57–59], such as multiphoton Rabi oscillations [48,
49] and a single photon exciting multiple atoms [53, 71].

1.4.3 Breakdown of gauge invariance in the USC regime

The careful reader would have already wondered why in the beginning
of Section 1.4 we performed the gauge transformation to project the
atom in the two-level approximation. Of course, nobody avoids us
to perform the truncation on the Hamiltonian in the Coulomb gauge
expressed in Eq. (1.77). Unexpectedly, this choice would lead to a
completely different and wrong result when approaching to the USC
regime.

Certainly gauge invariance is a crucial property that remains valid
within the global Hilbert space, but it becomes compromised when
operating within a specific subspace [72, 73]. As an example, some
physical observables show a marked dependence on the chosen gauge.
Consider the historical example of two-photon (1s-2s) absorption in the
hydrogen atom [73]: the effect is zero within the Coulomb gauge and
in a two-level approximation. However, when expanding the number
of levels, convergence to the exact result is significantly slower in
the Coulomb gauge than in the dipole gauge. These gauge-related
complexities are further exacerbated in the context of USC interactions,
as elaborated in Ref. [74].
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We start by considering the Hamiltonian in the Coulomb gauge in
Eq. (1.77), and we expand it

ĤC = 1
2mp̂2 + V (x̂) + ℏωcâ

†â

+ eA0
m

p̂
(
â+ â†

)
+ q2A2

0
2m

(
â+ â†

)2
.

(1.84)

We can easily see that the diagonal terms are zero ( ⟨g|p̂|g⟩ = ⟨e|p̂|e⟩ =
0) since the eigenstates are stationary. On the other hand, the
off-diagonal terms are not zero ( ⟨g|p̂|e⟩ = ⟨e|p̂|g⟩∗ ≠ 0) since,
using Eqs. (1.10a) to (1.10b) they describes the tunneling process
between the left and right states. By expressing the momentum as
p̂ = −iℏ∂x, we can write P̂ p̂P̂ = xegωegmσ̂y, where xeg = ⟨e|x̂|g⟩, and
P̂ = |g⟩⟨g| + |e⟩⟨e| is the projection operator on the two-level subspace.
In this way, the truncated Hamiltonian in the Coulomb gauge becomes

ĤC = ℏωeg

2 σ̂z + ℏωcâ
†â+ ℏgC

(
â+ â†

)
σ̂y +D

(
â+ â†

)2
, (1.85)

where gC = −eωegA0xeg/ℏ is the coupling strength in the Coulomb
gauge, and D = e2A2

0/(2m) is the well-known diamagnetic term.
The Hamiltonian in the Coulomb gauge, however, cannot be

obtained by a unitary transformation from the Hamiltonian in the
dipole gauge of Eq. (1.80), meaning that all the observables may be
different. Indeed, as shown in Fig. 1.6, the first eigenvalues of the
Hamiltonian in the Coulomb gauge are different from the eigenvalues of
the Hamiltonian in the dipole gauge, where the latter is the correct one,
since we compared the results with the full non truncated Hamiltonian
in Eq. (1.84)3. This is a clear example of the breakdown of gauge
invariance in the USC regime. The parameters used for the double-
well potential are α = 400, β = 250, while ωc = ωeg. We changed

3We can also compare the results with the Hamiltonian in the dipole gauge
expressed in Eq. (1.80). Obviously, the results are the same, since the non truncated
Hamiltonians are linked by a gauge transformation.
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Figure 1.6: Comparison of the first eigenvalues of the single electron in a double-
well potential interacting with a single mode cavity field. The blue lines correspond
to the full Hamiltonian in Eq. (1.84), but the same results can be obtained from the
Hamiltonian in the dipole gauge in Eq. (1.79). The orange lines correspond to the
dipole gauge truncated to a two-level system, thus using Eq. (1.80). The green lines,
instead, correspond to the truncated Coulomb gauge Hamiltonian in Eq. (1.85). As
can be seen, Coulomb gauge reproduces wrong results. The parameters used for
the potential are α = 400, β = 250, while ωc = ωeg. We changed the normalized
coupling η by changing the value of A0.

the normalized coupling η by changing the value of A0, following the
relation A0 = η/(−exeg) and choosing e = −1 for simplicity. Playing
around a bit with the code in the dedicated GitHub repository [11],
the reader can try to adjust the potential parameters and see that the
truncate dipole gauge coincides with the full Hamiltonian only at high
atom non-linearities.

At this moment we may ask ourselves what is the cause of this
breakdown of gauge invariance. The answer was given in 2019 [75],
stating that this problem is related to the non-locality that the atom
potential acquires under a projection to a reduced Hilbert space
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V (x̂) → V (x̂, x̂′), while it has been shown by several works [76–78]
that a non-local potential can be expressed as a momentum-dependent
operator V (x̂, p̂). Thus, to preserve gauge invariance, we have to
perform the minimal coupling replacement p̂ → p̂ + eÂx also in the
non-local potential. Fig. 1.7 shows this problem in a visible way, where
|V (x̂, x̂′)| is shown for various values of the truncation: N = 100,
N = 20, N = 5 and N = 2, with the same parameters of Fig. 1.6 for
the atom potential. As can be seen, the non-locality of the potential
increases as we decrease the number of levels, and this is the reason
why the Coulomb gauge fails to reproduce the correct results. In the
dipole gauge, there is no minimal coupling replacement applied to the
atom part, but, as we will see soon, there is a minimal coupling applied
to the cavity field. This concept is crucial for most of the topics of
this thesis, since we will see that the dipole gauge is not always well
defined.

The problem was bypassed in the following way. First, we note
that the full Hamiltonian in the Coulomb gauge in Eq. (1.84) can be
written as

ĤC = ÛĤaÛ
† + Ĥf , (1.86)

where

Ĥa = 1
2mp̂2 + V (x̂) (1.87a)

Ĥf = ℏωcâ
†â , (1.87b)

and Û = T̂ †, where T̂ is the unitary transformation in Eq. (1.78) that
brings the Hamiltonian in the Coulomb gauge to the dipole gauge. To
this end, we can write the Hamiltonian in the dipole gauge as

ĤD = T̂ ĤC T̂
† = T̂ ÛĤaÛ

†T̂ † + T̂ Ĥf T̂
†

= Ĥa + T̂ Ĥf T̂
† = Ĥa + Û †Ĥf Û .

(1.88)

where we can see that an opposite minimal coupling is applied only to
the field part of the Hamiltonian, while the atom part is left unchanged.
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Figure 1.7: Non-locality of the double-well potential. The plot shows |V (x̂, x̂′)|
for various values of the truncation: N = 100, N = 20, N = 5 and N = 2. As can
be seen, the non-locality of the potential increases as we decrease the number of
levels. The parameters used for the potential are α = 400, β = 250.

By applying now the projection into a two-level system to the
Hamiltonian in the Coulomb gauge in Eq. (1.86), we obtain the
standard quantum Rabi Hamiltonian in the Coulomb gauge expressed
in Eq. (1.85) ĤC = P̂ ÛĤaÛ

†P̂ + Ĥf , which we have already seen that
it produces wrong results.

The key point to bypass this problem is to take into account the
projected Hilbert space already before applying the minimal coupling
replacement [75]. In other words, we have

ĤC = ÛĤaÛ† + Ĥf , (1.89)

where Ĥa = (ℏωeg/2)σ̂z is the already projected atom Hamiltonian,
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and

Û = exp
[
−i e

ℏ
ÂxP̂ x̂P̂

]
= exp

[
iη
(
â+ â†

)
σ̂x

]
.

(1.90)

By using again the Baker-Campbell-Hausdorff formula, we finally
have the correct quantum Rabi Hamiltonian in the Coulomb gauge

ĤC = ℏωeg

2
{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
+ ℏωcâ

†â ,

(1.91)
which is linked to the quantum Rabi Hamiltonian in the dipole gauge
through the unitary transformation

ĤD = T̂ ĤC T̂ † = Ĥa + Û†Ĥf Û , (1.92)

and thus reproduces the same results.
It should be stressed once again that this procedure is valid

only in the dipole approximation, that is when the field can be
considered constant with respect to the atom dipole. Moreover, the
same Hamiltonian in the Coulomb gauge was recently obtained by
using lattice gauge theory [79]. In the next sections we will address this
issue in more detail, showing that, besides the gauge-invariance of the
Hamiltonian, several issues may appear when treating ultrastrongly
coupled open quantum systems, photodetection, and pure dephasing,
showing that the dipole gauge is not always the most intuitive gauge
to use.
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CHAPTER 2

Open quantum systems and
photodetection in the USC

regime

In the previous chapter we have seen the foundamentals of cavity
QED, focusing on the quantum Rabi model and its gauge ambiguities
arising in the ultrastrong coupling regime. We treated the problem in
the Hamiltonian level, which mean that we considered the composite
system atom plus cavity as a closed quantum system. However, a
closed system is a theoretical construct, which is useful to understand
the intrinsic properties of it, but may be not so useful to describe the
real world, where every system is in interaction with one or a multiple
set of environments.

We already bypassed the gauge problem regarding the correct form
of the quantum Rabi Hamiltonian in the Coulomb gauge. But, are
we sure that everything is now solved? What happens to the gauge
invariance when considering an open quantum system in the USC
regime? Is the dipole gauge of the quantum Rabi Hamiltonian always
correctly defined in the case of photodetection? In this chapter we will
answer to all these questions. A little spoiler on the last question: no.
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2. Open quantum systems and photodetection in the USC regime

2.1 Photodetection in the USC regime

Photons are typically counted using photodetectors, where photon
absorption causes a change in the detector’s microscopic state. This
change is then amplified to produce a classical signal, such as
electric current, which is observed by the experimenter. Different
photodetectors have varying response times and sensitivities to
photon frequencies. The specific detection mechanism is essential
for interpreting experiments involving photons. Optical photodetectors
often use photo-ionization, where a photon absorption leads to the
creation of free electrons and ions, generating a macroscopic current [80].
In semiconductor photodetectors, photon absorption above a certain
energy threshold excites electrons and holes, which, under the influence
of an electric field, create electron-hole pairs, resulting in a macroscopic
current [80]. Understanding these processes is crucial for interpreting
photon detection experiments.

Let’s consider that before detection, the field exists in a pure
state denoted as |Ψ⟩. When a photon is absorbed, the resulting state
of the field, denoted as |Ψf ⟩, is obtained by applying the operator
E+(r, t), which includes the annihilation operators of the field modes,
to the initial state. In mathematical terms, this is represented as
|Ψf ⟩ ∝ E+(r, t) |Ψ⟩. The probability of detecting the photon, along
with the transition from the initial state |Ψ⟩ to the final state |Ψ⟩f , is
thus directly proportional to [81]

Pdet ∝
∣∣∣ ⟨Ψf |E+(r, t)|Ψ⟩

∣∣∣2 , (2.1)

and the total probability of photodetection w(r, t) is obtained by
summing over all possible final states |Ψf ⟩:

w(r, t) =
∑

f

∣∣∣ ⟨Ψf |E+(r, t)|Ψ⟩
∣∣∣2

=
∑

f

⟨Ψ|E−(r, t)|Ψf ⟩ ⟨Ψf |E+(r, t)|Ψ⟩

= ⟨Ψ|E−(r, t)E+(r, t)|Ψ⟩ .

(2.2)
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2.1. Photodetection in the USC regime

Obviously, if the state is not pure, and it is expressed by a density
matrix ρ̂ we have that the photodetection probability is given by

w(r, t) = Tr
[
ρE−(r, t)E+(r, t)

]
. (2.3)

In the case of a single mode field, where the the system is governed
by quantum Harmonic oscillator Ĥf = ωcâ

†â, as in Eq. (1.29), and
the electric field is defined as Ê = iωcA0(â − â†). The part of the
electric field with positive frequency is Ê+ = iωcA0â, since it can
be easily seen that the time evolution of this operator is Ê+(t) =
exp(iĤf t)Ê+exp(−iĤf t) = Ê+exp(−iωct), and the photodetection
probability for a given pure state |Ψ⟩ is thus proportional to the
number of photons

w(r, t) ∝ ⟨Ψ|â†â|Ψ⟩ . (2.4)

Now, we may ask if this is always valid, or what happens if we
consider the photodetection in the USC regime. First, let’s consider
the Jaynes-Cummings model as in Section 1.4.1, and we ask what is
the photodetection probability if the system is in the ground state.
We already know that this model is exactly solvable, and the ground
state is |ψGS⟩ = |0, g⟩ at any coupling strength. It is straightforward
to see that the photodetection probability is always zero, but this
is not the case when taking into account the counter-rotating terms
and thus passing to the quantum Rabi model. The ground state
of the quantum Rabi model is no longer equal to |0, g⟩, but it is a
superposition of all the bare states. When not taking into account
the parity symmetry breaking of the atom, i.e. V (x̂) = V (−x̂), the
quantum Rabi model conserves the parity of the system [Ĥ, Π̂(π)] = 0
(where Ĥ and Π̂(θ) = exp[iθ(â†â+ σ̂+σ̂−)] are the system Hamiltonian
and the phase-dependent parity operator, respectively), but it does not
conserve the total number of excitations [Ĥ, â†â+ σ̂+σ̂−] ̸= 0. Thus,
the ground state of the quantum Rabi Hamiltonian is of the form

|ψGS⟩ =
∑

n

(
c(1)

n |2n, g⟩ + c(2)
n |2n+ 1, g⟩

)
, (2.5)
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2. Open quantum systems and photodetection in the USC regime
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Figure 2.1: Expectation value of â†â in the groundstate of the quantum Rabi
Hamiltonian in both the dipole gauge in Eq. (1.80) (blue solid line) and the Coulomb
gauge in Eq. (1.91) (red dashed line). As can be easily seen, this quantity is not zero,
and it is even a gauge-dependent variable. The parameters are ωc = 1, ωeg = 1.

and it can be easily seen that

⟨ψGS|â†â|ψGS⟩ ≠ 0 . (2.6)

Fig. 2.1 shows the expectation value of â†â in the groundstate of the
quantum Rabi Hamiltonian in both the dipole gauge in Eq. (1.80) and
the Coulomb gauge in Eq. (1.91). As can be easily seen, this quantity
is not zero, and it is even a gauge-dependent variable. This is a clear
example of the fact that the photodetection probability defined in
Eq. (2.4) is not always valid, and it is even a gauge-dependent quantity
when we approach the USC regime.

Following Glauber’s approach [81], we need to revisit the positive
frequency part of the field when we are in the USC regime. We start
by writing the electric field operator in the basis of the eigenstates of
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2.1. Photodetection in the USC regime

the system
Ê = iωcA0

∑
j,k

⟨j|â− â†|k⟩ |j⟩⟨k| , (2.7)

and the definition of the positive frequency part is now given by

Ê+ = iωcA0
∑

j,k>j

⟨j|â− â†|k⟩ |j⟩⟨k| . (2.8)

The photodetection probability is now given by Eq. (2.2) with the
positive frequency part of the electric field defined in Eq. (2.8). Indeed,
it has been shown that this is the correct way to calculate the real
photon rate at any light-matter coupling strength [82–84]. Obviously,
the eigenstates |j⟩ and the operators depend on the gauge we are
considering, like any change of basis. In the following, we will discuss
about the gauge invariance of photodetection at arbitrary light-matter
coupling strengths.

2.1.1 Photodetection in the Coulomb gauge

In Section 1.4.3 we derived the correct form of the quantum Rabi
Hamiltonian in the Coulomb gauge, which is given by Eq. (1.91), which
we rewrite here for the sake of clarity

ĤC = ωcâ
†â+ ωeg

2
{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
.

(2.9)
As we already have seen, the Hamiltonian written above can be
obtained starting from the light-matter Hamiltonian in the absence
of interaction Ĥ0 = Ĥa + Ĥf , where Ĥa = ωegσ̂z/2 and Ĥf = ωcâ

†â,
by applying a suitable unitary transformation (generalized minimal
coupling transformation) to Ĥa only [75, 79]. Specifically,

ĤC = ÛĤaÛ† + Ĥf , (2.10)

where
Û = exp

[
iη
(
â+ â†

)
σ̂x

]
. (2.11)
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2. Open quantum systems and photodetection in the USC regime

We observe that in the Coulomb gauge, the canonical field momentum
is not modified by the interaction with the matter component, i.e.,
Π̂ = −ε0Ê (ε0 vacuum permittivity), such that, in this framework, the
electric field operator can be written as we already said

Ê = iωcA0
(
â− â†

)
, (2.12)

and, by using the system eigenstates, its positive frequency part is as in
Eq. (2.8), that here we rewrite considering ωc and A0 as simple scaling
factors, and so that does not influence the photon rate calculations

Ê+ = i
∑

j,k>j

⟨j|â− â†|k⟩ |j⟩⟨k| . (2.13)

By using the following relation [85]

ωc ⟨j|â− â†|k⟩ = ωkj ⟨j|â+ â†|k⟩ , (2.14)

Eq. (2.13) can be written also as

Ê+ = i
∑

j,k>j

ωkj

ωc
⟨j|â+ â†|k⟩ |j⟩⟨k| . (2.15)

By using the simple input-output theory [86], results analogous
to w can be obtained for the rate wout of emitted photons detected
by a detector placed outside the cavity [82, 87]. However, the output
field operators can display a different dependence on ωkj , arising from
the density of states of the output modes and from the frequency
dependence of the coupling coefficient, which (for example) depends
on the mirror reflectivity in a standard microcavity. More generally,
the output field operator, in the Coulomb gauge, can be written as

Ê+
out = i

∑
j,k>j

α(ωkj) ⟨j|â+ â†|k⟩ |j⟩⟨k| , (2.16)

where α(ω) represents the specific dependence on frequency, which
varies according to the model. A more comprehensive input-output
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2.1. Photodetection in the USC regime

theory can be established using quantized quasinormal modes, as
discussed in various studies [88–90].

It’s important to note that photodetection is a process of energy
absorption. Therefore, it’s logical to assume that photon detection rates
approach zero as frequencies ω approach zero. Any realistic analysis
that covers a broad frequency range should also consider dispersion in
the material model. However, incorporating this aspect would make
the study system-dependent, which is beyond the scope of this general
framework.

2.1.2 Photodetection in the dipole gauge

The quantum Rabi Hamiltonian can also be expressed in the dipole
gauge, as in Eq. (1.80), which, again, we rewrite here for the sake of
clarity

ĤD = ωcâ
†â+ ωeg

2 σ̂z − iωcη
(
â− â†

)
σ̂x + ωcη

2σ̂2
x . (2.17)

The Hamiltonian written above is linked to the one in the Coulomb
gauge by a gauge transformation ĤD = Û†ĤC Û , where Û is expressed
in Eq. (2.11). In the dipole gauge, the field conjugate momentum
is modified by the interaction with the matter system, and it is
proportional to the electric displacement (induction) field, as in
Eq. (1.69). In the case of a constant single mode cavity field we
have [2]

Π̂′ = −D̂ = −iε0ωcA0
(
â− â†

)
, (2.18)

Thus, the electric field operator cannot be expanded in terms of photon
operators only. Indeed, due to the fact that D̂ = ε0Ê

′ + P̂ (for a dipole
in free space), where P̂ is the electric polarization, the electric field
operator in the dipole gauge has to be expanded as

Ê′ = iωcA0
(
â′ − â′†

)
, (2.19)

where
â′ = Û†âÛ = â+ iησ̂x (2.20)
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2. Open quantum systems and photodetection in the USC regime

is the photon operator in the new basis of the dipole gauge [84].
Furthermore, the operator â′ and â′† obey to the usual commutation
relations of the bosonic operators, i.e. [â′, â′†] = 1.

The photodetection probability can be obtained following the same
procedure as in Section 2.1.1. First, we need to write the electric field
operator Ê′ in the basis of the eigenstates of the system, and than we
take only the positive frequency part of it1

Ê′+ = i
∑

j,k>j

〈
j′∣∣â′ − â′†∣∣k′〉 ∣∣j′〉〈k′∣∣ . (2.21)

The main error that is usually made consists to consider the electric
field operator in the dipole gauge as

Êwrong = iωcA0
(
â− â†

)
(2.22)

instead of Eq. (2.19), which is valid only at very low coupling
strengths. By considering the wrong electric field operator would
lead to gauge-dependent photon emission. Indeed, Eq. (2.21) is linked
to Eq. (2.13) by the same unitary transformation Û , which means that
the photodetection rate w is equal in both gauges.

As done in Section 2.1.1, we have the relation

ωc
〈
j′∣∣â′ − â′†∣∣k′〉 = ωkj

〈
j′∣∣â′ + â′†∣∣k′〉 , (2.23)

and the positive frequency part of the electric field becomes

Ê′+ = i
∑

j,k>j

ωkj

ωc

〈
j′∣∣â′ + â′†∣∣k′〉 ∣∣j′〉〈k′∣∣ . (2.24)

Finally, in analogy to the whole discussion of this section, it is
possible to define the field operators describing the qubit emission
wa = ⟨Σ̂−Σ̂+⟩, where

Σ̂+ = i
∑

j,k>j

ωkj

ωeg
⟨j|σ̂x|k⟩ |j⟩⟨k| . (2.25)

1Here again we consider ωc and A0 as simple scaling factors, and so that does
not influence the photon rate calculations.
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2.2. Open quantum systems in the USC regime

Considering a standard cavity QED system, for example, the cavity
emission rate corresponds to the photon flux escaping one of the mirrors,
while the qubit emission rate corresponds to the spontaneous emission
directly from the qubit, that can be collected by a detector placed
orthogonally to the axis connecting the two mirrors [91, 92].

2.2 Open quantum systems in the USC regime

Let’s consider a generic open quantum system, which is in interaction
with an environment. The total Hamiltonian of the system is given by

Ĥtot = ĤS + ĤR + V̂ , (2.26)

where ĤS is the Hamiltonian of the system, ĤR is the Hamiltonian
of the environment (reservoir), and V̂ is the interaction Hamiltonian
between the system and the environment. We are interested in the
dynamics of the reduced density matrix of the system, which is obtained
by tracing out the environment degrees of freedom ρ̂S = TrR[ρ̂tot].
Usually, the dynamics of the reduced density matrix is governed by
the standard master equation

d
dt ρ̂S = Lstdρ̂S , (2.27)

where

Lstdρ̂S = − i
[
ĤS , ρ̂S

]
+
∑

n

γnnth(ωn, Tn)D
[
Ŝn

]
ρ̂S

+
∑

n

γn [nth(ωn, Tn) + 1] D
[
Ŝ†

n

]
ρ̂S ,

(2.28)

and
D
[
Ŝ
]
ρ̂ = 1

2
[
2Ŝρ̂Ŝ† − Ŝ†Ŝρ̂− ρ̂Ŝ†Ŝ

]
(2.29)

are the standard Liouvillian and the Lindblad dissipator, respectively.
nth(ωn, Tn) = [exp(ℏωn/kBTn) − 1]−1 is the thermal population of
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2. Open quantum systems and photodetection in the USC regime

the n-th reservoir describing the number of excitations at a given
temperature Tn, kB is the Boltzmann constant, and γn is the dissipation
rate. The operators Ŝn are the system operators that couple to the
environment, and they are usually expressed in terms of the bare system
operators, e.g., â or σ̂−. For low coupling strengths η, the standard
master equation in Eq. (2.27) can be used to accurately describe many
cavity QED and circuit QED experiments [93–96].

This approach is derived by doing several assumptions: i) the
environment is a macroscopic system described by an infinite number
of quantum harmonic oscillators, which are all in thermal equilibrium
at a given temperature T . For instance, this is the case of the open
radiation field that behaves as a reservoir for an atom [97, 98]; ii)
the interaction between the system and the environment is weak, and
that the system is initially uncorrelated with the environment; iii) the
system is Markovian, i.e. that the memory time of the environment is
much shorter than the characteristic time of the system dynamics [86,
97, 98]. Moreover, to derive the standard master equation in Eq. (2.27),
the interaction Hamiltonian is expressed in terms of the bare system
operators, e.g, â or σ̂−, and subsequently applying a RWA after having
traced out the bath degrees of freedom. However, this is a valid
procedure when ĤS represents a single system (e.g., a cavity field or
an atom) or a set of weakly interacting subsystems (e.g., a Jaynes-
Cummings Hamiltonian), but it is no longer valid when the system is
composed by ultrastrongly coupled subsystems. This is straightforward
to understand if we remember the discussion in Section 2.1, where, for
instance, we have seen that the bare fields operators â and â† does not
describe anymore the process of annihilation and creation of photons,
respectively.

A suggestion comes again from Section 2.1, where the expression of
the field in terms of positive and negative frequencies in the eigenstate
basis was given to obtain the correct photodetection rate. Indeed,
a master equation specific for ultrastrongly coupled systems was
derived [99]. This approach is based on the same assumptions as
the standard master equation, but the interaction Hamiltonian is
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2.2. Open quantum systems in the USC regime

expressed in terms of the eigenstates |j⟩ of the system, sometimes
knows as dressed master equation, which is

d
dt ρ̂S = Ldrρ̂S , (2.30)

where

Ldrρ̂S = − i
[
ĤS , ρ̂S

]
+
∑

n

∑
j,k>j

Γ(n)
jk nth(ωkj , Tn)D [|k⟩⟨j|] ρ̂S

+
∑

n

∑
j,k>j

Γ(n)
jk [nth(ωkj , Tn) + 1] D [|j⟩⟨k|] ρ̂S ,

(2.31)

and Γ(n)
jk = γnωkj | ⟨j|Ŝn + Ŝ†

n|k⟩ |2. First we note that the dissipation
occurs through the projection operators |j⟩⟨k| in the energy eigenstates
of the system, allowing a direct transition between them. Second,
the thermal population nth(ωkj , Tn) is now a function of the energy
difference between the states |j⟩ and |k⟩, and not anymore of the bare
frequencies ωn. Third, the dissipation rates Γ(n)

jk are now a function of
the bare system operators Ŝn and not anymore a constant factor.

This master equation is able to correctly describe the dissipation
involving ultrastrongly coupled systems, however, it is only valid in the
absence of degenerate transitions, i.e., ωjk ̸= ωlm ∀ j, k, l,m. Indeed, as
in the case of the standard master equation in Eq. (2.27), a RWA was
applied after having traced out the bath degrees of freedom. This is a
strong limitation, when considering harmonic systems as in the weak
coupling regime and in the deep strong coupling (DSC) regime (see,
e.g., the correct energy levels in Fig. 1.6).

Recently, a more general approach was proposed [100], which was
derived again in the basis of the eigenstates of the system, but without
applying the post-trace RWA. The full derivation of this generalized
master equation (GME) is given in Appendix A, while here we just
report the final result

d
dt ρ̂S = Lgmeρ̂S , (2.32)
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2. Open quantum systems and photodetection in the USC regime

with
d
dt ρ̂S(t) = − i

[
ĤS , ρ̂S(t)

]
+ 1

2
∑

n

∑
j,k>j
l,m>l

Γ(n)(ωml)
{

[
Ŝ

(n)†
lm ρ̂S(t)Ŝ(n)

jk − Ŝ
(n)
jk Ŝ

(n)†
lm ρ̂S(t)

]
nth(ωml, Tn)

+
[
Ŝ

(n)
lm ρ̂S(t)Ŝ(n)†

jk − Ŝ
(n)†
jk Ŝ

(n)
lm ρ̂S(t)

]
[nth(ωml, Tn) + 1]

+
[
Ŝ

(n)†
jk ρ̂S(t)Ŝ(n)

lm − ρ̂S(t)Ŝ(n)
lm Ŝ

(n)†
jk

]
nth(ωml, Tn)

+
[
Ŝ

(n)
jk ρ̂S(t)Ŝ(n)†

lm − ρ̂S(t)Ŝ(n)†
lm Ŝ

(n)
jk

]
[nth(ωml, Tn) + 1]

}
,

(2.33)

where Γ(n)(ω) = γ̃nω is the frequency-dependent dissipation rate,
specific for an ohmic bath, and Ŝ

(n)
jk = ⟨j|Ŝn|k⟩ |j⟩⟨k| with Ŝn the

n-th system operator the couples to the n-th bath. It is worth noting
that here γ̃n are dimensionless parameters, because the real decay
rate is Γ(n)(ω), which is a function of the frequency ω. Thus, it is
sometimes useful to define the decay rate at the specific bare frequency
γn ≡ Γ(n)(ωn) = γ̃ωn. The equation above can be rewritten as

Lgmeρ̂S = − i
[
ĤS , ρ̂S

]
+ 1

2
∑

n

[
Ŝ−

n,1ρ̂SŜ+
n + Ŝ−

n ρ̂SŜ+
n,1 − Ŝ+

n Ŝ−
n,1ρ̂S − ρ̂SŜ+

n,1Ŝ−
n

+ Ŝ+
n,2ρ̂SŜ−

n + Ŝ+
n ρ̂SŜ−

n,2 −Ŝ−
n Ŝ+

n,2ρ̂S − ρ̂SŜ−
n,2Ŝ+

n

]
,

(2.34)
and

Ŝ+
n =

∑
j,k>j

⟨j|Ŝn|k⟩ |j⟩⟨k| , (2.35a)

Ŝ+
n,1 =

∑
j,k>j

Γ(n)(ωkj)nth(ωkj , Tn) ⟨j|Ŝn|k⟩ |j⟩⟨k| , (2.35b)

Ŝ+
n,2 =

∑
j,k>j

Γ(n)(ωkj) [nth(ωkj , Tn) + 1] ⟨j|Ŝn|k⟩ |j⟩⟨k| . (2.35c)
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This generalized master equation contains the minimal amount of
approximations which can be summarized in only the Born and Markov
approximations. Moreover, it is valid for any light-matter coupling
strength, and it is able to describe the dissipation of ultrastrongly
coupled systems even in the presence of degenerate transitions. It is
easy to see that, in the limit of weak coupling, the generalized master
equation reduces to the standard master equation in Eq. (2.27).

In the interaction picture, each term of Eq. (2.33), barring the
last one, oscillates at frequencies ±(ωml − ωkj). When |ωml − ωkj |
greatly exceeds the system’s damping rates Γ(n), these terms offer
minimal contributions to the master equation’s integration. Therefore,
|ωml − ωkj | can be considered comparable to the system linewidths.

Despite the rapid oscillations in Eq. (2.33) due to transitions
with large frequency differences (absent post-trace RWA in the
dressed master equation), they should not significantly contribute
if |ωml − ωkj | > Γ(n). However, they can substantially prolong
computation time and induce computational instabilities, particularly
evident when computing log-scaled spectra. To mitigate these issues,
we employ a low-pass filter function in Eq. (2.33) to diminish the
contribution of dissipator terms with high frequency differences [100].
This filter function can take any low-pass filter form, such as a step-like
or sigmoid-like shape. Here, we use a gaussian shape of the form

Fn(ωml − ωkj) = exp
[
−(ωml − ωkj)2

2σ2
n

]
, (2.36)

where σn is the standard deviation of the gaussian function. Here we
choose σn = 100Γ(n)(ωn). With this choice, the filtered generalized
master equation cannot be expressed in a form like Eq. (2.34), but we
need to use Eq. (2.33) with the low-pass filter. In the limit σn → 0
we obtain the dressed master equation in Eq. (2.31), and in the limit
σn → ∞ we obtain the unfiltered generalized master equation in
Eqs. (2.33) and (2.34).
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2. Open quantum systems and photodetection in the USC regime

2.3 Emission spectrum of an open quantum
system

For stochastic stationary fields, the emission spectrum is defined as the
Fourier transform of the two-time correlation function of the electric
field operator [80, 86]

S(ω) = lim
t→∞

∫ +∞

−∞
dτ e−iωτ

〈
Ê−(t+ τ)Ê+(t)

〉
, (2.37)

which allows one to obtain information on the frequency of the emitted
photons and, indirectly, on the system dynamics.

Equation (2.37) can be derived semi-analytically if we know the
eigenvalues and the eigenvectors of the Liouvillian superoperator L.
Indeed, starting from the two-times correlation function in Eq. (2.37)
and considering for simplicity the closed dynamics involving the total
Hamiltonian between the system ed the environment expressed in
Eq. (2.26), we have〈

Â(t+ τ)B̂(t)
〉

= Tr
[
eiĤtot(t+τ)Âe−iĤtot(t+τ)eiĤtottB̂e−iĤtottρ̂0

]
= Tr

[
eiĤtotτ Âe−iĤtotτ B̂e−iĤtottρ̂0e

iĤtott
]

= Tr
[
eiĤtotτ Âe−iĤtotτ B̂ρ̂(t)

]
.

(2.38)

The equation written above still represents the entire dynamics
of the system and the environment. We now perform the quantum
regression theorem by tracing out the bath degrees of freedom [86, 97],
and we can express everything in terms of the reduced density matrix
of the system ρ̂S(t) = exp(Lt)ρ̂S(0), which is governed in terms of
the Liouvillian superoperator L. It is worth noting that the process
of tracing out the bath can be safely done because the correlation
function written above involves only system operators and because
we are assuming that the Born-Markov approximations can be done.
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When we perform the limit t → ∞, the density matrix ρ̂S(t) approaches
the steadystate ρ̂S,ss, and the correlation function becomes〈

Â(t+ τ)B̂(t)
〉

t→∞
= Tr

[
Âe−iĤtotτ B̂ρ̂sse

iĤtotτ
]
, (2.39)

which, by applying the quantum regression theorem, becomes〈
Â(t+ τ)B̂(t)

〉
t→∞

=
〈
Â(τ)B̂(0)

〉
ss

= Tr
[
Â eLτ

(
B̂ρ̂S,ss

)]
. (2.40)

Finally, for stationary systems, the correlation function has the property〈
Â(τ)B̂(0)

〉
ss

=
〈
Â(−τ)B̂(0)

〉∗

ss
, (2.41)

which allows us to write the emission spectrum in Eq. (2.37) as

S(ω) = 2 Re
[∫ ∞

0
dτ e−iωτ

〈
Ê−(τ)Ê+(0)

〉
ss

]
. (2.42)

The whole procedure is simple. First, we calculate the steadys-
tate of the system, which can be derived using various iterative al-
gorithms [101], which usually use the vectorization of the density
matrix as discussed in Appendix B. Then, we initialize the system
with the pseudo-state R̂(0) = Ê+ρ̂ss, and we evolve it in time using
the Liouvillian superoperator L. Finally, we calculate the expectation
value 〈

Ê−(τ)Ê+(0)
〉

ss
= Tr

[
Ê−R̂(τ)

]
, (2.43)

and we then use Eq. (2.42) to obtain the emission spectrum.
As we already said, the emission spectrum can be obtained

analytically, if we know the eigenvalues and the eigenvectors of the
Liouvillian superoperator L. Indeed, To fully determine the dynamics
of the system, one has to know all the spectrum of the Liouvillian
superoperator, whose eigenmatrices and eigenvalues are defined via the
relation

Lρ̂n = λnρ̂n . (2.44)
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2. Open quantum systems and photodetection in the USC regime

Thus, we can use the eigenstates of the Liouvillian as a basis to expand
any system operator Â =

∑
n cnρ̂n [102]. Moreover, it can be proved

that, for a generic Liouvillian in a Lindblad form, λn,R ≡ Re[λn] < 0 [86,
97]. The physical reason is that the real part λn,R of the eigenvalues
of the Liouvillian superoperator is related to the relaxation of the
system, and so it has to be negative. The imaginary part λn,I of the
eigenvalues is related to the coherences and oscillations of the system.
The steadystate ρ̂ss = ρ̂0 of the system is the only eigenmatrix with
eigenvalue equal to zero. Indeed, the steadystate is the only state
which satisfies the equation Lρ̂ss = 0.

Considering R̂(0) as the initial state, if we expand it in the eigenbasis
of the Liouvillian superoperator, i.e., R̂(0) =

∑
n cnρ̂n, the time

evolution becomes2

R̂(t) = c0ρ̂0 +
∑
n>0

cne
λntρ̂n . (2.45)

By using Eq. (2.45) in Eq. (2.43), the spectrum of the emitted field
in Eq. (2.42) becomes

S(ω) = 2 Re
{∑

n>0
cn Tr

[
Ê−ρ̂n

] ∫ ∞

0
dτ e(λn−iω)τ

}
, (2.46)

where we have not considered the contribution of the steadystate ρ̂0
because it produces only a delta function centered at ω = 0. The
integral in Eq. (2.46) can be easily calculated, since∫ ∞

0
dτ epτ = −1

p
, Re[p] < 0 , (2.47)

and the analytical expression of the emission spectrum finally becomes

S(ω) = 2
∑
n>0

Re
{
cn Tr

[
Ê−ρ̂n

] −λn,R − i (ω − λn,I)
(ω − λn,I)2 + λ2

n,R

}
, (2.48)

2In general, in the case of the decomposition of a physical density matrix, the
coefficient c0 is one. This ensures that when t → ∞ the state approaches to the
steadystate ρ̂0. But in this case R̂(0) = Ê+ρ̂0 is not a physical density matrix, and
so c0 is not necessarily equal to one.
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which, in general, is a sum of Lorentzian functions centered at the
eigenfrequencies λn,I of the Liouvillian superoperator, with a width
given by the real part λn,R of the eigenvalues.

In the density matrix vectorization framework discussed in Ap-
pendix B, any operator living in the Hilbert space becomes a vector
Ŝ → S⃗, and the Liouvillian becomes a matrix L which is not Hermi-
tian. Thus, the decomposition coefficients of the vectorized operator
R⃗(0) = (Î ⊗ Ê+)ρ⃗0 in the eigenbasis of the Liouvillian are

cn = σ⃗n · R⃗(0) = σ⃗n ·
(
Î ⊗ Ê+

)
· ρ⃗0 , (2.49)

where σ⃗n is the n-th left-eigenvector of the Liouvillian L, with
σ⃗n · L = λnσ⃗n.

The main effort is to calculate the eigenvalues and the eigenvectors
of the Liouvillian superoperator. Usually, the vectorization of the
density matrix is used to express the Liouvillian in a matrix form (see
Appendix B), which allows us to use standard numerical linear algebra
algorithms to calculate the eigenvalues and the eigenvectors.

In the spectrum of the emitted field, the positive frequency part of
the field Ê+ is expressed in Eq. (2.15) for the Coulomb gauge and in
Eq. (2.24) for the dipole gauge (which is obviously linked to that in
the Coulomb gauge by a unitary transformation Û). Obviously, Ê− is
defined as the conjugate transposed of Ê+ in Eqs. (2.15) and (2.24),
respectively.

2.4 Photon emission spectrum from incoherent
pumping of the atom: from weak to deep
strong coupling

In this section, we will leverage the latest advancements to present a
comprehensive view of light emission from the quantum Rabi model
under incoherent pumping, spanning from weak to deep strong light-
matter interaction. As the light-matter coupling strength transitions
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2. Open quantum systems and photodetection in the USC regime

from extremely weak to deep strong coupling regimes, the QRM’s
spectrum, initially quasi-harmonic, evolves into a strongly anharmonic
one at higher couplings. Upon reaching the deep strong limit, it
reverts back to a harmonic behavior. In the weak coupling regime,
ignoring the counter-rotating terms and employing the conventional
quantum optics master equation usually yields precise results. However,
in the USC regime, this master equation falls short in accurately
depicting the emission spectra. This issue can be partially addressed
by employing the master equation in the dressed basis [99] [refer to
Eq. (2.30)], a methodology that incorporates the interaction between
system components in deriving the dissipators. Nevertheless, this
robust approach may also fail to accurately describe the QRM’s
emission in both weak and deep strong coupling regimes. To overcome
these challenges, we examine the system’s incoherent emission at any
coupling strength using the generalized master equation (GME) given in
Eq. (2.32). This equation is applicable for systems exhibiting harmonic,
quasi-harmonic, and anharmonic spectra [2, 100, 103]. A parallel
analysis has been conducted in the strong coupling regime using the
JC model and the conventional quantum optics master equation, which
are suitable in this regime [92].

The incoherent stimulation of the qubit is characterized by its
coupling with a thermal reservoir at a specific effective temperature
Ta ≡ kBT/ωeg ≠ 0. We have assumed a zero temperature (Tc = 0)
cavity-reservoir for all results, implying that the cavity emission is a
result of its interaction with the qubit.

The eigenstates of the quantum Rabi Hamiltonian are derived
through standard numerical diagonalization in a truncated, yet
adequately large finite-dimensional, Hilbert space. We take into account
the Hilbert space resulting from the tensor product of the qubit basis
{|g⟩ , |e⟩}, and the basis composed of the firstN+1 photonic Fock states
up to the N -photon state |N⟩. The truncation number N is selected
to ensure that the lowest M energy eigenvalues and corresponding
eigenvectors of interest do not change significantly when N is increased.
All results are obtained by solving the GME in Eq. (2.32) using the
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Liouvillian Lgme in Eq. (2.33) for the density matrix of the cavity-
qubit in the dressed basis, including the lowest M energy levels. The
truncation number M is chosen to achieve convergence. Specifically,
we verify that the results (emission rates and spectra) do not change
significantly when M is increased.

In the subsequent discussion, for convenience, we adopt an
alternative notation for the eigenstates of the QRM, drawing parallels
with the notation employed for labeling the eigenstates of the JCM in
Eq. (1.82). As previously mentioned in Section 1.4.1, at zero detuning
[∆ ≡ (ωc−ωeg)/ωeg = 0], the excited eigenstates of the JC Hamiltonian
can be expressed as |n±⟩ = (|n, g⟩ ± |n− 1, e⟩)/

√
2. The eigenstates of

the QRM, beyond the strong coupling regime, do not exhibit a similar
simple structure. In this context, when beneficial, we denote them
by extending the aforementioned JC notation with a tilde. In this
notation,

∣∣0̃〉 represents the ground state, and |ñ±⟩ characterizes an
eigenstate of the quantum Rabi Hamiltonian. It should be noted that
|ñ±⟩ approaches the corresponding JC state |n±⟩ for η ≪ 1. With this
notation, the energy eigenstates preserve their parity (corresponding
to the parity of the integer number ñ) regardless of the value of η.

2.4.1 Zero atom-cavity detuning

Here we consider the case of zero atom-cavity detuning, i.e., ∆ = 0.
To demonstrate the validity of the approach discussed up to now,
which takes into account gauge-invariance and a proper modeling of
the system-environment interaction, we calculate the photon emission
rate w in the dipole gauge using the Hamiltonian in Eq. (2.17) and
the generalized master equation in Eq. (2.32), with the system-bath
interaction operators Ŝc = Ê′ = i(â− â†) − 2ησ̂x and Ŝa = σ̂x for the
cavity and the atom, respectively. Furthermore, it is compared with
different photon rates: i) wdr in the dipole gauge using the dressed
master equation in Eq. (2.30) and the same system-bath interaction
operators Ŝc and Ŝa; ii) the photon rate wwrong in the dipole gauge
using the wrong electric field in Eq. (2.22) as the cavity system-bath
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Figure 2.2: Photon emission rate as a function of the normalized coupling strength
η for Ta = 0.05 and Ta = 0.5 in the upper and lower panel, respectively. The blue
solid line represents the photon rate using the gauge-invariant approach and the
GME. It is compared with the gauge invariant approach but using the dressed
master equation (orange dotted line), with the wrong electric field (red dashed line),
and with the Jaynes-Cummings Hamiltonian with the standard master equation
(green dot-dashed line). The used parameters are ωeg = 1, ωc = 1, γc = 10−3ωeg,
and γa = 10−4ωeg.

interaction operator (which is a usual mistake); iii) the photon rate wstd
using the Jaynes-Cummings Hamiltonian in Eq. (1.81) and the standard
master equation in Eq. (2.27) with the jump operators Ŝc,std = â and
Ŝa,std = σ̂− for the cavity and the qubit, respectively.

The blue solid line of Fig. 2.2 corresponds to the emission rate w
using the gauge-invariant approach and the GME. We can distinguish
four regions. The first one is from 10−5 < η ≲ (γc + γa)/(2ωeg) (where
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γc = 10−3ωeg and γa = 10−4ωeg), and it coincides with weak coupling
regime, where an increasing photon emission rate is a signature of the
Purcell effect [28, 29]. Indeed, by increasing the coupling strength, the
thermal excitations of the atom can be more easily transferred to the
cavity field, and so the photon emission rate increases. The second
region is from 10−3 ≲ η ≲ 10−1, corresponding to the strong coupling
regime, where the photon emission rate is almost constant. In this
region, the coupling is strong enough to allow the total sharing of the
excitations. By increasing further the coupling beyond the onset of
USC (η > 0.1), a strong enhancement of the cavity emission can be
observed at low temperature Ta = 5 × 10−2. It originates from the
decrease of the transition frequency ω1̃−,0̃ between the lowest excited
state and the ground state for increasing values of η [see Fig. 2.3]. The
strong decrease of ω1̃−,0̃ enables the increase of the occupancy of the
state

∣∣1̃−
〉

at very low effective temperatures. Such a population growth
determines an increase in the emission rate (of photons at frequency
ω1̃−,0̃), which can be observed in Fig. 2.2. The same behavior is not
observed at a significantly higher temperature. In this case, the state∣∣1̃−

〉
can already be populated at small values of η.

As η surpasses the DSC regime (η > 1), w experiences a swift
decline. This pattern is indicative of the widely recognized light-matter
decoupling phenomenon [104, 105], where light and matter essentially
separate from each other. An intriguing outcome of this seemingly
paradoxical phenomenon is the reversal of the Purcell effect, causing
the spontaneous emission rate, typically expected to rise with the
strength of light-matter coupling, to approach zero for sufficiently
strong couplings. This prediction was made in the context of bosonic
matter excitations interacting with a multi-mode optical resonator
(generalized Hopfield model), utilizing the Coulomb gauge. The
decoupling effect has recently been forecasted for any light-matter
system derived from the minimal coupling substitution of electronic
momentum [105]. By employing the so-called asymptotic decoupling
frame, it was demonstrated that the electronic system tends towards
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Figure 2.3: Normalized energy levels and transition energies versus η, for ∆ = 0.
Only the parity-allowed transition energies |ωk − ωj |/ωeg are shown for the lowest
eigenstates of the QRM.

localization as the coupling intensifies due to an increase in effective
mass. This localization effect triggers the decoupling of the light-matter
system.

As can be easily seen in Fig. 2.2, the dressed master equation
(orange dotted line) reproduces the same results as the generalized
master equation (blue solid line), except for low coupling strengths
η ≲ 10−3, where the dressed master equation shows an unphysical
photon emission rate. Indeed, we have to remember that the emitted
photons come from the thermal reservoir of the atom, which shares its
excitation to the cavity due to the interaction. But if this interaction
vanishes, the atom excitations are not able to be transferred to the
cavity, with a resulting decreasing of the photon emission rate. The
reason why the dressed master equation fails in this regime is due
to de harmonicity of the system at these couplings, as discussed in
Section 2.2.

The red dashed line shows the photon rate when using the wrong
electric field in Eq. (2.22) as the cavity system-bath interaction operator
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Figure 2.4: Cavity emission spectrum as a function of the normalized coupling
strength η for Ta = 0.05. This figure directly shows the Purcell effect process of the
weak coupling regime and the vacuum Rabi splitting of the strong coupling regime.
The used parameters are the same as in Fig. 2.2.

and also as photodetection operator. As expected, it fails at the onset
of the USC (η ≳ 10−1), showing a photon emission rate orders of
magnitudes larger than the correct one. Moreover, no decoupling effect
is present.

Finally, the photon rate using the Jaynes-Cummings Hamiltonian
in Eq. (1.81) and the standard master equation in Eq. (2.27) with
the jump operators Ŝc,std = â and Ŝa,std = σ̂− for the cavity and the
qubit, respectively, is shown as the green dot-dashed line. It is able
to correctly reproduce the photon emission rate only in the weak and
strong coupling regimes, but it fails beyond the strong coupling regime,
showing a plateau instead of the decoupling effect.

The cavity emission spectrum under the incoherent weak excitation
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of the qubit (Ta = 5 × 10−2) in both weak and strong coupling regimes
(10−6 < η < 5 × 10−2) is depicted in Figure 2.4. The spectrum is
normalized with respect to its maximum value, such that it is bounded
to one. The shift from the weak coupling regime (represented by a
single spectral line) to the strong coupling regime (represented by
split lines) is clearly noticeable. The two lines correspond to the
transitions

∣∣1̃±
〉

→
∣∣0̃〉, denoted as (1̃−, 0̃) and (1̃+, 0̃) in Fig. 2.3. As η

increases, the emission line brightens in the weak coupling regime. In
the strong coupling regime, an asymmetry in the relative intensity of
the two lines becomes apparent when they are sufficiently split. This
is a direct result of the higher population of the lower-energy excited
state

∣∣1̃−
〉

compared to the higher-energy state
∣∣1̃+

〉
at Ta = 5 × 10−2.

This behavior cannot be replicated using the standard quantum-optics
master equation where reservoir occupations are calculated at bare
transition frequencies (in the absence of light-matter interaction), see,
e.g., Section 2.4.3.

The logarithmic cavity emission spectra as a function of the
normalized coupling strength η is depicted in Figure 2.5. These spectra,
calculated at four distinct temperatures, illustrate the transition of the
emission spectra from strong to DSC regimes. Each of the four spectra
is normalized to the maximum value of the spectrum at Ta = 0.5. Unlike
light-matter systems governed by a harmonic Hamiltonian (refer to
Ref. [106] for instance), the spectra in this highly anharmonic scenario
become significantly complex when the system is sufficiently excited.
At an extremely low temperature (Ta = 5 × 10−2), only a few spectral
lines are visible, with the two most prominent ones corresponding to
the transitions (1̃±, 0̃) [refer to Fig. 2.3].

It should be noted that due to parity symmetry [19, 30], the
transition (1̃+, 1̃−) is prohibited. As anticipated, at such a low
temperature, the emission from the lowest excited level at frequency
ω1̃−,0̃ is dominant. As η increases (up to approximately η ≃ 1),
the intensity of the line ω1̃−,0̃ rises due to a decrease in the ratio
ω1̃−,0̃/(ωegTa), leading to an increase in the excited state population
ρ1̃−,1̃−

. However, for η ≳ 1, this population begins to decrease as a
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Figure 2.5: Cavity emission spectrum in log scale as a function of the normalized
coupling strength η between the strong and the deep strong coupling regimes, for
Ta = 0.05, 0.1, 0.2, 0.5. The spectra are normalized with respect to the maximum
value of the spectrum at Ta = 0.5, at higher temperatures it is possible to see several
lines which are avoided in the JC model. The used parameters are the same as in
Fig. 2.2.

result of decoupling between light-matter and qubit-reservoir. This
trend aligns with the corresponding emission rate depicted in Fig. 2.2.

When further increasing the temperature (Ta = 0.1 and Ta = 0.2),
additional energy levels get populated and additional spectral lines
appear. Most of these correspond to transitions indicated in Fig. 2.3.
In the low-frequency range at Ta = 0.2, in addition to the transition
(1̃−, 0̃), a new spectral line at |ω2̃−,1̃−

| appears. The crossing between
the energy levels ω2̃−

and ω1̃−
, occurring at η ∼ η̄ = 0.43, manifests as

a low spectral line approaching ω = 0 as η → η̄, and then (after the
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Figure 2.6: Cavity emission spectrum in log scale as a function of the normalized
frequency ω/ωeg for Ta = 0.2 with η = 0.1 (blue solid) and η = 0.8 (red dashed).
Each spectrum can be obtained by cutting the corresponding spectrum in Fig. 2.5 at
the corresponding value of η. The spectrum at η = 0.8 presents also the transition
(3̃−, 0̃) which is not allowed in the Jaynes-Cummings model. The used parameters
are the same as in Fig. 2.5.

crossing), moving away from ω = 0. At higher frequencies (ω/ωeg ∼ 1),
other two crossing spectral lines become clearly visible.

As shown in Fig. 2.3, they correspond to the transitions (2̃+, 1̃+)
and (3̃−, 2̃−). Still at higher frequencies, other two lines are observable
for η ≳ 0.4: they correspond to the transitions (2̃+, 1̃−) and (3̃−, 0̃). In
the latter, the involved states differ by a number of excitations ∆ñ = 3
and it is a forbidden transition in the JC model (See, e.g., Section 2.4.3).
This transition is enabled by the presence of the counter-rotating terms
in the QRM of Eq. (2.17) and represents a clear example of USC
physics [30, 31], beyond the JCM. The spectra obtained at Ta = 0.5
display still richer structures with the appearance of additional lines
originated by higher energy levels that get populated at this effective
temperature.
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Figure 2.7: Cavity emission spectrum as a function of the normalized coupling
strength η for Ta = 0.05 and ∆ = 0.3. (a) in the weak and strong coupling regime;
(b) in the USC and DSC regime. The main difference with respect to Fig. 2.4 is the
presence of only one peak related to the qubit-like transition

∣∣1̃−
〉

→
∣∣0̃〉. The used

parameters are the same as in Fig. 2.2.

Figure 2.6 shows the cavity emission spectrum for two different
values of the coupling strength η = 0.1 and η = 0.8 at Ta = 0.2. Each
spectrum can be obtained by cutting the corresponding spectrum in
Fig. 2.5 at the corresponding value of η. Moreover, the spectrum at
η = 0.8 presents also the transition (3̃−, 0̃) which is not allowed in the
Jaynes-Cummings model. The presence of this transition is a clear
signature of the USC physics, which is not present in the JCM.

2.4.2 Positive atom-cavity detuning

Here we consider the case of positive detuning ∆ = 0.3, which implies
ωc/ωeg = 1.3. This is an interesting case because we can distinguish
the properties of the resonance peaks due to the detuning. As expected,
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Figure 2.8: Comparison of the cavity emission spectrum as a function of the
normalized coupling strength η for Ta = 0.2 between: (a) the gauge-invariant
approach with the use of the generalized master equation; (b) the Jaynes-Cummings
model with the standard master equation. Apart from the fact that the resonances
become very different beyond η ≳ 0.2 because of the different Hamiltonians in
use, the JC model is not able to reproduce the peak at ω ≃ 2, corresponding to
the transition (3̃−, 0̃), which is a clear signature of the USC physics. The used
parameters are the same as in Fig. 2.2.

the large detuning significantly reduces the energy transfer from the
qubit to the cavity for η ≪ ∆.

As can be seen from Fig. 2.7, the cavity starts to emit photons
at both the cavity and qubit transition frequency for η ≳ 10−2.
Surprisingly, the cavity emits with more intensity at the qubit
frequency ωeg, because in this coupling regime ω1̃−,0̃ ≃ ωeg and because
the thermal population nth(ωkj , T ) is larger at ωeg rather then ωc.
Compared to Fig. 2.4 (where ∆ = 0), this resonance, which is relative
to the transition (1̃−, 0̃), appears at a higher coupling strength, due to
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Figure 2.9: Comparison of the cavity emission spectrum as a function of the
normalized coupling strength η for Ta = 0.05 between: (a) the gauge-invariant
approach with the use of the generalized master equation; (b) the gauge-invariant
approach with the use of the dressed master equation. It is clear that for low
coupling strengths the dressed master equation fails, because the system becomes
harmonic. The used parameters are the same as in Fig. 2.2.

the detuning.

2.4.3 Comparison with other models

Now we compare the results obtained with the gauge-invariant approach
and the GME with the ones obtained with the Jaynes-Cummings model
and the standard master equation.

In Fig. 2.8 we compare the emission spectrum of the cavity as
a function of the dimensionless coupling strength η using the gauge-
invariant method with the generalized master equation (panel a) and
the Jaynes-Cummings model with the standard master equation (panel
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b). The resonances diverge significantly for η ≳ 0.2 due to the distinct
Hamiltonians employed, but, more interestingly, the JC model fails
to reproduce the peak at ω ≈ 2, which corresponds to the transition
(3̃−, 0̃) and is a clear indicator of the USC regime. We used the same
parameters as in Fig. 2.2 with Ta = 0.2.

In Fig. 2.9, we compare the emission spectrum of the cavity as
a function of the dimensionless coupling strength η using the gauge-
invariant method with the generalized master equation (panel a) and
the gauge-invariant method with the dressed master equation (panel
b). It is evident that the dressed master equation breaks down for low
coupling strengths, because the system becomes harmonic. We used
the same parameters as in Fig. 2.2 with Ta = 0.05.
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CHAPTER 3

Spontaneous scattering of
Raman photons without
vibrational degrees of

freedom

In the previous section we investigated the photon emission under
a thermal pumping of the atom. The purpose of that study was to
analyze the properties of the emitted light, which comes only from
the interaction with the atom. The incoherent (thermal) pumping is
relatively simple to model, because we are often dealing with time-
independent models.

In this section, however, we study the properties of USC systems
under coherent pumping (e.g., a laser), and we demonstrate that
in cavity-QED systems, spontaneous Raman scattering of incoming
radiation can be detected without the need for external amplification
or linkage to any vibrational freedom. As the cavity-QED system nears
the ultrastrong coupling domain, Raman scattering events manifest as
resonances in the emission spectrum, becoming distinctly noticeable.
We offer a quantum mechanical portrayal of this phenomenon,
establishing that the ultrastrong coupling between light and matter
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is an essential prerequisite for detecting Raman scattering. This
phenomenon, coupled with its pronounced sensitivity to the parameters
of the system, paves the way for novel methods of characterizing cavity
QED configurations and generating quantum light states.

The Raman effect describes the inelastic scattering of radiation
by matter, in which scattered photons are produced with a frequency
which is either lower (Stokes photons) or larger (anti-Stokes photons)
than the frequency of the incident field [107–109]. Within the realm
of quantum optics and cavity quantum electrodynamics (cQED), this
scattering is typically regulated and stimulated through a secondary
resonant drive [110–119] or a cavity [120–124]. This forms the
foundation for numerous pivotal coherent control techniques such
as coherent population trapping [110, 111], electromagnetic induced
transparency [113, 114], or stimulated Raman adiabatic passage [116–
119].

However, the conventional method to observe spontaneous Raman
scattering of photons without any external stimulation is when
the incident light interacts with phonons in a material [107–109].
This interaction reveals the molecular vibrational modes of the
sample, making this effect a useful spectroscopic tool for material
characterization [125–130].

The Raman processes are enhanced by plasmons in surface-
enhanced Raman spectroscopy [131–133], allowing single-molecule
sensitivity [131, 132], and reaching regimes where the quantum nature
of the vibrational and electromagnetic modes is important [134–
136]. As a result, several recent theoretical works have developed
fully quantum mechanical descriptions of Raman scattering [137–141],
leading to the field of molecular optomechanics, where the interaction
between phonons and plasmonic cavity phonons is described by an
optomechanical Hamiltonian [142, 143].

In this section, we show the possibility of observing spontaneous
Raman scattering in cQED systems that, unlike molecular optome-
chanics, have no vibrational degrees of freedom. A key feature of
the quantum description of Raman scattering is that the underlying
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process does not conserve the total number of particles: for example,
in a Stokes process, a single laser photon of a given energy becomes
a single photon with lower energy plus a vibrational excitation—a
phonon. The underlying Hamiltonian must therefore not conserve the
total number of excitations, which happens in optomechanical inter-
action Hamiltonians of the form V̂OM = gOMâ

†â(b̂ + b̂†) that appear
in molecular optomechanics (with â and b̂ annihilation operators of
photon and phonon modes, respectively).

Now, instead of an optomechanical system, let us consider the case
of a single mode cavity field interacting with a dipole, as depicted
in Fig. 3.1(a), which we already know that it is modeled by the
quantum Rabi Hamiltonian. We will demonstrate that the presence
of the counter rotating terms is crucial for the observation of Raman
scattering. Indeed, in the absence of these terms (Jaynes-Cummings
model), the Hamiltonian conserves the total number of excitations (see,
e.g., Section 1.4.1), and therefore the Raman scattering is forbidden.
Similarly to the optomechanical case, the full QRM that describes the
dynamics in the USC does not conserve the total number of excitations.
We present that the observation of spontaneous Raman scattering of
photons from an incident field is an additional distinctive process of
the USC regime [4]. Specifically, we provide clear evidence of these
processes in the emission spectra of a coherently-driven cQED system
in the USC regime [2, 103]. This finding positions USC-cQED as
a unique context where Raman Stokes and anti-Stokes photons are
spontaneously generated without the involvement of any vibrational
degree of freedom. In addition to precise numerical calculations that
demonstrate the effect, we reinforce these results with forecasts from a
comprehensive quantum depiction of the Raman scattering process.

3.1 Theoretical model

The quantum Rabi Hamiltonian describes the interaction of a single
mode cavity field with a two-level atom. In the presence of a coherent

67



3. Spontaneous scattering of Raman photons without vibrational
degrees of freedom

drive, the Hamiltonian becomes time-dependent, and the gauge-
invariant approach to describe emission spectrum might be slightly
different [103]. Here we will resort to the sensor method developed
in Ref. [144], adding an ancillary sensor two-level atom of resonance
frequency ωs, which is weakly coupled to the cavity to not perturb the
system. This approach has been shown to produce equivalent results
to the quantum regression theorem in the USC limit [103]. In this
way, the total Hamiltonian in the dipole gauge, without the external
coherent drive, is given by

Ĥ = ωcâ
†â+ ωeg

2 σ̂z + ωs

2 σ̂
(s)
z − iηωc

(
â− â†

)
σ̂p

− ηsωc

[
i
(
â− â†

)
− 2ησ̂p

]
σ̂(s)

x ,
(3.1)

where σ̂
(s)
i are the Pauli operators of the sensor atom, ηs is the

coupling strength between the sensor atom and the cavity, and
σ̂p = cos(θ)σ̂x+sin(θ)σ̂z is the polarization operator of the atom, which
includes the possibility of a permanent dipole moment, parametrized by
θ. Finite values of θ break the parity symmetry of the quantum Rabi
Hamiltonian [19, 30], which means that the Hamiltonian non longer
commutes with the parity operator Π̂ = exp[iπ(â†â+ σ̂+σ̂−)]. Taking
as an example the double-well potential examined in Section 1.1.2, this
behavior of the atom can be obtained by considering an asymmetric
double-well potential (V (x̂) ̸= V (−x̂)), while in superconducting
architectures it can be obtained with an external magnetic field in a
flux qubit [33, 55]. The Hamiltonian in Eq. (3.1) is obtained from a
gauge-invariant approach, taking into account two atoms instead of
one [145].

The coherent drive is modeled through the term

Ĥdrive(t) = Ω
[
i
(
â− â†

)
− 2ησ̂p

]
cos(ωLt), (3.2)

where Ω is the laser amplitude and ωL is the laser frequency. It is
worth reminding that it describes a coherent electric field in the dipole
gauge, since Ê = i(â − â†) − 2ησ̂p. Moreover, such as any Raman
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Figure 3.1: Illustration of the Raman scattering process. (a) Scheme of the cavity
QED system examined in this study: a quantum emitter interacts with a single
cavity mode in the ultrastrong-coupling regime and spontaneously emits a Raman
photon from an incident excitation field. (b) Top: Transition energies between the
first two excited eigenstates of the light-matter system and the ground state, as a
function of the normalized coupling parameter η. Bottom: Emission spectrum for
ωc = ωeg = 1, η = 0.3, ωL = 1.1ωc, γc = γa = 10−3ωc and γs = 10−3ωs. The red
line denotes the frequency at which Stokes photons are emitted. (c) The incident
photon with frequency ωL is scattered by the atom, resulting in a photon with
frequency ωR.

process, we are dealing with an open quantum system. Therefore, we
use the generalized master equation in Eq. (2.33) with the following
jump operators: Ŝc = i(â− â†) − 2ησ̂p, Ŝa = σ̂p, and Ŝs = σ̂

(s)
x for the

cavity, the atom, and the sensor, respectively.
Since counter-rotating terms in Eq. (3.2) cannot be straightfor-

wardly eliminated in the USC regime, the dynamics will yield a time-
dependent density matrix, even at long times. Thus, the density
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matrix at long times will oscillate around an average steady state
ρ̂(t) = ρ̂ss + δρ̂(t). However, here we consider Ω ≪ ηωc, which means
that we can neglect the last term δρ̂(t) and consider only the time-
averaged steady state ρ̂ss. The question now is how to get ρ̂ss since we
are dealing with a time-dependent problem. The direct solution is to
integrate the generalized master equation at long times and then aver-
age the density matrix over the one time period TL = 2π/ωL. However,
this approach is computationally expensive, since we have to integrate
the time-dependent master equation for a long time. A more efficient
approach is to use the Floquet theory to expand the density matrix
in Fourier components, imposing that ρ̂(t) = ρ̂(t+ TL) when t → ∞.
Here we use an iterative algorithm to obtain ρ̂ss without the need to
integrate the master equation for a long time. The full derivation is
explained in Appendix C, where a matrix continued fraction recursion
is used [146–148]. Here we limit ourselves to show the final result.

First, in the Liouvillian space, we can divide the driving term
arising from Eq. (3.2) into two parts L∓1, with positive and negative
frequency, respectively. If the periodicity of the density matrix holds,
we can expand it in Fourier components as

ρ̂(t) =
+∞∑

n=−∞
ρ̂ne

inωLt , (3.3)

and the time-averaged steady state density matrix ρ̂ss can be found as
the nullspace of the superoperator

Leff = L0 + L1T−1 + L−1S1 , (3.4)

where

Sn = − [(L0 − inωL) + L−1Sn+1]−1 L1 (3.5a)
Tn = − [(L0 − inωL) + L1Tn−1]−1 L−1 , (3.5b)

and choosing an nmax such that Snmax = 0 and T−nmax = 0, meaning
that the nmax-th Fourier component of the density matrix is negligible.
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3.2. The Raman scattering process in cavity QED

We can now assume that the the cavity emission spectrum is
proportional to the stationary emission rate of the qubit sensor

S(ωs) ∝ Tr
[
Σ̂−

s Σ̂+
s ρ̂ss

]
, (3.6)

with
Σ̂+

s =
∑

j,k>j

ωkj

ωs
⟨j|σ̂(s)

x |k⟩ |j⟩⟨k| , (3.7)

as discussed in Section 2.1.

3.2 The Raman scattering process in cavity
QED

Figure 3.1(b) depicts an example of the emission spectrum. Here and
in the following we fix, unless stated otherwise, ωeg = ωc, θ = π/6,
η = 0.3, ηs = 10−5, Ω = 5×10−3ωc, γc = γa = 10−3ωc, and ωL = 1.1ωc.
Upon initial observation, a resonance peak at the laser frequency is
noticeable, along with additional peaks corresponding to transition
energies between the light-matter eigenstates, as shown in the top panel
of Fig. 3.1(b). Another peak can be seen, which is associated with
the spontaneous scattering of a Stokes photon. The Raman process
leading to this peak is illustrated in Fig. 3.1(c). Through a second-order
process, an input laser photon with frequency ωL transforms into a
Raman photon with lower energy ωR and a light-matter excitation of
energy ω1. Given that energy must be conserved, the Stokes photon’s
energy is expected to be ωR = ωL − ω1, indicating a linear dependence
on the laser excitation.

In order to understand the origin of Raman peaks and their reliance
on system parameters like η or θ, we formulate a comprehensive
quantum representation of the Raman scattering process. We assume
that the cavity is linked to a wide quasi-continuum of modes with
Ĥb =

∑
q ωq b̂

†
q b̂q, which encompasses the incident radiation field and

the dispersed Raman photons. The entire system Hamiltonian is
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Ĥtotal = ĤR + Ĥb + V̂b, where ĤR is the quantum Rabi Hamiltonian
(Ĥ above, excluding the sensor and drive terms) and

V̂b =
∑

q

gq(b̂q + b̂†
q)[i(â− â†) − 2ησ̂p] . (3.8)

Subsequently, we treat ĤR + Ĥb as the undisturbed, raw Hamiltonian,
and we represent ĤR in diagonal form as ĤR =

∑
j ωj |j⟩⟨j|.

The Raman scattering process can be portrayed by second-order
perturbation theory under the constant perturbation V̂b. We consider
an initial state |Ii⟩ = |i, nL, nR⟩, where the first entry labels the
eigenstates of ĤR, nL labels the photon number in the input mode—the
laser drive—with frequency ωL, and nR denotes the photon number
in the output mode of frequency ωR, where Raman photons are being
emitted. We are considering here only the two modes involved in
the scattering process; all other modes of the quasi-continuum are
assumed to be in zero-photon states throughout the process. The
energy of the initial state is ωI,i = ωi + ωLnL + ωRnR. Then,
we consider a final state |Ff ⟩ = |f, nL − 1, nR + 1⟩, with energy
ωF,f = ωf + ωL(nL − 1) + ωR(nR + 1). Energy conservation implies
ωF,f = ωI,i, and therefore, for a specific choice of initial and final states
i and f , the energy of the corresponding Raman photons is

ωR = ω
(f,i)
R ≡ ωL − (ωf − ωi). (3.9)

|Ff ⟩ is connected to the initial state |Ii⟩ by a second-order process
involving an intermediate virtual state. It is possible to identify two
kinds of intermediate states, |T1⟩ and |T2⟩, describing respectively
the process (i) where a photon is first absorbed from the input state:
|T1⟩ = |j, nL − 1, nR⟩, with energy ωT1 = ωj +ωL(nL −1)+ωRnR ; and
the process (ii) where a photon is first emitted into the output mode:
|T2⟩ = |j, nL, nR + 1⟩, with energy ωT2 = ωj + ωLnL + ωR(nR + 1).

The rate of the process |Ii⟩ → |Ff ⟩ given by the Fermi golden rule,
for a given ωL, i and f , is

Wf,i(ωL, ωR) = 2πg2
Rg

2
LnL(nR + 1)|Mf,i|2δ(ωR − ω

(f,i)
R ) , (3.10)
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3.2. The Raman scattering process in cavity QED

where ωf,i = ωf − ωi and

Mf,i(ωL, ωR) =
∑

j

(
Xf,jXj,i

ωT1 − ωIi

+ Xf,jXj,i

ωT2 − ωIi

)
, (3.11)

with Xf,j ≡ ⟨f |i(â− â†) − 2ησ̂p|j⟩. Notice that ωT1 − ωI,i = ωj,i − ωL,
and ωT2 −ωI,i = ωj,i +ω(f,i)

R . The total scattering rate for the process is
obtained by summing over all possible initial and final states, which will
be constrained by the energy-conservation condition in (3.10), giving

W (ωL, ωR) =
∑
f,i

Wf,i(ωL, ωR)ρss
i (1 − ρss

f ) , (3.12)

where ρss
k is the steady-state occupation probability of the eigenstate

|k⟩ of ĤR. For a system at very low temperatures and low driving
which is mostly in the ground state, so that ρss

0 ≈ 1, we obtain
W (ωL, ωR) =

∑
f Wf,0(ωL, ωR). Therefore, if Raman spectroscopy

is performed by probing cQED systems that are close to the ground
state, only the family of Raman processes that start from |0⟩ are
expected to be observed.

The above-mentioned quantum scattering process is characterized
by resonances in the emission spectrum, which are centered at the
frequencies ω

(f,i)
R . These resonances have a characteristic feature

that distinguishes them from peaks arising from standard radiative
transitions: their central frequency ω(f,i)

R depends linearly on the laser
frequency ωL. This linear relationship results in resonance peaks that
form straight lines in the excitation-emission spectrum, which is the
emission spectra for varying driving frequencies. This characteristic
serves as definitive evidence that these peaks are a result of the
inelastic, spontaneous scattering of laser photons via the quantum
process described above. Numerical simulations of the excitation-
emission spectra for a cavity-QED system are depicted in Fig. 3.2
for two distinct temperatures T ≡ kBT/ωc of both the cavity and
the atom, with T = 0 for the panel (a) and T = 0.15 for the panel
(b). The most prominent Raman peaks are labeled in Fig. 3.3(a). At
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Figure 3.2: Emission spectra of a cQED system in the USC regime, where
several Raman processes are clearly visible. (a) at T = 0, where the Stokes are
predominantly visible, with the hyper-Raman processes also visible; (b) at T = 0.15,
where the anti-Stokes processes becomes more visible. The used parameters are the
same as in Fig. 3.1(b).

lower temperatures, the most noticeable peaks are Stokes processes
that originate from the ground state of the light-matter system and
terminate at an excited state |f⟩ (these Stokes processes are denoted
as ω(f0)

S ). As predicted by Eq. (3.12), Stokes processes that initiate
from an excited state are barely visible or not visible at all at lower
temperatures; in Fig. 3.3(a), we emphasize the process ω(21)

S —which
starts in |1⟩ and ends in |2⟩—as it can be discerned in certain regions
of the displayed spectra. Similarly, the emission of anti-Stokes photons
with frequencies exceeding the drive frequency is only clearly observable
at non-zero temperatures: these processes necessitate that the energy
of the final state of the cQED system is less than that of the initial
one, implying that the initial state must be an excited state with
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Stokes

Anti-Stokes 

Hyper-Raman 

(a) (b) (c) (d)(a) (b)

Figure 3.3: (a) Identification of some processes visible in Fig. 3.2(a,b), which
include Stokes processes starting from |0⟩ (solid red), Stokes process starting from
|1⟩ (dashed red), anti-Stokes (solid blue), and hyper-Raman (solid yellow). (b)
Schematic representation of the Raman processes involved in this setup: Stokes,
anti-Stokes, and hyper-Raman.

a significant stationary occupation probability. These simulations
also reveal that higher-order, hyper-Raman processes can be faintly
detected in the excitation emission spectra. These processes scatter
two incident laser photons into a Raman photon, and thus energy
conservation dictates that the frequency of the hyper-Raman photons
must be ω(fi)

R = 2ωL − (ωf − ωi). Consequently, these processes can
be identified in the excitation-emission spectra as straight lines with
double the slope of standard Raman processes.
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3.3 Comparison with perturbation theory

The characteristics discussed above become more pronounced when
one enters the ultrastrong coupling regime, where η ≳ 0.1, leading to
significant values for the matrix elements Xk,j in Eq. (3.10). In fact,
Fig. 3.4(a) presents the computation of the scattering rate W as a
function of η using Eq. (3.12) for the Stokes process |0⟩ → |1⟩, which
is most noticeable in a system near the ground state, in comparison
to the intensity of the corresponding Raman peak computed in the
excitation emission spectra. By selecting the scaling factors in Eq. (3.10)
as: g2

LnL = (Ω/2)2, nR ≈ 0, gR = ηsωc, and converting the delta
function into a Lorentzian shape, which accounts for detector losses
δ(0) ≈ 1/(πγ2

s ), we achieve a satisfactory match with the emission
spectrum derived from Eq. (3.6).

Apart from the strong correlation between both results, which
validates our explanation of the fundamental quantum process,
we emphasize the exponential growth of peak intensity with η.
Furthermore, the discrepancy at low η values in Fig. 3.4(a) is not
indicative of a breakdown in perturbation theory, but rather arises from
numerical simulation tolerances and a background signal originating
from other system resonance tails. Far below the USC regime, small
scattering rates make it extremely difficult to observe Raman processes
in cavity QED systems, as demonstrated in Fig. 3.4(c), where it is
nearly impossible to detect the first Stokes peak for η = 0.01.

It is instructive to explore potential Raman processes in a cQED
system with η ≪ 1, which can be accurately described by a Jaynes-
Cummings Hamiltonian. The eigenstates of this system form doublets
|j±⟩ that also serve as eigenstates of total excitation number N̂ =
â†â+ σ̂+σ̂−, i.e., N̂ |j±⟩ = j |j±⟩. This implies that only those Raman
processes conserving total excitation number are permitted, i.e., those
whose initial and final states belong to the same doublet. Since
processes initiating and terminating in the ground state result in
ωR = ωL and hence do not yield energy-shifted photons, it is not
possible to observe key Raman processes involving the ground state
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Figure 3.4: Comparison of the perturbation theory prediction with the numerical
simulations. (a) The maximum peak intensity of the Stokes process |0⟩ → |1⟩ as a
function of the normalized coupling strength η. (b) Peak intensity of the Stokes
processes |0⟩ → |1⟩ and |0⟩ → |3⟩ as a function of the parity parameter θ. (c)
Emission spectrum of the Stokes process |0⟩ → |1⟩ around ω

(10)
S for different values

of η. (d) Peak intensity of both Stokes and anti-Stokes processes between the states
|0⟩ and |1⟩ as a function of the normalized temperature T . These figures show an
high agreement between the perturbation theory and the numerical simulations.
The used parameters are the same as in Fig. 3.1(b).

in a Jaynes Cummings system. Peaks that might be observed under
these conditions, such as ω21

S and ω21
AS, are barely discernible even

within the ultrastrong-coupling regime, as shown in Fig. 3.4(a,b), and
necessitate a stationary population of excited states, which could
introduce additional dephasing sources. We therefore conclude that
Raman photon emission from coherently driven cavity QED systems is
fundamentally a characteristic effect of the USC coupling limit.

77



3. Spontaneous scattering of Raman photons without vibrational
degrees of freedom

The presence or absence of specific Raman peaks can offer insights
into microscopic parameters, such as the static dipole moment
represented by θ. Each peak displays a unique θ dependence, as
demonstrated in Fig. 3.4(b) with two specific instances, the Stokes
peaks ω(10)

S and ω
(30)
S , indicating that this dependence is accurately

captured by our quantum process description based on perturbation
theory. This instance underscores that in certain scenarios—like for
ω

(10)
R —the violation of parity symmetry (θ ̸= 0) is essential for the

observation of the corresponding Raman peak. When θ = 0, QRM
eigenstates also serve as parity eigenstates, hence only Raman processes
preserving parity, such as |0⟩ → |3⟩, will exhibit a non-zero scattering
rate. Lastly, Fig. 3.4(d) reveals that our quantum model offers a reliable
qualitative forecast for the varying temperature dependence of Stokes
and anti-Stokes peaks, indicating that the intensity of Stokes peaks
is marginally reduced, while the intensity of anti-Stokes peaks can be
amplified by several orders of magnitude, which can be attributed to
the corresponding rise in the stationary population of excited states.

3.4 Implications of Raman peaks for
spectroscopy: Fisher Information

The development of strategies to enhance the characterization of cavity
QED systems is a crucial endeavor, considering their fundamental
role in numerous quantum technology architectures. The introduction
and comprehension of Raman scattering processes in this study bear
significant relevance for the spectroscopic characterization of cavity
QED systems through the examination of excitation-emission spectra,
thereby considerably augmenting the information these measurements
yield about the system’s internal parameters. In essence, we can
markedly boost the accuracy of internal parameter estimation by
ensuring that not only are the spectral features associated with direct
transitions between eigenstates accurately fitted by our cavity-QED
model, but also the Raman scattering peaks. To provide quantitative
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substantiation for these assertions, we scrutinize this issue from the
standpoint of quantum parameter estimation [149–156]. As a pertinent
example, we contemplate a scenario where our system is characterized
by the quantum Rabi model Hamiltonian described above, and we are
tasked with estimating the light-matter coupling parameter η from an
emission spectrum measurement.

A measurement strategy is represented by a positive operator-
valued measurement (POVM) Λ, a set of operators {Λ̂µ}, where
µ ∈ {1, 2, . . . ,M} labels different possible measurement outcomes, and∑

µ Λµ = 1. For a given unknown parameter η, the probability for each
measurement outcome follows a distribution P (µ|η) = Tr[ρηΛµ], where
ρη is the η-dependent density matrix of the system. The uncertainty
in the estimation of η, ∆2η, is bounded by the Fisher information of
the probability distribution, ∆2η ≥ 1/F , defined as

F = E
[(

d logP (µ|η)
dη

)2]
. (3.13)

In Ref. [157], an expression for the Fisher information associated to
measurements of emission spectra was derived. The measurement
of the emission spectrum S(ω) is described as a collection of
independent measurements over a discretized set of N frequency points
ω⃗ = [ω1, ω2, . . . , ωN ]. For each frequency point ωi the probability
distribution of the measurement of the spectrum is a Poissonian
distribution with mean value S(ωi), leading to Fisher information

F =
N∑

i=1

1
S(ωi, η)

[
∂S(ωi, η)

∂η

]2
. (3.14)

Applying the Cramér-Rao bound, this quantity allows us to evaluate
the metrological potential of spectrum measurements for estimating an
unknown η. We can isolate the contribution to the Fisher information
from different regions of the spectrum. Here, we separate contributions
from two different frequency ranges; one centered around a direct
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Figure 3.5: Variation of the emission spectrum with the coupling strength η = 0.3
and δη = 0.0005 as an estimation of the Fisher information. (a) Variation of the
Stokes peak |0⟩ → |1⟩. (b) Variation of the direct peak |1⟩ → |0⟩. Although the
Stokes peak is 4% the intensity of the direct peak, its Fisher information is still 4%
the Fisher information of the direct peak, stating that the relative information is
equal. The used parameters are the same as in Fig. 3.1(b).

transition from eigenstate |1⟩ to ground state |0⟩, and one around
the Raman peak corresponding to Stokes process |0⟩ → |1⟩, labeled
as ω(10)

S . The spectral peaks measured in both frequency ranges are
displayed in Fig. 3.5(a-b), with the same parameters of Fig. 3.1(b).
A small change in η imprints a change in these spectral forms. Our
calculation shows that the total intensity of the Raman peak is 4%
the intensity of the direct peak, but its Fisher information is still 4%
that of the direct peak, meaning that the relative information is equal,
and that the Raman peak contains significant information about η,
despite its small intensity. We stress that the intensity peaks and the
derived Fisher information may change by changing the properties of
the environment, such as the density of states, leading to a different
spectral shape varying ωs [4]. Here we limited ourselves to consider the
only environment introduced in this Thesis, which is the ohmic bath.

This example illustrates how Raman peaks emerging in ultra
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strong coupling regime contain significant information about internal
parameters of system. Their correct description and understanding
is crucial for accurate characterization of cavity QED setups via
spectroscopic measurements.

This example underscores a significant distinction between Raman
photons spontaneously scattered by cavity QED systems and those
scattered through coupling to phononic degrees of freedom. In the
absence of phonons, the process is entirely encapsulated by a quantum
Rabi Hamiltonian, and all spectral features can be fitted by such a
model (for instance, the central frequency is wholly determined by
the transition energies between different eigenstates of the quantum
Rabi Hamiltonian). Conversely, in the case of Raman scattering due
to phonon coupling, the frequency of a scattered Stokes photon, ωS,
would be offset from the laser frequency ωL by an amount equivalent
to the frequency ωm of the phonon mode:

ωS = ωL − ωm , (3.15)

which is a parameter that is independent of the cavity QED system.
This implies that it would not be feasible to fit such a peak with only
a quantum Rabi model. This crucial difference between both scenarios
enables us to ascertain the origin of the observed Raman peaks and
unambiguously identify instances where these originate from the purely
cavity QED effect that we present in this work.
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CHAPTER 4

Pure dephasing of light and
matter in the USC and DSC

regimes

In the previous chapters, we focused on the gauge-invariant description
of open quantum systems in the ultrastrong coupling regime, on the
photodetection under coherent and incoherent pumping. We have seen
that the standard master equation fails when approaching to the USC
regime, and that the mathematical description of the fields may vary
depending on the gauge chosen. Taking as an example the electric field,
we have seen in Section 2.1 that in the Coulomb gauge it is defined as

ÊC = iωcA0
(
â− â†

)
, (4.1)

because the photonic canonical momentum Π̂C = −ε0Ê is not modified
by the interaction with the matter (see also Section 1.3 for the full
derivation). On the other hand, in the multipolar (or dipole) gauge,
the canonical momentum is proportional to the electric displacement
field

Π̂D = −D̂D = −iε0ωcA0
(
â− â†

)
, (4.2)
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4. Pure dephasing of light and matter in the USC and DSC regimes

where
D̂ = ε0ÊD + P̂ , (4.3)

and P̂ is the polarization operator of the matter. This implies that the
electric field in the dipole gauge is

ÊD = − 1
ε0

(
Π̂D + P̂

)
= iωcA0

(
â− â†

)
− 2ωcA0ησ̂x , (4.4)

for the case of a truncated two-level matter system.
We have also seen that the truncation operation of the matter

system is not always a safe operation. Specifically, since in the Coulomb
gauge the canonical momentum of the matter system is modified by
the interaction with the electromagnetic field, the truncation has to be
performed in the dipole gauge, where the matter canonical momentum
is not modified. Although a proper way to derive the correct version
of the truncated light-matter Hamiltonian in the Coulomb gauge was
presented [75, 79] (See also Section 1.4.3), the key point is that the
application of certain operations on a subsystem is safer in that gauge
where the canonical momentum is not modified. The truncation of the
matter eigenstates is much safe in the dipole gauge, while the definition
of photodetection and photonic losses in the dipole gauge is not so
intuitive as in the Coulomb gauge.

To further extend this concept, we now ask ourselves what is the
energy of the electromagnetic field when it interacts with matter. We
already know from Section 1.2 that the Hamiltonian of a single mode
cavity field is Ĥ(c) = ωc(â†â+ 1/2)1. This arises from Eq. (1.15) which
express the energy as an integral in space of E2(r) and B2(r). Now,
while in the Coulomb gauge the energy associated to the n-th mode is

1We remind that we choose ℏ = 1
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related to the Hamiltonian

Ĥ(c)
C =1

2

(
ε0Ê

2
C + 1

µ0
B̂2

C

)
=1

2

[
−ε0A

2
0ω

2
c

(
â− â†

)2
+ A2

0ω
2
c

µ0c2

(
â+ â†

)2
]

=ωc

(
â†â+ 1

2

)
,

(4.5)

where A0 =
√

1/(2ε0ωc), in the dipole gauge it is related to the
Hamiltonian

Ĥ(c)
D =1

2

(
ε0Ê

2
D + 1

µ0
B̂2

D

)
=1

2

{
ε0A

2
0ω

2
c

[
i
(
â− â†

)
− 2ησ̂x

]2
+ A2

0ω
2
c

µ0c2

(
â+ â†

)2
}

=ωc

(
â†â+ 1

2

)
− iηωc

(
â− â†

)
σ̂x + η2ωc ,

(4.6)

which is very different from Eq. (4.5), especially when η ≳ 0.1.
The same holds for the matter system. In the Coulomb gauge, the

energy associated to the matter system is related to the Hamiltonian

Ĥ(a)
C = ωeg

2
{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
, (4.7)

while in the dipole gauge

Ĥ(a)
D = ωeg

2 σ̂z . (4.8)

Moreover, by looking at Eqs. (1.89) and (1.92), we see that Ĥ(c)
D =

ωcÛ†â†âÛ = ωcâ
†
DâD and Ĥ(a)

C = (ωeg/2)Û σ̂zÛ† = (ωeg/2)σ̂z,C , where
Û = exp[iη(â + â†)σ̂x] is the operator that links the two gauges, as
defined in Eq. (1.90).

Here we see that the intuitive definition of the energy related to one
of the two subsystems holds only in the gauge where the momentum
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4. Pure dephasing of light and matter in the USC and DSC regimes

of that specific subsystem is unchanged. In the other gauge, there is
still a valid definition of energy, but it may be more or less different
depending on the coupling strength. This may change the way to treat
problems such as pure dephasing, where a stochastic perturbation of
the single subsystem is taken into account [5].

4.1 The concept of pure dephasing

In Section 2.2, an open quantum system, which is a quantum system
that interacts with an environment, was examined. This interaction
results in an energy relaxation time T1 that is linked to a specific
optical transition. When an atom is in a continuum of modes of a free
electromagnetic field, the decay of the population of an excited state also
leads to the decay of polarization, causing decoherence. In situations
where only energy relaxation mechanisms are present, such transverse
relaxation time is T2 = 2T1 [98, 158]. However, quantum systems
with optical transitions can be influenced by additional dephasing
mechanisms that cause the decay of dipole coherence without altering
the system’s populations. These pure dephasing effects can be caused
by environmental field fluctuations that affect the phases of the emitter
wave functions [159–164]. Typically, the phase (transverse) relaxation
time is less than or equal to twice the energy relaxation time: T2 ≤ 2T1.
In optical spectroscopy, the full width at half maximum (FWHM) of
homogeneous broadening corresponds to 2/T2. Decoherence is known
to eliminate quantum coherence and quantum correlations [165, 166],
and this process accelerates as the size of a quantum system increases
[167]. This explains why quantum superpositions are not observed in
the macroscopic world [168]. Decoherence can significantly impact and
limit quantum information processing (QIP) [169, 170], and depending
on the specific environment, methods to protect qubits from dephasing
have been suggested [171–174].

Devices for QIP, secure communication, and high-precision sensing
have been developed by combining various systems from photons,
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atoms, and spins to mesoscopic superconducting and nanomechanical
structures. The complementary functionalities of these hybrid quantum
systems could be crucial for advancing new quantum technologies [44,
175, 176]. It is interesting to understand how the decoherence of one
or more subsystems can affect the performance of the entire system,
which is relevant for enhancing the performance of quantum devices
[99, 100].

Cavity [166] and circuit [27, 44] quantum electrodynamics (QED)
systems are some of the most researched hybrid quantum systems. They
play a crucial role in quantum optics and in developing new quantum
technologies [177–180]. Pure dephasing can significantly influence these
systems’ performance. For instance, it has been demonstrated that
pure dephasing can enhance the performance of nanophotonic devices
like single-photon sources and nanolasers by serving as a valuable
resource for solid-state emitters [181].

Decoherence effects in hybrid quantum systems are often introduced
by using the standard quantum optics master equation in Eq. (2.27),
which we already know that it may fail a large coupling strengths. The
dressed master equation in Eq. (2.30), which was derived in Ref. [99],
is valid beyond the strong coupling regime, but it fails wen the system
becomes harmonic, such as in the weak coupling and the deep strong
coupling regimes. Moreover, the authors in Ref. [99] derived also
a master equation involving only pure dephasing effects, originating
from the energy fluctuations of the subsystems. However, this model
considered the energy perturbation coming from the bare Hamiltonian
of the subsystem, rather than taking into account the effects of the
interaction between the subsystems. The main task of this chapter is
to fix this issue, deriving a gauge-invariant master equation for the
pure dephasing of light and matter in the USC and DSC regimes.
We present results for two prototypical models of cavity QED: the
quantum Rabi model (QRM) and the Hopfield model. However, the
approach here considered can also be applied to describe more complex
light-matter systems.
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4. Pure dephasing of light and matter in the USC and DSC regimes

Figure 4.1: Pictorial representation of a two-level system interacting with a
single-mode cavity field, when both subsystems are affected by pure dephasing.

4.2 Pure dephasing in the quantum Rabi model

Pure dephasing effects on both the atom and electromagnetic field are
in general described by introducing two zero-mean stochastic functions
fc(t), fa(t) modulating their resonance frequency. In this way, the
perturbation Hamiltonian can be written as

V̂dep(t) = fc(t)â†â+ fa(t)σ̂z . (4.9)

The standard way to convert this perturbation into a master equation
is to consider the following terms in addition to the standard master
equation in Eq. (2.27)

d
dt ρ̂ = Lstdρ̂+

γ
(c)
ϕ

2 D
[
â†â

]
ρ̂+

γ
(a)
ϕ

2 D [σ̂z] ρ̂ , (4.10)

which, for low coupling strengths η, can be used to accurately describe
many cavity QED and circuit QED experiments [93–96]. This master
equation, however, fails to describe losses and pure dephasing at larger
coupling strengths (η ≳ 0.1), and a theoretical derivation of pure
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4.2. Pure dephasing in the quantum Rabi model

dephasing valid also in the USC and DSC regimes was derived [99].
As for the dressed master equation in Eq. (2.30), it was derived by
expanding V̂dep(t) in the basis of the eigenstates of the total system
Hamiltonian. For the sake of simplicity, we consider stochastic functions
with a low-frequency spectral density (with respect to the relevant
transition frequencies of the system). The resulting master equation
can be written as

d
dt ρ̂ = − i

[
Ĥs, ρ̂

]
+
γ

(c)
ϕ

2 D
[
Φ̂
]
ρ̂+

γ
(a)
ϕ

2 D
[
Ξ̂
]
ρ̂ , (4.11)

where Φ̂ =
∑

j ⟨j|σ̂z|j⟩ |j⟩⟨j| and Ξ̂ =
∑

j ⟨j|â†â|j⟩ |j⟩⟨j|, with |j⟩ being
the eigenstates of Ĥs. The bare dephasing rates γx

ϕ = 2Sf (0) are
determined by the low-frequency spectral densities S(x)

f (ω) of fx(t),
with x = q, c. Additional dephasing terms can appear, when the
spectral density functions Sf (ω) are not negligible at the transition
frequencies of the system (see Appendix D).

However, as already stated in the beginning of this chapter, the
operators â†â and σ̂z do not describe always the contribution related
to the cavity and atom energies, respectively. For example, the energy
of the cavity field in the dipole gauge is related to the operator
Ĥ(c)

D = ωcâ
†
DâD, where âD = â + iησ̂x. On the other hand, the

energy of the atom in the Coulomb gauge is related to the operator
Ĥ(a)

C = (ωeg/2)σ̂z,C , where σ̂z,C = σ̂z cos[2η(â+ â†)]+ σ̂y sin[2η(â+ â†)].
Thus, the perturbation term in Eq. (4.9) does not describes correctly
the process of pure dephasing. The correct procedure is to consider
the following perturbation terms, depending on the gauge considered

V̂C,ϕ(t) = fa(t)σ̂z,C + fc(t)â†â (in Coulomb gauge) , (4.12a)

V̂D,ϕ(t) = fa(t)σ̂z + fc(t)â†
DâD (in dipole gauge) . (4.12b)

To better understand why this is the correct procedure, let us
consider the quantum Rabi Hamiltonian in the dipole gauge

ĤD = ωcâ
†
DâD + ωeg

2 σ̂z − iηωc

(
â− â†

)
σ̂x + ωcη

2 , (4.13)
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and we now add a perturbation of both the resonance frequencies of
the cavity and the atom ωc → ωc + fc(t) and ωeg → ωeg + 2fa(t),
through stochastic zero-mean functions fc(t) and fa(t), respectively.
The Hamiltonian can be written as

ĤD,ϕ(t) = [ωc + fc(t)] â†â+ ωeg + 2fa(t)
2 σ̂z

− iη [ωc + fc(t)]
(
â− â†

)
σ̂x + (ωc + fc(t)) η2

= ωcâ
†â+ ωeg

2 σ̂z − iηωc

(
â− â†

)
σ̂x + ωcη

2

+ fc(t)â†â+ fa(t)σ̂z − iηfc(t)
(
â− â†

)
σ̂x + fc(t)η2

= ĤD + fc(t)â†
DâD + fa(t)σ̂z = ĤD + V̂D,ϕ(t) ,

(4.14)

which results in the same additional term presented in Eq. (4.12b).
The same procedure can be applied to the Coulomb gauge, where the
Hamiltonian is

ĤC = ωcâ
†â+ ωeg

2
{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
.

(4.15)
Again, we now add a perturbation of both the resonance frequencies of
the cavity and the atom ωc → ωc + fc(t) and ωeg → ωeg + 2fa(t), and
the Hamiltonian can be written as

ĤC,ϕ(t) = [ωc + fc(t)] â†â+ ωeg + 2fa(t)
2

{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
= ĤC + fc(t)â†â+ fa(t)

{
σ̂z cos

[
2η
(
â+ â†

)]
+ σ̂y sin

[
2η
(
â+ â†

)]}
= ĤC + fc(t)â†â+ fa(t)σ̂z,C = ĤC + V̂C,ϕ(t) ,

(4.16)

which, as expected, results in the same additional term presented in
Eq. (4.12a). As derived in Appendix D, the resulting master equation
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4.2. Pure dephasing in the quantum Rabi model

has the same form of Eq. (4.11), but with the correct operators Φ̂ and Ξ̂,
depending on the gauge considered. It is worth noting that Eqs. (4.14)
and (4.16) are linked through the same gauge transformation that links
the two Hamiltonians without dephasing terms: ĤC,ϕ(t) = ÛĤD,ϕ(t)Û†,
while ĤC + V̂dep(t) ̸= Û [ĤD + V̂dep(t)]Û†, which means that, in the
latter case, the results are not gauge-invariant.

In the following, we label the QRM states as in Section 2.4, by
generalizing the notation of the Jaynes-Cummings (JC) model. In
particular,

∣∣0̃〉 denotes the ground state, and |ñ±⟩ the states that tend
to the JC states |n±⟩, when the coupling vanishes. Moreover, we use
not-primed (primed) states to indicate the Coulomb (dipole) gauge
states. As an example we analyze pure dephasing effects on the two
lowest transitions in the QRM: α± ≡ (1̃±, 0̃), and considering only
atom pure dephasing (fc(t) = 0). In the interaction picture, from
Eq. (4.11), we obtain (see Appendix D)

˙̃ρα′
±

(t) = −
(
γ

α′
±

ϕ /2
)
ρ̃α′

±
(t) , (4.17)

with

γ
α′

±
ϕ =

γ
(q)
ϕ

2

∣∣∣∣σ1̃′
±,1̃′

±
z − σ0̃′,0̃′

z

∣∣∣∣2 . (4.18)

Moreover, we observe that the obtained dephasing rates are gauge
invariant (γα′

±
ϕ = γ

α±
ϕ ), because the expectation values are unitary

invariant, when transforming both operator and states: γ
α±
ϕ =

γ
(q)
ϕ |σ1̃±,1̃±

z,C − σ0̃,0̃
z,C |2/2.

The normalized atom pure dephasing γ
α±
ϕ /γ

(q)
ϕ as a function of

the coupling strength η, and with a small detuning ∆ ≡ ωc − ωeg =
−10−3ωc, is depicted in Fig. 4.2. The upper panel illustrates the
accurate rates, which are derived by considering the appropriate
operator σ̂z,C in the Coulomb gauge (or σ̂z if the dipole gauge was
selected). The lower panel presents the rates calculated by employing
the operator σ̂z in the Coulomb gauge, revealing a noticeable deviation
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Figure 4.2: Normalized atom pure dephasing rates γ
α′

±
ϕ /γ

(q)
ϕ for the two lowest

transitions in the QRM, as a function of the coupling strength η, and with a small
detuning ∆/ωc = −10−3. The upper panel shows the correct rates, obtained by
taking into account the correct operator σ̂z,C in the Coulomb gauge (or σ̂z if we
had chosen the dipole gauge). The lower panel shows the rates obtained by using
the operator σ̂z in the Coulomb gauge, which shows a clear discrepancy with the
correct rates.

from the accurate rates. This discrepancy arises because the operator
σ̂z in the Coulomb gauge does not represent the energy of the atom,
as discussed at the start of this chapter.

In the scenario of small coupling strength, where
∣∣1̃+

〉
approaches

|e, 0⟩ and
∣∣1̃−

〉
approaches |g, 1⟩, the conventional outcomes are

reinstated, and only the (1̃+, 0̃) transition is influenced by the atom
pure dephasing. As anticipated, when the coupling is or the same order
of magnitude of the detuning, pure dephasing is distributed between
the two transitions, since the energy eigenstates

∣∣1̃±
〉

tend to evolve into
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an evenly balanced superposition of |e, 0⟩ and |g, 1⟩. For normalized
coupling strengths η > 0.1 (the USC regime), pure dephasing becomes
less potent for the transition (1̃−, 0̃), until at higher couplings (the
DSC regime), both transitions tend to become immune to dephasing.
This pattern mirrors two observations: i) as the energy of

∣∣1̃−, 0̃
〉

nears zero, the energy fluctuations of the atom have a negligible effect
on this transition’s broadening; ii) the phenomenon of light-matter
decoupling [2, 105], extensively discussed in Section 2.4, is clearly
visible. Conversely, the bottom panel of Fig. 4.2 displays an incorrect
large pure dephasing rate for the lowest energy transition.

4.3 Pure dephasing in the Hopfield model

A comparable examination can be conducted for polaritons. We take
into account the most basic version of the Hopfield model [182], which
characterizes the interaction of a single-mode electromagnetic resonator
with a bosonic matter field (with the bosonic annihilation b̂ and creation
b̂† operators) that models certain collective matter excitations. The
system Hamiltonian in the dipole gauge is given by

ĤD = Ĥ0 + iλ ωc

(
â† − â

) (
b̂+ b̂†

)
+ ωc λ

2
(
b̂+ b̂†

)2
, (4.19)

where Ĥ0 = ωcâ
†â+ ωxb̂

†b̂, and λ represents the normalized coupling
strength. A similar model can be derived in the Coulomb gauge [145]

ĤC = Ĥ0 − iωxλ
(
b̂† − b̂

) (
â† + â

)
+ ωxλ

2
(
â† + â

)2
. (4.20)

These two Hamiltonians can be directly derived by generalized
minimal coupling replacements: HC = ωcâ

†â+ ωxT̂ b̂
†b̂T̂ † and HD =

ωcT̂
†â†âT̂ + ωxb̂

†b̂, where T̂ = exp[iλ(â + â†)(b̂ + b̂†)] [145]. As is
well known, the interaction leads to polaritonic resonances, which are
a result of the mixing of the two bosonic modes. It is feasible to
diagonalize the system by expressing the photon and exciton operators
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in terms of polaritonic (bosonic) operators [182]. For µ = 1, 2 (lower
and upper polariton, respectively), we have

ŷ =
2∑

µ=1
(Uµ

y Pµ − V µ
y Pµ), (y = â, b̂). (4.21)

The diagonalization process determines both polariton eigenfrequencies
Ωµ, which are gauge invariant, and the Hopfield coefficients, which are
gauge dependent. Consequently, the polariton operators are also gauge
dependent. We use primed operators and coefficients for the dipole
gauge.

Dephasing effects can be modeled by introducing the perturbation
Hamiltonian, assuming the light-matter interaction is negligible,

V̂dep(t) = fc(t)â†â+ fx(t)b̂†b̂ , (4.22)

which represents the random fluctuation of the resonance frequencies
of the components. When the light-matter interaction is included, it
becomes clear that Eq. (4.22) is not accurate, and its corrected form
depends on the gauge:

V̂D,ϕ(t) = fc(t)â†
DâD + fx(t)b̂†b̂ (in dipole gauge) , (4.23a)

V̂C,ϕ(t) = fc(t)â†â+ fx(t)b̂†
C b̂C (in Coulomb gauge) . (4.23b)

where âD = T̂ †âT̂ = â + iλ(b̂ + b̂†) and b̂C = T̂ b̂T̂ † = b̂ − iλ(â + â†).
Here, âD (b̂C) is the physical photonic (excitonic) annihilation operator
in the dipole (Coulomb) gauge. By physical, we refer to the operators
that describe the annihilation of the physical quanta of the fields [145].
The polariton pure dephasing rates can be calculated by expanding
Eqs. (4.23a) and (4.23b) in terms of the polariton operators, and
then applying the standard master equation method to obtain the
Lindbladian terms, similar to the results of the previous section. From
the derived master equation, we get ∂t⟨P̂µ⟩ = (−iΩµ − γµ

ϕ/2)⟨P̂µ⟩,
where

γµ
ϕ = γ

(c)
ϕ

(
|Uµ

a |2 + |V µ
a |2

)
+ γ

(x)
ϕ

(∣∣∣Uµ ′
b

∣∣∣2 +
∣∣∣V µ ′

b

∣∣∣2) . (4.24)
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Figure 4.3: Normalized pure dephasing rates γµ
ϕ /γ

(x)
ϕ of the collective matter

degrees of freedom for the two polariton modes, as a function of the coupling
strength λ, and with a small detuning ∆/ωc = −10−3. The upper panel shows the
correct rates. The lower panel shows the rates obtained by using the operator b̂†b̂
in the Coulomb gauges, respectively, which again shows a clear discrepancy with
the correct rates.

This outcome can significantly differ from what would be obtained
starting from Eq. (4.22) and disregarding changes in subsystems-
observables induced by interaction. Fig. 4.3 displays normalized pure
dephasing rates for two polariton modes (γµ

ϕ/γ
(x)
ϕ ), considering zero

photonic noise (γ(c)
ϕ = 0), and ∆/ωc = −10−3. We observe that at

high coupling rates, lower polariton dephasing rate tends to zero. This
effect is due to lower polariton resonance frequency rapidly approaching
zero for λ → ∞, regardless of detuning. This implies that any minor
fluctuation of resonance frequencies of components does not induce
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fluctuations and hence no dephasing in polariton mode. For comparison,
lower panel of Fig. 4.3 shows incorrect result γµ

ϕ/γ
(x)
ϕ = |Uµ

b |2 + |V µ
b |2,

obtained by neglecting changes in form of subsystems-observables,
which can be induced by interaction. Evident differences emerge when
entering the USC regime with λ ∼ 0.1. Moreover, at larger coupling
rates, in the DSC regime, the behavior of the lower and upper polaritons
is clearly inverted.

To conclude this chapter, it is worth mentioning that the procedure
adopted here can be extended to other situations. For example, when
taking into account non-linearities in the cavity field, they must be
treated adequately, taking care of the gauge invariance [1]. In this
case, the trivial introduction of the non-linearities is only valid in the
Coulomb gauge.
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CHAPTER 5

Photon condensation in
approximate models

Phase transitions at equilibrium between a standard state and a photon
condensate state (also referred to as superradiant phase transitions)
are a subject of intense debate in research, with theories proposing
their existence and no-go theorems contradicting each other over
the past forty years. Recent no-go theorems have established that
gauge invariance prohibits second-order phase transitions to a photon
condensate state when the cavity-photon mode is assumed to be
spatially uniform. Nevertheless, it has been theoretically postulated
that a group of three-level systems interacting with light can exhibit
a first-order phase transition to a photon condensate state. In this
chapter, we present a general no-go theorem that is also applicable
to truncated, gauge-invariant models, which prohibits both first-order
and second-order superradiant phase transitions in the absence of
a magnetic field coupling [3]. Specifically, we consider the cases of
interacting electrons in a lattice and M -level systems.
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5.1 Introduction to photon condensation

In the previous chapter, we have seen the effects of pure dephasing in
the Hopfield model. This model was initially introduced to describe
the interaction of the electromagnetic field with a harmonic resonant
polarization density of a three-dimensional (3D) dielectric crystal.
Nowadays, it is used to describe the interaction between free or
confined light and different kinds of collective excitations, such as
optical phonons, excitons in nanostructures, magnons, and plasmonic
crystals, which can be described as bosonic fields. However, the simplest
model describing the interaction of collective excitations with light is the
Dicke model [32]. The Dicke model is a fundamental model in the theory
of light-matter interactions [30, 183–185]. It characterizes a group of
N identical two-level systems coherently coupled to the same bosonic
mode â, which arises from the quantization of the electromagnetic
field inside a cavity of volume V . As its name suggests, it was first
introduced by Robert H. Dicke [32], with the aim of describing the
“emission of coherent radiation” obtained by considering a “radiating
gas as a single quantum-mechanical system". He dubbed such process
“super-radiant emission”.

In the thermodynamic limit (N → ∞, V → ∞, with N/V =
constant) and when the light-matter coupling strength exceeds a critical
value, the Dicke model undergoes an equilibrium second-order thermal
phase transition [186, 187] between a normal and a “super-radiant”
phase. In the zero-temperature limit, the phase transition persists
and corresponds to a quantum phase transition [188–191]. The super-
radiant phase is characterized by a macroscopic number of coherent
photons, ⟨â⟩ ∼

√
N , and by a macroscopic number of excitations in

the matter sector. To avoid confusion with the Dicke non-equilibrium
super-radiant emission [32], we here follow Refs. [192, 193] and dub the
equilibrium super-radiant phase transition as “photon condensation”.

In the Coulomb gauge, a careful derivation of the Dicke model
starting from a microscopic condensed-matter model with electronic
degrees of freedom leads to an additional diamagnetic term [194],
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proportional to (â + â†)2, which is usually neglected by utilizing a
(wrong) “weak-coupling argument". It was soon understood [194–196]
that such additional term is crucial to preserve the gauge invariance
property of the model. Only when both terms generated by the minimal
coupling substitution p̂ → p̂ + eA, (i.e. the paramagnetic light-matter
coupling and the diamagnetic term) are retained, does one have a
gauge-invariant theory satisfying the Thomas-Reiche-Kuhn (TRK)
sum rule [85, 197]. The occurrence of photon condensation in such a
generalized Dicke model is forbidden [194, 198, 199].

Despite its significance, the Dicke model is not all-encompassing.
In recent years, research have expanded beyond it by investigating
interactions between matter degrees of freedom and quantized electro-
magnetic fields in a variety of other models and physical systems. Many
of these “beyond-Dicke” systems, including three-level systems [200,
201], graphene [202], ferroelectric materials [203], superconducting
circuits [199, 204–206], and strongly correlated (a.k.a. quantum) mate-
rials [207], have been predicted to exhibit photon condensation.

A series of no-go theorems for photon condensation in a single-
mode spatially-uniform cavity field have been published [192, 208–212],
demonstrating that gauge invariance prohibits photon condensation
even in such “beyond-Dicke” systems. Often, these theorems have
been countered by “go theorems” [199, 213, 214]. The topic of photon
condensation remains a contentious theoretical issue.

Currently, the most recent no-go theorem is reported in Ref. [192],
where the authors demonstrated that photon condensation is forbidden
by gauge invariance for generic non-relativistic interacting electron
systems coupled to a spatially-uniform cavity mode. The proof is based
on linear response theory and uses the smallness of the order parameter
α = ⟨â⟩. It is therefore valid only for second-order phase transitions,
where α ≪ 1 at the phase transition, and changes continuously.
It is now clear that a natural path to overcome such theorem is
to consider spatially-varying cavity fields [193, 215, 216]. In these
recent works, photon condensation has been shown to occur and is
essentially a magneto-static instability [193, 215–217]. Apparently,
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another possibility to bypass the hypothesis of such theorem could be
to consider a first-order phase transition [200, 216], where the order
parameter α abruptly changes from zero (in the normal phase) to a
finite value (in the photon condensate phase). As a matter of fact, that
first-order phase transitions were a valuable possibility to overcome the
no-go theorem was first discussed some time ago [204, 218]. In these
works, an ensemble of three level systems coupled to single uniform
mode undergoes to first-order phase transition. Indeed, according to
Refs. [204, 218] systems displaying first-order phase-transitions were
thought as valuable candidates to realize photon condensation.

These results are, however, in contrast with a rather general no-go
theorem presented already in 1978 [195]. In this work, an ensemble of
electrons in the presence of single-particle potentials and interacting
with a uniform electromagnetic mode is considered and it is shown that
superradiant phase transitions (of any order) to a photon condensate
are forbidden. In this proof, no truncation is taken and the full infinite-
dimensional Hilbert space is retained. However, it is often impractical to
deal with an exponentially large Hilbert space. Hence, when performing
explicit calculations in atomic systems, or more generally, in many-body
systems, approximate (truncated) models are customarily employed.

However, we already know that such approximations can spoil gauge
invariance (see Section 1.4.3). Since no-go theorems are closely related
to gauge-invariance, it is natural to conclude that the super-radiant
phase transition that can be found in these approximate models (e.g. in
the three-level systems discussed in Refs. [200, 216]) is a fictitious effect
due to the Hilbert space truncation. In this chapter, we extend the
no-go theorem for photon condensation of Ref. [195] for gauge-invariant
truncated models of light-matter interacting systems [3].
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5.2 Gauge invariance, photon condensation,
and no-go theorem in interacting electron
systems

5.2.1 Interacting electrons in the continuum

We consider a quantum many-body system of interacting electrons,
following the notation of Ref. [219]. In second quantization, the
electronic Hamiltonian can be written as

Ĥel = Ĥ0 + Ĥee , (5.1)

where the one-body part, Ĥ0, reads as following

Ĥ0 =
∫

dr ψ̂†(r)h0(r)ψ̂(r) , (5.2)

with
h0(r) = − ∇2

2m + V (r) , (5.3)

while the electron-electron interaction contribution is given by

Ĥee =
∫

dr dr′ ψ̂†(r) ψ̂†(r′)U(
∣∣r − r′∣∣) ψ̂(r′) ψ̂(r) . (5.4)

Here, V (r) and U(|r − r′|) represent a generic one-body and two-body
interaction potential, respectively.

The electron system is invariant under a global phase transformation
ψ̂(r) → eiθψ̂(r), and the associate Noether current reads

Ĵ(r) = ψ̂†(r) (−i∇) ψ̂(r) + H.c. . (5.5)

However, the system is not invariant under a local phase transforma-
tion, ψ̂(r) → eiθ(r)ψ̂(r). Such invariance can be restored by introducing
the interaction with the electromagnetic field, by employing a minimal
coupling scheme. Considering the Coulomb gauge—the effects of the
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scalar potential being already described by V (r) and U(|r − r′|)—the
total light-matter Hamiltonian is given by:

ĤC =
∫

dr ψ̂†(r)hC(r)ψ̂(r) + Ĥee + Ĥph , (5.6)

where
hC(r) = T̂A + V (r) , (5.7)

and
T̂A = 1

2m
[
−i∇ + eÂ(r)

]2
. (5.8)

Here, e > 0 is the elementary electron charge, c is the speed of light,
and Â(r) is the space-dependent field operator vector describing the
electromagnetic field in the Coulomb gauge. The Hamiltonian of the
free field is given by

Ĥph = 1
2

∫
dr
{

Π̂2(r)
ε0

+ [∇ × Â(r)]2

µ0

}
, (5.9)

where Π̂(r) is the conjugate momentum.
In this work, for simplicity, we will consider a single mode

decomposition of the fields [219],

Â(r) = A0(r)(â+ â†) , (5.10a)
Π̂(r) = iΠ0(r)(â− â†) . (5.10b)

Notice that such single-mode approximation has been widely
adopted in the Literature [186–188, 192, 199–201, 203, 204, 207, 209,
215–217, 219] in the context of photon condensation.

In terms of the single-mode photon creation (â†) and annihilation
(â) operators, the field Hamiltonian reduces to

Ĥph = ωphâ
†â . (5.11)

102



5.2. Gauge invariance, photon condensation, and no-go theorem in
interacting electron systems

A transformation of both the electronic and electromagnetic fields
of the form

ψ̂(r) → eiθ(r)ψ̂(r) (5.12a)

Â(r) → Â(r) − 1
e

∇θ(r) , (5.12b)

leaves the Hamiltonian in Eq. (5.6) invariant, which aligns with the
gauge principle. We note that Eq. (5.6) omits the Zeeman coupling
between the electron’s spin and the magnetic component of the
electromagnetic field. The exclusion of this term is justified either
when the magnetic field is zero or when it can be disregarded in the
spatial region where the field interacts with the electron system, as,
for instance, in the dipole approximation.

In situations where the interaction of the matter system with the
magnetic field can be overlooked, the vector potential involved in the
interaction terms can be locally expressed as the gradient of a scalar
field.

A0(r) = ∇χ(r) . (5.13)
In the dipole approximation, χ(r) can be expressed as χ(r) = r · A0,
with A0 being spatially uniform. Strict application of the dipole
approximation (uniform vector potential) to semiconductors implies a
total disregard of propagation effects within the medium. To neglect
the interaction of the electron system with the magnetic field in an
extended system such as a semiconductor, one can partition the entire
medium into numerous cells of identical volume Vcell and apply the
dipole approximation to each cell [220, 221]. The cell should be
significantly smaller than the field wavelength (the typical choice is to
take the unit cell of the crystal as such a unit). This partial relaxation
of the dipole approximation (extended dipole approximation) can be
realized using Eq. (5.13). We emphasize that Eq. (5.13) implies that
the magnetic field B in the spatial region where the electronic field is
non-negligible is zero, i.e., B(r) ≡ ∇ × A0(r) = ∇ × ∇χ(r) = 0.

When the interaction of the matter system with the magnetic
field can be neglected, the minimal coupling replacement can also
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be implemented by applying a unitary transformation to the bare
electronic Hamiltonian. The unitary operator transforms the electronic
field operators as follows [219]:

Û ψ̂(r)Û† = eieχ(r)(â+â†)ψ̂(r) , (5.14)

where
Û = exp

[
−ie(â+ â†)

∫
dr ψ̂†(r)χ(r)ψ̂(r)

]
. (5.15)

Equation Eq. (5.14) is demonstrated in Ref. [3].
We stress that only the electronic Hamiltonian has to be trans-

formed applying the unitary operator in Eq. (5.15), while the photonic
field â is unchanged. The Hamiltonian in Eq. (5.6) can be rewritten as

ĤC = Ĥph + Û(Ĥ0 + Ĥee)Û† . (5.16)

In theory, the equation presented can be further simplified by
recognizing that the unitary transformation Û has no impact on the
electron-electron interaction contribution to the Hamiltonian [219].
This can be expressed as ÛĤeeÛ† = Ĥee. However, for the purpose of
this proof, we won’t rely on this property. In the Coulomb gauge, ĤC
represents the complete Hamiltonian that describes light, matter, and
their interactions.

We will now establish a no-go theorem for photon condensation by
demonstrating that the expectation value of the photonic operator in
the ground state is zero, denoted as the super-radiant order parameter:
⟨â⟩ = 0. In the following, we will provide a proof by contradiction.
If there exists a ground state |ψ0⟩ characterized by a non-zero super-
radiant order parameter α ≡ ⟨ψ0|â|ψ0⟩ ≠ 0, then it is feasible to find
another state |ψ⟩ with lower energy, contrary to the assumption that
|ψ0⟩ is the ground state. Specifically, we extend a procedure from
first-quantization to the second quantization framework, as developed
in prior work [195]. It is worth noting that many theoretical analyses
of photon condensation [193, 199, 215, 217], including those predicting
its occurrence, neglect light-matter entanglement and assume that the
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system’s ground state factorizes into matter and light wave-functions,
using a mean-field approximation for the light-matter interaction. In
our approach, we do not make use of this assumption.

Let us consider the following unitary operator,

T̂ = D̂(α) exp
[
−i2eRe(α)

∫
dr ψ̂†(r)χ(r)ψ̂(r)

]
, (5.17)

where D̂(α) = exp(−α∗â + αâ†) is the displacement operator
characterized by a displacement α. Photonic operators transform
under the displacement as,

D̂(α)âD̂(α)† = â− α , (5.18)

The electronic and photonic fields transform under T̂ as,

T̂ ψ̂(r)T̂ † = ei2e Re(α)χ(r)ψ̂(r) (5.19a)
T̂ âT̂ † = â− α , (5.19b)

where in the second line we considered that the operator
exp

[
−i2eRe(α)

∫
dr ψ̂†(r)χ(r)ψ̂(r)

]
does not act on the photonic

sector and then Eq. (5.18) to transform the photon operator.
We remind that we assumed as an hypothesis that the Hamiltonian

of Eq. (5.16) has a ground state |ψ0⟩ with a non-vanishing expectation
value of the photonic annihilation operator (α ≡ ⟨ψ0|â|ψ0⟩ ≠ 0). We
now consider the state |ψ⟩ = T̂ † |ψ0⟩. By means of Eq. (5.19b) we can
prove that such state has zero order parameter,

⟨ψ|â|ψ⟩ = ⟨ψ0|T̂ âT̂ †|ψ0⟩ = 0, (5.20)

where we employed the assumption ⟨ψ0|â|ψ0⟩ = α. In the following
we show that the trial state |ψ⟩ = T̂ † |ψ0⟩ has lower energy than |ψ0⟩,
contradicting the initial assumption that |ψ0⟩ is the ground state.

First, we can prove that,

D̂(α)Û†D̂(α)† = exp
[
−i2eRe(α)

∫
dr ψ̂†(r)χ(r)ψ̂(r)

]
Û† , (5.21)
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where we used that, by means of Eq. (5.19b), D̂(α)(â + â†)D̂(α)† =
(â + â†) − 2 Re(α). Before proceeding, it is useful to consider the
operators product Û†T̂ †,

Û†T̂ † = D̂†(α)D̂(α)Û†D̂†(α) exp
[
i2eRe(α)

∫
dr ψ̂†(r)χ(r)ψ̂(r)

]
,

(5.22)
where we expressed T̂ by using the definition in Eq. (5.17) and we
inserted a product of displacement operators by means of the identity
D̂†(α)D̂(α) = 1. By using Eq. (5.21) the previous expression can be
simplified as,

Û†T̂ † = D̂†(α)Û† . (5.23)

Now we evaluate the total Coulomb Hamiltonian on the trial state
|ψ⟩ = T̂ † |ψ0⟩,

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|
[
T̂ Û(Ĥ0 + Ĥee)Û†T̂ † + T̂ ĤphT̂ †

]
|ψ0⟩ . (5.24)

On one hand, the matter Hamiltonian can be simplified as,

⟨ψ0|T̂ Û(Ĥ0 + Ĥee)Û†T̂ †|ψ0⟩ = ⟨ψ0|Û†(Ĥ0 + Ĥee)Û |ψ0⟩ , (5.25)

where we used the property Û†T̂ † = D̂†(α)Û† given in Eq. (5.23) and
the fact that the displacement operator leaves invariant the matter
Hamiltonian Ĥ0 + Ĥee, D̂(α)(Ĥ0 + Ĥee)D̂†(α) = Ĥ0 + Ĥee. On the
other hand, by means of Eq. (5.19b), we can calculate the average
value of the photonic Hamiltonian Ĥph,

⟨ψ0|T̂ ĤphT̂ †|ψ0⟩ = ⟨ψ0|
[
ωph(â†â+ |α|2) − ωph(αâ† + α∗â)

]
|ψ0⟩ .

(5.26)
, By using that, by construction, we have ⟨ψ0|â|ψ0⟩ = α, Eq. (5.26)
simplifies to,

⟨ψ0|T̂ ĤphT̂ †|ψ0⟩ = ωph
(
â†â− |α|2

)
. (5.27)

106



5.2. Gauge invariance, photon condensation, and no-go theorem in
interacting electron systems

By combining Eq. (5.27) and Eq. (5.25) and the definition of the
total Coulomb Hamiltonian in Eq. (5.16) we have,

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|ĤC|ψ0⟩ − ωph|α|2 . (5.28)

Noticing that ωph|α|2 is by hypothesis a positive and strictly non-zero
quantity we have,

⟨ψ|ĤC|ψ⟩ < ⟨ψ0|ĤC|ψ0⟩ . (5.29)

This equation implies that the state |ψ0⟩, which has a non-vanishing
expectation value of the photon annihilation operator â, is not the
real ground state of the system, since the state |ψ⟩, which was built
specifically to have a vanishing expectation value, has a lower energy.
This concludes the proof by contradiction that super-radiant phase
transitions to a photon condensate is forbidden for any interacting
light-matter system which can be described by an effective Hamiltonian
as Eq. (5.16)

We close by noticing that this result applies also to the case of
a multi-mode cavity field, provided that it still corresponds to the
physical situation of B = 0. In the absence of a magnetic field, the
most general coupling to a transverse electric field is given by the
following unitary transformation,

Û = exp
[
−ie

∑
i

(âi + â†
i )
∫

dr ψ̂†(r)χi(r)ψ̂(r)
]
, (5.30)

While Eq. (5.6) neglects the Zeeman coupling, our main conclusion
can be easily generalized also to the case in which such coupling is
present. The Zeeman coupling is proportional to the scalar product of
the electron spin operator and the magnetic field, i.e. σ̂ · B̂(r). Since
in this work B(r) = ∇ × A0(r) = 0, the Zeeman coupling does not
alter the above analysis.

Finally, we stress that the photon condensate order parameter has
been defined as ⟨â⟩ in the Coulomb gauge. The quantity ⟨â⟩ is not a
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physical, gauge-invariant quantity [84, 213, 214]. For example, in the
dipolar gauge, ⟨â⟩ measures spontaneous polarization of matter, which
is a signature of ferroelectricity [203]. In contrast, In contrast, we here
choose as order parameter the displacement field due to transverse
photons, which coincides with ⟨â⟩ only in the Coulomb gauge. This is a
well defined gauge-invariant quantity and our no-go theorem manifests
in other gauges as the absence of a transverse electromagnetic field.
Of course, when applying a gauge (unitary) transformation, invariant
expectation values are obtained only transforming accordingly both
the quantum states and the operators, see, e.g., Ref [84].

5.2.2 Interacting electrons on a lattice

The methodology delineated earlier is extendable to scenarios involving
electron interactions on a lattice, which involves a discretized spatial
domain. The primary distinctions from the continuous scenario
encompass: (i) the transformation of the integral into a discrete
summation (

∫
dr →

∑
ri

), (ii) the substitution of the electronic field
with a fermionic annihilation operator (ψ̂(r) → ĉri , adhering to the
anti-commutation property {ĉri , ĉ

†
rj } = δri,rj ). Consequently, the

Hamiltonians for one-body electron and electron-electron interaction,
articulated in Eqs. (5.2) and (5.4) respectively, become

Ĥ0 =
∑
ri,rj

τri,rj ĉ
†
ri
ĉrj (5.31a)

Ĥee =
∑
ri,rj

Uri,rj ĉ
†
ri
ĉ†

rj
ĉrj ĉri , (5.31b)

where τri,rj = Ωriδri,rj + triδ⟨ri,rj⟩ describes the on-site energies and
the near-neighbor hopping factors (where ⟨ri, rj⟩ denotes near-neighbor
sites), while Uri,rj is a symmetric operator, since the electron-electron
interaction potential U(|r − r′|) expressed in Eq. (5.4) depends only
on the distance between the two points r and r′.

However, in general, the truncation of the Hilbert space, could
introduce some kind of spatial non-locality in the electron-electron
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interaction [78]. Hence, it can be useful to also consider the generalized
version of Ĥee which includes also non-local effects

Ĥnl
ee =

∑
ri,rj
rl,rm

Url,rm
ri,rj

ĉ†
ri
ĉ†

rj
ĉrm ĉrl

. (5.32)

The previous Hamiltonian appears for example in the context of non-
Fermi liquid states of matter. With a suitable choice of the parameters
Url,rm

ri,rj it indeed coincides with the so-called SYK model [222, 223].
The generalized electron-electron interaction term Ĥnl

ee reduces to the
usual interaction Hamiltonian Ĥee for

Url,rm
ri,rj

= Uri,rjδri,rl
δrj ,rm . (5.33)

The interaction with a single-mode cavity field is again introduced
by applying a unitary transformation to the electronic fields (which now
become the fermionic operators ĉri) in a manner similar to Eq. (5.14),
that is

Û ĉriÛ† = eieχri (â+â†)ĉri , (5.34)

with
Û = exp

[
−ie(â+ â†)

∑
ri

χri ĉ
†
ri
ĉri

]
. (5.35)

Eq. (5.34), can be seen as the equivalent of the Peierls substitution [224].
Such procedure can be regarded as a particular instance of lattice
gauge theory, the general method developed by Wilson for studying
non-perturbative relativistic gauge theories on a lattice [225]. The
obtained coupled light-matter Hamiltonian is similar to the continuum
case expressed in Eq. (5.16),

ĤC = Ĥph + Û
(
Ĥ0 + Ĥnl

ee

)
Û† , (5.36)

where Ĥph is defined in Eq. (5.11) and signifies the bare photonic
Hamiltonian. It’s important to note that, as we have taken into
account the generalized form of the electron-electron interaction
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term that includes non-locality, Ĥnl
ee might not commute with Û any

longer. However, this characteristic is not a prerequisite for the
proof, which remains valid in this instance as well. We do note
that the existence of such a non-local potential suggests that the
resultant comprehensive light-matter Hamiltonian will incorporate
supplementary terms originating from ÛĤnl

eeÛ†. These terms are vital
to maintain gauge invariance, even when an effective non-local potential
is present [75].

The proof of the no-go theorem for interacting electrons systems on
a lattice is now straightforward, and it follows the same steps applied
to the continuum case in Section 5.2.1. We start by introducing the
lattice version of the unitary operator expressed in Eq. (5.17)

T̂ = exp
[
−ie2 Re(α)

∑
ri

χri ĉ
†
ri
ĉri

]
D̂(α) , (5.37)

which transforms the electronic and photonic operators as

T̂ ĉri T̂ † = eie2 Re(α)χri ĉri , (5.38a)
T̂ âT̂ † = â− α . (5.38b)

Once again, we now suppose that the system described by the
Hamiltonian (5.36) has a ground state |ψ0⟩ with a non-vanishing
expectation value of the photonic annihilation operator. We now
construct a trial state |ψ⟩ = T̂ † |ψ0⟩ with the property ⟨ψ|â|ψ⟩ = 0.
Following similar steps Section 5.2.1 we can prove the property,
Û†T̂ † = D̂†(α)Û†, corresponding to Eq. (5.23). It is useful to note that,

T̂ Û(Ĥ0 + Ĥee)Û†T̂ † = ÛD̂(α)(Ĥ0 + Ĥee)D̂†(α)Û† = Û(Ĥ0 + Ĥee)Û† ,
(5.39)

where we used Eq. (5.23) and the fact that D̂(α) commutes with
Ĥ0 + Ĥee. Hence, the total energy of the the trial state |ψ⟩ reads:

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|
[
Û(Ĥ0 + Ĥee)Û† + T̂ ĤphT̂ †

]
|ψ0⟩ . (5.40)
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From Eq. (5.40) and employing Eq. (5.38b), the energy finally
reads,

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|ĤC|ψ0⟩ − ℏωph|α|2 . (5.41)

Again, we find that |ψ0⟩ cannot be the ground state of the
system, since there is a lower energy state |ψ⟩ with the property
that ⟨ψ|â|ψ⟩ = 0, forbidding the superradiant phase transition for such
system.

As observed, the incorporation of approximations, such as the
conversion of continuous space into a lattice, could lead to a form
of spatial non-locality. Moreover, in the realm of solid-state physics,
the shift from the continuum to the lattice is typically executed in
a marginally different manner. For instance, in line with the tight-
binding method, it is feasible to accommodate multiple orbitals at
each lattice site. As suggested in Ref. [219], we can assign the orbital
index µ to each site within the tight-binding framework. Under these
circumstances, the Hamiltonians for one-body electron and non-local
electron-electron interaction transform respectively into

Ĥ0 =
∑
ri,rj

∑
µ1,µ2

τri,rj ,µ1,µ2 ĉ
†
ri,µ1 ĉrj ,µ2 (5.42a)

Ĥnl
ee =

∑
ri,rj
rl,rm

∑
µ1,µ2
µ3,µ3

Url,rm,µ3,µ4
ri,rj ,µ1,µ2 ĉ

†
ri,µ1 ĉ

†
rj ,µ2 ĉrm,µ3 ĉrl,µ4 ,

and the unitary operator Û becomes

Û = exp
[
−ie(â+ â†)

∑
ri

∑
µ

χri,µ ĉ
†
ri,µĉri,µ

]
. (5.43)

The proof of the no-go theorem follows the same procedure applied to
the previous two cases.
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5.3 Gauge invariance, photon condensation,
and no-go theorem in M -level systems

Prior to advancing with the demonstration of the no-go theorem for
a truncated model, we revisit the methodology to formulate M -level
models that uphold gauge-invariance, notwithstanding the truncation of
the Hilbert space. It is already established that the truncated minimal
coupling substitution, presented in Section 1.4.3, is associated with
the broad framework of lattice gauge theory and the so-called Peierls
substitution [79]. In this context, we establish that this association
persists even for M -level systems. The Hamiltonian for any M -level
system can be expressed in the eigenstates |m⟩ basis as follows:

ĥ0 =
M∑

m=1
ϵm |m⟩⟨m| . (5.44)

In the Coulomb gauge, and in the case of a single-mode spatially
uniform vector potential A = A0(â+ â†), such system can be coupled
to A as following [75]

ĥC = Û1ĥ0Û†
1 + Ĥph , (5.45)

where Ĥph = ℏωphâ
†â is the cavity Hamiltonian, and Û1 =

exp[−ieA0X̂(â + â†)] has the purpose of carrying out the minimal
coupling replacement within the dipole approximation. Here X̂ = P̂ x̂P̂
(with P̂ =

∑M
m=1 |m⟩⟨m|) represents the truncated position operator.

We now consider a collection of N identical, non-interacting M -level
atoms. The total bare Hamiltonian is

Ĥ0 =
N∑

n=1

M∑
m=1

ϵm |mn⟩⟨mn| , (5.46)

and, by applying the method discussed above, we get the total
interacting light-matter Hamiltonian:

ĤC = ÛĤ0Û† + Ĥph , (5.47)
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where Û = exp[−ieA0
∑

n X̂n(â+ â†)], and X̂n is the truncated position
operator corresponding to the n-th atom.

We proceed to demonstrate that, given the Hamiltonian of a typical
M -level matter system in interaction with an electromagnetic field
possesses the structure outlined in Eq. (5.47), the photon annihilation
operator â is incapable of having a non-zero expectation value in
this system’s ground state. We validate this using a methodology
akin to the one employed in Section 5.2, which is grounded on the
technique formulated in Ref. [195] for the conventional minimal coupling
replacement scenario. We suppose that the ground state |ψ0⟩ of a
system described by the Hamiltonian (5.47) has the property that
⟨ψ0|â|ψ0⟩ ≠ 0. We introduce the following unitary operator:

T̂ = exp
[
−ieA02 Re(α)

∑
n

X̂n

]
D̂(α) , (5.48)

which has the property of shifting the electron momentum and, in
particular, to shift the photon operators

T̂ âT̂ † = â− α . (5.49)

Again, we construct the trial state as |ψ⟩ = T̂ † |ψ0⟩, which is
characterized by a zero order parameter,

⟨ψ|â|ψ⟩ = 0 . (5.50)

Similarly to Section 5.2, by means of Eq. (5.49), we can prove that,

D̂(α)Û†D̂†(α) = exp
[
−ieA02 Re(α)

∑
n

X̂n

]
Û† , (5.51)

and following the steps of Section 5.2 we can prove Eq. (5.23),
Û†T̂ † = D̂†(α)Û†, also for the present case. The energy of the trial
state |ψ⟩ reads,

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|
[
T̂ ÛĤ0Û†T̂ † + T̂ ĤphT̂ †

]
|ψ0⟩ . (5.52)
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By means of Eq. (5.23) and Eq. (5.49), the energy reads,

⟨ψ|ĤC|ψ⟩ = ⟨ψ0|ĤC|ψ0⟩ − ωph|α|2 . (5.53)

Eq. (5.53) implies that the state |ψ0⟩, which has a non-vanishing
expectation value of the photon annihilation operator â, is not the real
ground state of the system, since a lower energy state |ψ⟩, which was
built specifically to have a vanishing expectation value, has a lower
energy. This ends the proof by contradiction. We have shown that the
true ground-state of ĤC is characterized by a vanishing super-radiant
order parameter ⟨â⟩.

5.3.1 Mapping onto a tight-binding lattice

As discussed in Section 1.4, under the dipole approximation, a two-level
atom’s interaction with the electromagnetic field can be equivalently
portrayed as a double-well system. This system considers only the
two lowest energy eigenstates, which subsequently corresponds to a
two-site system interacting with a cavity field [79]. In this context, we
broaden this concept to a generic M -level system, illustrating that it
can be represented as a linear chain of sites interconnected by hopping
processes (i.e., a tight-binding lattice).

We now define the following operator,

R̂ = −eA0x̂ . (5.54)

In the basis of the eigenstates |m⟩, R̂ can be expressed as

R̂ =
M−1∑
m1=0

M−1∑
m2=0

Rm1,m2 |m1⟩ ⟨m2| . (5.55)

Since R̂ is an Hermitian operator, it defines a basis of eigenvectors |r⟩
such that:

R̂ |r⟩ = λr |r⟩ . (5.56)
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Recalling Eq. (5.54), the states |r⟩ are also eigenvectors of the position
operator, i.e. x̂ |r⟩ = xr |r⟩, with λr = −eA0xr. As we will show
momentarily, this local basis of eigenstates of the position operator x̂
defines a natural lattice representation of the Hamiltonian ĥ0.

We now introduce the unitary transformation Ô, which connects
the energy basis |m⟩ with the position basis |r⟩. Its matrix elements
will be denoted by the symbol Or,m ≡ ⟨r|Ô|m⟩. By definition, the
following property holds true:

δr1,r2λr1 =
M−1∑
m1=0

M−1∑
m2=0

Or1,m1Rm1,m2O
†
m2,r2 . (5.57)

As this identity shows, the transformation Ô diagonalizes the position
operator R̂.

The lattice representation of the matter Hamiltonian ĥ0 is given by

ĥ0 =
M−1∑
r1=0

M−1∑
r2=0

tr1,r2 |r1⟩ ⟨r2| , (5.58)

where the hopping matrix tr1,r2 is defined by

tr1,r2 =
M−1∑
m=0

Or1,mϵmO
†
m,r2 . (5.59)

It is worth noting that the Hamiltonian written above is on the same
form of the one-body Hamiltonian on a lattice described by Eq. (5.2).

We are now in the position to write the Hamiltonian ĥc (defined by
Eq. (5.45)) in terms of the eigenvectors |m⟩ of the position operator:

ĥ =
M−1∑
r1=0

M−1∑
r2=0

eiλr1 (â+â†)tr1,r2e
−iλr2 (â+â†) |r1⟩ ⟨r2|

=
M−1∑
r1=0

M−1∑
r2=0

e−ie(xr1 −xr2 )(â+â†)tr1,r2 |r1⟩ ⟨r2| .
(5.60)
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This is the main result of this Section. It shows that the coupled
Hamiltonian ĥc has the exact same form of a tight-binding lattice
model coupled to light via the Peierls substitution. In fact, the
Peierls approach was originally formulated to examine electron systems
interacting with static magnetic fields, within the context of the tight-
binding approximation. The Peierls substitution can be perceived as a
precursor to lattice gauge theory, which is the comprehensive method
devised by Wilson for investigating non-perturbative relativistic gauge
theories on a lattice [225], or in the field of condensed matter physics,
for scrutinizing quantum simulations of lattice gauge theories [226]. In
this discussion, we have demonstrated that these two methodologies
align when one operates in the position basis |m⟩. Consequently, within
the lattice basis, the Peierls substitution emerges as the most universal
instrument for coupling matter with a singular cavity mode.

5.3.2 Example: a ladder three-level system

We now consider the particular case of a three-level ladder atom, which
can be described as a three-site system with inversion symmetry, as
depicted in Fig. 5.1. In this Section we show that, in stark contrast
to the conclusions of Refs. [200, 201], such system does not display
photon condensation.

The bare Hamiltonian of a single three-level ladder atom, expressed
in the lattice representation (see Eq. (5.58)), reads as following:

ĥ0 =
1∑

i=−1
ϵi |i⟩⟨i| + t(|−1⟩⟨0| + |0⟩⟨1| + H.c.) . (5.61)

We consider here a system with parity symmetry, so that the
selection rules for a three-level ladder atom apply: ϵ−1 = ϵ1. From
now on, we also fix ϵ−1 = ϵ1 = 0. According to gauge lattice
theory, the interaction with the electromagnetic field can be obtained
by introducing the Wilson parallel transporter [225]. The resulting
Hamiltonian, after applying the dipole approximation (uniform field),
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Figure 5.1: Graphical depiction of a group of three-level atoms interacting with
a cavity field. Each atom, viewed in a ladder configuration, can be interpreted
as a three-site system with nearest neighbor hopping and parity symmetry. The
interaction with the electromagnetic field, according to the lattice gauge theory, can
be derived using the Wilson parallel transporter.

is
ĥtot = Ĥph + ĥ , (5.62)

where Ĥph is the free-photon Hamiltonian and ĥ is the atomic
Hamiltonian, now invariant under arbitrary (site-dependent) phase
transformations:

ĥ = ϵ0 |0⟩⟨0| + [te−iγ(â†+â)(|−1⟩⟨0| + |0⟩⟨1|) + H.c.] , (5.63)

accordingly to Eq. (5.60). Her, γ = −edA0 with d the distance between
two adjacent sites. For simplicity, we assume a single mode optical
resonator: Ĥph = ℏωphâ

†â, with the field coordinate Â = A0(â† + â),
where A0 is the vacuum fluctuation amplitude.
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The Hamiltonian in Eq. (5.63) can also be written as

ĥ = Û1ĥ0Û†
1 , (5.64)

where
Û1 = exp

[
−iex̂LÂ

]
, (5.65)

and x̂L is the lattice coordinate, i.e. x̂L = d
∑

j j |j⟩⟨j|.
Let us now consider a collection of N identical, non-interacting

three-level ladder atoms. The total Hamiltonian is

Ĥ = Ĥph + ϵ0Σ̂0,0 + t[e−iγ(â†+â)(Σ̂−1,0 + Σ̂0,1) + H.c.] , (5.66)

where

Σ̂i,j =
N∑

k=1
|ik⟩⟨jk| . (5.67)

Equation (5.66) can be written compactly as

Ĥ = Ĥph + ÛĤ0Û† (5.68)

where
Ĥ0 = ϵ0Σ̂0,0 + t

(
Σ̂−1,0 + Σ̂0,1 + H.c.

)
(5.69)

and

Û = exp

iγ2
(
â+ â†

) N∑
j=1

j Σ̂j,j

 . (5.70)

When the system’s Hamiltonian is cast in the form of Eq. (5.68),
the theorem demonstrated in the beginning of the section, showing
that no photon condensation can occur, can be readily applied to this
case.
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5.4 Towards superradiant phase transitions in
magnonic systems

In this section we briefly discuss the magnon-photon interaction in
the context of cavity QED. One of the most interesting features of
this systems is the Zeeman-like coupling between the collective spin
waves (magnons) and the electromagnetic field. Is has been shown that
this coupling does not have any Â2 term in the Hamiltonian, and thus
there is the possibility to achieve photon condensation under certain
parameters [217]. Recently, the ultrastrong coupling between magnons
and photons has been achieved [7], showing a negligible contribution
of the diamagnetic term in the parameters fitting, and thus confirming
the theory of Zeeman-like coupling.

The interaction between magnetic excitations and electromagnetic
radiation has recently become a central focus in numerous research
fields such as magnonics, spintronics, magneto-opto-mechanics, and
information processing due to its potential for the development of
hybrid systems and devices [227–230]. The manipulation of magnon-
photon coupling and cooperativity is a crucial aspect for harnessing the
unique functionalities associated with the coherent dynamics in these
systems. New applications, including memory devices [231], coherent
spin pumping [232], haloscopes for axion detection [233], microwave-
optical transducers [234] and coherent microwave sources [235] have
already been explored. A current challenge is the creation of all-on-chip
devices for their efficient integration into microwave circuits [230].

In the typical scenario of a ferromagnetic sample embedded in a
microwave resonator, spin waves couple with resonant electromagnetic
modes [236] and the system can be modeled by combining Maxwell
and Landau-Lifshitz-Gilbert (LLG) equations [237, 238]. This classical
description is remarkably effective in the case of the ferrimagnetic
Yttrium Iron Garnet (YIG) [229], which has been extensively studied
due to its combination of several optimal features, including the
exceptionally low damping of magnetization precession [239].
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In the quantum regime, spin waves are collective (bosonic)
excitations (magnons) that may coherently interact with cavity
photons [240, 241], and its interaction is well described by the
Dicke model because of the Zeeman interaction. The USC regime
was first reported in the case of mm-size YIG crystals in 3D
cavities [46, 242–245] and few other magnetic materials [67, 246–
248]. In view of the realization of scalable architectures, small magnets
coupled to superconducting planar resonant geometries have been
recently designed and observed to achieve the (ultra-)strong coupling
regime [249–256].

In this section, we illustrate the attainment of high coupling rates
by placing the magnetic film in direct contact with the superconducting
resonator. In our setup, the excitation of spin waves occurs at the
superconductor/ferrimagnet interface, where the amplitude of the
microwave field reaches its peak. The optimized magnon-photon
coupling leads to collective coupling strengths as large as 0.2 times the
cavity frequency. Data analysis, conducted with a modified Hopfield
model for which we provide an exact solution, also reveals negligible
diamagnetic coupling for magnon excitations in YIG [7].

5.4.1 Theoretical model

We model our system by considering a quantized single-mode electro-
magnetic field (with ωc cavity frequency) interacting with an ensemble
of magnetic moments. We consider collective operators for the spin
ensemble, the quantization of both spin excitations and the electro-
magnetic field which allows us to introduce the respective bosonic
operators â and b̂. Due to the vanishing orbital angular momentum
of Fe3+ in YIG [238], we expect a prominent Zeeman interaction of
the type ĤZ = −geσ̂ · µBĥ for a single spin. Here [σ̂j , σ̂k] = iϵjklσ̂l are
the Pauli operators, ĥ is the magnetic field component of the cavity
resonator while µB is the Bohr magneton and ge ≈ 2 in the case of
a simple electron. However, to not exclude the possibility of having
orbital angular momentum contributions in our hybrid system, we also
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consider this degree of freedom including a diamagnetic term, which
comes from the usual minimal coupling replacement.

The total Hamiltonian then reads (ℏ = 1)

Ĥ = ωcâ
†â+ ωb

2

N∑
j=1

σ(j)
z + λ

2
√
N

N∑
j=1

σ(j)
x

(
â+ â†

)
+ β

(
â+ â†

)2
,

(5.71)

where â (â†) is the photon annihilation (creation) operator, ωc is the
cavity resonance frequency, ωb is the resonance frequency of a single
spin, λ is the collective light-matter coupling, and β is the coefficient
of the diamagnetic term.

By using the collective spin operators Ĵz ≡ (1/2)
∑N

j=1 σ̂
(j)
z and

Ĵx = Ĵ+ + Ĵ− ≡ (1/2)
∑N

j=1 σ̂
(j)
x , we can apply the Holstein-Primakoff

transformations [257]

Ĵz → b̂†b̂− N

2 , Ĵ+ → b̂†
√
N − b̂†b̂ , Ĵ− = Ĵ†

+ , (5.72)

where b̂ and b̂† are the magnon annihilation and creation operators
respectively, which obey to the standard bosonic commutation relations.
In the thermodynamic limit (i.e. N → ∞) we can approximate
Ĵ+ ≈

√
Nb̂†. Then, by applying the Holstein-Primakoff transformation,

we obtain:

Ĥ = ωcâ
†â+ ωbb̂

†b̂+ λ
(
b̂+ b̂†

) (
â+ â†

)
+ β

(
â+ â†

)2
, (5.73)

that is the well-known Hopfield Hamiltonian [182].
We consider the dependence of the magnon resonance fre-

quency ωb to the external magnetic field H0 as described by ωb =√
ωH(ωH + ωM ) + ∆, leaving as the sole free parameter the energy

shift ∆ characterizing high frequency magnons for the next step of
our investigation. In our analysis we also leave as free parameters the
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cavity frequency ωc, the collective coupling λ and the factor of the
diamagnetic term β.

The Hamiltonian in Eq. (5.73) can be expressed in terms of two non-
interacting harmonic oscillators Ĥ = Ω−P̂

†
−P̂− + Ω+P̂

†
+P̂+, where P̂±

are the polariton operators, which are linear combinations of light and
matter operators P̂µ = c

(µ)
1 â+ c

(µ)
2 b̂+ c

(µ)
3 â† + c

(µ)
4 b̂†, with µ = ±. To

fit our parameters, we need first to find the polariton frequencies, and,
being a proper bosonic excitation of the system, the operator P̂µ fulfills
the equation of motion of the harmonic oscillator [P̂µ, Ĥ] = ΩµP̂µ.
Since the polariton operator P̂µ is a linear combination of the light
and matter operators, we need to calculate first the commutator of the
latter with the Hamiltonian[

â, Ĥ
]

= ωcâ+ λ
(
b̂+ b̂†

)
[
b̂, Ĥ

]
= ωbb̂+ λ

(
â+ â†

)
[
â†, Ĥ

]
= −ωcâ

† − λ
(
b̂+ b̂†

)
[
b̂†, Ĥ

]
= −ωbb̂

† − λ
(
â+ â†

)
,

and the polariton frequencies Ωµ are obtained by finding the positive
eigenvalues of the following Hopfield matrix

M =


ωc + 2β λ −2β −λ

λ ωb −λ 0
2β λ −ωc − 2β −λ
λ 0 −λ −ωb

 . (5.74)

leading to:

Ω± = 1√
2

√
ω̃2

c + ω2
b ±

√(
ω̃2

c − ω2
b

)2 + 16ωcωbλ2 , (5.75)

where ω̃c =
√
ωc(ωc + 4β).

The aforementioned equation provides an excellent fit for the S21
spectrum peaks. The optimal fit result, depicted in Fig. 5.2, was
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Figure 5.2: Best fit of the transmission spectrum obtained with the YIG film
pressed on top of the superconducting YBCO CPW. The obtained parameters are:
ωc/2π = 8.65 GHz, ∆/2π = 2.05 GHz, λ/2π = 2.002 GHz, α/

√
2π = 3×10−3 GHz 3

2 .
Image taken from Ref. [7].

achieved with these parameters: ωc/2π = 8.65 GHz, ∆/2π = 2.05 GHz,
and λ/2π = 2.002 GHz. Regarding the diamagnetic parameter β,
the only nontrivial result (i.e., nonzero result from fit) was obtained
by assuming a dependence on the magnon frequency: β = α/

√
ωb,

which can be justified by the fact that the presence of this term is
dominant at low frequencies. With this assumption, we obtained
α/

√
2π = 3 × 10−3 GHz

3
2 , corresponding to a value of the diamagnetic

coefficient β/2π ∼ 10−3 GHz on resonance condition. The ratio between
the collective coupling and the cavity frequency is approximately 0.23,
fulfilling the criterion λ/ωc > 0.1 for USC. The fit confirms that the
influence of the diamagnetic term is almost negligible leading us to
conclude that the system couples to the resonator mainly through the
spins. Notice that its value is more than two orders of magnitude smaller
than the standard diamagnetic term for electric dipolar interactions
βstd = λ2/ωb. The smallness of the diamagnetic factor opens the
possibility to achieve photon condensation in this systems [217].
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APPENDIX A

Master equation for
ultrastrongly coupled

systems

We start by considering a generic system interacting with reservoir (or
environment), which is a large system with infinitely many states. Let
the Hamiltonians be, respectively, ĤS and ĤR, and the interaction
Hamiltonian be V̂. The total Hamiltonian is then

Ĥtot = ĤS + ĤR + V̂. (A.1)

Here we model the environment as an infinite set of harmonic
oscillators, with the corresponding creation and annihilation operators
b̂†

k and b̂k, respectively. For instance, this is the case of the open
radiation field that behaves as a reservoir for an atom [97, 98]. Now, let
˜̂ρ(t) = exp(iĤRt)ρ̂(t)exp(−iĤRt) be the density matrix of the reservoir
in the interaction picture1, we then obtain the von Neumann equation
in the interaction picture

d
dt

˜̂ρ = −i
[ ˜̂V(t), ˜̂ρ(t)

]
, (A.2)

1From now on, we will consider ℏ = 1 to simplify the notation.
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where the time dependence of ˜̂V(t) originates from the transformation
to the interaction picture, ˜̂V(t) = exp(iĤRt)V̂exp(−iĤRt).

A.1 The Born-Markov approximation

We are now interested in the reduced dynamics of the system, which is
obtained by tracing out the reservoir degrees of freedom from the total
density matrix. Indeed, we can assume that the reservoir is basically
unaffected by the system, and so we define the reduced density matrix
as

ρ̂S(t) = TrR [ρ̂tot(t)] , (A.3)

and we assume also that the two systems are uncoupled at t = 0, i.e.
ρ̂tot(0) = ρ̂S(0) ⊗ ρ̂R(0). By integrating Eq. (A.2) we obtain

˜̂ρ(t) = ˜̂ρ(0) − i

∫ t

0
dt′
[ ˜̂V(t′), ˜̂ρ(t′)

]
. (A.4)

Substituting this equation back again into Eq. (A.2) and tracing out
the reservoir degrees of freedom, we get

d
dt

˜̂ρS(t) = − iTrR

[ ˜̂V(t), ˜̂ρ(0)
]

−
∫ t

0
dt′ TrR

[ ˜̂V(t),
[ ˜̂V(t′), ˜̂ρ(t′)

]]
,

(A.5)

which can be iterated repeatedly to obtain a series expansion at various
orders in the interaction Hamiltonian V̂. However, we limit ourselves
to the second order, because we assume that the interaction is weak.

Then, we assume that the interaction Hamiltonian is linear in terms
of the system and reservoir operators, and that it contains only off-
diagonal matrix elements. Indeed, if some diagonal element is present
in the interaction term V̂, it can be incorporated inside the diagonal
part. We assume also that the density matrix of the environment is
diagonal in the energy basis, because it represents a quantum system
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in equilibrium at some temperature. If it were not in equilibrium, it
would mean that it is still interacting with another system with similar
dimensions of the environment itself. Under these conditions, we have

TrR

[ ˜̂V(t), ˜̂ρ(0)
]

= TrR

[
V̂(t), ρ̂S(0) ⊗ ρ̂R(0)

]
= 0 , (A.6)

because, when performing the trace over the reservoir degrees of
freedom, the interaction term contains only off-diagonal term and
the environment density matrix is diagonal. Then, the first term in
Eq. (A.5) vanishes.

As can be seen from Eq. (A.5), the time derivative of the density
matrix at time t depends on the density matrix at all previous times
t′. However, we can perform a few other simplifications. On the basis
of our assumptions about the relative sizes of both S and R, as well
as the weakness of the coupling between them, we can replace ˜̂ρ(t′)
by ˜̂ρS(t′)ρ̂R(0), which means that the reservoir attains much faster
compared to the time it takes to the system to change. Thus, we
conclude that the reservoir correlations contained in the products
˜̂V(t) ˜̂V(t′) are sharply peaked around t = t′. We can therefore replace
˜̂ρ(t′) by ˜̂ρ(t) in the second term of Eq. (A.5), obtaining

d
dt

˜̂ρS(t) = −
∫ t

0
dt′ TrR

[ ˜̂V(t),
[ ˜̂V(t′), ˜̂ρS(t) ⊗ ρ̂R(0)

]]
. (A.7)

By applying the change of variable t′ → t − t′, and extending the
domain of the integration to infinity, we finally obtain the well-known
Born-Markov master equation

d
dt

˜̂ρS(t) = −
∫ ∞

0
dt′ TrR

[ ˜̂V(t),
[ ˜̂V(t− t′), ˜̂ρS(t) ⊗ ρ̂R(0)

]]
, (A.8)

where the name comes from the Born approximation, which is the
truncation of the series expansion of the von Neumann equation at
the second order in ˜̂V and the Markov approximation, which is the
assumption that the reservoir attains much faster compared to the
time it takes to the system to change.
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A.2 Generalized master equation without
post-trace RWA

Up to now, we never specified the form of the interaction Hamiltonian V̂ ,
but we already said that it is linear in terms of the system and reservoir
operators and it is off-diagonal because it describes only interactions
and not energy shifts. The form ho the interaction Hamiltonian is

V̂ = Ŝ
(
B̂ + B̂†

)
, (A.9)

where B̂ =
∑

n gnb̂n, with gn and b̂n the coupling constant and the
destroy operator of the n-th mode, respectively. Ŝ is the system
operator, which in the basis of the eigenstates of the system Hamiltonian
ĤS is

Ŝ =
∑
j,k

Sjk |j⟩⟨k| =
∑
j,k

Ŝjk , (A.10)

which can contain both positive and negative frequencies. Due to the
small coupling between the system and the reservoir, we can perform
the rotating wave approximation

V̂ = Ŝ+B̂† + Ŝ−B̂ , (A.11)

where
Ŝ+ =

∑
j,k>j

Sjk |j⟩⟨k| , Ŝ− =
(
Ŝ+
)†
. (A.12)

In the interaction picture, we have that the bath operators oscillates as
˜̂B(t) =

∑
n gne

−iωntb̂n, where ωn is the frequency of the n-th mode of
the environment. On the other hand, the system operator oscillates as

˜̂S+(t) =
∑

j,k>j

Ŝjke
−iωkjt =

∑
j,k>j

˜̂
Sjk(t) , (A.13)

and the interaction term in the interaction picture becomes

˜̂V(t) = ˜̂S+(t) ˜̂B†(t) + ˜̂S−(t) ˜̂B(t) . (A.14)
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A.2. Generalized master equation without post-trace RWA

By substituting this expression into Eq. (A.8) and expanding the
commutators, we obtain

d
dt

˜̂ρS(t) =
∫ ∞

0
dt′
{[ ˜̂S−(t− t′)˜̂ρS(t) ˜̂S+(t)

− ˜̂S+(t) ˜̂S−(t− t′)˜̂ρS(t)
] 〈 ˜̂B†(t) ˜̂B(t− t′)

〉
R

+
[ ˜̂S+(t− t′)˜̂ρS(t) ˜̂S−(t)

− ˜̂S−(t) ˜̂S+(t− t′)˜̂ρS(t)
] 〈 ˜̂B(t) ˜̂B†(t− t′)

〉
R

+
[ ˜̂S−(t)˜̂ρS(t) ˜̂S+(t− t′)

− ˜̂ρS(t) ˜̂S+(t− t′) ˜̂S−(t)
] 〈 ˜̂B†(t− t′) ˜̂B(t)

〉
R

+
[ ˜̂S+(t)˜̂ρS(t) ˜̂S−(t− t′)

− ˜̂ρS(t) ˜̂S−(t− t′) ˜̂S+(t)
] 〈 ˜̂B(t− t′) ˜̂B†(t)

〉
R

}
,

(A.15)

where ⟨·⟩R = TrR [·ρ̂R(0)] is the expectation value over the reservoir
degrees of freedom. By using Eq. (A.13), and the relation ˜̂

Sjk(t− t′) =
˜̂
Sjk(t)eiωkjt′ , we obtain

d
dt

˜̂ρs(t) =
∑

j,k>j
l,m>l

{[ ˜̂
S†

lm(t)˜̂ρS
˜̂
Sjk(t) − ˜̂

Sjk(t) ˜̂
S†

lm(t)˜̂ρS(t)
]

G1(ωml)

+
[ ˜̂
Slm(t)˜̂ρS(t) ˜̂

S†
jk(t) − ˜̂

S†
jk(t) ˜̂

Slm(t)˜̂ρS(t)
]

G2(ωml)

+
[ ˜̂
S†

jk(t)˜̂ρS(t) ˜̂
Slm(t) − ˜̂ρS(t) ˜̂

Slm(t) ˜̂
S†

jk(t)
]

G3(ωml)

+
[ ˜̂
Sjk(t)˜̂ρS(t) ˜̂

S†
lm(t) − ˜̂ρS(t) ˜̂

S†
lm(t) ˜̂

Sjk(t)
]

G4(ωml)
}
,

(A.16)
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where

G1(ω) =
∫ ∞

0
dt′ e−iωt′ 〈 ˜̂B†(t) ˜̂B(t− t′)

〉
R
, (A.17a)

G2(ω) =
∫ ∞

0
dt′ eiωt′ 〈 ˜̂B(t) ˜̂B†(t− t′)

〉
R
, (A.17b)

G3(ω) =
∫ ∞

0
dt′ eiωt′ 〈 ˜̂B†(t− t′) ˜̂B(t)

〉
R
, (A.17c)

G4(ω) =
∫ ∞

0
dt′ e−iωt′ 〈 ˜̂B(t− t′) ˜̂B†(t)

〉
R
. (A.17d)

One of the assumptions regarding the environment state was
that it is in equilibrium at some temperature T , which means that
[ĤR, ρ̂R] = 0. This implies that the reservoir correlation functions are
time-translationally invariant, i.e. ⟨ ˜̂B†(t) ˜̂B(t − t′)⟩R = ⟨ ˜̂B†(t′) ˜̂B(0)⟩R.
This can be proved by explicitly writing the bath operators in the
interaction picture ˜̂B(t) =

∑
n gnexp(−iωnt)b̂n, and using the fact that

the reservoir is in a stationary state. Then we have〈 ˜̂B†(t) ˜̂B(t− t′)
〉

R
=
∑
n,m

g∗
ngme

iωnmteiωmt′ 〈
b̂†

nb̂m

〉
R

=
∑
n,m

g∗
ngme

iωnmteiωmt′
nth(ωm, T )δnm

=
∑

n

|gn|2eiωnt′
nth(ωn, T ) ,

(A.18)

which depends only on the time difference, which is t′. Where
nth(ω, T ) = [exp(ℏω/(kBT )) − 1]−1 is the thermal population and
kB is the Boltzmann constant. Obviously, the same holds for the other
correlation functions.

In general, we can also consider a continuum of modes, replacing
the summation over n with an integral over the density of states, but
for the purposes of this Thesis we are only interested in the so called
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A.2. Generalized master equation without post-trace RWA

Ohmic baths, which means that we can consider

G1(ω) = G3(ω) = 1
2nth(ω, T )Γ(ω) (A.19a)

G2(ω) = G4(ω) = 1
2 [nth(ω, T ) + 1] Γ(ω) , (A.19b)

where Γ(ω) = γ̃ω is the frequency dependent decay rate.
By substituting these expressions into Eq. (A.16), and by passing

to the Schrödinger picture, we obtain
d
dt ρ̂S(t) = − i

[
ĤS , ρ̂S(t)

]
+ 1

2
∑

j,k>j
l,m>l

Γ(ωml)
{[
Ŝ†

lmρ̂S(t)Ŝjk − ŜjkŜ
†
lmρ̂S(t)

]
nth(ωml)

+
[
Ŝlmρ̂S(t)Ŝ†

jk − Ŝ†
jkŜlmρ̂S(t)

]
[nth(ωml) + 1]

+
[
Ŝ†

jkρ̂S(t)Ŝlm − ρ̂S(t)ŜlmŜ
†
jk

]
nth(ωml)

+
[
Ŝjkρ̂S(t)Ŝ†

lm − ρ̂S(t)Ŝ†
lmŜjk

]
[nth(ωml) + 1]

}
,

(A.20)
which can be further simplified by using the following operators

Ŝ+
1 =

∑
j,k>j

Γ(ωkj)nth(ωkj)Ŝjk (A.21a)

Ŝ+
2 =

∑
j,k>j

Γ(ωkj) [nth(ωkj) + 1] Ŝjk (A.21b)

and their Hermitian conjugates Ŝ−
1 and Ŝ−

2 , respectively. And finally
we have the generalized master equation in its simples form
d
dt ρ̂S(t) = − i

[
ĤS , ρ̂S(t)

]
+ 1

2
[
Ŝ−

1 ρ̂S(t)Ŝ+ + Ŝ−ρ̂S(t)Ŝ+
1 − Ŝ+Ŝ−

1 ρ̂S(t) − ρ̂S(t)Ŝ+
1 Ŝ−

+ Ŝ+
2 ρ̂S(t)Ŝ− + Ŝ+ρ̂S(t)Ŝ−

2 − Ŝ−Ŝ+
2 ρ̂S(t) − ρ̂S(t)Ŝ−

2 Ŝ+
]
.

(A.22)
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When examining the interaction scenario, each term in Eq. (A.20),
with the exception of the final one, fluctuates at ±(ωml − ωkj). If the
absolute value of |ωml − ωkj | surpasses the system’s decay rates Γ(n)

by a considerable margin, these elements yield insignificant additions
to the integration of the master equation. As such, |ωml − ωkj | can be
approximated to be on par with the linewidths of the system.

Even though Eq. (A.20) contains terms that oscillate rapidly due to
transitions with substantial frequency disparities (which are not present
following the post-trace RWA in the adorned master equation), they are
unlikely to contribute significantly if |ωml − ωkj | > Γ(n). Nevertheless,
they can drastically inflate the computation duration and trigger
computational instabilities, which can be prominent when generating
log-scaled spectra. To counteract these challenges, we incorporate a
low-pass filter function in Eq. (A.20), aiming to curtail the influence
of dissipator terms associated with large frequency disparities [100].
This filter function can adopt any form of a low-pass filter, such as a
step-like or sigmoid-like configuration.
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APPENDIX B

Vectorization of the density
matrix

In finite sizes Hilbert spaces, which are always the case in numerical
simulations, the density matrix is represented by a square matrix ρ of
dimension N ×N , where N is the dimension of the Hilbert space. The
density matrix is Hermitian, which means that ρij = ρ∗

ji, and positive
semi-definite, which means that all its eigenvalues are non-negative.
The density matrix is also normalized, which means that Tr(ρ) = 1.
Its time evolution is given by the master equation

d
dt ρ̂ = Lρ̂ , (B.1)

where L is the Liouvillian superoperator. The Liouvillian superoperator
is a linear operator acting on the space of operators. In numerical
simulations, however, it is more convenient to represent the density
matrix as a vector ρ⃗ of dimension N2 and the Liouvillian superoperator
as a matrix L. The process of vectorization of the density matrix is
relatively simple, but it is worth noting that it can be performed in
row-major or column-major order. In general, the default reshape
function in Python uses row-major order, while the reshape function
in Julia uses column-major order. Assuming a column-major ordering,
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B. Vectorization of the density matrix

the vectorization of a 2x2 density matrix is given by

ρ̂ =
(
ρ11 ρ12
ρ21 ρ22

)
→ ρ⃗ =


ρ11
ρ21
ρ12
ρ22

 . (B.2)

The procedure to convert the Liouvillian is slightly more compli-
cated. First, we need to distinguish between the left and right action
of the Liouvillian subparts. The left action becomes

DL

[
Ŝ
]
ρ̂ = Ŝρ̂ → DLρ⃗ =

(
Î ⊗ Ŝ

)
ρ⃗ . (B.3)

Indeed, taking as an example

Ŝ =
(
S11 S12
S21 S22

)
, (B.4)

the action in the vectorized form is given by

σ⃗ =
(
Î ⊗ Ŝ

)
ρ⃗ =


S11 S12 0 0
S21 S22 0 0
0 0 S11 S12
0 0 S21 S22



ρ11
ρ21
ρ12
ρ22



=


S11ρ11 + S12ρ21
S21ρ11 + S22ρ21
S11ρ12 + S12ρ22
S21ρ12 + S22ρ22

 .

(B.5)

It is straightforward to see that σ⃗ reshaped again in a 2x2 matrix gives
Ŝρ̂.

In the same way, the right action becomes

DR

[
Ŝ
]
ρ̂ = ρ̂Ŝ → DRρ⃗ =

(
ŜT ⊗ Î

)
ρ⃗ , (B.6)
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where the transpose of Ŝ is taken because the action is on the right.
The action in the vectorized form is given by

σ⃗ =
(
ŜT ⊗ Î

)
ρ⃗ =


S11 0 S21 0
0 S11 0 S21
S12 0 S22 0
0 S12 0 S22



ρ11
ρ21
ρ12
ρ22



=


S11ρ11 + S21ρ12
S11ρ21 + S21ρ22
S12ρ11 + S22ρ12
S12ρ21 + S22ρ22

 .

(B.7)

Once again, it is straightforward to see that σ⃗ reshaped again in a
2x2 matrix gives ρ̂Ŝ. Now, the simultaneous action of the left and
right subparts of the Liouvillian superoperator is simply given by the
Kronecker product of the two matrices

DLR

[
Ŝ1, Ŝ2

]
ρ̂ = Ŝ1ρ̂Ŝ2 → DLRρ⃗ =

(
ŜT

2 ⊗ Ŝ1
)
ρ⃗ . (B.8)

The vectorization procedure is very useful in numerical simulations.
As an example, the steadystate of the system can be found by
diagonalizing the Liouvillian L in its matrix form and taking the
only eigenvector with eigenvalue equal to zero. Indeed, the steadystate
is the only state which satisfies the equation

d
dt ρ̂ = Lρ̂ = 0 , (B.9)

which is equivalent to the equation

Lρ⃗ = 0ρ⃗ . (B.10)
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APPENDIX C

Matrix continued fractions
algorithm for

time-dependent
Hamiltonians

As already mentioned in Chapter 3, dealing with time-dependent
Hamiltonians is not always trivial. The time-dependence in quantum
optics usually comes from a coherent drive, such as a laser. When
dealing with harmonic systems, or in general, when the operator
which couples the system with the coherent drive oscillates at one
single frequency, the time dependence can be eliminated by a unitary
transformation. However, this is not the case in the USC regime, where
the system operator generally oscillates at different frequencies. For
instance, if we consider the field operator Â ≡ â+ â†, in the interaction
picture we have

X̂(t) =
∑
j,k

e−iωkjt ⟨j|â+ â†|k⟩ |j⟩⟨k| . (C.1)

It is now clear that we must deal with time dependence. When
performing numerical simulations this can lead to a huge computational
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C. Matrix continued fractions algorithm for time-dependent
Hamiltonians

cost, because the standard iterative algorithms for finding the steady
state [101] will fail because there is no time-independent steady state
this time. Up to now, it seems that we have to solve the time-dependent
generalized master equation in Eq. (2.33), integrating for a long time
and then averaging over the steady state.

To overcome this problem, we can use the Floquet formalism and
the expansion of the density matrix in Fourier components, solving a
matrix continued fraction problem, and finding the averaged steady
state [146–148]. Let us start first by defining the time-dependent
equation of motion for the density matrix

d
dt ρ̂ =

[
L0 + L1e

iωLt + L−1e
−iωLt

]
ρ̂ , (C.2)

where L±1 are the superoperators involving the drive. In the case of
Chapter 3 we have1

L±1ρ̂ = Ω
2
[
i
(
â− â†

)
− 2ησ̂p, ρ̂

]
. (C.3)

The Floquet formalism implies that the density matrix at long times
can be expanded in Fourier components of the form

ρ̂(t) =
+∞∑

n=−∞
ρ̂ne

inωLt , (C.4)

because all other transient terms will vanish at long times. Substituting
the expansion in the equation of motion, we obtain

+∞∑
n=−∞

inωLρ̂ne
inωLt =

+∞∑
n=−∞

[
L0 + L1e

iωLt + L−1e
−iωLt

]
ρ̂ne

inωLt .

(C.5)
Equating the coefficients of the series yields the tridiagonal recursion
relation

0 = (L0 − inωL) ρ̂n + L1ρ̂n−1 + L−1ρ̂n+1 . (C.6)
1Note here that in this specific case L1 = L−1, because we are considering a

cosine drive.
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Such a recursion can be solved in different ways. The most common one
is the matrix continued fraction method. Suppose that for n ⩾ 0 it is
possible to find a sequence of superoperators Sn such that ρ̂n = Snρ̂n−1.
Then, the recursion relation becomes

[(L0 − inωL) Sn + L1 + L−1Sn+1Sn] ρ̂n−1 = 0 , (C.7)

which yields

(L0 − inωL) Sn + L1 + L−1Sn+1Sn = 0 , (C.8)

or, equivalently,

Sn = − [(L0 − inωL) + L−1Sn+1]−1 L1 . (C.9)

This expressed Sn in terms of Sn+1. We now assume that the
contribution of the nmax-th term is negligible, setting Snmax = 0. Using
now this recursion we can obtain all the superoperators, until we reach
the last one S1. This is called a matrix continued fraction problem
because the recursion relation can be written as

S1 = a1
b1 + c1a2

b2+ c2a3
b3+...

. (C.10)

Similarly, if for n ⩽ 0 we can find a sequence of superoperators Tn

such that ρ̂n = Tnρ̂n+1, then we have

[(L0 − inωL) Tn + L−1 + L1Tn−1Tn] ρ̂n+1 = 0 , (C.11)

which yields

(L0 − inωL) Tn + L−1 + L1Tn−1Tn = 0 , (C.12)

or, equivalently,

Tn = − [(L0 − inωL) + L1Tn−1]−1 L−1 . (C.13)
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Hamiltonians

This expressed Tn in terms of Tn−1. As before, we assume that the
contribution of the nmin-th term is negligible, setting T−nmin = 0. Using
now this recursion we can obtain all the superoperators, until we reach
the last one T−1.

Having obtained S1 and T−1, we return the tridiagonal relation for
n = 0, which is

L0ρ̂0 + L1ρ̂−1 + L−1ρ̂1 = 0 , (C.14)

and, noting that ρ̂1 = S1ρ̂0 and ρ̂−1 = T−1ρ̂0, we obtain

[L0 + L1T−1 + L−1S1] ρ̂0 = 0 . (C.15)

Finally, the time-averaged steady state solution ρ̂0 can be found as
the nullspace of the superoperator

Leff = L0 + L1T−1 + L−1S1 . (C.16)
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APPENDIX D

Derivation of the master
equation for the pure

dephasing

D.1 Pure dephasing in the quantum Rabi model

In this section, we explore how to accurately and describe pure
dephasing effects in the quantum Rabi model (QRM), following the
methodology outlined in Ref. [99] and taking into account both cavity
and qubit decoherence. We begin by considering the quantum Rabi
Hamiltonian with an added zero-mean stochastic modulation of the
qubit resonance frequency V̂q

dep = fq(t)σ̂z. When we express the
Hamiltonian in the dressed basis and transition to the interaction
picture with respect to V̂q

dep, we get

V̂q
dep(t) = f(t)

∑
j,k

⟨j|σ̂z|k⟩ |j⟩⟨k| eiωjkt , (D.1)

where |j⟩ are the eigenstates of the total Hamiltonian and ωjk are
the transition frequencies. By expressing f(t) in terms of its Fourier
decomposition, and assuming that the main contribution to dephasing
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D. Derivation of the master equation for the pure dephasing

results from a small frequency interval around ωjk [99], we derive

V̂q
dep(t) =

∑
j,k

σjk
z |j⟩⟨k| f−ωjk

(t) , (D.2)

where
fωjk

(t) =
√
Sf (ωjk)ξωjk

(t) , (D.3)

Sf (ω) is the spectral density of f(t), and ξ(ω) such that ⟨ξ(ω)⟩ = 0
and ⟨ξ(ω)ξ(ω′)⟩ = δ(ω − ω′) (i.e., corresponding to white noise). If the
transition frequencies ωjk are well-separated, we can treat each term
of the above summation as an independent noise [99].

We can now formulate the dressed Lindbladian in case of qubit
pure dephasing:

Ldr· = D

∑
j

Φj |j⟩⟨j|

 · +
∑

j,k ̸=j

Γjk
ϕ D [|j⟩ ⟨k|] · , (D.4)

where

Φj =

√
γϕ(0)

2 σjj
z , (D.5)

and
Γjk

ϕ = γϕ(ωkj)
2

∣∣∣σjk
z

∣∣∣2 . (D.6)

The entire procedure described above can also be applied to the case
of cavity pure dephasing, by considering the QRM Hamiltonian with
an additional zero-mean stochastic modulation of the cavity resonance
frequency V̂c

dep = fc(t)â†â. In this case, this stochastic perturbation,
expressed in the dressed basis and in the interaction picture, becomes

V̂c
dep(t) =

∑
j,k

⟨j|â†â|k⟩ |j⟩⟨k| f−ωjk
(t) , (D.7)
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while the Lindbladian remains in the same form of Eq. (D.4), with the
only difference of Φj and Γjk

ϕ , which become respectively,

Φj =

√
γϕ(0)

2 ⟨j|â†â|j⟩ , (D.8a)

Γjk
ϕ = γϕ(ωkj)

2

∣∣∣ ⟨j|â†â|k⟩
∣∣∣2 . (D.8b)

Nonetheless, as we have discussed in Chapter 4, the methodology
outlined above does not yield the correct outcomes. Specifically, we
have demonstrated that employing either the Coulomb or dipole gauge
can lead to significantly different results. For instance, in the Coulomb
gauge, the bare σ̂z operator transforms into σ̂z,C = Û σ̂zÛ†, as the
minimal coupling is applied to the matter system. Meanwhile, the
photonic operator â†â transforms into â†

DâD = Û†â†âÛ in the dipole
gauge. Therefore, to accurately describe pure dephasing effects, we
need to replace σ̂z with σ̂z,C in the Coulomb gauge and â†â with â†

DâD

in the dipole gauge in the Lindbladian given in Eq. (D.4).

D.2 Analytical derivation of the pure dephasing
rates

By adopting the procedure described above, we are able to derive
analytically the pure dephasing rates of both cavity and qubit. Starting
from the Coulomb gauge and using Eq. (D.4), we discard the off-
diagonal terms Γjk

ϕ since this contribution is significant only if the
dephasing bath has a spectral weight at the potentially high frequency
ωjk, leading to the following equation:

˙̂ρ = −i
[
ĤC , ρ̂

]
+ γϕ(0)

2 D

∑
j

σjj
z,C |j⟩⟨j|

 ρ̂ , (D.9)
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D. Derivation of the master equation for the pure dephasing

where σjj
z,C = ⟨j|σ̂z,C |j⟩. We now expand the Lindblad dissipator

D

∑
j

σjj
z,C |j⟩⟨j|

 ρ̂ = 1
2

2
∑

j

∑
k

σjj
z,Cσ

kk
z,C |j⟩⟨j| ρ̂ |k⟩⟨k|

−
∑

j

∑
k

σjj
z,Cσ

kk
z,C |k⟩⟨k| |j⟩⟨j| ρ̂

−
∑

j

∑
k

σjj
z,Cσ

kk
z,C ρ̂ |k⟩⟨k| |j⟩⟨j|

 ,
(D.10)

and we focus on the matrix element of the density matrix relative to
the transition (1̃−, 0̃), but the same procedure can be applied to all
the other transitions. The corresponding equation (in the interaction
picture) for that matrix element becomes

d

dt
ρ̂

(I)
1̃−,0̃ =γϕ(0)

4
〈
1̃−
∣∣ 2

∑
j

∑
k

σjj
z,Cσ

kk
z,C |j⟩⟨j| ρ̂(I) |k⟩⟨k|

−
∑

j

∣∣∣σjj
z,C

∣∣∣2 |j⟩⟨j| ρ̂(I) −
∑

j

∣∣∣σjj
z,C

∣∣∣2ρ̂(I) |j⟩⟨j|
∣∣0̃〉


=γϕ(0)
4

2
∑

j

∑
k

σjj
z,Cσ

kk
z,C

〈
1̃−
∣∣ |j⟩⟨j| ρ̂(I) |k⟩⟨k|

∣∣0̃〉
−
∑

j

∣∣∣σjj
z,C

∣∣∣2 〈1̃−
∣∣ |j⟩⟨j| ρ̂(I) ∣∣0̃〉

−
∑

j

∣∣∣σjj
z,C

∣∣∣2 〈1̃−
∣∣ ρ̂(I) |j⟩⟨j|

∣∣0̃〉


= γϕ(0)
4

[
2σ1̃−1̃−

z,C σ0̃0̃
z,C

〈
1̃−
∣∣ ρ̂(I) ∣∣0̃〉

−
∣∣∣σ1̃−1̃−

z,C

∣∣∣2 〈1̃−
∣∣ ρ̂(I) ∣∣0̃〉−

∣∣∣σ0̃0̃
z,C

∣∣∣2 〈1̃−
∣∣ ρ̂(I) ∣∣0̃〉]

= −γϕ(0)
4

∣∣∣σ1̃−1̃−
z,C − σ0̃0̃

z,C

∣∣∣2ρ̂(I)
1̃−,0̃ .

(D.11)
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D.3. Pure dephasing in the Hopfield model

By choosing the dipole gauge, one should replace σjj
z,C → σjj

z . The
same procedure is valid also for cavity pre dephasing, where we need
to use â†â in the Coulomb gauge and â†

DâD in the dipole gauge.

D.3 Pure dephasing in the Hopfield model

Here we analyze pure dephasing effects in the Hopfield model, following
the procedure described in the previous sections and extending the
results of Ref. [99]. Moreover, we consider both light and matter
decoherence. First, it is useful to diagonalize the Hopfield Hamiltonian
using the polaritonic operators [182], where the lower and upper
polariton operators (µ = 1, 2) can be defined as

P̂µ = Uµ
b b̂+ Uµ

a â+ V µ
b b̂

† + V µ
a â

† . (D.12)

Using the property∣∣Uµ
b

∣∣2 + |Uµ
a |2 −

∣∣V µ
b

∣∣2 − |V µ
a |2 = 1 , (D.13)

which guarantee the correct polariton commutation rules [182], we can
invert (D.12) in order to obtain

â =
2∑

µ=1

(
Uµ

a P̂µ − V µ
a P̂

†
µ

)
, (D.14a)

b̂ =
2∑

µ=1

(
Uµ

b P̂µ − V µ
b P̂

†
µ

)
. (D.14b)

To describe the matter pure dephasing, we consider an additional
zero-mean stochastic modulation of the matter resonance frequency
V̂ x

dep = fx(t)b̂†b̂. In terms of the polaritonic operators we have

b̂†b̂ = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (D.15)
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D. Derivation of the master equation for the pure dephasing

with

Aµ =
∣∣Uµ

b

∣∣2 +
∣∣V µ

b

∣∣2 , (D.16a)
B12 = B∗

21 = U1 ∗
b U2

b + V 1
b V

2 ∗
b , (D.16b)

where we have included only the terms which do not oscillate in
time, or oscillate at low frequency, corresponding to applying the
rotating wave approximation (RWA), and we have eliminated the
constants derived from commutation rules, which have no dynamical
consequences. Moving to the interaction picture, this contribution
becomes

V̂ x
dep(t) = fx(t)

[
A1P̂

†
1 P̂1 +A2P̂

†
2 P̂2

+e−iω21tB12P̂
†
1 P̂2 + eiω21tB21P̂

†
2 P̂1

]
,

(D.17)

where ω21 = ω2−ω1 with the polaritonic eigenfrequencies ωi. Eq. (D.17)
can be written in a more compact form as

V̂ x
dep = fx(t)

[
D̂12 + e−iω21tM̂12 + eiω21tM̂ †

12

]
, (D.18)

with

D̂12 = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 , (D.19a)

M̂12 = B12P̂
†
1 P̂2 , (D.19b)

and using the results presented in the previous sections, we obtain

V̂ x
dep(t) = f0(t)D̂12 + fω21(t)M̂12 + f−ω21(t)M̂ †

12 , (D.20)

with fω(t) expressed in Eq. (D.3). Thus, the resulting Lindbladian in
the case of matter pure dephasing is

L· = 1
2γϕ(ω21)D[M̂12] ·+1

2γϕ(−ω21)D[M̂ †
12] ·+1

2γϕ(0)D[D̂12]· , (D.21)

with γϕ(ω) = 2Sf (ω).
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Conclusions

In conclusion, this Thesis provided a comprehensive exploration of
light-matter interaction in the ultrastrong coupling (USC) regime. It
began with a discussion on fundamental understanding of light-matter
interaction, moving from a Lagrangian approach to a full quantum
treatment. The Thesis addressed the breakdown of gauge invariance
due to the truncation of the Hilbert space and proposed solutions to
overcome these issues.

The Thesis then focused on the Coulomb and dipole gauges.
Specifically, for the dipole gauge, it redefined aspects related to
the electric field. It further elaborated on photodetection, deriving
a generalized master equation with minimal assumptions. The
application of this approach to incoherent and coherent pumping
processes revealed unique phenomena observable in the USC regime.

The thesis also presented a gauge-invariant treatment of pure
dephasing in the USC regime, demonstrating that standard approaches
are insufficient when light-matter coupling strength is comparable to
the frequency of the electromagnetic field. Lastly, it investigated the
phenomenon of photon condensation, debunking previous claims of its
existence in the absence of a magnetic field.

This Thesis has not explored some topics to which I have contributed
in the last three years. First, the phenomenon of optomechanical two-
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photon hopping [6]. In a membrane in the middle setup, where two
cavities are separated by a mechanical membrane, the two cavities
can exchange two photons through the virtual excitations of the
membrane. And finally, all the works that are currently under review
or in preparation. The effect of back-action and mechanically generated
photons from a flying atom passing through a cavity [8]. The possibility
of achieving the superradiant phase transition with an ensemble of
model loop molecules [9]. The creation of coherent excitations of a
mechanical membrane by modulating the properties of the ultrastrong
vacuum of a cavity [10].

Overall, the main aim of this Thesis is to contribute to our
understanding of light-matter interactions, particularly in the USC
regime, showing some peculiar effects, and it challenged conventional
approaches by introducing more accurate and comprehensive methods.
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