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A GENERALIZATION OF M-SEPARABILITY BY NETWORKS
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ABSTRACT. All spaces are assumed to be Tychonoff. A space is M-separable if for every
sequence (Dn : n ∈ ω) of dense subsets of X one can pick finite Fn ⊂ Dn, n ∈ ω , such
that

⋃︁
n∈ω Fn is dense in X . Every space having a countable base is M-separable but not

every space with countable network weight is M-separable. We introduce a new Menger
type property defined by networks, called M-nw-selective property, such that every M-nw-
selective space has countable network weight and is M-separable. By analogy, we also
introduce H- and R- nw-selective spaces for Hurewicz and Rothberger type properties.
Several properties of the new classes of spaces are studied and some questions are posed.

Dedicated to the memory of Mikhail (Misha) Matveev

1. Introduction

Throughout this paper all spaces are assumed to be Tychonoff. In terminology, we in
general follow Engelking (1989). Recall that a space X is Menger if for every sequence
(Un : n ∈ ω) of open covers of X one can select finite Fn ⊂ Un, n ∈ ω , such that

⋃︁
n∈ω Fn

covers X (Hurewicz 1925), where Menger’s property was denoted by E∗ (see also Menger
1924; Engelking 1989; Just et al. 1996); X is Rothberger if for every sequence (Un : n ∈ ω)
of open covers of X one can select Fn ∈ Un, n ∈ ω , such that {Fn : n ∈ ω} covers X
(Rothberger 1938), where Rothberger’s property is denoted by C′′ (see also Just and Miller
1988; Scheepers 1996); X is Hurewicz if for every sequence (Un : n ∈ ω) of open covers
of X one can select finite Fn ⊂ Un, n ∈ ω , such that for every x ∈ X , x ∈

⋃︁
Fn for all but

finitely many n (Hurewicz 1927).
The previous definitions motivated the following ones.

Definition 1.1. A space is

• M-separable (introduced by Scheepers (1999a) using a different terminology; Bella
et al. (2008) called it selectively separable (see also Bella, Bonanzinga, and Matveev
2009; Bella, Matveev, and Spadaro 2012) if for every sequence (Dn : n ∈ ω) of
dense subsets of X one can pick finite Fn ⊂ Dn, n ∈ ω , such that

⋃︁
n∈ω Fn is dense

in X .

http://dx.doi.org/10.1478/AAPP.1012A11
http://dx.doi.org/10.1478/18251242


A11-2 M. BONANZINGA AND D. GIACOPELLO

• R-separable (introduced by Scheepers (1999a) using a different terminology) if for
every sequence (Dn : n ∈ ω) of dense subsets of X one can pick pn ∈ Dn, n ∈ ω ,
such that (pn : n ∈ ω) is dense in X .

• H-separable (Bella, Bonanzinga, and Matveev 2009) if for every sequence (Dn :
n ∈ ω) of dense subsets of X one can pick finite Fn ⊂ Dn, n ∈ ω , such that for every
nonempty open set O ⊂ X , the intersection O∩Fn is nonempty for all but finitely
many n.

Note that “M-", “R-", and “H-" were motived by analogy with Menger, Rothberger, and
Hurewicz properties. Let δ (X) = sup{d(Y ) : Y is dense in X} (Weston and Shilleto 1976);
δ (X) = ω for every M-separable space X. If δ (X) = ω and πw(X) < d, then X is M-
separable (a stronger version of this fact was estabilished by Scheepers (1999a, Theorem
40)); moreover, if δ (X) = ω and πw(X) < cov(M ), then X is R-separable (a stronger
version of this fact was estabilished by Scheepers (1999a, Theorem 29)); Bella, Bonanzinga,
and Matveev (2009, Theorem 29) also showed that if δ (X) = ω and πw(X)< b, then X is
H-separable. As a consequence of these results, it is shown that the existence of a countable
M-separable space which is not H-separable is consistent with ZFC (Bella, Bonanzinga,
and Matveev 2009).

The following implications are obvious.

countable π-weight M-separable

�
�
��

R-separable

H-separable

@
@@R

@
@@R

�
���

- separable

For compact spaces, M-, R- and H- separability are equivalent to each other and to having a
countable π-base (see Bella et al. 2008). Then, in particular, every space having a countable
base is M-, R- and H- separable. However, not every space with countable network weight
is M-separable: consider any countable not M-separable space (see, for example, Bella et al.
2008, Example 2.14).

Hence, it is natural to pose the following question.

Question 1.2. Under what conditions must a space with countable network weight be
M-separable?

In this paper we introduce a Menger type property defined by network, called M-nw-
selective property, such that every M-nw-selective space has countable network weight by
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definition and is M-separable. By analogy, we also introduce H- and R- nw-selective spaces
for the corresponding Hurewicz and Rothberger type properties. Several properties of the
new classes of spaces are studied and some questions are posed.

Terminology and preliminaries. If A is a subset of a space X and B is a family of
subsets of X , we say that A refines B if A is a subset of some element of B; in this case we
write A ≺ B.

A family P of open sets is called a π-base for X if every nonempty open set in X
contains a nonempty element of P; πw(X) = min{|P| : P is a π-base for X} is the
π-weight of X . A family N of sets is called a network for X if for every x ∈ X and for
every open neighbourhood U of x there exists an element N of N such that x ∈ N ⊆ U ;
nw(X) =min{|N | : N is a network for X} is the network weight of X ; iw(X) =min{w(Y ) :
Y is the continuous bijective image of X}, where w(X) denotes the weight of the space X ,
is the injective weight of X . It is known that iw(X)≤ nw(X)≤ w(X), and in the class of
compact Hausdorff spaces iw(X) = nw(X) = w(X) (see Bailey 2007).

A space X has countable (strong) fan tightness (see Sakai 1988; Arkhangel’skii 1992)
if, for every sequence (An : n ∈ ω) of subspaces of X and every x ∈ An for all n ∈ ω ,
one can choose finite Fn ⊂ An (resp., a point xn ∈ An) so that x ∈

⋃︁
{Fn : n ∈ ω} (resp.,

x ∈ {xn : n ∈ ω}). X is weakly Fréchet in the strict sense if, for every sequence (An : n ∈ ω)
of subspaces of X and every x ∈ An for all n ∈ ω , there are finite Fn ⊂ An such that every
neighborhood of x intersects all but finitely many Fn (Sakai 2006). X is weakly Fréchet
in the strict sense with respect to dense subspaces if this statement is true for An dense
in X , that is for every sequence (Dn : n ∈ ω) of dense subspaces of X and every x ∈ X
there are finite Fn ⊂ Dn such that every neighborhood of x intersects all but finitely many
Fn (Bella, Bonanzinga, and Matveev 2009). Recall that for f ,g ∈ ωω , f ≤∗ g means that
f (n)≤ g(n) for all but finitely many n (and f ≤ g means that f (n)≤ g(n) for all n ∈ ω). A
subset B ⊆ ωω is bounded if there is g ∈ ωω such that f ≤∗ g for every f ∈ B. D ⊆ ωω is
dominating if for each g ∈ ωω there is f ∈ D such that g ≤∗ f . The minimal cardinality of
an unbounded subset of ωω is denoted by b, and the minimal cardinality of a dominating
subset of ωω is denoted by d. The value of d does not change if one considers the relation
≤ instead of ≤∗ (van Douwen 1984, Theorem 3.6). M denotes the family of all meager
subsets of R. cov(M ) is the minimum of the cardinalities of subfamilies U ⊆ M such that⋃︁

U = R.

2. M- R- H- nw-selective spaces and general properties

Definition 2.1. A space X is

• M-nw-selective if nw(X) = ω and for every sequence (Nn : n ∈ ω) of countable
networks for X one can select finite Fn ⊂ Nn, n ∈ ω , such that

⋃︁
n∈ω Fn is a

network for X .
• H-nw-selective if nw(X) = ω and for every sequence (Nn : n ∈ ω) of countable

networks for X one can select finite Fn ⊂ Nn, n ∈ ω , such that for any x ∈ X and
any open neighbourhood U of x, there exists some κ ∈ ω such that for any n ≥ κ

there exists A ∈ Fn with x ∈ A ⊆U .
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• R-nw-selective if nw(X) = ω and for every sequence (Nn : n ∈ ω) of countable
networks for X one can pick Fn ∈ Nn, n ∈ ω , such that {Fn : n ∈ ω} is a network
for X .

Note that if the networks Nn, n ∈ ω , in the previous definitions were uncountable then the
space must be countable. Indeed, the sequence of networks consisting of all singletons
witnesses that the space is not M-nw-selective.

Hurewicz (1925) proved that a basis property formulated by Menger (1924) is equivalent
to Menger’s property. In particular Hurewicz proved the following proposition (we give the
proof for sake of completness). Then, replacing “countable network” with “base” in the
definition of M-nw-selectivity, one obtains a property equivalent to the Menger property in
the class of metrizable spaces.

Proposition 2.2. (Hurewicz 1925) Let X be a metrizable space. X is Menger iff for every
sequence (Bn : n ∈ ω) of bases for X one can select finite Fn ⊂ Bn, n ∈ ω , such that⋃︁

n∈ω Fn is a base for X .

Proof. Let (X ,d) be Menger and ξ = (Bn : n∈ω) a sequence of bases for X . Re-enumerate

ξ as (Bn,m : n,m ∈ ω) . We may assume that Bn,m consist of sets of diameter <
1
2n . For

each n, pick finite Fn,m ⊂ Bn,m, m ∈ ω , such that
⋃︁

m∈ω Fn,m is a cover of X . Then⋃︁
n,m∈ω Fn,m is a base for X . Indeed, every point is contained in a set of diameter <

1
2n .

Now let (Un : n ∈ ω) be a sequence of open covers of X . For every n ∈ ω , put Bn = {U : U
is an open in X and U ≺ Un}. Then (Bn : n ∈ ω) is a sequence of bases for X and by
hypothesis we conclude the proof. □

Now we prove the following proposition.

Proposition 2.3. If X is countable second countable space, then X is R-nw-selective.

Proof. Of course, nw(X) = ω . Let X = (xn : n ∈ ω), B = (Bn : n ∈ ω) be a base for X and
(Nn : n ∈ ω) = (Nn,m : n,m ∈ ω) be a sequence of countable networks for X . For each
n,m ∈ ω , if xn ∈ Bm, then take An,m ∈ Nn,m such that xn ∈ An,m ⊂ Bm; if xn /∈ Bm, then take
any An,m ∈ Nn,m. Then (An,m : n,m ∈ ω) is a network for X . □

Question 2.4. Are there M-nw-selective spaces which are not R-nw-selective or not H-nw-
selective?

Question 2.5. Are there uncountable M-nw-selective spaces?

Since every space with countable netweight is hereditarily Lindelöf, M-nw-selectivity is
a strengthening of Lindelöf property. We also prove that M-nw-(resp., R-nw-, H-nw-)
selectively is a common strengthening of Menger (resp., Rothberger and Hurewicz) property
and M- (resp., R- and H-) separability.

Proposition 2.6. If X is M-nw-selective, then X is Menger.

Proof. Let X be M-nw-selective and (Un : n ∈ ω) a sequence of open covers of X . Fix a
countable network N for X . For every n ∈ ω , put Nn = {N ∈ N : N refines Un}. For
every n ∈ ω , Nn is a countable network for X (in fact, let W be an open subset of X and
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x ∈W . Since Un covers X , there exists V ∈ Un such that x ∈V . Then V ∩W in an open set
containing x. Then there exits N ∈N such that x ∈ N ⊂V ∩W ⊂V . Hence N ∈Nn). Then
(Nn : n ∈ ω) is a sequence of countable networks for X . By hypothesis, there exist finite
Fn ⊂Nn, n ∈ ω , such that

⋃︁
n∈ω Fn is a network for X . For every N ∈Fn, pick UN,n ∈Un

such that N ⊂UN,n and put An = {UN,n : N ∈ Fn}. Then An, n ∈ ω , is a finite subfamily
of Un such that

⋃︁
n∈ω

⋃︁
An = X . □

Proposition 2.7. If X is R-nw-selective (H-nw-selective), then X is Rothberger (Hurewicz).

Proof. The proof is similar to the proof of Proposition 2.6. □

The converse of propositions 2.6 and 2.7 is not true as the following example shows.

Example 2.8. A Rothberger and Hurewicz space which is not M-nw-selective (hence not
R-nw-, H-nw-selective).

Bella, Bonanzinga, and Matveev (2009, Example 2.14) proved the existence of a count-
able subspace X of Cp(ω

ω) which is not M-separable. By next Proposition 2.12, the space
X is not M-nw-selective. Of course, nw(X) = ω and X is Rothberger and Hurewicz. △

Proposition 2.9. If X is M-nw-selective, then X has countable fan tightness.

Proof. Let X be M-nw-selective, M be a countable network for X , x ∈ X and (An : n ∈ ω)
be a sequence of subsets of X such that x ∈ An, for every n ∈ ω . Every space with countable
network is hereditarily separable and thus has countable tightness. Then we may assume
that the sets An are countable. Let Y = {x} ∪

⋃︁
n∈ω An. Y is a countable subset of X

and by Proposition 2.26, Y is M-nw-selective. For every n ∈ ω , put Mn = {{y} : y ∈
Y \{x}}∪{{x,a} : a ∈ An}. Since x ∈ An for every n ∈ ω , (Mn : n ∈ ω) is a sequence of
countable networks for Y . Then one can select finite Fn ⊂ Mn, n ∈ ω , such that

⋃︁
n∈ω Fn

is a network for Y . Put Bn = {a ∈ An : {x,a} ∈ Fn}, n ∈ ω . Then, for every n ∈ ω , Bn is a
finite subset of An and x ∈

⋃︁
{Bn : n ∈ ω}. □

The converse of the previous result does not hold, as the following example shows.

Example 2.10. A space having countable fan tightness which is not M-nw-selective.

Consider the space Cp(I), where I = [0,1]. Since a space Cp(X) is Menger iff X is
finite (Arkhangel’skii 1992), by Proposition 2.6, we have that Cp(I) is not M-nw-selective.
Arkhangel’skii (1986, 1992, Theorem 2.2.2) proved that Cp(X) has countable fan tightness
iff all finite powers of X are Menger. Then Cp(I) has countable fan tightness.

Recall the following

Proposition 2.11. (Bella et al. 2008, Proposition 2.3) Every separable space having count-
able fan tightness is M-separable.

Then, by Proposition 2.9, we obtain

Proposition 2.12. If X is M-nw-selective, then X is M-separable.

The converse of the previous proposition is not true: the space Cp(I), where I = [0,1]
is M-separable (Bella et al. 2008, Example 2.14) and we have proved that it is not M-nw-
selective.
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Inspired by R-separability, Scheepers (1999a) introduced the following game on a space
X : Players ONE and TWO play an inning per n ∈ ω . In the n-th inning ONE selects a set Dn
dense in X , after TWO selects a point pn ∈ Dn. A play (D0, p0,D1, p1, ...) is won by TWO
if (pn : n ∈ ω) is dense in X ; otherwise ONE wins. Denote by G1 this game. Of course,
if ONE has no winning strategy in the game G1 on X , then X is R-separable. Scheepers
(1999a) showed the following result.

Theorem 2.13. (Scheepers 1999a, Theorem 3) The following statements are equivalent:
(1) TWO has a winning strategy in the game G1 on X .
(2) X has countable π-weight.

By the following example we show, in particular, that a countable M-separable space
need not be M-nw-selective.

Example 2.14. A countable space X such that TWO has a winning strategy in the game G1
on X (hence X is R-separable and then M-separable), which is not M-nw-selective space.

Let us take the product of the usual convergent sequence ω +1 with the discrete space
ω . The quotient space of it obtained by identifying all non isolated points is called Fréchet-
Urysohn fan space; it is usually denoted by Sω . This space is a typical example of a
countable space with only one non-isolated point the fan-tightness of which is not countable.
Then, by Proposition 2.9, Sω is not M-nw-selective. Since, obviously, Sω has countable
π-weight, then TWO has a winning strategy in the game G1 on Sω . △

We can prove that

Proposition 2.15. (Scheepers 2014, Lemma 30) Every separable space having countable
strong fan tightness is R-separable.

Proposition 2.16. If X is R-nw-selective, then X has countable strong fan tightness.

Proof. The proof is similar to the proof of Proposition 2.9. □

The converse of the previous result is not true as the following example shows.

Example 2.17. A space having countable strong fan tightness which is not M-nw-selective,
hence not R-nw-selective.

Consider the space Tychonoff plank T = (ω1 +1)× (ω +1). It is known that a compact
space is Rothberger iff it is scattered (see, for a proof, Bonanzinga, Cammaroto, and
Matveev 2010, Proposition 34). Since a Cp(X) space has countable strong fan tightness
iff all finite powers of X are Rothberger (Sakai 1988), we have that Cp(T ) has countable
strong fan tightness. However nw(Cp(T ))> ω , hence Cp(T ) is not M-nw-selective. Note
that, since Cp(X) is R-separable iff iw(X) = ω and all finite powers of X are Rothberger
(Bella, Bonanzinga, and Matveev 2009, Theorem 57), in fact Cp(T ) is not R-separable.

By the previous proposition, we have the following result.

Proposition 2.18. If X is R-nw-selective, then X is R-separable.

Example 2.19. A countable space X such that TWO has a winning strategy in the game G1
on X (hence X is R-separable), which is not R-nw-selective space.

Consider the spaces Sω (see Example 2.14). △
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Proposition 2.20. If X is H-nw-selective, then X is weakly Fréchet in the strict sense.

Proof. The proof is similar to the proof of Proposition 2.9. □

The converse of the previous result does not hold, as the following example shows.

Example 2.21. A weakly Fréchet in the strict sense space which is not H-nw-selective.

Consider the space Cp(I). Recall that Cp(X) is weakly Fréchet in the strict sense iff all
finite powers of X are Hurewicz (Kočinac and Scheepers 2002), as stated by Sakai (2006).
Then Cp(I) is weakly Fréchet in the strict sense but is is not M-nw-selective (cfr. Example
2.10), hence not H-nw-selective.

Proposition 2.22. (Bella, Bonanzinga, and Matveev 2009, Proposition 35) A separable
space is H-separable iff it is weakly Fréchet in the strict sense with respect to dense
subspaces.

Corollary 2.23. Every separable weakly Fréchet in the strict sense is H-separable.

Then, by Proposition 2.20, we have the following.

Proposition 2.24. If X is H-nw-selective, then X is H-separable.

Example 2.25. A countable H-separable non H-nw-selective space.

Consider the spaces Sω (see Example 2.14). We have proved that Sω is not M-nw-
selective and then Sω is not H-nw-selective. Since it has countable π-weight, it is R-
separable. △

The following diagram sums up some implications obtained above.

M-nw-selective

R-nw-selective

H-nw-selective

Menger

Rothberger

Hurewicz

M-separable

R-separable

H-separable

separable--

-

-

?

6

�

�

�

?

6

?

6

Recall that M-, R- and H- separability are not preserved by arbitrary subspaces, but they
are preserved by open subspaces, and by dense subspaces (see Bella et al. 2008, for M-
separability).

We prove that M-mw-, R-nw- and H-nw- separability are preserved by arbitrary sub-
spaces.
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Proposition 2.26. M-nw-separability is a hereditary property.

Proof. Let X be M-nw-selective and Y ⊂ X . In particular, nw(X) = ω and then nw(Y ) = ω .
Let M be a countable network for X . Then (M∩Y : M ∈ M ) is a countable network for
Y . Let (Nn : n ∈ ω) be a sequence of countable networks for Y . For every n ∈ ω , put
Mn = Nn ∪{M \Y : M ∈ M }. Then (Mn : n ∈ ω) is a sequence of countable networks for
X . By hypothesis, one can select finite Hn ⊂ Mn, n ∈ ω such that

⋃︁
n∈ω Hn is a network

for X . For every n ∈ ω , put Fn = Hn ∩Nn. Then Fn is a finite subset of Nn and
⋃︁

n∈ω Fn
is a network for Y . □

Proposition 2.27. R-nw-selective and H-nw-selective are hereditary property.

Proof. The proof is similar to the proof of Proposition 2.26. □

Recall that a space is “analytic” if it is a continuous image of the spaces of irrationals
(Kechris 1995).

Proposition 2.28. (Arkhangel’skii 1986) Every analytic Menger space is σ -compact.

Now we prove the following.

Proposition 2.29. Every analytic subset of a M-nw-selective space is countable.

Proof. By contradiction, assume there exists a M-nw-selective space having an uncountable
analytic subspace Y . By Proposition 2.26, Y is M-nw-selective and then, by Proposition 2.12,
it is Menger. So, by Proposition 2.28, Y is σ -compact and then Y contains an uncountable
compact space H. By hypothesis and compactness of H, we have that w(H) = nw(H) = ω .
Then, by Aleksandroff-Urysohn metrization’s theorem, H is metrizable. Hence, since any
uncountable compact metrizable space contains a copy of the space of irrationals, we have
that Y contains a copy of the space of irrationals. Since irrationals are not Menger, hence
by Proposition 2.12, not M-nw-selective, we conclude that Y is not M-nw-selective; a
contradiction. □

Corollary 2.30. Every analytic subset of an R-nw- or H-nw- selective space is countable.

Proof. The proof is similar to the proof of Proposition 2.29 using respectively Proposition
2.18 and Proposition 2.24 instead of Proposition 2.12, and Proposition 2.27 instead of
Proposition 2.26. □

Recall the following result.

Theorem 2.31. (Arkhangel’skii 1992, Proposition II.2.11) If X is a compact space of
countable weight, then Cp(X) is an analytic space.

Corollary 2.32. If X is a compact space of countable weight, then Cp(X) is not M-nw-
selective.

Using the previous result we can say that, for example Cp(2ω) and Cp(I) are not M-nw-
selective. Recall that Cp(2ω ) is H-separable.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 101, No. 2, A11 (2023) [11 pages]



A GENERALIZATION OF M-SEPARABILITY BY NETWORKS A11-9

3. Operations

It is well-known that Menger, Rothberger and Hurewicz properties are preserved by
countable unions. Gruenhage and Sakai (2011) proved that M- and R- separability is
preserved by finite unions; it is an open question if H-separability is preserved by finite
unions.

We will prove the following results.

Theorem 3.1. Let X =
⨁︁

n∈ω Xn, where
⨁︁

denotes the direct sum. If Xn is a M-nw-selective
space for every n ∈ ω , then X is a M-nw-selective space.

Proof. Of course, countable network is preserved by countable direct sums. Let (Nk : k ∈ω)
be a sequence of countable networks for X . For every n ∈ ω consider {N ∩Xn : N ∈
Nk and k ≥ n} that is a sequence of countable networks for Xn. Since Xn is M-nw-selective
for every n ∈ ω , there exists (Fn,k : k ≥ n) with Fn,k a finite subfamily of Nk for every
k ≥ n such that

⋃︁
k≥n{F ∩Xn : F ∈Fn,k} is a network for Xn. We put Fk =

⋃︁
{Fn,k : k ≥ n}

that is a finite subfamily of Nk for every k ∈ ω . We can easily see that
⋃︁

k∈ω Fk is a network
for X . This means X is M-nw-selective. □

Theorem 3.2. Let X =
⨁︁

n∈ω Xn. If Xn is a R-nw-selective space for every n ∈ ω , then X is
a R-nw-selective space.

Proof. Of course, countable network is preserved by countable direct sums. Let (Nk : k ∈ω)
be a countable sequence of networks for X . Divide the sequence of networks into countably
many pairwise disjoint sequences of countable networks (Mk,n : k,n ∈ ω). For every
n ∈ ω , (Mk,n : k ∈ ω) is a sequence of countable networks of Xn. Since Xn, n ∈ ω is
R-nw-selective, there exist Fk,n ∈ Mk,n, n ∈ ω , such that {Fk,n : n ∈ ω} is a network for Xn.
Then {Fk,n : k,n ∈ ω} is a network for X . □

Question 3.3. Is the countable (or finite) direct sum of H-nw-selective spaces H-nw-
selective?

Scheepers (1999b) proved that Menger property is not finitely productive. Gruenhage and
Sakai (2011) proved that under CH there is a countable regular maximal space X which is
R-separable but X2 is not M-separable.

Question 3.4. Is the product of two M-nw-selective spaces M-nw-selective? (or, at least,
Menger or M-separable?)
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Quaderni di Matematica 3. Caserta: Seconda Università di Napoli, pp. 195–225.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 101, No. 2, A11 (2023) [11 pages]

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=47408&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=47408&option_lang=eng
https://cmuc.karlin.mff.cuni.cz/pdf/cmuc0704/bailey.pdf
https://cmuc.karlin.mff.cuni.cz/pdf/cmuc0704/bailey.pdf
https://doi.org/10.1016/j.topol.2008.12.029
http://topology.nipissingu.ca/tp/reprints/v32/tp32002.pdf
http://topology.nipissingu.ca/tp/reprints/v32/tp32002.pdf
https://doi.org/10.1016/j.topol.2011.09.005
https://doi.org/10.1016/j.topol.2009.12.004
https://doi.org/10.1016/B978-0-444-86580-9.50006-9
https://doi.org/10.1016/B978-0-444-86580-9.50006-9
https://doi.org/10.1016/j.topol.2011.05.009
https://doi.org/10.1007/BF01216792
https://doi.org/10.4064/fm-9-1-193-210
https://doi.org/10.1016/S0166-8641(96)00075-2
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1016/S0166-8641(01)00177-8
https://doi.org/10.1007/978-3-7091-6110-4_14
https://doi.org/10.4064/fm-30-1-50-55
https://doi.org/10.2307/2046816


A GENERALIZATION OF M-SEPARABILITY BY NETWORKS A11-11

Scheepers, M. (1996). “Combinatorics of open covers I: Ramsey theory”. Topology and its Applications
69(1), 31–62. DOI: 10.1016/0166-8641(95)00067-4.

Scheepers, M. (1999a). “Combinatorics of open covers VI: Selectors for sequences of dense sets”.
Quaestiones Mathematicae 22(1), 109–130. DOI: 10.1080/16073606.1999.9632063.

Scheepers, M. (1999b). “The length of some diagonalization games”. Archive for Mathematical Logic
38, 103–122. DOI: 10.1007/s001530050117.

Scheepers, M. (2014). “Remarks on countable tightness”. Topology and its Applications 161(1),
407–432. DOI: 10.1016/j.topol.2013.11.001.

Weston, J. H. and Shilleto, J. (1976). “Cardinalities of dense sets”. General Topology and its Applica-
tions 6(2), 227–240. DOI: 10.1016/0016-660X(76)90035-0.

a Università degli Studi di Messina,
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra,
Contrada Papardo, 98166 Messina, Italy

∗ To whom correspondence should be addressed | email: mbonanzinga@unime.it

Manuscript received 21 November 2022; communicated 24 November 2022; published online 1 July 2023

© 2023 by the author(s); licensee Accademia Peloritana dei Pericolanti (Messina, Italy). This article is an
open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 101, No. 2, A11 (2023) [11 pages]

https://doi.org/10.1016/0166-8641(95)00067-4
https://doi.org/10.1080/16073606.1999.9632063
https://doi.org/10.1007/s001530050117
https://doi.org/10.1016/j.topol.2013.11.001
https://doi.org/10.1016/0016-660X(76)90035-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. M- R- H- nw-selective spaces and general properties
	3. Operations
	 Acknowledgements
	References

