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ABSTRACT: The elderly population will significantly increase in the next decade and, with it, the proportion of 

people affected by age-related diseases. Among them, one of the most invalidating is Parkinson’s disease (PD), 

characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected 

individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent 

dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed 

since PD first description, no effective therapies are currently available, but only palliative treatments. 

Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic 

intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the 

insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to 

identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising 

sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, 

released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, 

protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV 

content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the 

role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant 

proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the 

contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source 

of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to 

validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of 

biomarkers for PD.  
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1. Introduction  

 

1.1 Parkinson’s disease: an aging related disorder 

 

Aging is a universal but not uniform process, 

characterized by multiple and complex mechanisms (e.g., 

genomic instability, epigenetic alterations, telomere 

shortening, deregulated nutrient sensing, mitochondrial 

dysfunction, stem cell exhaustion, alteration in 

intercellular signaling etc.) [1]. Aging is recognized as a 

major risk factor for neurodegenerative diseases (NDs), 

and particularly Parkinson’s disease (PD). 

PD is the most prevalent central nervous system 

(CNS) movement disorder affecting about 7 million 

people worldwide over the age of 65 [2, 3]. PD is also one 
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of the fastest growing ND, and with the predicted increase 

in lifespan of the population, a further rise is expected to 

occur on a yearly basis [4]. At the histopathological level, 

(i) the selective degeneration of dopaminergic (DAergic) 

neurons of the substantia nigra (SN) and their terminals in 

the striatum (Str); and (ii) the presence of intracellular 

aggregated inclusions containing α-synuclein (α-Syn), 

called Lewy bodies (LB), represent major hallmarks of the 

disease [5–7]. Additionally, an abnormal activation of the 

glial cell compartment precedes and/or accompany PD 

development and progression [8–13]. As a resulting 

feature of nigral degeneration, dopamine (DA) storage in 

the Str progressively decreases to a critical threshold 

level, when the typical clinical signs (namely, 

bradykinesia, tremor, and rigidity) finally manifest [5, 14, 

15].  

Unfortunately, by that time, up to 50% of DAergic 

cell bodies and close to 80% of Str DAergic terminals are 

already lost, and even if the progression of the disease is 

slow in most cases, the nigrostriatal DAergic degeneration 

is irreversible. Along with the motor signs, a number of 

non-motor symptoms, including autonomic, sleep, 

cognitive, and mental health disorders, typically  precede 

PD onset and progression, with mechanisms not 

completely understood [15–18]. The preclinical, latent, 

so-called prodromic phase, estimated to last 8-17 years, 

has suggested the existence of compensatory mechanisms 

likely responsible for the gradual adaptation of the DA 

neuronal system [19–21]. This stage of the disorder is of 

particular relevance, in relation to the development of 

disease-modifying or neuroprotective therapies which 

would require intervention at the earliest stages of disease 

[22].  

However, current therapies for PD are still mainly 

directed towards replacing DA levels in the brain, with (i) 

L-3,4-dihydroxyphenylalanine (L-DOPA, the precursor 

of DA); (ii) inhibitors of DA metabolism; (iii) DA 

receptor agonists; and (iv) by increasing DA release [15]. 

Of note, while providing a symptomatic relief [15, 23], 

these drugs do not modify the progressive 

neurodegenerative cell loss associated with PD, and in 

many cases, they result in debilitating side-effects [15]. 

Indeed, despite the significant scientific advancement of 

the last decades, the causes, mechanisms and determinant 

factors leading to DAergic neuron demise in PD still 

remain poorly understood [24]. Over the years, numerous 

novel therapies are being suggested along with 

development of medications to treat various non-motor 

symptoms to improve quality of life of patients, and 

excellent reviews have recently discussed these topics 

elsewhere [15, 25–27].  

Aside the early-onset familial PD, most (≥ 90%) PD 

cases are sporadic, with current evidence indicating a 

complex interplay between genetic susceptibility and a 

panel of environmental factors contributing to PD 

pathophysiology [3, 12, 28–36]. Indeed, several genes – 

including α-Syn (SNCA), parkin (PRKN), PTEN-induced 

putative kinase (PINK1), protein deglycase (DJ-1), and 

leucine-rich-repeat kinase 2 (LRRK2) – and many 

environmental factors – chiefly aging and inflammation – 

impact on the regulation of crucial pathways involved in 

oxidative stress, mitochondrial function, endoplasmic  

reticulum stress, autophagic catabolism, protein 

misfolding and aggregation, finally resulting in the 

progressive loss of DAergic neurons [28, 34, 37–42]. 

Due to the important structural and functional 

changes occurring both at the CNS and periphery [43], 

aging represents a critical phase of life for PD 

development and progression [44]. Especially, oxidative 

stress and low-grade inflammation are considered crucial 

hallmarks of aging. Both processes are upregulated upon 

injury, as well as upon a panel of genetic and 

environmental factors [45–48]. In fact, with the aging 

process, in brain glial cell compartment, astrocytes and 

microglia lose their neuroprotective potential, and 

become more responsive to various stimuli, thus 

producing higher levels of inflammatory and oxidative 

stress mediators, such as tumor necrosis factor α (TNF-α), 

interleukin 1β (IL-1β) and IL-6 [49, 50].  

Of significance, with age and environmental toxic 

exposures, glial cells increasingly display a senescence-

associated secretory phenotype, further contributing to 

drive aging and loss of tissue homeostasis, in turn 

contributing to PD neuropathology [51]. Additionally, 

both the genetic background and the exposure to 

inflammatory challenges can promote a self-perpetuating 

cycle of microglial-mediated DAergic neurotoxicity, in 

the context of a dysfunctional astrocyte-microglia cross-

talk [28]. The resulting inflammatory microenvironment 

is associated with oxidative stress mediators, such as 

reactive oxygen (ROS) and nitrogen species (RNS), that 

in turn amplify microglial activation with detrimental 

effects for mitochondrial homeostasis, finally leading to 

increased DAergic neuron vulnerability, and/or neuronal 

death [52–57]. Altogether, both aging and inflammation 

dramatically impact on DAergic neuron vulnerability, as 

well as on the capacity for neurorepair in PD, as a result 

of a vicious crosstalk between genetic and environmental 

factors. In this context, extracellular vesicles (EVs) are 
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key players in glial-neuron dialogue during both the 

development and/or the progression of the disease (see 

section 1.2).  

Because slowing down or halting PD still remains the 

principal goal of the research [15, 58], a major challenge 

regards the possibility to uncover exactly when and how 

the first signs of the disease do appear, in order to develop 

therapeutic strategies to mitigate or stop the progressive 

DAergic neuronal death. To this end, considerable effort 

is devoted to the screening of valuable clinical PD 

biomarkers, to reveal early aspects of disease 

pathogenesis and eventually to develop diagnostic 

methods to prevent and treat PD [59–63]. Investigations 

aimed at identifying preclinical PD biomarkers represent 

an important step towards the development of more 

efficacious neuroprotective therapies. This would delay 

the onset and progression of the disease – limiting the 

ongoing degeneration process before the appearance of 

the first clinical symptoms – and help to unravel novel 

etiopathogenetic mechanisms/targets for PD. The 

possibility to identify early signs of the disease 

investigating pre-clinical biomarkers, in particular within 

EVs, is summarized in the following sections. 

 

1.2 Extracellular vesicles: key players in cell-to-cell 

communication  

 

A growing body of research suggests that EVs may 

represent an important source of novel biomarkers. EVs 

are lipid nanometric structures potentially released in their 

surrounding microenvironment by all types of cells [64]. 

Based on their dimension, EVs are classified in small EVs 

(< 200 nm) and medium/large EVs (> 200 nm) [65]. 

Exosomes, small shedding vesicles and mitochondria-

derived vesicles (MDVs) belong to the group of small 

EVs [66]. On the other hand, larger microvesicles, 

ectosomes, oncosomes are comprised in the category of 

medium/large EVs. While most of the EVs derive from 

plasma membrane budding, exosomes possess a specific 

biogenesis pathway. In fact, they are generated upon 

intraluminal vesicles formation within the multivesicular 

body (MVB) compartment. Next, exosomes are released 

outside the cell following MVB fusion with plasma 

membrane [67]. 

EVs might contain almost all categories of 

biomolecules, such as nucleic acids (i.e. nuclear and 

mitochondrial DNA, long and small RNAs), proteins (i.e. 

structural and/or enzymatic proteins), metabolites and 

lipids [68, 69]. Lipids are the essential component of the 

EV bilayer membrane. The lipid composition of EVs is 

dependent on the cell source, and also on the specific EV 

type. As recently reviewed by Skotland et al, lipids in EVs 

belong to different classes (e.g., glycerophospholipids, 

sphingolipids, cholesterol, cholesterol esters, ceramide 

etc.), with distinct distribution between the inner and  

outer side of the bilayer [70]. In addition, it has been 

demonstrated that some classes of lipids (e.g. cholesterol, 

sphingomyelin, phosphatidylcholine, phosphatidylserine, 

phosphatidylethanolamine, ceramide, and others) are 

enriched in EVs as compared to their donor cells [70]. 

Furthermore, specific EV-associated lipid signatures have 

been linked with CNS disorders, including PD [71].  

Several types of proteins may be also found in EVs, 

both transmembrane/lipid-anchored and soluble in the 

vesicle lumen [65]. These include tetraspanins (e.g. 

CD63, CD9, CD81), adhesion molecules (e.g. L1CAM), 

integrins, components of the endosomal sorting complex 

required for transport (ESCRT; e.g., Tsg101), but also 

receptors (e.g. the interferon γ receptor 1 [72]) and 

enzymes (e.g. asparaginase-like protein 1 [73]. Regarding 

EV-membrane proteins, mass spectrometry studies 

revealed that some of them may have a reverse orientation 

compared with donor cells, implying a potential alteration 

of the biological functions in recipient cells [74]. Notably, 

as mentioned for lipids, also the EV proteome depends on 

the identity and the physio-/pathological status of the 

donor cell [75]. The presence of nucleic acids in EVs is 

similarly diverse, with old and new classes of ncRNAs 

(e.g., tRNA-derived fragments) being identified as 

potential functional cargoes (for a detailed review see 

[76]). 

This complexity in the EV composition is reflected 

by the plethora of their biological functions, which makes 

EVs key players for cell-to-cell communication in many 

different contexts, as extensively reviewed elsewhere [77, 

78]. Indeed, once released extracellularly, EVs may 

convey their information either to adjacent or distant cells. 

EVs can signal to target cells through different 

mechanisms, such as membrane fusion, by which the 

vesicle content is released inside the lumen of the target 

cell. Other mechanisms include the uptake of intact 

vesicles (via various mechanisms, including 

macropinocytosis, phagocytosis, endocytosis via caveolae 

and lipid rafts, clathrin-dependent endocytosis) [79]. 

Once inside the target cell, intact EVs may be directed 

towards distinct cellular compartments where their 

content is differentially processed. Finally, thanks to the 

presence of surface ligands/receptors, EVs may interact 

with the corresponding receptor/ligand expressed at the 
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surface of the target cell, thus triggering a specific 

response within the target cell [72].  

In the context of PD, glial cells can deliver EVs 

carrying various messages for the 

vulnerable/dysfunctional DAergic neurons, with 

important consequences for their death/survival [80]. Of 

special importance, aging may represent a crucial factor 

influencing the way by which glial-derived EVs can 

trigger the development and/or the progression of the 

disease. In fact, glial EV-derived cargoes are susceptible 

to play important roles, in either a beneficial or harmful 

way [80]. The aging process alters not only astrocyte- and 

microglial- EV content, but also their spreading in the 

microenvironment, thereby directing both pro/anti-

inflammatory responses to the target neuronal cells with 

consequences for neuronal vulnerability, death and/or 

repair [81]. Recently, the application of EVs as innovative 

cell-free therapeutics is being extensively explored. For 

instance, EVs are under evaluation as nanocarriers for 

several biomolecules of therapeutic relevance in PD, 

including L-DOPA [82].  

Interestingly, EVs are able to cross biological 

barriers, such as the blood-brain barrier (BBB), reaching 

the systemic circulation or other biofluids [67, 83]. EVs 

released from different cell types (e.g., neurons) can be 

easily recovered from serum, plasma, urine and other 

body fluids [83]. Given that the EV content is strictly 

dependent on the status of the donor cells, the messages 

carried by EVs may vary between physiological or 

pathological conditions [80]. Starting from the first 

reports on the EV potential as novel source of biomarkers 

[84], the progression of omics approaches allowed to 

extensively analyze the content of EVs isolated from 

several sources and in different pathological conditions, 

including PD [85, 86]. The technical considerations about 

the EV purification protocols have been already discussed 

elsewhere [87]. 

Overall, the goal of this review is to outline a broader 

perspective in support of the use of EVs as a robust source 

of biomarkers for PD, and, more in general, for other NDs. 

 

2. Discovering novel biomarkers for PD 

 

As mentioned earlier, the discovery of novel PD 

biomarkers may: i) improve data collection; ii) increase 

the knowledge about the clinical and the pathological 

parameters of the disease (i.e., molecular mechanisms 

underlying PD onset); iii) help monitoring PD progression 

and treatment efficacy. Unfortunately, PD is a 

multifaceted pathology with clinical symptoms not only 

typical of PD, but shared with other forms of 

parkinsonism. Therefore, a given biomarker could be 

relevant for certain conditions, but not for others. For all 

these reasons, despite the efforts made by the scientific 

community, a valid biomarker for monitoring PD onset 

and/or progression has not been established yet [88]. 

Potential biomarkers for PD can be grouped into three 

main categories: i) brain imaging biomarkers (e.g. 

Magnetic Resonance Imaging - MRI, Computed 

Tomography - CT, Positron Emission Tomography - PET 

etc.); ii) clinical testing procedures (e.g. tests of motor 

performance, vision, olfaction etc.); and iii) biochemical 

and cellular biomarkers (e.g. blood tests) [89, 90]. 

Biomarkers from the third group deserve special attention 

because they are generally more sensitive, less variable, 

more easily preserved, simpler to measure. Also, changes 

in their levels may be the result of the first response of the 

organism to environmental agents or pharmacological 

drugs [91].  

EVs can be considered a useful tool for biomarker 

discovery for several reasons. First of all, given their 

intracellular origin, EVs mirror the pathophysiology of 

the donor cell. Also, the external lipid bilayer protects the 

internal content of EVs. In particular, brain-derived EVs 

are able to transport their cargoes through the BBB to the 

systemic circulation, where they can be isolated and then 

analyzed [92]. Considering that also peripheral cells can 

release vesicles in the biologic fluids, several protocols 

are being developed to isolate EVs from a defined body 

district. For example, by using the L1CAM antibody it is 

possible to isolate the vesicular fraction selectively 

secreted by neural cells, from the whole blood [93].  

Notably, a growing body of studies demonstrated 

how the pathological conditions may alter the vesicular 

content, suggesting therefore that EVs represent a 

potential diagnostic tool for an early detection of NDs, 

including PD [94] (See Fig. 1).  

In this work we present an up-to-date collection of 

potential EV-based biomarkers, which include the most 

important PD-linked proteins and miRNAs. In addition, 

we introduce a new class of small EVs, of mitochondrial 

origin (i.e., MDVs), discussing their emerging role as 

biomarker source in PD. Given the crucial role of aging, 

inflammation and oxidative stress in PD development and 

progression, identifying PD-specific EV molecular 

cargoes that precede and/or accompany the preclinical and 

clinical phases of the disease would help to assess EV role 

in PD physiopathology. Along these lines, the prognostic 

value of EVs is also proposed. Finally, the main 
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challenges related to the application of EVs as biomarkers 

in the clinical routine are further discussed. 

 

3. α-Syn and EVs: a dual role 

 

3.1 α-Syn spreading in PD 

 

As well known, the presence of α-Syn aggregates in LB is 

a typical hallmark of PD. α-Syn is a 140 amino-acid 

presynaptic neuronal protein encoded by the SNCA gene 

[16]. Under physiological conditions it is expressed 

during neuronal development following the determination 

of neuronal phenotype and the establishment of synaptic 

connections [95]. In presence of injuries or altered 

neuronal plasticity, α-Syn expression decreases, 

suggesting its important role during synaptic 

transmission, as demonstrated by Murphy and colleagues 

by using α-Syn antisense oligonucleotides [96]. On the 

contrary, α-Syn oligomerization and aggregation seem to 

be responsible of its enhanced toxicity leading to the 

degeneration of DAergic neurons in PD [97]. In addition, 

the secretion of α-Syn have harmful effects on 

neighboring cells, inducing in turn the aggregation of the 

endogenous α-Syn, and contributing to spread the disease 

[98]. α-Syn can be detected in the conditioned medium of 

cells and extracellular body fluids of PD patients, such as 

plasma, serum, cerebrospinal fluid (CSF) and saliva [99–

101]. However, the low abundance of α-Syn detected in 

such specimens and the concurrent presence of α-Syn in 

peripheral sites led to controversial results, making α-Syn 

an unsuitable biomarker for PD [100, 102]. 

 

 
Figure 1. Potential EV-associated biomarkers for PD. Exosomes (in orange), MDVs (in yellow) and shedding vesicles 

(in light blue) are secreted in the microenvironment through different biogenetic pathways: fusion of MVB with the plasma 

membrane and shedding mechanism. EVs are heterogeneous lipid bilayer structures enriched in sphingomyelin (SM), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), ceramide and cholesterol. EVs can 

carry different cargoes (DNA, miRNAs, Alfa-Synuclein, PrPC, LRRK2, DJ-1 and other proteins) from the brain, through 

the BBB, toward the systemic circulation, where they can be detected as biomarkers. Vesicles reach the target cells through 

different mechanisms such as uptake or surface binding. 
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Importantly, a fraction of extracellular α-Syn is 

transported inside EVs, thus reviving the possibility to use 

α-Syn as suitable PD biomarker [97]. The first evidence 

dates backs to 2005 when Lee and colleagues 

demonstrated that both RA-differentiated SH-SY5Y 

neuronal cells and rat primary cortical neurons were able 

to secrete EVs containing α-Syn [97]. These results were 

confirmed by Emmanouilidou and colleagues in 2010, 

who found that the release of toxic α-Syn-EVs was a 

calcium-dependent process [98]. These data suggested a 

potential mechanism for an EV-mediated α-Syn spreading 

between neurons and from neurons to glial cells in the 

CNS. This cell-to-cell spreading, in turn, increases the 

release of proinflammatory factors, further exacerbating 

neurodegeneration [103–105]. Interestingly, in a recent 

work Guo and colleagues demonstrated that CD11 

positive microglia-derived EVs from the CSF of PD and 

multiple system atrophy (MSA) patients contained higher 

levels of total α-Syn compared to controls, although no 

differences were found between PD and MSA patients 

[106]. Interestingly, when administered to cortical neuron 

cultures, these vesicles were able to induce severe α-Syn 

aggregation, thus confirming the ability of EVs, and in 

particular microglia-derived EVs, to spread α-Syn protein 

[106]. In this regard, Marie and colleagues in 2015, 

explained how EVs accelerate exogenous α-Syn 

aggregation. The researchers demonstrated that the lipid 

composition of EVs is responsible for α-Syn aggregation, 

highlighting the important role played specifically by the 

ganglioside lipids GM2 and GM3 [107].  

The presence of α-Syn inside EVs might result from 

a defective proteolytic activity of lysosomes, whose 

functions are commonly impaired in PD [108, 109]. For 

this reason, to avoid its intracellular accumulation, α-Syn 

may be loaded inside EVs and secreted outside [106, 110]. 

In this way EVs mediate two events: on one hand they 

spread α-Syn between cells [111, 112], while on the other, 

once inside the target cells, EVs are conveyed to 

lysosomes where α-Syn can be finally degraded [113]. All 

these findings support the key role played by EVs in PD 

pathology, not only as possible source of biomarkers, but 

also as suitable target for therapeutic interventions. 

Recently, in 2018, Papadopoulos and colleagues 

found that the enzyme glucocerebrosidase (GCase) 

degrades α-Syn to maintain homeostatic levels of α-Syn’s 

monomeric structure within neuronal cells [114]. More in 

detail, they found that lowering the activity of GCase, the 

secretion of  α-Syn via EVs was increased [114]. The 

same year, results from Thomas et al. supported the 

finding using a Drosophila model [115]. These data 

support the development of novel therapies to restore 

GCase activity, and suggest that their efficacy may be 

evaluated by measuring levels of α-Syn inside EVs [116–

118]. 

  

3.2 α-Syn as EV-transported PD biomarker 

 

To date, a large number of studies analyzed the levels of 

α-Syn within CNS-derived EVs in plasma samples from 

PD patients. In all of them α-Syn was higher in PD 

patients vs. healthy controls (HC). Additionally, an 

inverse correlation between α-Syn in EVs and GCase 

enzymatic activity was also found [119–122]. On the 

other hand, Niu and colleagues in 2020, through a 

longitudinal study on PD patients, demonstrated a direct 

correlation between vesicular α-Syn levels and disease 

severity [123]. Overall, these data support the notion that 

increased levels of α-Syn, in neuronal EVs isolated from 

plasma, may be considered a useful biomarker for early 

PD diagnosis, as well as a predictive marker of motor 

dysfunction progression in PD.   

Following the data obtained using plasma samples, 

also the levels of α-Syn in serum-derived EVs were 

explored as a possible reliable PD biomarker. In 2019, Si 

and colleagues evaluated α-Syn enrichment in CNS-

derived EVs from three different clinical groups: (i) HC; 

(ii) patients with essential tremor (ET), without PD 

diagnosis; and (iii) early-stage PD patients; this latest 

group was further divided into two different phenotype-

related subgroups: the tremor-dominant (TD) and the non-

tremor-dominant (NTD). The investigation demonstrated 

that the levels of α-Syn in EVs were lower in PD patients 

compared to ET and HC groups. In particular, within the 

PD group, α-Syn-EV levels decreased in NTD vs. the TD 

type [124]. Therefore, measuring α-Syn in serum-derived 

neuronal EVs may be a useful tool to discriminate 

between PD, ET patients and HC. This is relevant, 

considering that ET patients show a risk four-fold higher 

to develop PD. Also, there is the potential to identify 

different PD phenotypes, at the early stage of the disease 

[124].  

In contrast with these findings, a recent study from 

Jiang and colleagues (2020) analyzed the levels of α-Syn 

in serum-derived neuronal EVs from subjects affected by 

different NDs, including PD, dementia with Lewy bodies 

(DLB), rapid eye movement sleep behavioral disorder 

(RBD), MSA and others. They found a two-fold increase 

of α-Syn in serum-derived neuronal EVs from prodromal 

and clinical PD patients when compared to HC, MSA or 

other NDs. In particular, they found that α-Syn levels 
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were consistently and stably elevated in PD patients at the 

early or advanced stages, allowing to discriminate clinical 

PD from controls [125]. 

More recently, in 2021, Dutta and colleagues 

analyzed the levels of α-Syn in neuronal (L1CAM-

immunoprecipitated) and oligodendroglial (myelin 

oligodendrocyte glycoprotein-immunoprecipitated) EVs 

from serum or plasma of PD and MSA patients vs. HC 

[126]. They found that in both EV types, α-Syn levels 

significantly increased in the order HC<PD<MSA, in 

contrast with [125]. Moreover, the ratio between α-Syn in 

oligodendroglial and neuronal EVs improved the 

distinction between the two synucleinopathies, with high 

sensitivity and specificity [126]. 

Recently, it has been observed that also salivary 

glands cells release α-Syn in the saliva, either free or 

associated to EVs. Cao and colleagues, in 2019, found 

higher levels of oligomeric α-Syn in PD salivary-EVs 

compared to HC [127]. Also, oligomeric α-Syn over total 

α-Syn ratio was higher in PD patients [127]. However, in 

this case, no association with the severity of the disease 

was found in correlation with oligomeric α-Syn levels in 

salivary-EVs [127]. 

The same year, Rani and colleagues demonstrated 

that neuronal-derived EV levels in saliva were higher in 

PD patients than in HC [128]. Again, α-Syn in salivary-

EVs was increased in PD subjects compared to HC [128]. 

Although the mechanism by which salivary glands release 

α-Syn associated to EVs has not been elucidated yet, the 

presence of neuronal EVs in salivary samples may suggest 

an interplay between distinct body districts in the α-Syn 

spreading process, typical of PD.    

Studies on CSF-derived EVs provided instead 

different results. In 2016, Stuendl and colleagues 

analyzed the levels of α-Syn in CSF-derived EVs from 

early-stage PD patients vs. age-gender matched HC [129]. 

Interestingly, they measured lower levels of α-Syn in EVs 

from early-stage PD subjects compared to HC, although 

the percentage of α-Syn loaded into EVs was extremely 

low (2,17%) in both groups. Also, they were able to 

distinguish between patients with DLB and patients with 

established PD. CFS samples from DLB patients 

contained less EVs and lower α-Syn levels compared to 

both PD patients and HC. Moreover, EVs from DLB and 

PD groups were able to induce α-Syn oligomerization in 

vitro [129]. Although larger cohort studies are needed to 

increase the relevance of these observations, α-Syn in 

CSF-derived EVs may be suggested as a useful biomarker 

to monitor PD progression. All the findings regarding the 

specific detection of α-Syn within EVs isolated from 

different biofluids are reported in Table 1.  

 

Table 1. Potential PD biomarkers associated with EVs, and specific levels for each body district.  

 
POTENTIAL PROTEIN 

BIOMARKERS 
EVs SOURCE 

LEVELS IN PD 

PATIENTS 
REF. 

α-Syn 

Plasma                                                       

Saliva                                                            

CSF                                                           

Serum 

Higher                                                                           

Higher                                                      

Lower/Higher                                                                 

Lower/Higher 

[119–123, 126] 

[127, 128] 

[106, 129] 

[124–126] 

Ser(P)-1292 LRRK2 Urine Higher [135–137] 

DJ-1 
Urine                                                                 

Plasma 

Higher                                                               

Higher 

[142, 143]                                                                                                               

[120] 

APO A1 and J                                                                                                             

Complement C1r 
Plasma Lower [144] 

APO D and APO J                                                                           

Afamin and Gelsolin                                                           

PEDF 

Serum Higher [145] 

PrPC Plasma Higher [146] 

SNAP23 

Calbindin 
Urine Higher [149] 

ATP5A, NDUFS, SDHB                         

FGF21                                                              

IL-9 

Serum Lower [163] 

CRP                                                                           

TNF-α                                                               

MIPs 

Serum Higher [163] 
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4. Other EV-carried PD protein biomarkers  

 

4.1 LRRK2 

 

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large protein 

kinase composed by several highly conserved functional 

domains. LRRK2 is mainly found expressed in circulating 

immune cells, liver and kidney tissues and in brain-

specific sub-populations of neuronal cells and astrocytes 

[130]. This enzyme is encoded by the gene PARK8, whose 

mutations have been related to familial and sporadic late 

onset PD [131]. LRRK2 is a soluble cytoplasmic protein 

often found associated with intracellular membranous 

organelles including mitochondria, lysosomes, 

endosomes. It is found also in extracellular structures, 

such as synaptic vesicles and EVs [130, 131]. Although 

LRRK2 function(s) is still matter of debate, based on its 

intracellular localization, it may contribute to the 

biogenesis and/or regulation of trafficking within the 

endocytic pathway [131, 132]. The mutation G2019S is 

known to induce an increased autophosphorylation and 

phosphorylation activity towards Rab substrates [133]. 

Interestingly, these post-translational modifications do 

not appear in the cytoplasmic protein or in its free-

secreted form, but they are selectively present in LRRK2 

inside the EVs [134].  

The first evidence of the presence of LRRK2 inside 

EVs dates back to 2013, when Fraser and colleagues 

described the possible mechanism by which LRRK2, 

upon interaction with 14-3-3 protein, is addressed to 

MVBs and then released in the extracellular space, via 

EVs [131]. Notably, the authors demonstrated the 

presence of LRRK2 inside EVs from urine and CFS 

samples of PD patients. However, LRRK2 levels  were 

not different vs. HC, due to a very high inter-sample 

variability [131]. Three years later, the same group 

focused on the LRRK2 Ser(P)-1292 autophosphorylation, 

which is the result of the specific G2019S mutation, 

linked with the induction of cellular toxicity. In fact, 

Ser(P)-1292 level increases following pathogenic 

mutations of LRRK2 gene in primary neurons, whereas 

decreases in response to LRRK2 kinase inhibitors [135]. 

The authors found that the ratio of Ser(P)-1292 over total 

LRRK2 was higher in urine-derived EVs from PD 

subjects carrying the mutation G2019S compared to both 

non-mutant idiopathic PD patients and HC [135]. 

Moreover, this ratio was higher also in G2019S subjects 

with PD compared to healthy G2019S carriers. 

Consequently, Ser(P)-1292 LRRK2 over total LRRK2 

protein ratio might help to predict the risk to develop and 

manifest the clinical symptoms of PD for G2019S healthy 

carriers [135]. In addition, the same group measured the 

levels of Ser(P)-1292 LRRK2 in a larger cohort of 

idiopathic PD patients vs. HC [136]. First, these levels 

vary depending on the gender, being higher in men than 

in women. Second, idiopathic PD patients displayed 

higher levels of Ser(P)-1292 LRRK2 in urine-derived 

EVs than controls. Such levels were also positively 

correlated to several non-motor symptoms and, 

ultimately, to low quality of life [136]. On the contrary, 

no significant correlation with the progression in motor 

impairments was established, presumably because all 

patients included in the study were treated with 

pharmacological DAergic therapies [136].  

In 2017 Wang and colleagues extended Fraser’s 

study to a cohort of Norwegian subjects, with or without 

PD and carrying or not the G2019S LRRK2 mutation. 

They isolated EVs from both CSF and urine samples and 

measured Ser(P)-1292 LRRK2 vs. total LRRK2 protein 

levels. In urine-derived EVs higher levels of Ser(P)-1292 

LRRK2 have been found in G2019S carriers compared to 

HC, without any significant difference between males and 

females. However, a significant correlation between 

G2019S mutation and PD onset has been measured only 

in males, since asymptomatic subjects had lower levels of 

Ser(P)-1292 LRRK2. Moreover, they found that Ser(P)-

1292 LRRK2 levels were higher in CFS- than in urine-

derived EVs, but differences between carriers of G2019S 

LRRK2 mutation vs. non-mutant controls were not found 

[137]. Although the larger number of results confirm the 

increase of Ser(P)-1292 LRRK2 in urine-derived EVs 

from PD patients, there are still several aspects that need 

to be better investigated before considering LRRK2 in 

EVs as a suitable biomarker for PD.  

Additionally, in a recent study, Candelario and 

colleagues characterized EVs produced by: (i) DAergic 

neurons derived from induced pluripotent stem cells 

(iPSC) carrying the LRRK2 G2019S mutation; (ii) 

DAergic neurons derived from iPSC of healthy sibling 

control; and (iii) LRRK2 G2019S edited to correct the 

mutation [138]. They found that EVs from all cell types 

were different in size and abundance. In particular, the 

LRRK2 G2019S mutation altered the vesicle size. Also, 

the mutation induced several gene expression changes 

compared with control and LRRK2 G/S correction. 

Interestingly, the G/S correction induced the secretion of 

EVs whose cargo pattern was similar to control ones. 

Therefore the authors suggested to further analyze the 

content of EVs to identify potential novel biomarkers for 

PD [138]. 
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4.2 DJ-1 

 

The mutations of PARK7 gene (encoding for the 

deglycase DJ-1) have been correlated to familial and 

sporadic PD. DJ-1 is a small highly conserved dimeric 

protein mainly expressed in tissues with high energy 

demand, like testis, the islets of Langerhans and the brain. 

In the brain, DJ-1 is involved in the regulation of 

transcription and neuronal protection from oxidative 

stress. Accordingly, oxidized DJ-1 has been found in post 

mortem PD patients’ brains [139–141]. The first evidence 

of the presence of DJ-1 in urine-derived EVs from PD 

patients have been shown by Ho and colleagues in 2014. 

As for LRRK2, the authors highlighted a significant 

increase of DJ-1 in males with PD compared to healthy 

males [142]. Afterwards, in 2018, when the authors 

analyzed the levels of oxidized DJ-1 in whole urine 

samples, without separating the vesicular fraction, they 

observed a two-fold increase of oxidized DJ-1 in PD 

patients compared to HC [143]. 

The same year Zhao and colleagues analyzed DJ-1 

plasma levels in PD patients [120]. First, they evaluated 

the concentration of DJ-1 in the whole plasma by 

comparing protein levels in PD patients vs. HC. They 

could not observe any significant difference. However, 

when they isolated CNS-derived EVs from plasma 

samples, higher levels of DJ-1 in PD patients were 

observed compared with HC. In the same samples, also α-

Syn was higher in PD patients, confirming the results 

described in section 3.2. However they did not observe 

any significant variation between levels of both DJ-1 and 

α-Syn between early and late stage PD patients [120]. In 

light of these results, it is not possible to consider DJ-1 as 

a suitable PD biomarker, yet. Additional studies might 

provide novel evidences to support its role to reliably 

monitor PD onset and progression. 

 

4.3 Apolipoproteins 

 

The systemic responses induced by PD progression may 

be monitored through the evaluation of protein changes 

inside EVs. Therefore, other proteins may be scrutinized 

as candidates for EV-based PD biomarkers. In particular, 

Kitamura and colleagues in 2018 isolated EVs from 

plasma samples of PD patients (two different stages), as 

well as from healthy subjects. They demonstrated that the 

levels of Apolipoprotein A1 (APO A1), Apolipoprotein J 

(APO J) and Complement C1r, which prevent protein 

aggregation in physiological conditions, decreased in PD 

patients compared with HC [144]. Similarly, Jiang and 

collaborators, one year later, observed that the levels of 

proteins involved in neuroprotection, such as Afamin, 

Gelsolin, Apolipoprotein D (APO D), APO J and 

pigmented epithelium-derived factor (PEDF), were higher 

in serum-derived EVs from PD patients vs. HC [145]. In 

particular, the levels of these EV-associated proteins 

gradually increased from mild to severe PD patients, 

indicating that serum-derived EVs, with their distinct 

biochemical compositions, might represent a good 

candidate as source of biomarkers for diagnosis and 

prognosis of PD. 

 

4.4 PrPC and other novel protein candidates 

 

Another finding concerning novel EV-based PD 

biomarkers has been achieved by Leng and colleagues in 

2020 [146]. They measured the levels of the cellular prion 

protein (PrPC) in plasma samples from PD patients with 

or without cognitive impairments, since this protein has 

been linked to cognitive decline typical of NDs, such as 

Alzheimer’s disease (AD) and PD [147]. PrPC is a 

glycosylphosphatidylinositol-anchored membrane 

protein mainly located in the CNS, within pre- and post-

synaptic sites. Recent findings demonstrated how specific 

domains of PrPC are used as docking sites for β-sheet rich 

amyloid proteins, including α-Syn, thus contributing to 

the transmission of α-Syn to neurons [148]. In their work, 

the authors found that the levels of PrPC were higher in 

EVs from PD patients than in HC. Moreover, within the 

PD group, they observed a significant increase of PrPC  in 

PD patients with cognitive impairments, demonstrating 

that PrPC in vesicles may be a candidate biomarker to 

evaluate the severity of the cognitive decline [146].  

In 2019 Wang and colleagues [149] performed the 

proteomic analysis of urine-derived EVs in PD patients 

vs. HC. They analyzed samples from two independent 

cohorts of PD patients and HC, all of them free from 

kidney diseases (which might represent a biased 

condition) [149]. EV lysates were subjected to mass 

spectrometry. Among all proteins discovered in urine-

EVs, only two, SNAP23 (with 70% sensitivity and 80% 

specificity), and calbindin (with 76% sensitivity and 71% 

specificity), were found highly expressed in PD patients 

vs. HC. The authors suggested that these two proteins, 

when both expressed, might represent a useful non-

invasive biomarker for PD [149]. 

In 2020 Vacchi and colleagues [150] developed a 

diagnostic protocol able to differentially diagnose people 

affected by PD, MSA, atypical parkinsonism with 

tauopathies (AP tau) vs. HC. Such protocol is based on the 
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analysis of plasma-derived EVs through an innovative 

flow cytometry approach. First, they found that PD 

samples were highly enriched in EVs compared to other 

groups. Moreover, the analysis of EV-associated immune-

surface markers revealed that 16 antigens (CD4, CD19, 

CD45, CD1c, CD2, CD11c, CD31, CD41, CD62, CD146, 

MCPS, CD25, CD40, CD209 and HLA-ABC) were 

selectively enriched in PD vs. HC. Interestingly, MSA 

displayed 12 upregulated surface markers, whereas AP-

Tau only 4. PD and MSA shared 11 EV-surface markers, 

demonstrating that a different immune dysregulation 

might characterize PD and MSA compared to AP-Tau. 

Thanks to this novel approach, the authors were able to 

identify PD patients (97,8% accuracy) and MSA patients 

(100% accuracy) [150]. 

As said, the analysis of brain-derived EVs from 

plasma samples has been also suggested as possible PD 

biomarker source. Indeed, in 2019 Ohmichi and 

colleagues [151] measured the abundance of EVs derived 

from neurons, astrocytes and oligodendrocytes in plasma 

samples from PD, MSA, progressive supranuclear palsy 

(PSP) vs. HC. To perform such analysis, the authors 

developed a specific immunoassay using CD81, a 

classical small EV marker, in association with donor-cell-

type specific markers, such as synaptosome associated 

protein 25 (SNAP25) for neuron-derived EVs (NDEs), 

excitatory amino acid transporter 1 (EAAT1) for 

astrocyte-derived EVs (ADEs) and oligodendrocyte-

myelin glycoprotein (OMG) for oligodendrocyte-derived 

EVs (ODEs). They found that NDEs were significantly 

higher in PD samples compared to both HC and MSA 

ones. Considering the clinical severity of PD pathology, 

they found that all types of brain-derived EVs were higher 

in advanced PD patients with overt motor symptoms. On 

the contrary, only NDEs and ODEs (especially NDEs) 

abundance was significantly higher in mild PD patients 

compared to HC. Therefore, the authors suggested NDE 

quantification as the better biomarker to diagnose early 

stage PD, while ODEs may be used as a surrogate 

biomarker for monitoring the progression of PD [151] 

Overall, these studies suggest that EVs could 

represent an innovative and useful source of protein 

biomarkers for both the diagnosis and prognosis of PD. 

Again, further investigations are needed to verify their 

specificity and sensibility. 

 

5. Mitochondria-derived vesicles as novel biomarker 

source for PD  

 

Mitochondrial dysfunctions play a pivotal role in PD. This 

finding was firstly observed during the 80s in people 

accidentally infused with the neurotoxin MPTP [152]. 

This molecule, now widely used to reproduce PD in 

animal models, inhibits the electron transport chain 

complex I resulting in dysfunctional mitochondrial 

respiration and increased ROS production, which 

ultimately lead to DAergic neuron degeneration. As 

elsewhere reviewed, mutations in PD-linked genes have 

been correlated with mitochondrial dysfunctions. 

Additionally, mitochondrial DNA mutations, deletions or 

rearrangements have been observed in PD patients [153, 

154]. 

Importantly, all mitochondrial dynamics are finely 

regulated to ensure the organelle homeostasis [155]. 

Indeed, Mitochondrial Quality Control (MQC) is a four-

stage system which include mitochondrial biogenesis, 

fusion, fission and mitophagy. Impairment in one of these 

steps leads to mitochondrial dysfunctions commonly 

observed in aging-related diseases, including PD [156, 

157]. Mitophagy is deputed to eliminate the whole 

damaged mitochondria [158]. On the other hand, MDVs 

selectively eliminate misfolded proteins or specific parts 

of damaged mitochondria or, additionally, scavenge ROS 

[159–161]. MDVs bud off from the mitochondria either 

to reach the lysosomal compartment for degradation, or to 

be released outside the cell. For their characteristics and 

size, MDVs can be considered a specific subtype of EVs 

[162].  

Recent findings revealed the presence of 

mitochondrial signatures inside circulating EVs that 

discriminate between PD patients and HC. Picca and 

colleagues in 2019 analyzed the protein content of small 

EVs derived from serum of PD patients vs. controls [163]. 

To evaluate the presence of MDVs among EVs, the 

authors analyzed both the classical exosome markers (i.e., 

CD63, CD9 and CD81), as well as mitochondrial proteins. 

Moreover, the presence of 27 inflammatory mediators 

was evaluated within serum samples from both PD 

patients and HC [163]. From the integrated analysis of 

small EV content plus inflammatory mediator serum 

levels, it was possible to accurately discriminate between 

PD patients and controls. In particular, an increased 

number of vesicles was observed in PD patients vs. HC, 

although the levels of CD63 and CD9 were lower in PD 

patients. Also, mitochondrial proteins from complexes V 

(ATP5A), I (NDUFS3) and II (SDHB) were found lower 

in PD serum-derived small EV samples. Moreover, in PD 

serum samples, lower levels of metabolic modulator 

Fibroblast growth factor 21 (FGF21) and IL-9 were found, 
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together with a higher concentration of proinflammatory 

factors (CRP, TNF-α, chemokine macrophage 

inflammatory proteins (MIPs)) [163]. The authors 

concluded that the evaluation of mitochondrial proteins 

and tetraspanins contained in vesicles, combined with the 

analysis of the inflammatory molecules present in serum, 

may be useful to discriminate between PD patients and 

HC [163, 164]. This finding is in line with other 

researches reporting differential levels of specific proteins 

within EVs from PD patients vs. controls, indicating that 

the analysis of EV protein content could serve to identify 

novel biomarkers for PD. In Table 1 and Figure 2 we 

summarized all the novel EV-based protein biomarker 

candidates for PD.    

 

 
Figure 2. Schematic representation of EVs isolated from different biological fluids. EV source (top panels): EVs can be 

purified starting from different biospecimens, including plasma, serum, urine, saliva, CSF. Methods for EV isolation (middle 

panel): different approaches have been used to purify EVs, including differential ultracentrifugation, the employment of 

immunoprecipitation or other commercial kits, microfiltration. EV-biomarkers (bottom panels): published examples of putative 

PD biomarkers enriched/decreased in EVs (arrows up/down indicate enrichment/decrease). 

6. miRNAs carried by EVs as PD biomarkers 

 

Micro-RNAs (miRNAs) are small non-coding RNAs that 

repress gene expression via the interaction with target 

mRNAs [165]. They play an important role both in 

physiological and pathological conditions, as recently 

reviewed in PD from our group [63]. Herein, we collected 

all findings from 2017 to present, focusing on miRNAs 

specifically carried by EVs, and their role as possible 

biomarkers for PD (Fig. 3). In 2017, Cao and colleagues 

characterized the profile of 24 EV-miRNAs, previously 

identified as potential biomarkers for PD in serum or 

plasma samples [166]. They isolated EVs from serum of 

109 PD patients and 40 HC. Among the 24 miRNAs, only 

3 miRNAs were found consistently present in both PD 

cases and controls. In particular, miR-24 and miR-195 

were significantly higher in serum-EVs from PD patients, 

whereas miR-19b was significantly lower compared to 

HC [166]. The same year, Aghili and colleagues 

developed a nano-biosensor able to detect early PD by 

specific identification and quantification of miR-195 in 

serum samples [167, 168].  
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Figure 3. Schematic representation of CNS-derived EVs from PD patients, carrying dysregulated miRNAs. CNS-

derived EVs, recovered from CSF, serum or plasma, contain miRNAs whose levels has been found higher (red) or lower 

(green) compared to controls. These specific signatures may be useful as possible biomarkers for PD. 

One year later, in 2018, Dos Santos and colleagues, 

investigated EV-miRNAs enriched in CSF samples from 

early stage PD patients [169]. Through the use of a 

machine learning approach, they predicted that early-

stage PD patients have high levels of let-7f-5p and low 

levels of miR-27a-3p and miR-426-5p, whereas controls 

should have high levels of miR-125a-5p and low levels of 

miR-151a-3p. These miRNAs, although never proposed 

as PD biomarkers, are involved in several biological 

pathways linked with PD. Interestingly, the combination 

of miRNA analysis with specific protein biomarkers, such 

as α-Syn, allowed the identification of other miRNAs 

correlated with α-Syn levels in CSF. In particular, early 

stage PD patients should express low levels of both α-Syn 

and miR-22-3p, as well as high levels of miR-10b-5p and 

miR-151a-3p [169]. Although this approach bears a great 

predictive power, further sequencing-based validation in 

patients is needed [169].  

The same year, Yao and collaborators compared 

miRNA levels in plasma and plasma-derived EVs from 

PD patients vs. HC [170]. They found no difference in 

plasma miRNAs between PD and controls. On the other 

hand, the analysis of miRNA levels in plasma-derived 

EVs identified miR-331-5p as significantly enriched in 

PD patients compared to controls, whereas miR-505 was 

significantly lower [170]. Indeed, when they compared 

the levels of these two miRNAs in EVs and plasma, they 

confirmed the enrichment of miR-331-5p in EVs, whereas 

miR-505 was enriched in plasma samples [170]. 

A known risk factor for PD and PD-like pathologies 

is the exposure to neurotoxicants [171]. For example, the 

chronic exposure to environmental manganese (Mn) 

determines the insurgence of a neurological syndrome 

with motor dysfunctions slightly similar to PD [172]. In 

this regard, in 2018, Harischandra and colleagues 

developed an in vitro model of MN9D DAergic cells 

expressing a GFP-tagged α-Syn and treated with Mn 
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[173]. They found that Mn exposure induced a significant 

increase of EV secretion. Also, Mn exposure altered the 

small RNA profile of EVs secreted by cells with GFP-

tagged α-Syn. In details, they found 12 miRNAs (miR-

210-5p, miR-128-1-5p, miR-505, miR-325-5p, miR-16-

5p, miR-1306-5p, miR-669b-5p, miR-125b-5p, miR-

450b-3p, miR-24-2-5p, miR-6516-3p and miR-1291) 

enriched in Mn-exposed α-Syn cell-derived EVs 

compared to non-exposed cells. These miRNAs regulate 

multiple relevant biological pathways (such as 

mitochondrial functions, autophagy, inflammation and 

protein aggregation) and can be suggested as possible 

biomarkers to be assessed within in vivo PD studies [173]. 

In 2019, Barbagallo and colleagues [174] 

investigated the expression of 23 miRNAs contained in 

serum-derived EV isolated from a cohort of 139 

individuals including patients affected by AD, PD, 

vascular dementia (VD), vascular parkinsonism (VP) and 

HC. Regarding PD patients, the group identified a set of 8 

miRNAs (let-7d, miR-22*, miR-23a, miR-24, miR-142-

3p, miR-181c, miR-191 and miR-222) differentially 

expressed in serum-derived EVs from PD patients vs. HC. 

Also, 3 miRNAs (miR-23a, miR29a, and miR181c) were 

differentially expressed in PD compared with VP 

specimens. Additionally, the authors identified 13 

miRNAs (let-7d, miR-1, miR-9, miR10b*, miR-15b, 

miR-19b, miR-22*, miR-23a, miR-24, miR-29a, miR-

29b, miR-29c, miR-34b, miR-125b, miR130b, miR-137, 

miR-142, miR-148b, miR-181c, miR191, miR-222, miR-

324, and miR-505) selectively overexpressed in all ND 

serum-derived EVs compared to HC. Moreover, upon 

correlation of specific miRNA levels with the age of 

patients, the authors observed a significantly positive 

correlation with age for let-7d, miR-24, miR-29a and 

miR-222 in PD group, for miR-130b in VP group and for 

miR-24 and miR-130b in PD and VP groups when 

clustered together. No statistically significance was found 

upon correlation of miRNA expression and gender of the 

subjects [174].  

A recent study from Xie et al. in 2020 [175], 

measured the enrichment of specific miRNAs in plasma-

derived EVs from 30 PD patients and 30 HC. They found 

that plasma-derived EVs from PD patients carried higher 

levels of miR-30c-2-3p compared to controls. On the 

contrary, miR-15b-5p, miR-138-5p, miR-338-3p, miR-

106b-3p and miR-431-5p levels were lower in PD than in 

HC. Interestingly, GO and KEGG pathway analyses 

revealed that all dysregulated miRNAs (except miR-

106b-3p), targeted genes involved in DAergic synapses 

formation, neurogenesis and neuron protection guidance, 

further supporting their critical role in PD progression  

[175].  

The same year, Nie and colleagues analyzed miRNA 

expression profile in plasma-derived EVs from patients 

with AD and PD [176]. The study involved 34 HC, 5 AD 

patients and 7 PD patients. RNA-seq data revealed that 

miR-27a-3p and miR-584-5p were higher in both AD and 

PD patients vs. HC. On the contrary, 5 miRNAs (miR-

942-5p, miR-92b-3p, miR-375, miR-122-5p and miR-

1468-5p) were downregulated in both disease samples 

compared to controls. Moreover, the comparison between 

AD and PD samples revealed that among the 23 low-level 

miRNAs in AD, 4 were also low represented in PD, while 

only one (i.e., the let-7e-5p) was enriched in PD. 

Therefore let-7e-5p has been suggested as a possible 

biomarker able to selectively discriminate between AD 

and PD patients. However, considering the small sample 

size and some differences with previously published data, 

the authors suggested to further validate the candidate 

miRNA-biomarkers in larger longitudinal studies [176].  

More recently, in 2021, Grossi and colleagues 

investigated the role of miR-34a-5p, which is involved in 

other pathologies of the CNS [177], as a potential 

biomarker for PD [178]. They analyzed EVs derived from 

plasma samples of PD patients and age-matched controls 

via qPCR. To selectively isolate different EV subtypes, 

the authors used a standard protocol based on differential 

ultracentrifugation steps. In this way they separated large 

EVs (800 x g), medium EVs (16,000 x g), small EVs 

(100,000 x g) and “pure” small EVs (upon subsequent 

sucrose gradient separation). First, they evaluated the total 

miRNA (ng) content, which was found higher in pure EVs 

compared to the other EV types. Then, they focused on 

the levels of miR-34a-5p in pure small EVs from all 

subjects’ specimens. Interestingly, the analysis revealed a 

significant increase of this miRNA in patients within 5 

years from PD onset, compared to HC [178]. 

All these findings suggest that the research in the 

field is growing at fast pace. The availability of novel and 

more accurate protocols, as well as research tools to 

isolate EVs from body fluids, together with improved 

multi-omics approaches, will potentially ensure more 

precise identification of novel miRNA biomarkers for 

diagnosis/monitoring of PD insurgence/development.  

 

7. Monitoring PD therapy outcomes through EVs  

 

As previously mentioned, EV-based biomarkers can be 

used also to evaluate the efficacy of available and novel 

therapeutic approaches to treat PD. In 2016, Luo and 
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colleagues investigated the effects of pramipexole, an 

aminobenzothiazole non-ergoline DA agonist, 

administered to PD patients at different dosages. The 

authors evaluated the motor functions before and after the 

therapy, proving that pramipexole produced significant 

functional improvements. Thus, they demonstrated 

pramipexole efficacy in 52 over a total of 65 PD patients. 

Additionally, they evaluated α-Syn levels contained in 

serum-derived EVs and they observed a significant 

correlation between α-Syn levels and pramipexole 

therapeutic efficacy. People who positively responded to 

therapy showed significantly lower levels of α-Syn 

carried in serum-derived EVs compared to non-

responders. These findings suggest that the efficacy of the 

pramipexole treatment may be monitored through the use 

of a non-invasive analysis based on the measurement of 

α-Syn levels within serum-derived EVs [179]. 

In line with this study, Athauda and colleagues in 

2019 demonstrated the potential use of CNS-derived EVs 

from serum samples of PD patients as source of 

biomarkers to monitor 60 weeks treatment with exenatide 

[180]. Exenatide is a glucagon-like peptide 1 agonist used 

to cure type II diabetes and repurposed for PD treatment. 

The authors observed that exenatide activated the insulin 

signaling pathway through phosphorylation of insulin 

receptor substrate 1 (IRS-1 p-Tyr) in neural-derived EVs 

isolated from serum. As a result, the downstream 

activation of Akt and mTOR signaling pathways was 

found higher in PD treated patients compared to placebo-

assigned controls. This signaling activation was 

correlated with improved motor functions in exenatide-

treated PD patients. The authors suggested a direct 

correlation between IRS-1 phosphorylation levels in 

serum-derived neuronal-EVs and the mTOR signaling 

activation, coupled with the motor function amelioration. 

These results pinpoint that exenatide acts via the 

activation of brain insulin signaling pathway. Its 

effectiveness may be monitored through the analysis of 

CNS-derived EVs isolated from patients’ serum and 

carrying relevant biomarkers (such as IRS-1). Therefore, 

IRS-1 in EVs may be suggested as follow-up biomarker 

to monitor the efficacy of therapies targeting neuronal 

pathways [180]. 

Following the evaluation of Ser(P)-1292 LRRK2 

expression in CSF-derived EVs (described in section 4.1), 

which supported the role of auto-phosphorylated LRRK2 

as potential PD biomarker [137], Wang et al. in 2020 

further characterized Ser(P)-1292 LRRK2 as 

pharmacodynamic marker of LRRK2 drug-inhibition in 

macaques [181]. In fact, quantitative measure of LRRK2 

inhibition, especially in the brain, may be critical in the 

development of successful LRRK2-targeting 

therapeutics. Two brain-penetrant and selective LRRK2 

inhibitors (PFE-360 and MLi2 small-molecules) were 

orally administered to the animals. The authors observed 

that, upon selective LRRK2 inhibition, the LRRK2-

substrate pT73-Rab10 was found reduced in urine, while 

auto-phosphorylated pS1292-LRRK2 protein was found 

reduced in CSF. In addition, both total LRRK2 and 

Ser(P)-1292 LRRK2 levels were found diminished in 

CSF-derived EVs [181]. Overall, these results 

demonstrated the utility of combining biofluid analyses in 

both vesicular and non-vesicular components to quantify 

LRRK2 inhibition in the whole body [181].  

 

8. Conclusions 

 

PD represents the second most common progressive ND, 

characterized by the loss of DAergic neurons of the SN. 

A central role in the complex etiology of the disease is 

played by genetic and environmental factors, such as 

aging, inflammation and oxidative stress. In particular, the 

aging process impairs the nigrostriatal DAergic system at 

neurochemical, morphological and behavioral levels, and 

inhibits DAergic neuroplasticity and repair, including 

adult neurogenesis. The age-dependent loss of anti-

oxidant, anti-inflammatory and neuroprotective glial 

functions further increase DAergic vulnerability to a host 

of harmful factors, with detrimental consequences for 

DAergic neuron health. 

The urgence of identifying novel biomarkers for PD 

depends on the fact that the first motor signs appear 

decades after the initial insult. At that time, a significant 

proportion of SN neurons are already lost, making any 

type of therapeutic intervention ineffective. New trials 

aiming to cure the disease, or at least to halt its 

progression, have not been successful, yet. To this end, 

considerable efforts are devoted to the identification and 

screening of valuable clinical PD biomarkers, to reveal 

early aspects of disease pathogenesis and eventually to 

develop diagnostic methods to prevent and treat PD. 

We herein propose EVs as novel sources of 

biomarkers in PD. CNS-derived EVs may be found in 

almost all body fluids, such as CSF, serum, plasma, urine 

and saliva. In PD, EVs have been initially identified as the 

carrier of pathological α-Syn, which is spread within and 

outside the brain. In line with this finding, α-Syn levels 

have been analyzed to discriminate PD patients from 

healthy controls. With all the limitations deriving from the 

different protocols used to isolate EVs, α-Syn in EVs 

stands as a possible biomarker for PD. Other potential 

biomarker candidates have been found enriched in PD-
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derived EVs compared to controls. For instance, higher 

levels of phosphorylated Ser(P)-1292 LRRK2. The same 

trend was observed for DJ-1. Moreover, other proteins 

(such as PrPC, APO A1, APO J etc.) have been scrutinized 

as EV-based biomarkers for PD. Again, further 

investigation is needed to increase the number of clinical 

samples and validate them as PD biomarkers.  

EVs may also transport other pivotal regulators of 

PD-related pathways, such as miRNAs, which per se 

represent interesting molecules for PD diagnosis and 

monitoring. In addition, MDVs are currently explored as 

innovative source of vesicle-carried PD biomarkers.  

Importantly, the analysis of changes in 

protein/miRNA content, within a specific EV population, 

both in untreated PD patients and upon pharmacological 

treatment, represents another important step forward in 

the EV-based research. This would represent a non-

invasive strategy to monitor the efficacy of a specific 

therapy and possibly predict the outcomes of PD.  

Although some of the studies remain controversial, 

they demonstrate how technological and methodological 

progresses are helping to ameliorate both PD diagnosis 

and prognosis. Ultimately, in the Era of personalized 

medicine, this effort may be posing the bases to identify 

at risk population and to gather a positive impact on the 

quality of life of PD patients. 

 

9. Future perspectives 

 

EVs play key roles in cell-to-cell communication, making 

them potential candidates to sense the changing 

microenvironment and to quickly respond to initial 

threats/stressors with specific molecular signatures. This 

may enable the “anticipation” of the clinical phase of PD, 

as well as inform about its progression and/or the response 

to therapy. As described above, EVs possess several 

features that make them “ideal” molecular carriers (i.e., 

they transport a heterogeneous group of molecules, they 

can cross the BBB, they are stable in biofluids). A major 

challenge for the field is represented by the fact that EVs 

are released by many cell types both in the brain and the 

periphery. Thus, in the nearer future, it will become 

essential to develop and to standardize procedures which 

allow to tag the exact EV-cellular origin [182]. 

Presently, about 30 clinical trials registered at 

clinicaltrials.gov are exploring the analysis of EVs as 

source of specific disease-related biomarkers (including 

cancer, obesity, thrombosis, SARS-CoV2 infection, aging 

and NDs). Focusing on PD, two clinical studies are 

currently ongoing, both sponsored by the Michael J. Fox 

Foundation for Parkinson's Research. The first one 

(NCT03775447, Fox BioNet Project ExtraCellular 

Vesicles ECV-003), is a recently concluded case-control 

study which enrolled 38 subjects with the goal of 

optimizing pre-analytical EV isolation protocols for 

increasing the detection of LRRK2 activity in human 

CSF. The second (NCT04603326, Fox BioNet Project 

ECV-004) is currently enrolling up to 140 individuals (PD 

patients and healthy controls) with the goal of identifying 

reliable markers of LRRK2 activity in both CSF and EVs-

CSF.  

The possibility to routinely investigate EVs mainly 

depends on the techniques used to process the samples 

and, importantly, to isolate EVs [183]. For example, for 

plasma-derived EVs, a critical role is played by the 

specific anticoagulant used. It has been shown that acid 

citrate dextrose better decreases the presence of platelet 

microparticles, compared to other anticoagulants, whose 

presence may compromise the results [183]. Interestingly, 

the protein composition of EVs isolated from plasma 

obtained with different anticoagulants, as well as from 

serum, demonstrated a variability linked with the method 

used [183]. This could be an issue, given that the protein 

presence in EVs might be modified depending on the 

specific plasma or serum isolation protocol. 

At present, several EV-isolation techniques are under 

study as reliable alternatives to ultracentrifuge-based 

methods, which are time-consuming and very expensive. 

Other possible user friendly approaches are represented 

by antibody-coated micro-surfaces (e.g. beads or flat 

surfaces), precipitating agents, ultra-filtrating 

membranes, as well as columns for size exclusion 

chromatography (already reviewed in [184]). However, 

each of these approaches show pros and cons. In 

particular, the different results in terms of yield of 

recovered EVs, miRNA and protein enrichment and 

content [184]. In terms of standardization and 

automatization, microfluidic devices are among the most 

explored isolation tools [185]. Overall, they may 

represent an easy-to-use method for the robust 

isolation/purification of EVs from biological fluids. In the 

future, such technical improvement will sensibly speed-

up the validation of novel diagnostic and prognostic 

biomarkers, as well as therapeutic drug applications of 

EVs. 
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