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Abstract: Infant mortality rate is a proxy measure of population health. Previous studies on the
infant mortality rate in Ethiopia did not consider measurement errors in the measured variables and
had a one-directional effect; little emphasis was placed on testing multiple causal paths at the same
time. We used structural equation modelling for a better understanding of the direct, indirect, and
total effects among causal variables in a single model. A path analysis was part of an algorithm
providing equations that were relating the variances and covariances of the indicators. From the
results, the maternal mortality ratio (MMR) was significantly mediating the influence of out-of-
pocket expenditure (OOP) on infant mortality rate (IMR), and the fertility rate (FR) was significantly
mediating the influence of GDP to IMR (β = 1.168, p < 0.001). The GDP affects the IMR directly
and indirectly while the OOP affects IMR indirectly. This study showed that there was a causal
linkage between the World Bank Health and Population Variables for causing IMR in Ethiopia. The
MMR and FR were found to be the intermediate indicators in this study. Through the indicators, FR
had the highest standardised coefficients for increasing the IMR. We recommended that the existing
interventions to reduce IMR be strengthened.

Keywords: infant mortality rate; Ethiopia; path analysis; structural equation model; standardise estimate

1. Introduction

The infant mortality rate (IMR) is the death occurrence between birth and exactly one
year of age per 1000 births [1] and has been regarded highly as a signal for the measure of
population healthiness [2]. The IMR remains a representative measure of population health,
a symbolic benchmark of a society’s overall robustness [3,4], and recent studies emphasize
the health inequities experienced by this population that have effects on infant mortality
and morbidity [5].

Nowadays, the infant mortality rate has decreased across countries inhabiting different
positions in the world. However, considerable cross-national variation in infant mortality
remains at the beginning of the twenty-first century [6,7] and child mortality reduction
goals under the United Nations Millennium Development Goals (UN MDGs) has not been
achieved [8]. UN member states, instead of MDGs, set out Sustainable Development Goals
(SDGs) in 2015 [9] as part of the 2030 agenda to end preventable deaths of newborns and
children under 5 years of age, with all countries directed to reduce the neonatal mortality
to at least as low as 12 per 1000 live births and under −5 mortality to at least as low as
25 per 1000 live births (SDG 3.2). Despite that, overall actions to meet the goals is not yet
advancing at the speed or scale required [10].

The UN in 2018 rated that 6.2 million children and adolescents under the age of
15 years died from preventable causes. Among these deaths, 5.3 million occurred in the
first 5 years and half of these in first month of life. Despite that the burden of those deaths
was decreasing globally, Sub-Sahara Africa and South Asia account for the maximum
proportion of child deaths. Four out of every five deaths of children under the age of five
occur in these regions. Children in Sub-Saharan Africa are more than 15 times more likely
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to die before the age of 5 than children in the highly developed world. In Ethiopia, the
IMR was 77 in year 2005 and it was 59 in 2011 per 1000 live births [11]. The country’s IMR
declined from 97 per 1000 live births in year 2000 to 59 in year 2011, and neonatal deaths
per 1000 live births showed a decline over time from 54 in year 1990 to 37 in year 2011,
but it was unlikely that the MDG target of 31 per 1000 live births was achieved in the year
2015 [12].

There have been different factors that contribute to death in countries which have a
high infant mortality. Some of the factors are malaria, malnutrition, lack of infrastructures,
poverty, and poor health facilities [13]. High infant mortality signifies demographic and
socioeconomic exposures and morbidity during pregnancy [14].

Scholars confirm that there were different predictors of IMR. A study conducted in
African countries in 2014 revealed that the fertility rate, domestic general government
health expenditure, and GDP per capita were found to be significant predictors of infant
mortality [15].

In addition, fertility and GDP per capita were the most influential variables of the
infant mortality rate among all the explanatory variables used in the analysis. Real GDP has
a negative relationship with fertility and on the other hand, fertility is positively correlated
with IMR [16,17]. Factors such as the Bolsa Família Program (BFP), per capita income, and
fertility rate are associated with infant deaths [18–20]. Fertility appeared to influence infant
mortality and it significantly affects the infant mortality rate in a positive way [21]. In
low-income countries with minimal access to medical services and short intervals between
births increases the infant mortality risk about fourfold [22,23]. A woman with high fertility
setting has a greater risk of maternal death than in low fertility settings [24] and the
maternal mortality ratio has been strongly associated with infant mortality [14]. Maternal
mortality (in obstetric complications, obstructed labour, and hemorrhage) can put neonates
at an increased rate of death [25] and maternal and infant mortality was closely linked to
and responded in a similar manner to the same social, economic, and medical determinant
of mortality rates [26]. Analogous to the maternal mortality ratio, the risk of maternal
death varies largely across countries. Women in Sub-Saharan Africa have the highest risk
of maternal death (1 in 38), followed by South Asia (1 in 240) [27]. Contemporarily, in order
to prevent children’s deaths, efforts targeting maternal mortality must address inequalities
in the access to care at the community, facility, and policy level [28].

Out-of-pocket (OOP) health expenditure significantly reduces maternal health, as it
leads to a decrease in the skilled birth attendance by increasing the maternal mortality
ratio [29,30]. The population in low-income countries is often exposed to out-of-pocket
(OOP) and related indirect costs for their illnesses for health care, and this infers that
the household’s health expenditure reduces the infant and maternal mortality across low-
income countries to reach a goal of ensuring healthy lives and people’s well-being [31].
Moreover, according to the study conducted by [32], higher government spending on health
services can be shown to provide better overall health results for children and in turn it
reduces the infant mortality rate.

The Bacillus Calmette-Guerin (BCG) vaccine is given soon after birth to infants to
decrease the incidence of tuberculosis (TB) disease and TB-associated mortality in child-
hood [33,34]. The lack of BCG vaccination in the first week of life was highly associated
with the infant mortality rate [35]. The WHO currently suggests the BCG vaccination at
birth for developing countries except for preterm infants who should be vaccinated when
they reach the age of 40 weeks [36]. The infant mortality rate was lower for BCG vaccinated
than for unvaccinated [37].

Accordingly, the IMR in Ethiopia could be attributed to many different factors [38–44].
Previous studies have mostly employed only observed variables (variables that are mea-
sured in data collection processes) and a one-directional effect to discover relationships in
the data set through a difference-in-differences (Diff-in-Diff) analysis, spatial patterns of
infant mortality, multiple linear regression and/or correlation analyses, multiple logistic
analyses, and other multivariate statistical models to explore the factors associated with
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IMR. Furthermore, research conducted in Egypt on the infant mortality rate [45] used
structural equation modelling based on economic indicators, and this study passed over
the most influential variables mediating variables, model identification and validation,
which are the basic determinants for structural equation modelling.

In this paper, we examined the association of IMR in Ethiopia between 2000 and
2019 based on the World Bank Health Nutrition and Population Statistics variables. We
used structural equation modelling (SEM), multivariate statistical methods, for better
understanding the direct, indirect, and total effect of the given variables. This approach
improved the understanding of mechanisms of the relationships among various factors
and allowed us to test the research hypotheses in a single process by modelling complex
relationships among many observed and latent variables [46,47]. The SEM or analysis
of covariance structure is a confirmatory approach, dealing with measurement errors in
observed variables and is more suitable for testing the hypothesis than other multivariate
statistical methods. Most of the statistical methods other than structural equation modelling
try to discover relationships through the data set. However, SEM asserts the correspondence
of the data of the relations in theoretical model [48,49].

In a recent commentary, scholars expressed concern about the scarcity of SEM models
in epidemiological research even if there was the availability of user-friendly software
(e.g., SPSS AMOS, EQS, Mplus) and urged epidemiologists to use SEM models more
frequently [50–52]. The purpose of this study was to test and develop a hypothesised
model for better understanding the direct, indirect, and total effects for the given variables
on the infant mortality rate by estimating the parameters in the interest of obtaining a
minimal residual covariance from the World Bank dataset between 2000 and 2019. We
expect that the findings from our study will improve the planning and intervention to take
measures for preventing infant mortality in Ethiopia.

Basing on the previous studies, we developed the following hypotheses and the
hypothesised value of each path is included in the following directed diagram (see Figure 1).
The hypotheses of this study are stated as:
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H1. There is a direct effect of out-of-pocket expenditure for health (% of GDP) on the maternal
mortality ratio and Immunization (BCG).
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H2. Both BCG Immunization and the maternal mortality ratio mediate the influence of out-of-pocket
expenditure on health (% of GDP) on the infant mortality rate.

H3. The higher level of the fertility rate is associated with a higher level of the maternal mortality ratio.

H4. Government health expenditure has a direct effect on the fertility rate, BCG immunization,
maternal mortality ratio, and infant mortality rate.

H5. GDP per capita has a direct effect on the domestic general government health expenditure (% of
GDP), Immunization (BCG), fertility rate, and infant mortality rate.

H6. Domestic general government health expenditure (% of GDP), fertility rate, and Immunization
BCG mediate the influence of GDP on the infant mortality rate.

2. Materials and Methods

Our analysis used pooled panel data from 2000 to 2019 from the World Bank Health
Nutrition and Population Statistics. This dataset was from the data catalog of the World
Bank which provides data on key health, nutrition, and population statistics gathered from
international sources (such as the WHO). Some of the series included in this indicator
were the population dynamics, nutrition, reproductive health, health financing, medi-
cal resources, immunization, infectious disease, HIV/AIDS, and population projection.
Furthermore, based on the literature, we considered the GDP per capita, out-of-pocket
expenditure on health, BCG immunization, maternal mortality ratio, fertility rate, do-
mestic general government expenditure on health, and infant mortality rate for testing
several causal paths simultaneously over 20 years (2000–2019) in Ethiopia. Analyses were
performed using SPSS AMOS and STATA 14. The dataset we used is freely available
https://data.worldbank.org/ (accessed on 4 October 2022).

The variables considered in SEM are called either endogenous or exogenous variable [53].
Moreover, these endogenous and exogenous variables can be illustrated through the

arrows that come out of or go into each rectangle [54].
The exogenous variables considered in this study were the GDP per capita and out-of-

pocket expenditure on health (% GDP).
The endogenous variables were the BCG immunization, maternal mortality ratio,

fertility rate, domestic general government expenditure on health (as a share of GDP),
and infant mortality rate. In the following table (Table 1) we report in more detail the
variables considered.

Table 1. List of endogenous and exogenous variables and their abbreviation.

S. N Observed Variables Abbreviation Definition

1 GDP per capita GDP
Gross domestic product, the monitory wealth of
the nation of one country’ goods and services
over a given period, usually in one year.

2 Out-of-pocket expenditure
on health. OOP

Households or individual direct expenses to
health institutions or health service providers (it
does not include taxes and health insurances).

3
Domestic general government
health expenditure on health

(as % GDP)
GGHE-D

The share of current domestic government
resources used to refund public health
expenditure as a share of the economy, and it is
measured by GDP.

4 Fertility rate FR

The number of children born to a woman in her
childbearing-age years and bearing children in
accordance with the age-specific fertility rates of
the specified year.

https://data.worldbank.org/
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Table 1. Cont.

S. N Observed Variables Abbreviation Definition

5 BCG immunization (% of one
year-old children) BCGI

A vaccine given to a one-year old who has
received one dose of bacilli Calmette-Guerin
expressed in a percentage.

6 Maternal mortality ratio MMR Annual number of female deaths per 100,000 live
births from any cases (cases related to pregnancy).

7 Infant mortality rate IMR The probability of dying between birth and
exactly one year of age per 1000 births.

2.1. Statistical Model

We used this multivariate method for the causal correlation among two or more
variables and tested the essential theory from empirical data. To being thought of as a
form of SEM focusing on causality, the path analysis describes the direct dependence
among a set of variables. SEM is carried out by the graphical relationship and numerical
result accordingly.

2.1.1. Path Analysis

The path Analysis represents a methodological improvement regarding multivariate
techniques used in modelling indicators and it allows the investigation of more complex
models [55]. Furthermore, the path analysis rules of Wright [52] involve tracing paths in
the graph as part of an algorithm giving equations relating the variances and covariances of
the indicators and it is represented by a diagram, called a directed graph (path diagram). In
directed graphs, the vertices represent continuous variables, edges represent some notion
of correlation and causation, and the relations in the diagram are the parameters of the
equations to be estimated, called path coefficients, presenting the responses of endogenous
variables to other endogenous or exogenous variables, while other variables in the model
are held constant [52,56].

Each node in the path analysis was defined by the variables y1 . . . yn and there was
a directed edge from yi to yj if the coefficient of yi in the equation for yj was distinct
from zero [57]. Moreover, there was a mediation where one variable (exogenous) caused
variation in another variable (endogenous), and the mediator hypothesis was supported if
the variables BCGI, MMR, FR, and GGHE-D were significant.

From Figure 1, all indicators were represented by rectangles, it indicated that there
was no latent variable in the model, and all arrows flowed one way with no feedback
looping (recursive model). The measurement errors for the endogenous variables were
uncorrelated [58,59]. Our directed graph set out all the causal linkages between variables
to evaluate the possible hypothesis and βij and γij were the coefficients. This is illustrated
in the following figure (Figure 1).

2.1.2. Structural Equation Model (SEM)

In SEM, a series of endogenous variables are related to each other as well as to a
series of exogenous variables. This model has three major advantages over traditional
multivariate techniques: (1) the explicit assessment of measurement error; (2) the estimation
of latent (unobserved) variables via observed variables; and (3) model testing where a
structure can be imposed and assessed as a fit of the data [60–62].

Thus, to examine the linear causal relationships among variables, we used SEM and
the specification of the model was follows.

Let: y be an p × 1 vector of endogenous variables, x is a q × 1 vector of exogenous
variables, βp×p gives the regression coefficients of endogenous (y) variables on other
endogenous variables (it is the matrix of β′ regression path coefficients between endogenous
to endogenous), γp×q gives the regression coefficients of the exogenous variables (x) on
endogenous variables (y) whose ith row indicates the endogenous variable and the jth
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column indicates the exogenous variable, and ςpx1 is the vector of errors in the equations
(i.e., regression residuals) as a vector of the model errors associated with each endogenous
variable. The variances and covariances of the endogenous variables are modelled as a
function of the exogenous variables. Then, the general form of a SEM path analysis model
is expressed in the matrix equation:

y = βy + γx + ς

y = (I− β)−1γx + (I− β)−1 ς (1)

Then the variance of the endogenous variables (y variables) is:

V(y) = E(yy′) = E [((I− β)−1γx + (I− β)−1 ς) ((I− β)−1γx + (I− β)−1 ς)′)]

∑ = (I− β)−1)
[
γΦγ′ + ψ ]

(
I− β′

)−1 (2)

provided that the variances of the exogenous variable x are defined as:

V(x) = E(xx′) = Φ, and V (ς) = E (ς′) = ψ

Similarly, the covariance between the exogenous variable, x and the endogenous
variables (y variables) (covariance between x and y) is:

Cov(x,y) = E(xy′) = E[x((I − β)−1γx + (I − β)−1 ς′)] (3)

∑ = Φγ′
(
I− β′

)−1

Assumptions:
ς is uncorrelated with x, cov (ς, x) = 0,

E(ς) = 0

|I − β| 6= 0, is invertible, (I 6= β),

E(x) = E(y) = 0

Therefore, putting all the variance–covariance together,

∑ =

[
∑yy −
∑xy ∑xx

]
(4)

Here, x, y, and ς are Gaussian random vectors; x ∼ N(µx, ∑x); y ∼ N(µy, ∑y); the
stochastic error has a multivariate Gaussian distribution which has for the mean a zero
vector and for the covariance matrix a diagonal matrix where the diagonal elements are
ψ11, ψ22, ψ33, ψ44, and ψ55 (i.e., ς ∼ N(0, ψi). Furthermore, the variance–covariance
of exogenous variables was determined outside of our model. The causality of infant
mortality based on our variables expressed as a single matrix is:

GGHE−D
FR
BCG
MMR
IMR

=


0 0 0 0 0
β21 0 0 0 0
β31 0 0 0 0
β41 β42 0 0 0
β51 β52 β53 β54 0




GGHE−D
FR
BCG
MMR
IMR

+


γ11 0
γ21 0

γ31 γ32
0 γ42

γ51 0


[

GDP
OOP

]
+


ς1
ς2
ς3
ς4
ς5


By hypothesis, some of the elements of β and γ are fixed to zero and the zeros on the

diagonal of β imply that a variable cannot cause itself.



Children 2023, 10, 397 7 of 18

The variance–covariance matrix of the exogenous variables used in the model were
given by:

Φ =

[
var(GDP) −

Cov(GDP, OOP) var(OOP)

]
Similarly, the variance–covariance matrix of the error terms (ς1, ς2, ς3, ς4, and ς5) is

given by:

ψi =


ψ11 0 0 0 0

0 ψ22 0 0 0
0 0 ψ33 0 0
0 0 0 ψ44 0
0 0 0 0 ψ55

 i = 1, 2, 3, 4, 5

Typically, these variances and covariances of the exogenous variables x1 and x2 and
the error terms of the error variances are free parameters, but the covariances of error
variances are fixed to zero.

In SEM, each indicator should follow multivariate normality for each value of each
other indicator and a maximum likelihood estimation (MLE) is the dominant method for
estimating structure (path) coefficients [63].

If we have a p × 1 random vector X that is distributed according to a multivariate
normal distribution with a population mean vector µ and population variance covari-
ance matrix Σ, then this random vector, X, could have the joint density function in the
expression of

φ(x) = (
1

2π
)
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where |Σ| is the determinant of the variance–covariance matrix Σ and Σ−1 is the inverse of
the variance–covariance matrix Σ.

Identification is the crucial problem when using SEM and no reliable quantitative
conclusion can be derived from non-identified models. From the three categories of SEM
based on their identification, in exact identified models with all variables interconnected,
the parameters have an interpretation (Df = 0) while unidentified models lack sufficient
information to yield a convergent solution of the parameter estimates (Df < 0). Moreover,
an overidentified model contains too many restrictions for convergence and has more than
enough information to obtain a meaningful estimate (Df > 0) [64–66].

For the path analysis model, let P be the total number of exogenous and endogenous
variables in the model and let t be the number of the numbers of free parameters.

t-rule =
p(P + 1)

2
≥ t

The difference gives the number of degrees of freedom (Df) for the model:

Df =
P(P + 1)

2
− t (5)

The model fit statistics provide information about the goodness of fit indexes and their
cut-off values for model evaluation. The more fit the indices applied to the SEM model are,
the more likely that a misspecified model will be rejected [67,68].

Furthermore, the measures of the goodness of fit cut-off value for the Chi-square
associated p-value (p) was ≥0.5 and the cut-off value for the Root Mean Square Error of
Approximation (RMSEA) was 0.05 < value ≤ 0.08 [41]. Complementarily, 0.90 ≤ value <
0.95 is an acceptable cut-off value for the Comparative Fit Index (CFI) and Tucker–Lewis
Index (TLI) [69].
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3. Results
3.1. Descriptive Statistics

Descriptive statistics were used for summarizing the baseline characteristic of the
population. As shown in the following table (Table 2), the mean number for the infant
mortality rate was 58.16 per 1000 live births in the sample of 20 years for the World Bank
data from 2000 to 2019 in Ethiopia. In our settings, the maximum number of infants dying
before reaching one year of age was recorded in the year 2000 with a value of 87.2 per
1000 live births and the minimum value was in the year 2019 with a value of 36.6 per
1000 live births each year. The maximum values of the fertility rate were 6.543 births per
woman in the year 2000 and 1030 was the maximum maternal mortality ratio encountered
in the year 2000 per 100,000 live births. The mean number of public expenditures on health
from domestic sources as a share of the economy as measured by GDP was 1.18 and the
mean out-of-pocket expenditure, GDP per capita, and BCG immunization were given as
37.81, 67.8, and 395.23 respectively.

Table 2. The descriptive statistics of the association of infant mortality in Ethiopia, the application of
structural equation modelling path analysis (from year 2000 to year 2019).

N Minimum Maximum Mean Std. Deviation
Assessment of Normality

Skewness Critical
Ratio Kurtosis Critical

Ratio

Fertility rate 20 4.15 6.54 5.26 0.75 0.180 0.328 −1.186 −1.082

Out-of-pocket
expenditure 20 31.34 46.54 37.81 0.607 1.108 −0.028 −0.026 0.607

Maternal
Mortality ratio 20 354.00 1030.00 663.35 231.94 0.281 0.513 −1.380 −1.259

Infant
mortality ratio 20 36.60 87.20 58.16 16.09 0.347 0.634 −1.134 −1.035

BCG
Immunization 20 56.00 80.00 67.80 6.79 −0.332 −0.606 −832 −0.759

Gov.t
expenditure
on health

20 0.38 2.28 1.18 0.54 0.672 1.227 −0.606 −0.553

GDP per capita 20 111.93 855.76 395.23 251.41 0.447 0.815 −1.160 −1.059

Valid N
(listwise) 20

Multivariate −0.960 −0.191

From Table 2 of the assessment of the normality column, the univariate critical values
of both skewness and Kurtosis of the observed endogenous variables and exogenous
variables lied between −1.96 and +1.96 (all these p-values are ≥0.05) and the critical value
of the multivariate normality of the model was −0.191. We retained the null hypothesis
and considered the sample as coming from a normal distribution.

3.2. Model Identification

We used this model identification to check whether the number of parameters to be
estimated was greater than the number from unique information provided by the variance–
covariances or not. From our model, we had 5 endogenous and 2 exogenous (7 rectangles
from the path diagram depicted above). The covariance matrix was given by

∑ 7*7 =
7(7 + 1)

2
= 28variances and covariances.

Complementarily, we had 22 free parameters (8 non-zero from β; 6 non-zero from γ,
3 variances/covariances in Φ from exogenous variables, and 5 residual variances in the
diagonal of ψ). Therefore, the model degrees of freedom was (Df) = 28 – 22 = 6, so our
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model was overidentified, which was good because there were extra degrees of freedom to
work with [65].

3.3. Path Analysis

In Figure 2, the directed graph was displayed for each variable to test the hypothesised.
The path coefficients and errors presented in Figure 2 were standardised estimates and
accordingly, the analysis was carried out in SPSS AMOS. The diagram shows how one
variable was associated with a subsequent variable in the causal chain. The direct effects
were dedicated to the straight influence of one variable on another observed variable
without any mediation and the effects of more distant variables were mediated indirectly
through intervening.
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Figure 2. The path diagram: the path standardised coefficients of the risk factors on IMR (2000–2019).

3.4. Structural Equation Model

Table 3 shows the values of the standardised parameter estimate (direct, indirect,
and total effects) of the structural equation model by employing the maximum likelihood
estimation which gathered the loadings for each variable of the model.

Table 3. The standardised paths for the direct, indirect, and total effects of each factor of the association
of infant mortality in Ethiopia, (2000–2019).

Indexes/Pathway Relation with Standardised Coefficients
To From Direct Indirect Total

MMR <- OOP −0.071 (*) - −0.071 (*)

MMR <- FR 0.96 (**) - 0.96 (**)

MMR <- GGHE-D 0.246 (p = 0.386) 0.032 (**) 0.278 (**)

MMR <- GDP - −0.861 (**) −0.861 (**)

BCGI <- OOP 0.327 (*) - 0.327 (*)

BCGI <- GDP 0.188 (0.260) 0.437 (*) 0.625 (**)

BCGI <- GGHE-D −0.640 (**) - −0.640 (**)

FR <- GGHE-D 0.256 (**) - 0.256 (**)
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Table 3. Cont.

Indexes/Pathway Relation with Standardised Coefficients
To From Direct Indirect Total

FR <- GDP −0.784 (**) −0.175 (*) −0.959 (**)

GGHE-D <- GDP −0.683(**) - −0.683(**)

IMR <- MMR 0.156 (*) - 0.156 (*)

IMR <- BCGI −0.0041 (0.774) - −0.0041 (0.774)

IMR <- FR 1.032 (**) 0.136 (*) 1.168 (*)

IMR <- GGHE-D −0.0012 (0.915) 0.308 (**) 0.306 (*)

IMR <- GDP 0.191 (**) −1.126 (**) −0.941 (**)

IMR <- OOP - −0.012 (*) −0.012 (**)
** significant at the 1 percent level and * significant at 5 percent level.

This study found evidence that the out-of-pocket expenditure (OOP) had direct effects
on the maternal mortality ratio (β = −0.071, p = 0.003) and BCG immunization (β = 0.327,
p = 0.024) and that as OOP increased by one unit, MMR decreased by 0.71 unit, and
immunization (BCG) increase by 0.327 unit, while other variables were held constant.
In addition, the coefficient for the maternal mortality ratio (MMR) was a statistically
significant predictor of the infant mortality rate in Ethiopia with (β = 0.141, p = 0.009), while
the coefficient of BCG immunization was insignificant for the infant mortality rate with
(β = −0.0041, p = 0.774). Based on the loading and p-values (see in Table 3), the indirect
path coefficient of the OOP to IMR through MMR was negative and significant (β = −0.012,
p = 0.034). Thus, MMR was significantly mediating the influence of OOP on IMR and
BCGI was not a mediator for OOP to IMR. In conclusion: H1: “there is a direct effect of
the out-of-pocket expenditure on health (% GDP) on the BCG immunization and maternal
mortality ratio” was fully supported and H2: “both the BCG Immunization and maternal
mortality ratio mediate the influence of out-of-pocket expenditure on health (percentage of
GDP) on the infant mortality rate” of the research hypothesis was partially supported.

Looking at the effects of GDP on the endogenous variables, GDP had a significant
total effect on the fertility rate with (β = −0.959, p < 0.001), part of which (β = −0.175 and
p = 0.004) was indirect through GGHE-D, and when GDP went up by 1 unit, FR went down
by 0.175 unit due to the indirect (mediated) effect of GDP on FR in addition to any direct
(unmediated) effect that GDP may have had on FR. GDP was also a significant predictor
of the infant mortality rate (β = −0.94, p < 0.001) and government expenditure on health
(β = −0.683, p < 0.001), respectively. The direct path coefficient from GDP to BCGI was
insignificant (β = 0.188, p = 0.260). Moreover, as GDP increased by one unit, FR decreased
by 0.959 units, the government expenditure on health decreased by 0.683 units, and IMR
decreased from 0.941 units to 0.625, while other variables were held constant. The research
hypothesis H5: “there is a direct effect of GDP on GGHE-D, BCGI, FR, and IMR” was
partially supported.

Further, when we considered the direct effects of government expenditure on health
for other endogenous variables, the path coefficient was negative and significant for BCGI
(β = −0.640, p < 0.001), positive and significant for FR (β = 0.256, p < 0.0.001), and in-
significant for MMR (β = 0.246, p = 0.386), respectively. The total effects of government
expenditure on health (GGHE-D) on IMR was significant (β = 0.306, p = 0.017), part of
which (β = 0.308, p < 0.001) was indirect through FR. There was also a significant effect of
the fertility rate on maternal mortality ratio (β = 0.96, p < 0.001). In conclusion, H4: “there
is a direct effect of GGHE-D on FR, BCGI, MMR, and the IMR” was partially supported
and H3: “a higher level of FR is associated with a higher level of MMR” was supported.

Our model also revealed that there were direct positive effects between FR and IMR
(β = 1.168, p < 0.001) and between MMR and IMR (β = 0.156, p = 0.009). The direct path
coefficients from BCGI and GGHE-D to IMR were insignificant with the standardised beta
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coefficient and p-values of (β = −0.007, p = 0.774) and (β = −0.002, p = 0.915), respectively.
Based on the loadings or standardised coefficients, the FR had the highest standard coeffi-
cients (β = 1.168, p < 0.001) for increasing the infant mortality rate (IMR), part of which was
indirect through MMR (β = 0.136 and p = 0.009). As the fertility rate increased by one unit,
the infant mortality rate increased by 1.168, through which 0.136 unit was indirect through
the maternal mortality ratio while all other variables were held constant (Table 3).

In addition to the above established relationships of the variables in the model, struc-
tural relationships between the set of variables were taken into consideration. Table 4
represents the covariance of how much two variables move together. The relationship
between MMR and IMR (Σ = 0.99), MMR and FR (Σ = 0.99), and MMR and GGHE-D
(Σ = 0.79) was positive and increasing while the relationship between MMR and BCGI
(Σ = −0.75), MMR and OOP (Σ = 0.17), and MMR and GDP (Σ = 0.96) was negative and
decreasing (see Table 4). The value of the covariance did not give any more information
further than the directionality [27].

Table 4. The fitted covariances of observed variables (standardised) for each factor of the causality of
infant mortality in Ethiopia, (2000–2019).

MMR BCGI IMR GGHE-D FR OOP GDP

MMR 1

BCGI −0.75 1

IMR 0.99 −0.73 1

GGHE-D 0.79 −0.79 0.81 1

FR 0.99 −0.72 0.99 0.80 1

OOP −0.17 0.39 −0.11 −0.07 −0.09 1

GDP −0.96 0.66 −0.95 −0.69 −0.96 0.09 1

3.5. Assessment of the Overall Goodness of Fit

The model summary (see Table 5) provided the equation-by-equation goodness of
fit statistics for the endogenous variable, which was displayed by the equation level
variance decomposition along with the coefficient of determination (R2), Bentler-Raykov
squared multiple correlation coefficient (mc)2, and the correlation between them and their
predictors (mc). The values of the coefficient of determination (R2) and Bentler-Raykov
squared multiple correlation coefficient (mc)2 as measures of the goodness of fit statistics
are equivalent in recursive structure equation modelling [53].

Table 5. The equation-level goodness of fit for the causality of infant mortality in Ethiopia with
unstandardised residuals, (2000–2019).

Observed
Variables

Variance
R-Squared mc mc2

Fitted Predicted Residual

MMR 49,877.49 49,500.85 376.65 0.993 0.996 0.993

BCGI 36.63 27.65 8.98 0.755 0.869 0.755

IMR 244.65 244.51 0.14 0.999 0.996 0.999

GGHE-D 0.276 0.13 0.15 0.466 0.682 0.466

FR 0.544 0.52 0.025 0.955 0.978 0.955

Overall 0.995

mc = correlation between depvar and its prediction. mc2 = mc2 is the Bentler-Raykov squared multiple correlation
coefficient.
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According to the results in Table 5 above, the correlation between MMR and its
predictors was 0.996 and the variance of MMR explained by its predictors was 0.993 or
99.3% of the variation explained by MMR in the equation for the endogenous variable
MMR. Similarly, the correlation between FR and its predictors was 0.978 and 95.5% of
the data fit the model for the endogenous variable FR and the model equitation of the
endogenous variable IMR explained 99.5% of the total variation of implied causality.

Further, because the χ2 goodness of fit criterion is very sensitive to the sample size,
often other descriptive measures of fit are used in addition to the absolute χ2 test and there
should be a combination of at least two goodness of fits [41,68]. The overall model fit for the
structural equation model was adequate to good in terms of the CFI (0.932) and TLI (0.961).

Table 6 reveals the residual covariances (i.e., the difference between the sample co-
variances based on the sample data and the covariances implied by the fitted model) that
provided a natural estimate of the fit of covariance structure models and this covariance
residual value was smaller (all values were less than 1.96 in absolute value). The model was
supported as the implied covariance matrix did not differ significantly from the empirical
covariance matrix. This smaller value indicated the best fit of the covariance structure
model. The larger in absolute value the residual covariance is, the worse the fit [70].

Table 6. The covariance residuals for each factor of the association of infant mortality in Ethiopia,
(2000–2019).

MMR BCGI IMR GGHE-D FR OOP GDP

MMR 0.076

BCGI 0.446 0.515

IMR 0.047 −0.445 0.016

GGHE-D 0.113 −0.472 0.020 0.000

FR 0.037 −0.370 0.007 0.000 0.000

OOP 0.731 1.034 −0.818 −1.841 −0.716 0.000

GDP 0.022 0.000 −0.003 −0.000 −0.000 0.000 0.000

The results presented in Table 7 indicate the parameter estimation of coefficients of
the observed variables, the standard error, significant values, and the 95% confidence
interval for the final structural equation model for the infant mortality in Ethiopia. It
revealed the direct effect of one endogenous or exogenous observed variable on another
endogenous variable.

Table 7. The finalized and accepted structural equation model for the infant mortality rate in Ethiopia
(from 2000–2019).

Coef. Std. Err. z p > |z| [95% Conf. Interval]

GGHE-D <-
GDP −0.6819305 0.1196231 −5.70 0.000 −0.9163875 −0.4474736

_cons 3.343989 0.4232345 7.90 0.000 2.514464 4.173513

FR <-
GGHE-D 0.2547491 0.071664 3.55 0.000 0.1142903 0.3952079

GDP −0.7855652 0.0623844 −12.59 0.000 −0.9078363 −0.663294
_cons 7.893804 1.260267 6.26 0.000 5.423727 10.36388

BCGI <-
GGHE-D −0.6394371 0.1900197 −3.37 0.001 −1.011869 −0.2670054

OOP 0.3266416 0.1577665 2.07 0.038 0.0174249 0.6358584
GDP 0.1888563 0.1671475 1.13 0.259 −0.1387468 0.5164595

_cons 8.858733 2.392873 3.70 0.000 4.168789 13.54868
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Table 7. Cont.

Coef. Std. Err. z p > |z| [95% Conf. Interval]

MMR <-
GGHE-D 0.246499 0.0531217 0.62 0.385 −0.0710667 0.1371665

FR 0.9609476 0.0323262 29.73 0.000 0.8975893 1.024306
OOP −0.0707044 0.0289071 −2.45 0.014 −0.1273614 −0.0140475

_cons −3.269208 0.5745308 −5.69 0.000 4.395268 −2.143148

IMR <-
MMR 0.1454458 0.0593495 2.62 0.009 0.0391229 0.2717687
BCGI −0.0071356 0.0144006 −0.29 0.774 −0.0323602 0.024089

GGHE-D −0.002406 0.0420536 −0.03 0.976 −0.0836643 0.081183
FR 1.025088 0.0543037 18.88 0.000 0.9186548 1.131521

GDP 0.1912811 0.0313778 6.10 0.000 0.1297818 0.2527805
_cons −4.382065 0.7871316 −5.57 0.000 −5.924815 −2.839315

mean (OOP) 10.6367 1.696609 6.27 0.000 7.311404 13.96199

mean(GDP) 1.612898 0.3391696 4.76 0.000 0.9481377 2.277658

var(e. GGHE-D) 0.5349707 0.1631493 0.2942661 0.9725676

var(e.FR) 0.0450516 0.0196886 0.01913 0.1060976

var(e.BCGI) 0.2451441 0.0921224 0.1173679 0.5120277

var(e.MMR) 0.0076 0.0033638

var(e.IMR) 0.0005578 0.0002494 0.0002322 0.0013399

var (OOP) 1

var (GDP) 1

cov(OOP,GDP) 0.095317 0.2215753 0.43 0.667 −0.3389626 0.5295965

So based on Table 7 and Figure 1 the final structural equation model was:

GHE = −0.683 GDP + 0.5349707, R2 = 46.6%
FR = 0.256 GGHE-D + −0.786 GDP + 0.0450516, R2 = 95.5%
BCG = −0.639 GGHE-D + 0.327 OOP + 0.2451441, R2 = 75.5%
MMR = 0.961FR + −0.071 OOP + 0.0075514, R2 = 99.3%
IMR = +1.03FR + 0.156MMR + 0.192GDP + 0.0005578, R2 = 99.5%

4. Discussion

We used SEM to estimate the direct, indirect, and total effects of variables, to accredit
the presence of connections between them, and test the hypothesised model based on
World bank data on IMR. From a sample of 20 years of World Bank data, the occurrence of
IMR was decreasing, which could be justified by the advancement of mother and childcare
activity in Ethiopia. Although this represents an overall decline in the infant mortality
between the year 2000 to the year 2019, Ethiopia accounts for the highest infant mortality
rate, as it was reported at 35.4% in 2020 and the country did not achieve the extent of the
sustainable development goals (SDGs) of target focuses on “ensuring healthy lives and
promoting the wellbeing of for all” [13].

From the study using path analysis (directed graph) and structural equation modelling,
we found that the variables MMR, FR, and GDP significantly affected the IMR directly. In
addition, the indirect path coefficients from the OOP and FR to IMR through MMR and
indirect path coefficients GGHE-D and GDP to IMR through FR were significant. However,
the variable BCGI was not influential for IMR. Consequently, the FR and MMR were the
mediating variables on IMR and among all variables that had an influence on IMR, FR had
the highest standardised coefficient. Complementarily, the OOP and FR had an effect on
MMR directly and the GDP and GGHE-D affected MMR indirectly through FR. Moreover,
GGHE-D affected FR directly while GDP affected FR direct and indirectly. Contemporarily,
as indicated by our results, government spending on health had a significant effect on
reducing the infant mortality and its coefficient depended on the economic level of the
country and the level of good governance. So, based on our study area Ethiopia, one of
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the low-income countries, reductions in government expenditures on health in the country
were associated with a significant increase in the infant mortality rate. Our result was in
accordance with [32], where higher government spending on health services can be shown
to provide better overall health results for children and in turn reduces the infant mortality
rate. In our analysis, residual covariances of this SEM were smaller (all values are less than
1.96 in absolute value). This smaller value indicated the best fit of the covariance structure
model. The larger the absolute value the residual covariance was, the worse the fit [65].

There were significant direct effects of the OOP on MMR and BCGI. Moreover, the
MMR was significantly mediating the influence of OOP on IMR, but there was no indirect
effect of OOP on IMR through BCGI. Our result was in line with [25,26] that stated that
the maternal and infant mortality was closely linked and responded in a similar manner
to the same social, economic, and medical determinant of mortality rates. Ultimately, H1:
“there is a direct effect of OOP on BCGI, and MMR” was fully supported while H2: “both
BCGI and MMR mediate the influence of OOP on IMR” of the research hypothesis was
partially supported. This finding is also in line with another previous study in Egypt [45].
Considering this result, BCGI was not significantly associated with IMR. Contrary to
our results, the authors of [36] revealed that IMR was lower for BCGI vaccinated than
unvaccinated. This variability could be better BCGI vaccination coverage in Ethiopia, as it
was 56% in 2000 and 90.27% in 2019 [71].

Looking at the direct effects of GDP on other endogenous variables, GDP had was a
significant and negative predictor of FR, part of which was indirect through GGHE-D, and
this was in addition to any direct (unmediated) effect that GDP may have had on FR. This
study was in accordance with the study conducted in Pacific Island countries [16] and the
study from the developed world [17]. Our results in Ethiopia were entirely consistent with
those from studies that observed that the GDP had a negative association with FR, and in
return, the IMR was positively correlated with fertility [15–17]. Furthermore, FR was more
likely to affect IMR. This result is also consistent with other studies [21–23]. This is because
in the developing world, parents consider children as virility, and they used their children
for work and to bring in an income to the family, and Ethiopia has a total fertility rate of
4.6 children per woman [72]. Lastly, our research hypothesis H5 was partially supported.

There had also been a significant effect of FR on MMR and this result was in line with
the study conducted in Nepal [14]. In conclusion, H4: “there is a direct effect of government
health expenditure on fertility rate, BCG immunization, maternal mortality ratio, and infant
mortality rate” was partially supported and H3: “a higher level of fertility rate is associated
with a higher level of maternal mortality ratio” was supported.

Our study encircled a configuration for the application of SEM to IMR and this analysis
contributes to a growing body of literature supporting multiple hypotheses in the IMR
World Bank Health and Nutrition indicators. We considered the simultaneous linkages of
the World Bank Health Nutrition and Population Statistics variables on IMR. The results
showed that the GDP and the intermediate variables, MMR and FR, where other observed
variables affect IMR through them, were the pivotal observed variables that had a critical
effect on IMR. Although a lot has been done to achieve the research objectives, there were
some limitations and shortcomings. First, even though the model requires larger sample
sizes and longer study periods for better accuracy, we could not find representative and
enough data from the database based on the given indicators before 2000. Secondly, the
research covered limited numbers of endogenous and exogenous variables. Thus, future
researchers should consider more variables and examine different relationships between
the cause of IMR and the government having to increase its incentives on health services to
improve infant health.

5. Conclusions

We used a structural equation model to examine different connections between ob-
served variables and to recognize the direct, indirect, and total effects of IMR based on
Health Nutrition and Population Statistics indicators. This study found that the maternal
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mortality ratio, fertility rate, government expenditure on health, and GDP per capita do
have a significant impact on the infant mortality rate in Ethiopia and the study showed that
that there was a reverse association between IMR and GDP. However, the model showed
that BCGI was insignificant to the IMR. As we observed in the present study, a reduction in
the fertility rate, improvement in the general care of mothers, and increasing the per capita
GDP of the country are the most important factors for decreasing IMR. The variables FR and
MMR were the mediators from OOP to IMR and from GDP to IMR, respectively. FR had
the highest standard coefficients for increasing the infant mortality rate (IMR) directly and
indirectly through MMR. In line to this, both government and stockholders should design
and implement programs to decrease the FR and MMR and increase the per capita GDP
and OOP to decrease the rate of infant mortality. Therefore, from our research hypotheses,
H1 and H3 are fully supported while the rest of the research hypotheses H2, H4, H5, and
H6 were partially supported. From our model, the covariance residual value was smaller
(all values were less than 1.96 in absolute value), and it showed a good estimate of the fit of
covariance for structure models.
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