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ABSTRACT. Ideals arising from graphs are investigated via s-sequence theory. In particular,
the notion of s-sequence for the generators of the edge ideal I(G) of an acyclic graph G is
considered for describing the Groebner basis of the relation ideal J of the symmetric algebra
of I(G). For ideals generated by a s-sequence, we are able to compute some standard
algebraic invariants of their symmetric algebra in terms of the corresponding invariants of
quotients of the polynomial ring related to such graphs. Because the initial ideal of J is
well-determined with respect to a monomial order, it defines the edge ideals of supporting
graphs to G, more suitable for instance in the management of sensitive data.

Introduction

In this paper the notion of s-sequence, first introduced by Herzog, Restuccia, and Tang
(2001), is used to study the symmetric algebra of the edge ideals associated to certain graphs
(see, for instance, Kühl 1982), as well as the Groebner basis of ideals which define such
algebra.

Let G be a graph on n vertices, R = K[X1, . . . ,Xn] be a polynomial ring over a field
K. Let I(G) be the ideal of R generated by the monomials f1, . . . , ft representing edges
of G . Let J = (g1, . . . ,gp) be the relation ideal of the symmetric algebra SymR(I(G)) in
the polynomial ring S = R[T1, . . . ,Tt ], where g j = ∑

t
i=1 ai jTi , j = 1, . . . , p, and (ai j) is the

relation matrix of I(G). We say that f1, . . . , ft form a s-sequence if there exists an admissible
monomial order ≺ on S with T1 ≺ T2 ≺ ·· · ≺ Tt such that in≺(J) = (I1T1, · · · ,ItTt), with
Ii = ( f1, · · · , fi−1) :R fi . Our purpose is to explore interesting classes of acyclic graphs
whose edge ideals are generated by s-sequences. Generally this happens when the linear
forms that generate the relation ideal J form a Groebner basis. Hence, we may use the
Groebner bases approach to give a description of the monomial initial ideal in≺(J). Under
this situation, standard algebraic invariants are controllable passing from J to in≺(J), so
that we can achieve formulas for these invariants in terms of the Ii’s.

In detail, Section 1 is devoted to preliminary notions on graphs and main concepts on
s-sequences of certain polynomials. Moreover, we deepen and improve results about acyclic
finite simple graphs whose edge ideals are generated by a s-sequence. The main result
shows that the generators of the edge ideal of a forest constitute a s-sequence.
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A15-2 M. IMBESI AND M. LA BARBIERA

In Section 2 we determine standard invariants, such as Krull dimension, multiplicity,
etc. for the symmetric algebra of edge ideals of graphs in terms of their annihilator ideals.
We apply the fact that the generators of the edge ideals associated to such graphs form a
s-sequence.

In Section 3, using Groebner basis theory, we describe the initial ideal in≺(J) of the
relation ideal of the symmetric algebra of the edge ideal of a star graph. With an appropriate
change of variables, we note that such initial monomial ideal is associated with a bipartite
graph, called Ferrers graph, whose edge ideal is isomorphic to in≺(J). This allows us
among others to carry out for instance data transmissions in an easier and above all in a safe
way.

1. Graph ideals generated by s-sequences

Let G be a graph, V (G) and E(G) be the sets of its vertices and edges respectively. G is
said to be simple if, for all {vi,v j} ∈ E(G), i ̸= j, it holds that vi ̸= v j . G is connected if
has no isolated subgraph. A forest is an acyclic graph. A tree is a connected acyclic graph.
If V (G) = {v1, . . . ,vn} and R = K[X1, . . . ,Xn] is the polynomial ring over a field K such
that variables Xi correspond to vertices vi, the edge ideal associated with G is the ideal
I(G) =

(︁
XiX j |{vi,v j} ∈ E(G)

)︁
⊂ R (see Villarreal 2015). We investigate the symmetric

algebra of classes of monomial ideals of the polynomial ring R = K[X1, . . . ,Xn] that arise
from graphs, using the theory of s-sequences (Imbesi and La Barbiera 2012; Imbesi, La
Barbiera, and Tang 2015a,b; Barbera, Imbesi, and La Barbiera 2018).

Let f1, . . . , ft be the minimal system of generators of I(G). Let (ai j), for i = 1, . . . , t, j =
1, . . . , p , be the relation matrix of I(G). It is known that the symmetric algebra SymR(I(G))
has a presentation R[T1, . . . ,Tt ]/J, where R[T1, . . . ,Tt ] is a polynomial ring in the variables
T1, . . . ,Tt and J = (g1, . . . ,gp) with g j = ∑

t
i=1 ai jTi , for j = 1, . . . , p . If we assign degree

1 to each variable Ti and degree 0 to the elements of R, then J is a graded ideal and
SymR(I(G)) is a graded algebra over R. Set S = R[T1, . . . ,Tt ] and let ≺ be a monomial order
on the monomials of S in the variables Ti such that T1 ≺ T2 ≺ ·· · ≺ Tt . With respect to
this term order, if f = ∑aα T α , where T α = T α1

1 · · ·T αt
t , we put in≺( f ) = aα T α , where

T α is the largest monomial in f such that aα ̸= 0. So we can define the monomial ideal
in≺(J) = (in≺( f ) | f ∈ J). For every i = 1, . . . , t, we set I(G)i−1 = R f1 + · · ·+R fi−1 and
Ii = I(G)i−1 :R fi . The ideals Ii, called the annihilator ideals of the sequence f1, . . . , ft ,
depend on f1, . . . , ft but not on the term order ≺ . In general (I1T1,I2T2, . . . ,ItTt) ⊆
in≺(J), and the two ideals coincide in the linear case.

The sequence f1, . . . , ft is called a s-sequence for I(G) if (I1T1,I2T2, . . . ,ItTt) =
in≺(J) . When I1 ⊆ I2 ⊆ ·· · ⊆ It , f1, . . . , ft is said to be a strong s-sequence. We apply
Groebner bases theory to compute in≺(J). Let ≺ be any term order on K[X1, . . . ,Xn;
T1, . . . ,Tt ] with T1 ≺ T2 ≺ ·· · ≺ Tt , Xi ≺ Tj, for all i and j. Then for any Groebner basis B for
J ⊂ K[X1, . . . ,Xn,T1, . . . ,Tt ] with respect to ≺ , we have in≺(J) = (in≺( f ) | f ∈ B). If the
elements of B are linear in the Ti, it follows that f1, . . . , ft is a s-sequence for I(G). Moreover,

let I(G) = ( f1, . . . , ft). Set fi j =
fi

[ fi, f j]
, for i ̸= j, where [ fi, f j] is the greatest common

divisor of the monomials fi and f j. J is generated by gi j = fi jTj − f jiTi for 1 ≤ i < j ≤ t.
The monomial sequence f1, . . . , ft is a s-sequence if and only if gi j for 1 ≤ i < j ≤ t is a
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Groebner basis for J for any term order in K[X1, . . . ,Xn;T1, . . . ,Tt ] with T1 ≺ T2 ≺ ·· · ≺ Tt ,
Xi ≺ Tj, for all i, j.

Note that the annihilator ideals of the monomial sequence f1, . . . , ft are the ideals Ii =
( f1i, f2i, . . . , fi−1,i), for i = 1, . . . , t (see Herzog, Restuccia, and Tang 2001). Let us now
examine the following classes of simple acyclic graphs and the edge ideals associated to
them.

• Pn−1, the (n−1)-path graph: I(Pn−1) = (X1X2,X2X3, . . . ,Xn−1Xn);
• Sn−1, the (n−1)-star graph: I(Sn−1) = (X1Xn,X2Xn, . . . ,Xn−1Xn).

We observe that the generators of the edge ideals of each of them form a monomial M-
sequence, consequently such generators form a s-sequence (for details, see Conca and De
Negri 1999). Making use of the theory of Groebner bases, we present a direct approach to
prove this.

Lemma 1.1. Let I(Pn−1) = (X1X2,X2X3, . . . ,Xn−1Xn)⊂ R = K[X1, . . . ,Xn] be the edge ideal
of the path graph Pn−1. If SymR(I(Pn−1)) = R[T1, . . . ,Tn−1]/J, then J = (gi j,1 ≤ i < j ≤
n−1), where

gi j =

{︃
XiTj −X j+1Ti if j = i+1
XiXi+1Tj −X jX j+1Ti if j > i+1 .

Proof. The generators of I(Pn−1) are f1 =X1X2, f2 =X2X3, . . . , fn−1 =Xn−1Xn and fi j =
fi

[ fi, f j]
, for i ̸= j, i, j = 1, . . . ,n− 1. From their computation we obtain f12 = X1, f13 =

X1X2, . . . , f1,n−1 = X1X2, f23 = X2, f24 = X2X3, . . . , f2,n−1 = X2X3, . . . , fn−2,n−1 = Xn−2. In
general, it is fi j = Xi, for j = i+1 and fi j = XiXi+1, for j > i+1, with 1 ≤ i < j ≤ n−1 and
i < j. In a similar way we have fj i = X j, for j = 2, . . . ,n−1 and i < j. Then J is generated
by the linear forms gi j, with gi j = XiTj −X j+1Ti, if j = i+1, and gi j = XiXi+1Tj −X jX j+1Ti,
if j > i+1. □

Theorem 1.2. The generators of the edge ideal I(Pn−1) form a s-sequence.

Proof. Denoting with f1, f2, . . . , fn−1 the generators of I(Pn−1), we observe that if B =
{gi j = fi jTj − f j iTi | 1 ≤ i < j ≤ n− 1} is a Groebner basis for J, then f1, . . . , fn−1 is a
s-sequence. Hence we prove that S(gi j,ghl), with i, j,h, l ∈ {1, . . . ,n−1}, has a standard
expression with respect to B with remainder 0. Note that, to get a standard expression
of S(gi j,ghl) is equivalent to find some gst ∈ B whose initial term divides the initial term
of S(gi j,ghl) and substitute a multiple of gst such that the remaindered polynomial has a
smaller initial term and so on up to the remainder is 0. We have:

S(gi j,ghl) =
fi j flh

[ fi j, fhl ]
TjTh −

fhl f j i

[ fi j, fhl ]
TiTl . (1)

Let us find a standard expression of S(gi j,ghl), for all i, j,h, l ∈ {1, . . . ,n−1}.
If [in≺(gi j), in≺(ghl)] = 1, then S(gi j,ghl) = flhgi jTh − f j ighlTi .
If [in≺(gi j), in≺(ghl)] ̸= 1, we apply (1) in order to obtain a standard expression for the
S-polynomials S(gi j,ghl). It results:

S(gi j,gil) =−[ f ji, fli]g jlTi
S(gi j,gh j) = [ f ji, f jh]gihTj
S(gi j,ghl) = [ f ji, flh](gihTj −g jlTi) if [ f ji, fhl ] = 1 and j < l
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S(gi j,ghl) = [ f ji, flh](gihTj −gl jTi) if [ f ji, fhl ] = 1 and j > l
S(gi j,ghl) = [ f ji, flh]( fl jgihTj − fhig jlTi) if [ f ji, fhl ] ̸= 1.
Hence all the S-polynomials S(gi j,ghl) reduce to 0 with respect to B. □

Lemma 1.3. Let I(Sn−1) = (X1Xn,X2Xn, . . . ,Xn−1Xn)⊂ R = K[X1, . . . ,Xn] be the edge ideal
of the star graph Sn−1. If SymR(I(Sn−1)) = R[T1, . . . ,Tn−1]/J, then J = (XiTj −X jTi,1 ≤
i < j ≤ n−1).

Proof. The generators of I(Sn−1) are f1 =X1Xn, f2 =X2Xn, . . . , fn−1 =Xn−1Xn and fi j =
fi

[ fi, f j]
, for i < j, i, j = 1, . . . ,n− 1. From their computation we obtain f12 = X1, f13 =

X1, . . . , f1,n−1 = X1, f23 = X2, . . . , f2,n−1 = X2, . . . , fn−2,n−1 = Xn−2. In general, it is fi j = Xi,
for i = 1, . . . ,n−2 and i < j. In a similar way we have fj i = X j, for j = 2, . . . ,n−1 and
i < j. Because J is generated by the linear forms gi j = fi jTj − fj iTi, for 1 ≤ i < j ≤ n−1,
then J = (XiTj −X jTi,1 ≤ i < j ≤ n−1) . □

Remark 1.4. Lemma 1.3 can also be shown noting that (X1Xn,X2Xn, . . . ,Xn−1Xn) is iso-
morphic to (X1, . . . ,Xn−1) as R-module, so their symmetric algebras are isomorphic, then
the results about the symmetric algebras of (X1Xn,X2Xn, . . . ,Xn−1Xn) follow.

Theorem 1.5. The generators of the edge ideal I(Sn−1) form a s-sequence.

Proof. Denoting with f1, f2, . . . , fn−1 the generators of I(Sn−1), from Lemma 1.3 it follows
that fi j = Xi, 1 ≤ i < j ≤ n−1 . Thus fi j ̸= fhl when i ̸= h and j ̸= l. Hence [ fi j, fhl ] = 1
for i < j, h < l, i ̸= h, j ̸= l with i, j,h, l ∈ {1, . . . ,n− 1}. From Herzog, Restuccia, and
Tang (2001, Proposition 1.7), it descends that I(Sn−1) is generated by a s-sequence. □

Imbesi and La Barbiera (2012) built a remarkable class of connected acyclic graphs by
completing a star graph with path graphs connected to all the vertices of the star distinct
from its hub, the so-called generalized star graphs. In particular, the edge ideal of a generic
graph G on n vertices and n−1 edges that belongs to such a class is the following ideal of
R = K[X1, . . . ,Xn],

I(G) = (X1Xr,X2Xr, . . . ,Xr−1Xr,X1Xr+1,Xr+1Xr+2, . . . ,Xr+s1−1Xr+s1 ,X2Xr+s1+1,
. . . ,Xr−1Xr+s1+...+sr−2+1, . . . ,Xn−1Xn), where n = r+ s1 + . . . ,sr−1 .

Proposition 1.6. Let I(G) be as above. If SymR(I(G))=R[T1, . . . ,Tn−1]/J, let J =({gi j,1⩽
i < j ⩽ n−1}), with

gi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

XiTj−X jTi if 1 ⩽ i < j ⩽ r−1
XrTj−X j+1Ti if i=1; j=r or i=2, . . . ,r−1; j=r+s1+ . . .+si−1
XiTj+1−X j+2Tj if i=1; j=r or i=2, . . . ,r−1; j=r+s1+ . . .+si−1
XiTj−X j+1Ti if j= i+1; i=r+1, . . . ,r+s1−2 or j= i+1; i = r+

+s1+. . .+ sh−1+k, h=2, . . . ,r−1, k=1, . . . ,sh−2
fiTj− f jTi otherwise .

Then the generators of I(G) form a s-sequence.

Proof. Look at Imbesi and La Barbiera (2012, Theorem 3.1). □

We can extend to a tree the assertion of Proposition 1.6.
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Theorem 1.7. Let G be a tree on n vertices. The edge ideal I(G) ⊂ R = K[X1, . . . ,Xn] is
generated by a s-sequence.

Proof. Look at Imbesi and La Barbiera (2012, Theorem 3.2) . □

As main result, we prove that the generators of the edge ideal of a forest form a s-sequence.

Theorem 1.8. Let H be a forest on n vertices. The edge ideal I(H)⊂ R = K[X1, . . . ,Xn] is
generated by a s-sequence.

Proof. A forest H may be viewed as a set of disjoint trees, that means a composition of
disjoint connected acyclic finite simple graphs. Each of these trees refers to extensions or
restrictions of generalized star graphs, in particular isolated vertices, edges, path graphs,
star graphs, etc. that can contain further vertices of degree >2. In this way, for all such
vertices, we can take in account the statements in the previous results.

Let f1, . . . , ft denote the generators of the edge ideal I(H) of the forest H. Following
procedures similar to those of Lemma 1.1 and Imbesi and La Barbiera 2012, Propositions 4.1,
4.2, we are able to determine the generators gi j = fi jTj − f j iTi, 1 ⩽ i < j ⩽ t, of the relation
ideal J of the symmetric algebra of I(H). For showing that f1, . . . , ft form a s-sequence,
it is enough to see that the elements gi j form a Groebner basis for J. In other words, we
need to show that the S-polynomials S(gi j,ghl) such that i, j,h, l ∈ {1, . . . , t}, i< j, i<h< l,
have a standard expression with respect to {gi j} with remainder 0.

Thinking to a generalization of the arguments in Theorem 1.2 and in Theorem 4.1 by
Imbesi and La Barbiera (2012), also iterating the calculation to get standard expressions
of the S-polynomials in every vertex of degree > 2 of H, we may conclude that all the
S-polynomials reduce to 0 with respect to {gi j}. □

2. Standard invariants associated to graph ideals

In this section we use the theory of s-sequences in order to compute standard algebraic
invariants, such as Krull dimension, multiplicity, Castelnuovo-Mumford regularity, etc.
of the symmetric algebra of some edge ideals of graphs, descending from the graph G
examined in the final part of the previous section, in terms of their annihilator ideals. We
know that the generators of the edge ideals associated to such graphs form a s-sequence.
First we analyze standard algebraic invariants of the symmetric algebra of the edge ideals
of the (n−1)-path graph and the (n−1)-star graph.

Theorem 2.1. Let Pn−1 be the path graph and I(Pn−1) = (X1X2,X2X3, . . . ,Xn−1Xn)⊂ R =
K[X1, . . . ,Xn]. For the symmetric algebra of I(Pn−1), it holds:
a) dim(SymR(I(Pn−1))) = n+1 ,

b) e(SymR(I(Pn−1)) =

(︃
n−1

1

)︃
+

(︃
n−2

2

)︃
+

(︃
n−3

3

)︃
+ . . .

Proof. Following Imbesi and La Barbiera (2012, Theorem 5.2), keeping in mind that the
annihilator ideals of the generators of I(Pn−1) are I1 = (0), I2 = (X1), I3 = (X1X2,X2), Ii =
(X1X2,X2X3, . . . ,Xi−3Xi−2,Xi−1), for i = 4, . . . ,n−1. □

Theorem 2.2. Let Sn−1 be the star graph and I(Sn−1) = (X1Xn,X2Xn, . . . ,Xn−1Xn)⊂ R =
K[X1, . . . ,Xn]. For the symmetric algebra R[T1, . . . ,Tn−1]/J of I(Sn−1), it holds:
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a) dim(SymR(I(Sn−1))) = n+1 ,
b) e(SymR(I(Sn−1)) = n−1 ,
c) reg(SymR(I(Sn−1)) = 1.

Proof. First, bear in mind that the annihilator ideals of the generators of I(Sn−1) are
I1 = (0), Ii = (X1, . . . ,Xi−1), for i = 2, . . . ,n− 1, so that the generators of I(Sn−1) form a
strong s-sequence.
a) dim(SymR(I(G))) = sup{n+1,n−1}= n+1, where n−1 is the number of the edges
of G.
b) From Herzog, Restuccia, and Tang (2001, Proposition 2.4), it follows that e(SymR(I(G)))=

∑
n−1
i=1 e(R/Ii). The annihilator ideals Ii are generated by a regular sequence, then following

Tang (2004, Theorem 4.8), e(R/Ii) = 1, for i = 2, . . . ,n− 1 and e(R/(0)) = 1. Hence
e(SymR(I(G))) = ∑

n−1
i=1 e(R/Ii) = n−1.

c) Following Tang (2004, Theorem 4.8), reg(SymR(I(G))) = reg(R[T1, . . . ,Tn−1]/J)
⩽ reg(R[T1, . . . ,Tn−1]/ in≺(J)) ⩽ max2⩽ j⩽n−1{∑

j−1
i=1 deg( fi j)− ( j−2)}.

Then it results:

reg(SymR(I(G)))⩽ max2⩽ j⩽n−1{∑
j−1
i=1 deg(Xi)−( j−2)}= ( j−1)−( j−2) = 1.

Moreover, J is generated by the linear forms of degree two XiTj −X jTi, for i, j = 1, . . . ,n−1.
Then reg(SymR(I(G))) = reg(R[T1, . . . ,Tn−1]/J)≥ 1, so reg(SymR(I(G))) = 1. □

The simplest generalization of the graph considered in Theorem 2.2 can be obtained by
adding an edge to that graph in a vertex of degree 1. The computation of standard algebraic
invariants it is given by the following

Theorem 2.3. Let G be the connected acyclic graph whose edge ideal is I(G) = (X1Xn,
X2Xn, . . . , Xn−1Xn, XℓXn+1) , 1 ≤ ℓ≤ n−1 , I(G)⊂ R = K[X1, . . . ,Xn+1]. For the symmetric
algebra of I(G), it holds:
a) dim(SymR(I(G))) = n+1 ,
b) e(SymR(I(G)) = 2(n−1) .

Proof. With easy computations, the thesis descends from that of the previous theorem, know-
ing that the annihilator ideals of the generators of I(G) are I1 = (0), Ii = (X1, . . . ,Xi−1), In =
(Xn), for i = 2, . . . ,n−1. □

More generally, the calculus of standard algebraic invariants of connected acyclic graphs
formed by paths of different lengths with a common hub is not yet easy. But in some
particular cases we were able to determine certain algebraic invariants (see Merlino 2017).
Let G be composed of a star graph together with 2 further edges connected to distinct ends
of the star. The following gives the annihilator ideals of the generators of the edge ideal of
such a graph.

Proposition 2.4. Let G be a graph on n vertices and edge ideal I(G)⊂ R = K[X1, . . . ,Xn]
generated by (X1Xn−2,X2Xn−2, . . . ,Xn−3Xn−2,XhXn−1, XkXn), 1 ≤ h ≤ n−4, 2 ≤ k ≤ n−3,
h ̸= k. The annihilator ideals of such generators are I1 = (0), I2 = (X1), . . . , In−3 =
(X1, . . . ,Xn−4), In−2 = (Xn−2), In−1 = (Xn−2,XhXn−1).
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Proof. Let I(G) = ( f1, f2, . . . , fn−2, fn−1), where f1 = X1Xn−2, f2 = X2Xn−2, . . ., fn−3 =
Xn−3Xn−2, fn−2 = XhXn−1, fn−1 = XkXn, h = 1, . . . ,n− 4, k = 2, . . . ,n− 3, h ̸= k. Set
fi j =

fi
[ fi, f j ]

for i < j = 1, . . . ,n− 1. The annihilator ideals of the monomial sequence
f1, . . . , fn−1 are Iα = ( f1α , f2α , . . . , fα−1,α), for α = 1, . . . ,n−1. So, it is

I1 = (0), I2 = ( f12) = (X1), I3 = ( f13, f23) = (X1,X2), . . . ,

In−3 = ( f1,n−3, . . . , fn−4,n−3) = (X1,X2, . . . ,Xn−4),

In−2 = ( f1,n−2, . . . , fn−3,n−2) =

= (X1Xn−2, . . . ,Xh−1Xn−2,Xn−2,Xh+1Xn−2, . . . ,Xn−3Xn−2) = (Xn−2),

In−1 = ( f1,n−1, . . . , fn−2,n−1) =

= (X1Xn−2, . . . ,Xk−1Xn−2,Xn−2,Xk+1Xn−2, . . . ,Xn−3Xn−2,XhXn−1) =

= (Xn−2,XhXn−1).

□

The dimension and the multiplicity of the symmetric algebra associated to the last graph are
computed in the following

Theorem 2.5. Let G be a graph on n ≥ 5 vertices and edge ideal I(G) = (X1Xn−2,X2Xn−2,
. . . , Xn−3Xn−2,XhXn−1,XkXn), 1 ≤ h ≤ n− 4, 2 ≤ k ≤ n− 3, h ̸= k. For the symmetric
algebra of I(G)⊂ R = K[X1, . . . ,Xn] it holds

a) dim(SymR(I(G))) = n+1 ,

b) e(SymR(I(G))) =

⎧⎨⎩ 7 for n = 5
n(n−1)

2
−4 for n ≥ 6 .

Proof. a) dim(SymR(I(G))) = sup{n+1,n−1}, where n−1 is the number of the edges
of G (see Villarreal 2015).
b) Following Herzog, Restuccia, and Tang (2001, Proposition 2.4) ,

e(SymR(I(G))) = ∑
1≤i1<···<ir≤n−1

e(R/(Ii1 , . . . , Iir)) = d − r,

where d = dim(SymR(I(G))) = n+1 and 1 ≤ r ≤ n−1.
Let d ′ = dim(R/(Ii1 , . . . , Iir)) = n+1− r.
The multiplicity e(SymR(I(G))) is the sum of the following multiplicities:

r = 1, e(R/I1) = 1 (because d ′ = dim(R/I1) = n),
r = 2, e(R/(I1+I2))+ e(R/(I1+I3)) = 2

(because d ′ = dim(R/(I1+I2)) = dim(R/(I1+I3)) = n−1),
r = 3, e(R/(I1+I2+I3))+ e(R/(I1+I2+I4))+ e(R/(I1+I2+In−1)) = 3

(because d ′ = dim(R/(I1+I2 +I3)) = · · ·= dim(R/(I1+I2 +In−1)) = n−2),
and so on till r = n−1.

For n = 5, the graph is the path graph P4 and e5 =

(︃
4
1

)︃
+

(︃
3
2

)︃
= 7 (see Theorem 2.1). For

n ≥ 6,
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en = (n−1)+ en−1 = (n−1)+(n−2)+ en−2 = (n−1)+(n−2)+(n−3)+ en−3 =

= . . .= (n−1)+ . . .+6+ e6 =
n(n−1)

2
−15+ e6 =

n(n−1)
2

−4 . □

Let now G be constituted by a star graph and a path graph which are connected in a vertex
of degree 1 of them. In the following we compute the multiplicity of the symmetric algebra
of the edge ideal of such a graph.

Theorem 2.6. Let G be a connected graph on n vertices constituted by a star graph on m
vertices, with m ≤ n, and a path graph, with n−m edges, n−m ≤ 4. The multiplicity e of
the symmetric algebra of I(G) = (X1Xm, . . . ,Xm−1Xm,XℓXm+1, Xm+1Xm+2, . . . ,Xn−1Xn) ⊂
R = K[X1, . . . ,Xn],1 ≤ ℓ≤ m−1, is:

• when n = m, e = 1(n−3)+2 (in compliance with Theorem 2.2),
• when n−m = 1, e = 2(n−4)+4 (in compliance with Theorem 2.3),
• when n−m = 2, e = 4(n−5)+7 ,
• when n−m = 3, e = 7(n−6)+12 ,
• when n−m = 4, e = 11(n−7)+20 .

Proof. Similar to that one in item b) of Theorem 2.5 . □

Furthermore, we could get a general formula for the above multiplicity.

Conjecture 2.7. Let G be the graph as in Theorem 2.6 with n−m = r any positive integer.
The multiplicity of the symmetric algebra of I(G) is

e =
r2 + r+2

2
(n− (3+ r))+

(︃
r+2

1

)︃
+

(︃
r+1

2

)︃
+

(︃
r
3

)︃
+ . . . . □

For such graph, let us calculate the dimension and the multiplicity of the symmetric algebra
of its edge ideal in the case n = 6 and n−m = 2 .

Example 2.8. Let R = K[X1, . . . ,X6] and I(G) = (X1X4,X2X4,X2X5,X3X4,X5X6). Then

d = dim(SymR(I(G))) = max
0≤r≤5

1≤i1≤···≤ir≤5

{dim(R/(Ii1 + · · ·+ Iir))+ r} .

The annihilator ideals of f1 = X1X4, f2 = X2X4, f3 = X2X5, f4 = X3X4, f5 = X5X6 are:
I1 = (0) : ( f1) = (0)

I2 = ( f1) : ( f2) = (X1X4) : (X2X4) = (X1)

I3 = ( f1, f2) : ( f3) = (X1X4,X2X4) : (X2X5) = (X1X4,X4) = (X4)

I4 = ( f1, f2, f3) : ( f4) = (X1X4,X2X4,X2X5) : (X3X4) = (X1,X2,X2X5) = (X1,X2)

I5 = ( f1, f2, f3, f4) : ( f5) = (X1X4,X2X4,X2X5,X3X4) : (X5X6) =

= (X1X4,X2X4,X2,X3X4) = (X2,X4)

For r = 0 it is dim(R) = 6
For r = 1 it is
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dim(R/I1) = dim(R/(0)) = dim(R) = 6 .

dim(R/I2) = dim(R/(X1)) = dim(R)−1 = 5

dim(R/I3) = dim(R/(X4)) = dim(R)−1 = 5

dim(R/I4) = dim(R/(X1,X2)) = dim(R)−2 = 4

dim(R/I5) = dim(R/(X2,X4)) = dim(R)−2 = 4 .

For r = 2 it is dim(R/(I1 + I2)) = dim(R/(X1)) = dim(R)−1 = 5

dim(R/(I1 + I3)) = dim(R/(X4)) = dim(R)−1 = 5

dim(R/(I1 + I4)) = dim(R/(X1,X2)) = dim(R)−2 = 4

dim(R/(I1 + I5)) = dim(R/(X2,X4)) = dim(R)−2 = 4

dim(R/(I2 + I3)) = dim(R/(X1,X4)) = dim(R)−2 = 4

dim(R/(I2 + I4)) = dim(R/(X1,X2)) = dim(R)−2 = 4

dim(R/(I2 + I4)) = dim(R/(X1,X2)) = dim(R)−2 = 4

dim(R/(I2 + I5)) = dim(R/(X1,X2,X4)) = dim(R)−3 = 3

dim(R/(I3 + I4)) = dim(R/(X1,X2,X4)) = dim(R)−3 = 3

dim(R/(I3 + I5)) = dim(R/(X2,X4)) = dim(R)−2 = 4

dim(R/(I4 + I5)) = dim(R/(X1,X2,X4)) = dim(R)−3 = 3 .

For r = 3 it is dim(R/(I1 + I2 + I3)) = dim(R/(X1,X4)) = dim(R)−2 = 4

dim(R/(I1 + I2 + I4)) = dim(R/(X1,X2)) = dim(R)−2 = 4

dim(R/(I1 + I2 + I5)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I1 + I3 + I4)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I1 + I3 + I5)) = dim(R/(X2,X4)) = dim(R)−2 = 4

dim(R/(I1 + I4 + I5)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I2 + I3 + I4)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I2 + I3 + I5)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I2 + I4 + I5)) = dim(R/(X1,X2,X4)) = 6−3 = 3

dim(R/(I3 + I4 + I5)) = dim(R/(X1,X2,X4)) = 6−3 = 3 .

For r = 4 it is dim(R/(I1 + I2 + I3 + I4)) = dim(R/(X1,X2,X4))=6−3=3

dim(R/(I1 + I2 + I3 + I5)) = dim(R/(X1,X2,X4))=6−3=3

dim(R/(I1 + I2 + I4 + I5)) = dim(R/(X1,X2,X4))=6−3=3

dim(R/(I1 + I3 + I4 + I5)) = dim(R/(X1,X2,X4))=6−3=3

dim(R/(I2 + I3 + I4 + I5)) = dim(R/(X1,X2,X4))=6−3=3 .

For r = 5 it is dim(R/(I1 + I2 + I3 + I4 + I5)) = 3 .
Consequently,

d = max
0≤r≤5

{dim(R/(Ii1 + · · ·+ Iir))+ r} for r=1
= 6+1 = 7 .
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e(SymR(I(G))) = ∑
0≤r≤5

1≤i1≤···≤ir≤5

e(R/(Ii1 + · · ·+ Iir))

and d ′ = dim(R/(Ii1 + · · ·+ Iir)) = d − r = 7− r.
For r = 0, d ′ = 7, but no quotient ring (R/(Ii1 + · · ·+ Iir)) has dimension d ′ = 7.
For r = 1, d ′ = 6, in particular R/I1 = R/(0) has dimension d ′ = 6. Then e(R/(0)) = 1 .
For r = 2, d ′ = 5, in particular R/(I1 + I2) and R/(I1 + I3) have dimension d ′ = 5. Then:

e(R/(I1 + I2))+ e(R/(I1 + I3)) = 1+1 = 2 .

For r = 3, d ′ = 4, in particular R/(I1 + I2 + I3), R/(I1 + I2 + I4) and R/(I1 + I3 + I5) have
dimension d ′ = 4. Then:

e(R/(I1 + I2 + I3))+ e(R/(I1 + I2 + I4))+ e(R/(I1 + I3 + I5)) = 1+1+1 = 3 .

For r = 4, d ′= 3, in particular R/(I1+I2+I3+I4), R/(I1+I2+I3+I5), R/(I1+I2+I4+I5),
R/(I1 + I3 + I4 + I5) and R/(I2 + I3 + I4 + I5) have dimension d ′ = 3. Then:

e(R/(I1 + I2 + I3 + I4))+ e(R/(I1 + I2 + I3 + I5))+ e(R/(I1 + I2 + I4 + I5))+

+e(R/(I1 + I3 + I4 + I5))+ e(R/(I2 + I3 + I4 + I5)) = 1+1+1+1+1 = 5 .
For r = 5, d ′ = 2, but no quotient ring (R/(Ii1 + · · ·+ Iir)) has dimension d ′ = 2.
In conclusion, it is e(SymA(I(G)) = 1+2+3+5 = 11 .

3. Initial ideals and Ferrers graphs

Let us study connected acyclic graphs G whose edge ideal is generated by a strong
s-sequence. In particular, we examine the star graph Sn−1 whose edge ideal is I(Sn−1) =
(X1Xn,X2Xn, . . . , Xn−1Xn) ⊂ R = K[X1, . . . ,Xn] . We may associate Sn−1 to any graph F
whose edge ideal is defined starting from in≺(J), where J = (g1, . . . ,gp) is the rela-
tion ideal of the symmetric algebra SymR(I(Sn−1)). In general, by definition, in≺(J) =
(in≺( f ) | f ∈ J), but if g1, . . . ,gp form a Groebner basis for J, then it is known that
in≺(J) = (in≺(g1), . . . , in≺(gp)) .

Proposition 3.1. Let Sn−1 be the (n−1)-star graph, I(Sn−1) = (X1Xn, X2Xn, . . . , Xn−1Xn)⊂
R = K[X1, . . . ,Xn] be its edge ideal. Then

in≺(J) = ((X1)T2,(X1,X2)T3, . . . ,(X1,X2, . . . ,Xn−2)Tn−1) .

Proof. Let f1 = X1Xn, . . . , fn−1 = Xn−1Xn . Since I(Sn−1) = ( f1, . . . , fn−1) is generated by a
s-sequence, then gi j = fi jTj − fj iTi, for 1 ≤ i < j ≤ n−1, form a Groebner basis of J. Hence
by Lemma 1.3 in≺(J) = ( fi jTj |1 ≤ i < j ≤ n−1), where fi j = Xi for 2 < j ≤ n−1. □

Remark 3.2. Since the generators of I(Sn−1) also form a M-sequence, the Groebner basis
of J coincides with the Groebner basis of the ideal of presentation of the Rees algebra
ℜ(I(Sn−1)). Hence I(Sn−1) is of linear type (see Conca and De Negri 1999).

Let us now consider in≺(J) = ((X1)T2,(X1,X2)T3, . . . ,(X1,X2, . . . ,Xn−2)Tn−1) .

If we replace the set of variables {T2, . . . ,Tn−1} with {Y1, . . . ,Yn−2}, then in≺(J) = ((X1)Y1,
(X1,X2)Y2, . . . ,(X1, . . . ,Xn−2)Yn−2) is a monomial ideal of R=K[X1, . . . ,Xn−2; Y1, . . . ,Yn−2]
associated with a bipartite graph F on distinct vertex sets {x1, . . . ,xn−2} and {y1, . . . , yn−2}
that correspond to the sets of variables {X1, . . . ,Xn−2} and {Y1, . . . ,Yn−2} respectively. In
particular, let us introduce the following
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Example 3.3. Let R = K[X1, . . . ,X7], G be the star graph on vertex set {x1, ...,x7} whose
edge ideal is I(G) = (X1X7,X2X7, . . . ,X6X7) and set f1 = X1X7, f2 = X2X7, . . . , f6 = X6X7.
By Proposition 3.1, in≺(J) = ((X1)T2,(X1,X2)T3,(X1,X2,X3)T4,(X1, X2,X3,X4)T5,
(X1,X2,X3,X4,X5)T6).

If we replace {T2,T3,T4,T5,T6} with {Y1,Y2,Y3,Y4,Y5}, the bipartite graph

has edge ideal I(F) = in≺(J) = (X1Y1,X1Y2,X1Y3,X1Y4,X1Y5,X2Y2,X2Y3,X2Y4,X2Y5,X3Y3,
X3Y4,X3Y5,X4Y4,X4Y5,X5Y5).

When we replace the set of variables {T2,T3, . . . ,Tn−1} with the set {Yn−2,Yn−3, . . . ,Y1},
then

in≺(J) = ((X1)Yn−2,(X1,X2)Yn−3, . . . ,(X1,X2, . . . ,Xn−2)Y1)

is a monomial ideal of R=K[X1, . . . ,Xn−2;Y1, . . . ,Yn−2] associated with a special graph F on
distinct vertex sets {x1, . . . ,xn−2} and {y1, . . . ,yn−2}. More precisely, F is a Ferrers graph
(see Corso and Nagel 2009), namely a bipartite graph on vertex sets {x1, . . . ,xn−2} and
{y1, . . . ,yn−2} such that whenever {xi,y j} is an edge of F , then so is {xr,ys} for 1 ⩽ r ⩽ i
and 1 ⩽ s ⩽ j, and {x1,yn−2}, {xn−2,y1} are edges of F .

In the Example 3.3, the graph F is equivalent to the following Ferrers graph:
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The previous description lends itself to being applied to the transmission of confidential
data. For example, it must be communicated the position of submarines with nuclear
warheads and those with conventional armaments of a superpower fleet. Such positions can
be represented by the vertex set of a graph G, {x1, . . . ,xn}. The equipments of submarines
can be classified through the vertex set {y1, . . . ,yn−2} of an unknown graph F . The message
to be sent is the drawing of G. It is elaborated via Groebner bases finding the initial
ideal in≺(J) . So it can be built the bipartite graph F on disjoint vertex sets {x1, . . . ,xn−2},
{y1, . . . ,yn−2} that is the graph associated with in≺(J). F contains the real meaning of the
message because it gives the connection among the location of submarines and their arming.
So the receiver safely obtains the desired information.
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