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ABSTRACT 

Point clouds are three-dimensional (3D) representations generated from 

data acquired through various technologies, including 3D scanners, advanced 

cameras, and depth sensors. These representations have brought about 

significant advancements in numerous sectors, such as autonomous driving, 

augmented reality, and Industry 4.0. In the modern industrial landscape, point 

clouds play an indispensable role. They are instrumental in real-time monitoring 

and optimization of production processes, enhancing the analysis of machine 

and robot performance. These 3D representations also facilitate the 

manipulation and training of industrial robots, enabling them to recognise 

objects and collaborate safely with humans. Additionally, point clouds are of 

paramount significance in industrial quality control, enabling the verification of 

product specifications against predefined criteria. The versatility of point clouds 

extends to representing systems of objects that can be simplified as points on a 

plane or in space. A wide array of analyses and applications can be conducted 

using point clouds. The focus of this study was on point cloud analysis based 

on differential entropy, a concept that quantifies the information contained in 

the data. Differential entropy of a point cloud provides insights into the spatial 

distribution of points. In this work, a thorough examination of this concept led 

to the development of three primary innovations: a novel formulation of 

differential entropy for point clouds, the creation of a new method called 

Differential Entropy for Deviation Analysis (DEDA), which is geared towards 

the analysis of geometric deviation for quality control in industrial production, 

and the introduction of the Differential Entropy-based Compactness Index 

(DECI), a compactness index designed specifically for analysing systems that 

can be schematised as point clouds, with a particular focus on the transportation 
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system, proposed as a risk index. The modification of the formulation of 

differential entropy for univariate and multivariate normal distributions has 

eliminated problems associated with the vanishing determinant of the 

covariance matrix, as present in the formula, and ensured that the entropic 

contribution of each point in the point cloud assumes a zero or positive value. 

This new formulation has paved the way for the development and demonstrated 

the effectiveness of the DEDA method and the DECI index. In the field of 

quality control, the DEDA method has proven to be reliable and robust. 

Geometric deviation analysis on samples produced through Additive 

Manufacturing (AM), conducted using both traditional methods based on 

Euclidean distance calculations between points in compared point clouds and 

the new DEDA method, have underscored the potential of the newly proposed 

method. The DEDA method, notably, provides a synthetic quality index that 

determines the product's quality level, as opposed to traditional methods that 

rely on the interpretation of mean and standard deviation, which can often lead 

to challenging or incorrect quality level assessments. Furthermore, the 

robustness assessment of the DEDA method has demonstrated its ability to 

overcome several limitations inherent in classical methods, including the 

presence of holes, background noise, density variations between compared 

point clouds, and the non-commutativity of Euclidean distance. The DEDA 

method also lays the foundation for the development of a new point clouds 

registration method. The latest innovation, the DECI index, allows for the 

derivation of a descriptive index of the compactness of a point cloud. While this 

index is suitable for various applications, it has been applied to monitor 

maritime traffic, serving as a quantifiable measure of risk in a specific sea area. 

Leveraging information on maritime traffic, DECI values were evaluated on an 

hourly, monthly, and annual basis. This enabled a comprehensive examination 

of maritime traffic, shedding light on the most and least congested time periods. 

DECI-based analysis could be instrumental in implementing measures to 
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alleviate congestion in the busiest sea areas and facilitating qualitative 

comparisons. 

Keywords: Point Clouds, Entropy, Differential Entropy, Registration, 

ICP, 3D Scans, Reverse Engineering, Quality Control, Deviation Analysis, 

Computer Vision, Compactness Index, 3D Printing. 

Highlights: 

• New formulation of differential entropy specifically tailored for 

point clouds. 

• Quality control method based on differential entropy, designed to 

overcome limitations found in existing approaches. 

• Compactness index for analysing systems that can be represented 

as point clouds. 

• Case studies to showcase the potential of the introduced novelties. 
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1 INTRODUCTION 

1.1 Overview of Point Clouds 

In the landscape of advanced technologies, point clouds constitute one of 

the most invaluable assets for comprehending, analysing, and engaging with the 

physical world in an increasingly sophisticated manner. These intricate three-

dimensional (3D) representations, crafted from sets of data points, have evolved 

into a fundamental cornerstone of state-of-the-art digital applications, 

significantly reshaping our perception of our interaction with the physical 

world. Point clouds essentially serve as highly detailed 3D mappings of actual 

objects, environments, and landscapes. They are generated using a diverse array 

of technologies, including 3D scanners, advanced cameras, and depth sensors. 

Each data point within a point cloud corresponds to a precise location within 3D 

space, meticulously capturing coordinates (x, y, z) and often encompassing 

supplementary attributes such as colour and intensity. This dataset enables the 

faithful digital recreation of the real world in a profoundly detailed format.  

The widespread proliferation of this technology has paved the way for a wide 

spectrum of applications across various industries. One of the most conspicuous 

domains is autonomous driving, where point clouds are pivotal in enabling 

vehicles to meticulously perceive their surroundings and make real-time 

decisions. Nevertheless, their sphere of influence extends far beyond mobility, 

permeating fields such as augmented reality, where point clouds facilitate the 

superimposition of virtual objects onto the tangible world with unparalleled 

precision.  

As a component of Industry 4.0, a paradigm embracing the digitalization 

and advanced automation of industrial processes, point clouds assume a pivotal 

role. These 3D representations are leveraged to monitor and optimise production 

processes in real-time, facilitating the analysis of machinery and robot 

performance. Point clouds processing enhances the manipulation and training 
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of industrial robots, empowering them to recognise objects, precisely compute 

trajectories, and securely collaborate with humans in the factories of the future. 

Moreover, point clouds feature prominently in quality control within industrial 

manufacturing, enabling the verification of product specifications against 

predefined criteria. Anchored in detailed point cloud data, this quality control 

process guarantees alignment with the requisite quality standards. Point clouds, 

besides furnishing a detailed representation of the physical realm, present a 

unique opportunity for innovative data analysis and interpretation. Advanced 

point cloud processing can unveil hitherto concealed information, discern 

intricate patterns, and facilitate advanced decision-making.  

1.2 Objective of the thesis 

During this thesis, an in-depth study was conducted on differential 

entropy and on the analyses carried out using this measure on point clouds, with 

the aim of extracting information about the geometry they represent. This 

research resulted in the development of a new method for analysing geometric 

deviation in quality control and the establishment of a compactness index with 

multiple potential applications. Therefore, the objective of this thesis is to 

present the modifications made to the formulation of differential entropy and, 

specifically, to demonstrate the innovative methods derived from these 

modifications, validating them through case studies. 

1.3 Outline 

In the introductory chapter, an overview of what point clouds entail, their 

characteristics, and the various sectors in which they find application is 

provided. The second section, titled "State of the Art," presents all the 

fundamental concepts essential for a thorough understanding of the innovations 

introduced. This section covers key aspects such as the primary acquisition 

methods, the data capture process, the analyses conducted through differential 

entropy, and the assessment of geometric deviation. The third section, 
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"Materials and Methods," introduces the innovations presented in this work 

initially and then delves into them in detail, aided by practical applications and 

case studies. Conclusions will follow, summarizing the work and the results 

obtained. 

1.4 Introduction to Point Clouds 

1.4.1 Definition  

Point clouds are a form of digital representation that provide a detailed 

portrait of real-world objects and environments within 3D space. In the context 

of engineering and computer science, they are often thought of as a collection 

of data points distributed in the 3D Euclidean space, where each point serves as 

an anchor point, indicating an exact location in the physical world. The 

minimum attributes of a point within a point cloud are typically its spatial 

coordinates (x, y, z), which capture its precise position relative to a chosen 

coordinate system. The versatility of point clouds extends beyond their spatial 

coordinates. These data points can carry a number of additional attributes, 

enriching the information they convey. One of the most common additional 

attributes is colour, which improves the visual quality and realism of point 

clouds. Colour information is typically represented using the Red-Green-Blue 

(RGB) model, where each channel (R, G, and B) defines the intensity of a 

particular colour component. With values ranging from 0 to 255 for each 

channel, this model allows for the generation of a wide range of colours. 

Incorporating colour information into point clouds is invaluable in applications 

such as digital 3D modelling, where realistic rendering of objects and scenes is 

of paramount importance. 

Another noteworthy attribute associated with point clouds is intensity. 

Intensity values, typically between 0 and 1, convey information about the 

reflectance or brightness of a point. This attribute is particularly useful in laser-

based scanning techniques, such as LiDAR (Light Detection and Ranging), in 
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which sensors measure the intensity of the returned laser signal. By analysing 

intensity data, it becomes possible to differentiate various materials, surfaces, 

or objects based on their reflection properties. This capability has far-reaching 

implications, including applications in environmental monitoring, forestry, and 

autonomous navigation. Furthermore, each point within a point cloud can have 

normal vectors (i, j, k) as attributes. These normal vectors provide information 

about the orientation of surfaces at each point, aiding in tasks such as surface 

reconstruction, shading, and curvature analysis. The inclusion of normal vectors 

is crucial in applications such as 3D graphics and computer-aided design, where 

understanding surface characteristics and interactions is essential for realistic 

simulations and modelling. Figure 1 shows a generic point cloud in the 3D space 

and its main attributes. 

 
Figure 1. Example of a point cloud and its main attributes. 

Thus, point clouds serve as intricate digital snapshots of the physical 

world, capturing not only spatial coordinates but also additional attributes such 

as colour, intensity, and normal vectors. These attributes, whether applied for 

visual fidelity or greater analytical depth, enhance the ability of point clouds to 

capture the complexity and richness of real-world scenes. Point clouds are a 

foundational technology with applications spanning fields such as geospatial 

analytics, robotics, computer vision, and more. Their ability to capture, store, 

and represent detailed 3D data ensures they remain indispensable in our 

increasingly digital and interconnected world. 
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1.4.2 Fields of application 

Point clouds, with their capacity to capture detailed 3D data, find 

extensive utility in various fields. Their versatility and precision render them 

invaluable resources for multiple applications, significantly contributing to 

enhanced comprehension and innovation across diverse industries. 

Product design 

Point clouds are utilised in the creation of digital models representing 

real objects or environments. These models are acquired through various 

acquisition techniques that capture a substantial volume of data in the form of 

points. Subsequently, this data can be processed and applied, for instance, both 

to generate Computer Aided Design (CAD) models, through a specific process, 

that replicate the geometry of the original objects and to analyse their shape. 

The resulting CAD models hold significant value across numerous contexts, 

including the manufacturing industry, where they can be employed to redesign 

or enhance existing components without the need to start from scratch. This 

process is referred to as geometric reverse engineering. Point clouds also play 

a crucial role in quality control. Following the production of a component, it 

undergoes scanning, and the acquired point clouds are compared to the 

reference model in a process known as deviation analysis. This comparison 

enables the evaluation of any deviations or production defects in the 

component's shape, size, or position relative to the required specifications. In 

this manner, point cloud-based quality control ensures that products meet 

stringent quality and precision standards. Moreover, the triangulation process, 

by the means, for instance, of Delaunay method, allows to obtain the surface of 

the scanned object. This surface can be used to obtain a mesh useful for 

Computed Aided Engineering (CAE) analysis such as Finite Elements Methods 

(FEM) and Computational Fluid-Dynamics (CFD). 
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Mixed Reality 

Point clouds are an invaluable resource for creating immersive virtual 

worlds and experiencing Augmented Reality (AR) [1], Virtual Reality (VR) [2], 

and Augmented Virtuality (AV) [3]. Their ability to capture 3D details with 

extreme precision provides a solid foundation for constructing lifelike virtual 

environments and engaging interactive applications. In this context, point 

clouds allow users to explore and interact with the physical world enriched with 

virtual elements. This creates engaging and interactive educational experiences 

making AR particularly effective in sectors such as education and professional 

training. Simultaneously, in Virtual Reality (VR) and Augmented Virtuality 

(AV), for example, in the context of corporate training, an acquired point cloud 

can serve as the foundation for creating realistic training scenarios [4,5]. 

Companies can utilise these instruments to train employees on complex 

machinery or industrial processes, enabling them to interact with realistic virtual 

models. Users can be immersed in virtual environments that precisely replicate 

the physical characteristics of the real world, allowing them to practice in 

realistic and safe conditions. Consider, for example, planning a maintenance 

intervention in areas of a factory where environmental conditions are adverse 

(due to noise or temperatures), to test the intervention in a secure environment 

to enhance efficiency and reduce the time spent at the site of the operation.  

Autonomous driving  

Point clouds are assuming an increasingly significant role in the field of 

autonomous driving [6], which currently relies primarily on artificial vision via 

cameras [7,8]. This revolutionises how autonomous vehicles perceive and 

understand their surrounding environment, enabling them to 'see' the world with 

a higher level of detail and precision. This advancement paves the way for 

enhanced road safety and more efficient driving. Point clouds acquired through 

these sensors empower autonomous vehicles to create a detailed map of their 

surroundings, including vehicles, pedestrians, obstacles, and more [9]. Point 



13 

 

cloud analysis is crucial for real-time interpretation of the road environment. 

Autonomous vehicles employ advanced algorithms for object recognition, 

trajectory tracking, and decision-making based on this data [10]. This process, 

known as “Simultaneous Localization and Mapping” (SLAM) [11], enables 

autonomous vehicles to accurately determine their position on the road and 

adapt to environmental changes in real time. The integration of point clouds in 

autonomous driving is redefining the future of mobility, and with ongoing 

advancements and refinements in sensors and algorithms, they will remain 

central to the evolution of autonomous driving and future mobility. 

Medicine 

The utilisation of point clouds in the medical field is revolutionising the 

visualisation and planning of surgical procedures, offering fresh perspectives 

for precise diagnosis and effective treatment. Point clouds have displayed 

substantial potential in the 3D reconstruction of anatomical objects from 

DICOM (Digital Imaging and Communications in Medicine) medical images. 

This process enables medical practitioners to obtain a 3D representation of 

patients' internal organs and tissues. Such representation provides a clear view 

of anomalies or lesions, empowering medical professionals to make more 

accurate diagnoses. A significant application of this technology is the 3D 

printing of customised anatomical models [12,13]. By employing point clouds 

extracted from DICOM images [14], physical models of patient-specific organs 

can be manufactured. These models enable doctors to explore the internal 

structure of organs in a tactile manner, simulating intricate surgical procedures 

and meticulously planning interventions. A surgeon can employ a 3D model of 

an organ to strategize the operation through in vitro testing [15,16]. This 

approach allows for risk minimisation and optimisation of the intervention's 

outcome. Moreover, 3D models can serve educational purposes, offering 

medical students and young surgeons opportunities to acquire practical skills in 

a virtual environment before confronting real clinical scenarios. Numerous 
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studies underscore how the combined usage of point clouds and Machine 

Learning (ML) techniques, particularly Deep Learning (DL), can contribute to 

the diagnosis and prognostication of post-operative outcomes and 

complications, as seen e.g., in the treatment of Abdominal Aortic Aneurysm 

through EndoVAscular Repair (EVAR) surgery [17]. The application of point 

clouds in diagnostic imaging and medicine is thus creating fresh avenues for 

enhanced patient care and a deeper comprehension of the anatomical and 

pathological facets of the human body. 

Forensics 

 Point clouds are assuming an increasingly significant role in crime scene 

reconstruction and forensic investigations. Several studies show the use of 3D 

scans to document and analyse evidence collected at crime scenes, providing 

essential support for judicial investigations and case resolution. Another 

example of the application of point clouds in this context is comparative 

ballistics. This technique involves obtaining detailed 3D scans of shell casings 

recovered from crime scenes or shooting locations [18–22]. Advanced 

technologies, such as confocal microscopy, enable the capture of extremely 

high-resolution images of bullet casings, meticulously capturing microscopic 

details. The use of point clouds in ballistic analysis opens up new perspectives 

for forensic experts [23,24]. The precision and objectivity of the 3D data enable 

a more accurate comparison between cartridge cases and specific firearms [25]. 

This approach can be critical in establishing crucial connections in crime cases, 

assisting law enforcement in identifying the weapons involved in shootings or 

linking bullets to specific firearms. Point clouds are also proving to be 

particularly useful in autopsies and post-mortem investigations, where point 

clouds of organs and tissues can be acquired [26]. This data can be used to gain 

a better understanding of accident dynamics or the causes of a person's death. 

With the constant advancement of point cloud acquisition and analysis 

technologies, it is reasonable to hypothesise that their role in investigations will 
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continue to expand, further enhancing the ability to shed light on crimes and 

incidents. 

Cultural heritage 

In the field of cultural heritage documentation, point clouds represent a 

valuable tool for the long-term preservation of archaeological findings, historic 

sites, and artworks. 3D scans enable the recording of every detail of structures 

and artworks, providing a robust foundation for future studies and research [27]. 

This digital data can be archived and shared with the scientific community and 

the public, contributing to the conservation of historical and cultural memory 

[28]. Moreover, point clouds are indispensable instruments for preventive 

conservation. They enable restorers to monitor the state of preservation of 

artworks over time, detecting any changes or damage. This ongoing monitoring 

allows for timely corrective or maintenance measures to be implemented for 

optimal preservation. Additionally, the combined use with AV, through the 

utilization of haptic feedback technology, currently under investigation, would 

make it possible to physically touch sculptures and other historical artefacts, an 

experience which is generally not feasible at present due to the potential for 

damage to the objects [29]. These innovative approaches to the documentation 

and preservation of cultural heritage significantly contribute to the 

comprehension and safeguarding of human history and art. 

Topography  

The extensive use of sensors for acquiring point clouds mounted on 

vehicles, drones, and fixed or mobile platforms, in conjunction with 

photogrammetric techniques, is employed to obtain topographical data of 

unparalleled precision and detail [30]. These detection systems generate 

exceptionally information-rich point clouds, precisely revealing the 

morphology of the terrain, buildings, vegetation, and other characteristics of the 

acquired environment. These point clouds offer intriguing opportunities for a 

wide range of applications. For instance, they make a substantial contribution 
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to the creation of highly detailed maps, ushering in a new level of precision in 

territory representation [31]. These maps are indispensable for advanced 

navigation, natural resource management, infrastructure design, urban and land 

use planning, as they provide a comprehensive and accurate view of the 

environment under consideration. 

Geology 

3D scanning of geological formations, such as mountains, canyons, or 

caves, provides geologists with valuable information about the structure and 

evolution of the terrain [32]. This data is essential for planning engineering 

projects, such as the construction of dams, bridges, or tunnels, as it allows for a 

better understanding of the land's morphology and the evaluation of potential 

geological risks. Furthermore, point clouds are fundamental tools for managing 

natural risks, such as landslides, earthquakes, and floods. Detailed terrain 

mapping with point clouds enables the identification of risk areas and the 

implementation of preventive measures for public safety. In the context of 

scientific geological research, point clouds are used to study the evolution of 

natural phenomena over time. For example, it is possible to monitor changes in 

the morphology of a mountain or the deformation of a geological fault through 

periodic scans with point clouds [33]. These data contribute to the 

understanding of geological dynamics and the advancement of scientific 

knowledge in this field.  

Precision agriculture 

The 3D scanning of agricultural fields opens the door to a wide range of 

opportunities and benefits that help crop cultivation and management. The 

representation through point clouds, in fact, allows for an accurate evaluation 

of the vegetation [34]. Laser sensors can detect plant density and height very 

precisely. This data is essential for monitoring crop health, identifying early 

signs of plant stress or disease, and intervening promptly [35,36]. Farmers can 

also use this information to optimise the application of fertilisers, pesticides, 
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and irrigation, minimising waste and maximising crop yields. A concrete 

example of how point clouds are transforming precision agriculture is the use 

of drones equipped with laser scanning systems [37]. These drones fly over 

agricultural fields and collect detailed 3D data, which is then analysed. Farmers 

can then make data-driven decisions and significantly improve the efficiency of 

their operations. 

 

2 STATE OF THE ART 

2.1 Point Clouds acquisition technologies 

2.1.1 Light Detection And Ranging (LiDAR) 

LiDAR is a remote sensing technology that has revolutionised the ability 

to measure and map environments. This technology is based on the use of laser 

to measure the distance between a LiDAR sensor and a certain object [38]. This 

fundamental principle enables high-precision 3D data collection, paving the 

way for a wide range of applications in various industries. The first studies on 

the development of this technology can be found in the early 20th century, but 

the first practical implementations emerged in the 1960s [39]. Since then, this 

technology has undergone advancements, with significant improvements in 

optical components and sensors. These advances have made LiDAR more 

accessible and versatile for a wide range of applications. Today, LiDAR is a key 

technology in many industries and is continuing to evolve with new innovations, 

such as more compact and lightweight sensors, as well as greater efficiency in 

data acquisition and processing [40]. Its growing importance is evident in the 

field of vehicle automation, where LiDAR plays a crucial role in environmental 

perception for autonomous vehicles [41]. What makes LiDAR so powerful is 

its ability to perform these measurements quickly and continuously, thus 

creating a real-time data stream or detailed 3D representation of the 
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environment. Data acquisition can be based on two different operating 

principles: phase-shift and time-of-flight (TOF) [42]. 

In a LiDAR system employing TOF, a pulse of light is typically emitted 

from a pulsed laser diode, initiating an internal clock. This light pulse swiftly 

traverses the distance towards an object at nearly the speed of light until it makes 

contact with the object. A portion of the light then rebounds off the object, 

retracing its path back towards the LIDAR system at almost the speed of light, 

ultimately striking a photodetector. Upon reaching the photodetector, the light 

signals the clock, which had commenced when the initial pulse was emitted, to 

cease. By knowing the velocity of light and the time taken for the light to travel 

the round trip between the LIDAR system and the object, it is possible to 

precisely determine the distance to the object. On the other hand, time-of-flight 

LiDAR measures distance by calculating the time it takes for a laser pulse to go 

to the object of interest and return back to the sensor. This approach is known 

for its ability to acquire data at high speeds, making it ideal for real-time 

applications such as autonomous vehicles, drones, and other situations where 

responsiveness is critical. The distance d of the object is given by the formula 

[42]: 

 
𝑑 =  

𝑐 ∙ 𝑡

2
 (1) 

Where: 

• 𝑐 = speed of light 

• 𝑡 = time it takes for the light to travel to the target and back. 

In the phase-shift LiDAR a continuous source is utilised, with its power 

modulated at a consistent frequency. Photodetectors, in this context, serve a dual 

purpose. They not only ascertain the presence of light but also quantify its 

power. Consequently, a sine curve can be generated to represent the return 

signal. By analysing the phase difference, which signifies the variance in radians 
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between the peaks of these waveforms, it is possible to determine the distance 

to the object. This phase change is caused by the change in wavelength of light 

as it travels through the air and hits the object. The distance d of the object is 

given by the formula [42]: 

 
𝑑 =  

𝑐 ∙ ∆𝜙

2𝜋 ∙ 𝑓
 (2) 

Where: 

• 𝑐 is the speed of light 

• ∆𝜙 is phase shift 

• 𝑓 is the frequency at which the power is modulated. 

2.1.2 3D Structured-light Scanner 

The structured light 3D scanner utilises structured light to initially 

capture a series of 3D points from an object. The underlying principle of this 

technology involves projecting structured light [43] patterns (typically bands or 

lines) onto the object to be scanned using a projector. These projected light 

patterns onto an object tend to deform based on the object's shape. The scanner 

is also equipped with a detection system, typically comprising one or two 

cameras, which capture the reflected light [44]. Subsequently, specialised 

algorithms, often based on triangulation, enable the software to reconstruct the 

object's geometry in the form of a point cloud. It is noteworthy that the point 

cloud is acquired only for the portion of the object exposed to the structured 

light. Consequently, considering the object's geometry, multiple acquisitions 

with relative rotations between the scanner and the object may be necessary. 

This can be accomplished by employing a turntable on which the object to be 

scanned is positioned, while the scanner remains stationary (e.g., for small and 

easily manipulable objects) or by keeping the object stationary and moving the 

scanner between scans (e.g., for larger objects). To accurately combine all 

partial point clouds obtained from each scan and derive a comprehensive point 
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cloud representing the entire geometry of the scanned object, the scanner 

software employs registration (see chapter 2.2.3) techniques. In certain 

instances, markers, small stickers placed around or on the object, may be 

required for recognition by the acquisition system and to facilitate the spatial 

registration of the scans. 

2.1.3 Microscopy 

Microscopy is one of the techniques also used to obtain point clouds, 

with particular reference to its applications in the field of biology [45] and in 

the evaluation of the surface characteristics of materials [46]. The primary 

microscopy techniques employed to generate point clouds include confocal 

microscopy, focus variation microscopy, and interferometric microscopy. 

Confocal microscopy is a technique enabling the acquisition of high-

resolution 3D representation of material surfaces [47]. The procedure 

commences with the illumination of the sample via a laser beam meticulously 

focused on a specific region. An objective lens is employed to precisely direct 

the laser beam onto the material's surface and to gather the light reflected by the 

sample. An essential component of this system is the pinhole, positioned 

between the lens and the detector, which serves to exclude light originating from 

areas out of the focal plane, thus concentrating solely on the light emanating 

from the precise focal plane of the material. To generate a 3D representation of 

the material, the confocal microscope conducts a sequential scan along the x, y, 

and z axes. The laser beam horizontally traverses diverse positions on the 

material's surface and incrementally ascends vertically to capture data from 

varying depths. Throughout this scanning process, the microscope records the 

intensity of light reflected or emitted exclusively from the x-y grid points that 

are focused on the material's surface for each focal plane along the z-axis. The 

x-y coordinates of these focused points, coupled with the z coordinate of the 

focal plane, are then utilised to derive the 3D spatial coordinates of the points 

constituting the point cloud. This methodology enables the examination of 



21 

 

morphological details, surface roughness, and other topographic characteristics 

of the material [48]. It is also used in biology field [49]. 

Focus variation microscopy exploits on the variation of the focus plane's 

position to gather information about the 3Dshape of a sample. The focus is 

adjusted, and the sample surface is examined at various focus positions. The 

resulting image enables the reconstruction of the sample's topography. 

Confocal microscopy and focus variation both exhibit the optical 

sectioning property, showcasing similar depth focusing characteristics. The 

primary distinction lies in their proficiency: confocal microscopy is more adept 

at handling smooth surfaces, while focus variation microscopy excels in 

imaging very rough surfaces [50]. 

Interferometric microscopy leverages the principle of light interference 

to acquire detailed information about the structure and morphology of a sample. 

There are various variations of interferometric microscopy, with one of the most 

common being White Light Interferometry (WLI) microscopy or Low-

Coherence Interferometry (LCI) microscopy. In this technique, broadband light 

(white light) or low-coherence light passes through or reflects off the sample. 

The light is split into two arms: one passing through the sample and the other 

serving as a reference. Subsequently, the light reflected or transmitted by the 

two arms is recombined, and the phase difference between the two light waves 

interferes, generating an interference pattern [51]. 

2.1.4 Photogrammetry 

Photogrammetry is a technique that enables the generation of 3D 

representations of objects or environments by utilizing a series of photographs 

taken with a camera featuring a fixed lens. This methodology is founded on the 

principle of triangulation, which leverages variations in position and angles 

across photographs to compute the 3D coordinates of the points within the 

depicted object [52]. To obtain a 3D representation from two-dimensional (2D) 
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photographs, it is imperative to capture a sequence of images of the object of 

interest from various angles (to ensure comprehensive coverage of the object, 

photographs should be taken in a 360-degree manner around the object). 

Specialised photogrammetry software, such as 3DF Zephyr (by 3DFLOW), 

employs algorithms designed to identify shared control points across different 

photographs and utilises triangulation algorithms. This software is capable of 

producing a 3D point cloud that accurately represents the photographed object 

or environment. 

2.1.5 3D CAD Models 

From the CAD models, it is possible to generate a point cloud that 

accurately represents the virtual object's geometry. Various software tools can 

be employed to extract points on the surface of these objects, which can then be 

exported in the form of a point cloud. The selection of points on the surface can 

follow a regular, random, or adaptive pattern. Adaptive sampling entails 

increasing the point cloud density in areas with complex geometry and 

decreasing it in areas with simpler geometry. When working with CAD models, 

extracting point clouds in this manner is often the initial step in obtaining 

meshes or surfaces, through a triangulation process. 

2.1.6 Computed Tomography (CT) 

Computed tomography (CT) is a sophisticated imaging modality 

employed in both medical and industrial domains to acquire 3D representations 

of internal objects or structures. CT relies on a series of X-rays or alternative 

radiation sources to capture a sequence of two-dimensional images or cross-

sectional slices of an object. These images can subsequently undergo processing 

to generate a 3D portrayal of the object or the area of interest [53]. 

Within the realm of medicine, CT finds extensive utility in diagnosing 

and assessing a wide spectrum of medical conditions. For instance, it can yield 

intricate images of the brain, chest, abdomen, and various other anatomical 

regions. These 3D images facilitate the identification of lesions, tumours, bone 
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fractures, anomalies, and other irregularities by medical practitioners [54]. In 

the industrial sector, CT predominantly serves the purpose of quality control 

and non-destructive inspection of materials [55]. This technique can unveil 

internal imperfections like air pockets, metallic inclusions, or fractures within 

materials. Commencing with 3D images, represented as voxels (volumetric 

pixels), the 3D analogue of pixels, it becomes feasible to derive the geometry 

of the object or the particular area of interest in the form of a point cloud. To 

accomplish this, specialised segmentation and reconstruction software designed 

for CT images must be employed. The resultant point cloud can then be 

employed for purposes such as measurements, analyses, simulations, and more, 

within both medical and industrial domains. 

2.2 Point Clouds registration 

2.2.1 Overview  

In the context of point cloud registration, as previously said in chapter 

2.1, pertaining to methodologies for acquiring point clouds, it is imperative to 

comprehend that the registration process assumes a pivotal role in the 

acquisition of point clouds that faithfully portray scans of objects or 3D 

environments. Throughout the acquisition process, data acquired through 

changes in angle measurement typically exhibits partial overlap and may 

manifest issues pertaining to rotational and translational misalignment. To 

construct a comprehensive 3D model, it becomes necessary to integrate and 

align this point cloud data. For instance, it is possible to undertake operations 

involving rotation and translation upon one set of point cloud data in order to 

conform it to the corresponding segment of another set of point cloud data.  

The objective of the registration process, therefore, is to estimate the 

position and orientation of the distinct acquisitions, to insert them within a 

global coordinate system, and to merge the information such that regions of 

overlap integrate within a singular resultant point cloud. Through this method, 
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therefore, a comprehensive 3D model of the target can be obtained. This point 

cloud registration process is indispensable across a spectrum of domains, with 

particular significance within the realms of reverse engineering and computer 

vision. Its significance arises from the imperative need to procure precise and 

uniform representations of the physical world in digital format [56].  

In the context of its application, the registration of point clouds holds 

significant relevance across various domains, including robotics and computer 

vision. In recent times, owing to advancements in high-precision and automated 

3D scanning technology, registration algorithms have gained paramount 

importance within the manufacturing sector. They are instrumental for tasks 

such as tolerance analysis, quality control, and reverse engineering [57]. 

2.2.2 Mathematical foundations 

From a mathematical perspective, the registration of two point clouds (𝑃 

and 𝑃′), considering a rigid transformation, with 6 Degrees of Freedom (DoF), 

entails obtaining a transformation matrix  𝑻 that represents a roto-translation: 

 

𝑻  = [

𝑟1,1 𝑟1,2 𝑟1,3 𝑡1

𝑟2,1 𝑟2,2 𝑟2,3 𝑡2

𝑟3,1 𝑟3,2 𝑟3,3 𝑡3

0 0 0 1

] (3) 

Where:  

• 𝑟𝑖,𝑗 are the elements of the rotation matrix 𝑹 

• 𝑡𝑖 are the elements of the translation vector 𝒕. 

Therefore, through a roto-translation, a generic point in space 

𝑝(𝑥, 𝑦, 𝑧) ∈ 𝑃, defined by its own coordinates, will be mapped to the point 

𝑝′(𝑥′, 𝑦′, 𝑧′) ∈ 𝑃′ defined by another set of coordinates. Mathematically, it can 

be written: 
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[

  𝑥′ 
 𝑦′ 

 𝑧′ 
 1′ 

] = [

𝑟1,1 𝑟1,2 𝑟1,3 𝑡1

𝑟2,1 𝑟2,2 𝑟2,3 𝑡2

𝑟3,1 𝑟3,2 𝑟3,3 𝑡3

0 0 0 1

] [

  𝑥′

  𝑦′

  𝑧′

  1′

] (4) 

And in its concise form: 

 𝒑′ = 𝑻 𝒑 (5) 

By separating the transformations into rotation and translation: 

 

[
  𝑥′ 
 𝑦′ 

 𝑧′ 

] = [

𝑟1,1 𝑟1,2 𝑟1,3

𝑟2,1 𝑟2,2 𝑟2,3

𝑟3,1 𝑟3,2 𝑟3,3

] [
  𝑥′

  𝑦′

 𝑧′

] + [

𝑡1
′

 𝑡2
′

𝑡3
′

] 

(6) 

 𝒑′ = 𝑹 𝒑 + 𝒕 (7) 

2.2.3 Registration methods 

In scientific literature it is possible to see that most of the existing 

registration methods are designed to minimise geometric projection errors 

through two distinct processes: correspondence searching and transformation 

estimation [58]. These two processes are carried out alternately until the 

geometric projection error reaches its minimum value. Once accurate 

correspondences are established, the transformation estimation can be obtained. 

In recent years, significant advancements have been made in 3D DL techniques 

[59–62]. These techniques are focused on extracting distinctive features from 

point clouds and identifying precise correspondences. Subsequently, these 

correspondences are utilised to estimate a transformation through a dedicated 

transformation estimation stage. Among all the point clouds registration 

methods, the Iterative Closest Point (ICP) algorithm remains the most 

commonly studied and used [63–68]. 

2.2.4 Iterative Closest Point (ICP) algorithms 

ICP is an algorithm, developed by Besl and McKey [69] and by Chen 

and Medioni [70] in 1992, as a method for aligning, or register, a broad spectrum 

of objects, encompassing point clouds, polylines, faceted and curved surfaces, 
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as well as implicit and parametric surfaces. There are two main methods to 

implement ICP: point-to-point [69] and point-to-plane [70]. 

The point-to-point ICP variant is employed when the direct alignment of 

point clouds is required, while the point-to-plane ICP variant is considered 

suitable in cases where a mixed representation involving points and surfaces or 

meshes exists. The selection between these two variants is contingent upon the 

nature of the data and the specific objectives of 3D alignment. In this thesis, 

emphasis will be placed on the point-to-point method due to its relevance to the 

novelties introduced. 

The primary objective of the ICP algorithm lies in identifying a 

transformation matrix (𝑻), which achieves the optimal alignment between the 

target point cloud, to which the transformation will be applied, and the reference 

point cloud, often referred to as the model. This alignment process is based on 

minimizing a specific distance metric, typically the root mean square distance 

between points in the target point cloud and their corresponding points in the 

nearest model point cloud. ICP addresses the correspondence problem by 

working on the assumption that the scene is roughly aligned with the model, 

implying that each point in the scene corresponds to the closest point in the 

model. Given that ICP is an iterative descent algorithm, it necessitates a precise 

initial estimate to ensure convergence towards the global minimum. In cases 

where the two point clouds (target and model) are severely misaligned, there 

exists a possibility that the ICP algorithm will converge towards a local 

minimum, rather than the desired global minimum. This could result in 

unfavourable registration outcomes, as ICP may yield a suboptimal solution. 

For these reasons, in order to effectively tackle the registration problem with 

ICP when the point clouds are misaligned, it is crucial to initialise the iterative 

process with an initial transformation applied to the target point cloud. This 

initial transformation should position the target point cloud as closely as 

possible to the reference model. 
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Regarding the fundamental principle of the ICP algorithm, it 

encompasses the following process [71]: 

1. Given two point clouds, model (𝐴) and target (𝐵) respectively, 

along with an initial transformation 𝑻𝑰
1, the algorithm aims to 

identify the nearest corresponding reference point in 𝐴 for each 

point in 𝐵, thus establishing pairs of corresponding points. 

2. Subsequently, it computes the Euclidean distances between all 

pairs of corresponding points, utilizing a suitable measure of the 

error in the objective function. 

3. To minimise this error, the algorithm employs Singular Value 

Decomposition (SVD) [72] to calculate the transformation 

𝑻𝟏(𝑹𝟏, 𝒕𝟏)2 that minimise the error. 

4. Upon obtaining the 𝑹 and 𝒕 transformations, the subsequent step 

involves transforming 𝐵 based on these transformations and re-

establishing the corresponding point pairs. 

5. This process is iterated until satisfactory convergence is 

achieved3, thereby obtaining the transformation 𝑻(𝑹, 𝒕) which, 

when applied to the point cloud 𝐵, ensures its best alignment with 

point cloud A. 

This principle serves as the core of the ICP algorithm and its variants, 

enabling the accurate registration of 3D shapes. It is noteworthy that since the 

inception of ICP, numerous variations of the algorithm have been proposed. 

These variants aim to enhance various aspects, including execution speed and 

convergence quality when compared to the original algorithm. For instance, 

 
1 The software that implements the ICP algorithm essentially calculates the centroids of the point 

clouds and applies a transformation to align them if an initial transformation is not provided. 
2 The subscript refers to the first iteration. 
3 It is possible to set a minimum error value or a maximum number of iterations. 
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some variants combine multiple distance measures with local descriptors [73]. 

Nevertheless, both the ICP algorithm and its variants continue to yield robust 

results when the positions of the shapes to be aligned are in close proximity to 

each other [74]. In the context of ICP variants, one of the intriguing approaches 

is feature-based matching. This method entails transforming the original point 

clouds into a simplified representation, wherein high-level features (planes [75], 

line segments [76] and corners [77]) are found. This approach facilitates the 

identification of salient features within 3D data, thereby enhancing the 

reliability of position change estimation between two point clouds [78]. 

Nonetheless, it is imperative to acknowledge that the ICP algorithm 

possesses certain limitations. Noise points must be eliminated, such as point 

pairs with excessive distances or point pairs containing boundary points. 

Furthermore, alignment based on point pairs does not encompass local shape 

information, and determining the closest point in each iteration can be time-

consuming. Given that this is a local minimization method, it relies on sufficient 

mutual overlap and adequate initial alignment of the two scans to be matched 

[62,79,80].  

To address these limitations, several algorithms have been proposed that 

provide satisfactory coarse alignment. This can be achieved by establishing 

global correspondences based on local feature descriptors, which describe the 

local geometry around a point in a 3D point cloud [81,82]. 

2.3 Additive Manufacturing 

Additive Manufacturing (AM), commonly known as 3D printing, 

constitutes a production technology that has brought about a profound 

revolution across various industrial sectors [83]. Originally conceived as a rapid 

prototyping method, AM is gradually evolving into a technique for producing 

finished component. In contrast to conventional material removal processes, 

often achieved through tools like Computerized Numerical Control (CNC) 
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machines, AM creates products by progressively adding material layer by layer, 

eliminating the need for custom tooling and fixtures specific to each part. This 

technology embodies the potential for direct digital manufacturing, where 

products featuring intricate shapes or geometries are digitally represented in 3D 

model files and then divided into successive cross-sections to initiate the AM 

production process [84]. 

This manufacturing approach unveils a serveral advantages, including 

the capability to create highly intricate geometries that would be challenging or 

even impossible to achieve using conventional methods. 

AM technologies differ in the processes used to create 3D objects layer 

by layer and each technology has its own characteristics, advantages and 

limitations, and is selected based on the desired material, specific applications 

and precision requirements. From the ISO/ASTM 52900:2021 International 

Standard, which provides a foundational grasp of the core concepts behind AM 

processes and offers concise explanations for the terminology and naming 

conventions used, it is possible to see as follows. 

Among the primary technologies, within the Material Extrusion (MEX) 

processes, it is possible to identify the Fused Deposition Modelling (FDM) [85], 

which is also one of the most prevalent 3D printing techniques. This process 

involves the use of a thermoplastic filament that is melted and deposited layer 

by layer to construct the object. FDM printers find extensive use in rapid 

prototyping and the manufacturing of plastic components. Another prominent 

set of technologies includes Laser Sintering (LS) [86,87]. These procedures 

employ a laser to selectively melt or sinter metal or non-metal powder layer by 

layer, thereby producing solid objects. SLM is renowned for its capability to 

manufacture high-strength metal components, whereas SLS is versatile and 

compatible with a wide range of materials, including polymers and ceramics. 

Stereolithography (SLA) [88] stands as another noteworthy technology, 

wherein an ultraviolet laser progressively solidifies a layer of liquid 
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photosensitive resin until the desired object is formed. SLA is valued for its 

precision and proficiency in creating intricate models. PolyJet [89], a 

technology akin to SLA, utilises jets of photocuring liquid resin that harden 

under UV light to fabricate objects. A distinctive feature of PolyJet is its ability 

to incorporate different types of plastics within the same object. Binder Jetting 

[90] is a process whereby a layer of powder is bonded together by a binder, 

typically a liquid adhesive, one layer at a time. This method is commonly 

employed for the production of coloured models and sand-based objects. 

Electron Beam Melting (EBM) [91] technology, akin to SL but using an electron 

beam instead of a laser, is renowned for its capacity to produce high-strength 

metal components. Laminated Object Manufacturing (LOM) [92] employs 

layers of material, often paper or plastic, which are cut and adhered together to 

form the final object. LOM is well-suited for the production of larger models 

and prototypes. Lastly, Directed Energy Deposition (DED) [93] is a process in 

which a nozzle deposits material in the form of powder or wire, while an energy 

source (such as a laser or electron beam) melts it to create the object. This 

technology is frequently utilised for the repair and production of large metal 

components. 

2.4 Reverse Engineering  

Engineering encompasses the entire life cycle of products and systems, 

involving their conception, manufacturing, assembly, and ongoing 

maintenance. Within the field of engineering, two distinct methodologies 

emerge: forward engineering and reverse engineering [94].  

Forward engineering represents the conventional approach, progressing 

from high-level abstractions and logical designs towards the concrete 

realization of a system. However, in certain situations, there may be physical 

components or products that lack technical details such as drawings, bills of 

materials, or any form of engineering data. In these cases, the process of 
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replicating an existing part, subsystem, or product, without drawings, 

documentation, or a computer model, is known as reverse engineering [95]. 

While the origins of reverse engineering theories and methodologies can 

be traced back to the 1980s, they initially gained prominence within the realms 

of software, hardware, and biological systems. However, the utility of reverse 

engineering techniques extends across various domains [96–99]. 

2.4.1 Overview 

Reverse engineering has been defined in several ways, e.g., “the method 

of formulating a comprehensive set of specifications for a complex hardware 

system through a methodical analysis of samples of that system”[100] or “the 

process of analysing a subject system to identify the systems components and 

their relationships, and to create representations of the system in another form 

or at a higher level of abstraction” (Chikofsky and Cross [101]). In industrial 

engineering and in particular in mechanical design, reverse engineering may be 

described as the process that “initiates the redesign process wherein a product 

is predicted, observed, disassembled, analyzed, tested, ‘experienced’, and 

documented in terms of its functionality, form, physical principles, 

manufacturability, and assemblability” [102]. It has been regarded as a means 

to comprehend the functionality of a product [103], involving the replication of 

an item to create a surrogate model or clone for performance enhancement, as 

well as the extraction and application of embedded knowledge in novel designs. 

The focus on the geometric attributes of the product has driven substantial 

research growth in the field known as Geometric Reverse Engineering [12]. The 

predominant method for geometric reverse engineering involves extracting 

geometry from an existing product to reconstruct a 3D CAD model. 

2.4.2 Process Phases 

While multiple descriptions of the geometric reverse engineering process 

exist, they can all be summarised into three primary steps [104]:   
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1. Product digitization 

2. Shape reconstruction 

3. 3D CAD modelling. 

Product digitization, in general, pertains to the process of converting a 

physical product into a digital format using measurement and scanning devices. 

This concept can encompass various other procedures that contribute to defining 

a virtual product or its characteristics, including mechanical simulation, 

manufacturing process simulation, and shape and topology optimization. 

Consequently, geometric reverse engineering doesn't solely concentrate on 

shape reconstruction from measurements but also emphasises the incorporation 

of material properties, manufacturing processes, and their inherent variations. 

The process of shape reconstruction involves the determination of a 

surface that closely approximates an unknown shape based on collected 

samples. This is a challenging task because there can be multiple surfaces that 

approximate the given samples, and the point set may exhibit varying density, 

as well as noise and outliers due to the data acquisition process. The primary 

challenge here lies in ensuring the preservation of the original surface's 

topology, while accurately reproducing sharp features and surface boundaries 

in the reconstructed surface. The research literature offers a wide array of 

techniques to address these challenges. Initially, techniques using Non-Uniform 

Rational Basis Splines (NURBS) [105] or B-Splines [106] were employed to fit 

and combine local surface patches. However, these approaches revealed 

limitations when dealing with intricate physical objects, extensive data sets, 

sparsity, and noise. Furthermore, they are not suitable when considering 

physical properties such as material or object density. 

The last stage in the process is 3D CAD modelling, where a geometric 

(solid) product model is crafted using either a Boundary Representation (B-Rep) 

or a feature-based parametric representation. This approach incorporates design 
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intentions through geometric features, parameters, and constraints. Feature-

based parametric models are frequently necessary for tasks like model inquiry, 

examination, or design alterations. Furthermore, they facilitate the development 

of Knowledge-Based Reverse Engineering (KBRE) methodologies, which can 

incorporate additional a priori information to overcome challenges such as 

incomplete or noisy data and to extract more comprehensive design and 

manufacturing data [107,108]. 

2.4.3 Geometric Reverse Engineering applications 

Geometric reverse engineering is a pivotal process, especially for 

manufacturing companies seeking innovation in their product development. 

Indeed, in the manufacturing sector, specifically in generating production and 

quality assurance data for existing parts, this process involves the use of CAD 

models of prototypes for mold design and inspection automation, particularly 

for components with complex surfaces. In particular, industries such as 

aerospace, automotive, and biomedical prioritise the supply of intricate, high-

quality components that adhere to stringent quality standards as a fundamental 

business objective [28,109–112]. With the widespread use of 3D solid models 

boasting precise engineering specifications, obtaining swift and precise results 

concerning any deviations from the design has become imperative. As the part-

manufacturing process may not always accurately replicate a computer model, 

it is critical to identify where and to what extent the final product deviates from 

the intended design [113–121]. To achieve this, 3D scan data of production parts 

is compared to the original model through a process known as deviation analysis 

(chapter 2.5). This ensures that critical tolerances and quality standards are met. 

In the past, the sole available system for control was the Coordinate Measuring 

Machine (CMM), comprising a table and gantry that move along three axes, 

with a measuring head affixed at the end. While these machines boast high 

precision, the measurement process is slow as individual data points are 

acquired [122]. However, the advent of 3D acquisition tools has enabled rapid 
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and thorough inspection of manufactured parts. This offers a comprehensive 

insight into geometry deviations, facilitating informed decisions or corrective 

actions.  

In the medical field, geometric Reverse Engineering, referring to the 

process of 3D reconstruction, plays a pivotal role in bone and tissue 

reconstruction, benefiting patients afflicted by various conditions such as bone 

diseases, cancer, congenital defects, and traumatic injuries. Non-invasive scans 

like CT or Magnetic Resonance Imaging (MRI) provide data utilised to craft 

precise 3D models of implants and prostheses, especially thanks to AM 

technology, ensuring a perfect fit and integration into the patient's body. In the 

related field of dentistry, reverse engineering is making significant strides [123]. 

Specialised scanners and scanning software are employed to create digital 

dental impression models for diverse patient requirements. 

In the realm of cultural heritage, the term “Virtual Heritage” [124] 

pertains to the process of digitally capturing the shape of artefacts for 

archaeological and historical purposes. Over time, physical artefacts deteriorate 

due to various factors, necessitating their preservation in virtual or replica form. 

Geometric Reverse Engineering method serves as a valuable tool in achieving 

this objective, enabling the creation of complete, 3D, durable, and unalterable 

digital archives. These archives can also serve as references for monitoring 

deterioration and planning restoration interventions. In this context, a notable 

project is the “Digital Michelangelo” [27] initiative, led by Stanford University, 

which digitised the renowned sculpture “David” in Florence, Italy. This digital 

model enabled experts to do examinations from unique perspectives, leading to 

discussions about Michelangelo's artistic intentions. 

2.5 Geometric deviation analysis 

As noted in the preceding paragraph, one of the principal domains of 

application for geometric reverse engineering lies in quality control for an object 
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produced via traditional techniques or additive manufacturing. In this thesis, 

quality control is considered as the assessment of the level to which the 

produced component conforms to the virtual reference model. This assessment 

is carried out through a process termed deviation analysis, or more precisely, 

geometric (or shape) deviation analysis. 

2.5.1 Data pre-processing 

As previously mentioned, geometric reverse engineering techniques 

employ various acquisition methods to digitise a physical component. The 

primary outcome of these acquisitions, representing the rawest data obtained, 

consists of a point cloud. Various processing options are available for these 

point clouds, contingent upon the particular application. These options 

encompass the elimination of noise stemming from imperfect acquisition or 

background (typically unavoidable), downsampling, and surface extraction via 

point triangulation techniques, such as the Delaunay method. Once the 

representation of the physical component in the form of a point cloud is 

acquired, the registration process assumes a pivotal role in conducting deviation 

analysis. As expounded upon in chapter 2.2.3, registration becomes imperative 

to generate a unified point cloud by superimposing multiple views of the 

component, especially when acquisition methods fail to yield it through a single 

acquisition. Frequently, this recording process is already executed by the 

software connected to the acquisition tool. In the context of deviation analysis 

for quality control, the registration process is applied to the two point clouds: 

the one resulting from the digitization of the physical piece, which will be 

designate as the "target," and that of the reference model (termed the "model"), 

often obtained by extracting points coordinates from a Standard Triangulation 

Language (STL) model. In an ideal scenario, the two point clouds should exhibit 

perfect overlapping after the registration process. Nevertheless, in practice, this 

never occurs for a variety of reasons. 
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Primarily, the number of points in the two point clouds generally differs. 

Despite the availability of dedicated software tools for controlling the number 

of points to be incorporated into the model point cloud (whether increasing or 

decreasing them) and the number of points in the target point cloud (via the 

aforementioned downsampling techniques), a perfect overlap of points in the 

two point clouds is unattainable. 

Additionally, apart from disparities in the number of points, which 

influence the overall density of the point clouds, it is imperative to acknowledge 

that local densities can vary significantly, particularly within the target point 

cloud. For instance, when employing a 3D scanner, certain regions on the 

surface of the physical object may undergo multiple scans, thereby resulting in 

a greater number of points in those specific areas. Conversely, due to the 

intricate geometry of the object, there will be regions that prove challenging, if 

not impossible, to scan, such as inlets or portions that partially overlap. These 

areas that are challenging to acquire result in holes4 within the point cloud. 

Furthermore, and even more relevant for quality control, the 

manufactured component may deviate from the shape of the initial model due 

to issues (some controllable, others less so) that arise during the manufacturing 

process. 

2.5.2 Distances evaluation 

Once the registration process is completed, through which a single point 

cloud is obtained where the model and the target are merged together, we then 

proceed with the actual geometric deviation analysis. The concept underlying 

the deviation analysis is quite straightforward: what is done is to evaluate the 

Euclidean distance between the points of the target and the model or vice versa. 

This distance can be assessed in two different ways: 

 
4 Areas within the point cloud where the presence of points would be expected but, instead, appear 

empty or devoid of data. 
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1. Point-to-point  

2. Point-to-surface. 

With the point-to-point distance, the aim is to assess, for each point of 

the target, its distance from the nearest point on the model. In the point-to-

surface distance, the distance between each point of the target and the surface5 

of the model is calculated Although a generic distance, from a purely physical 

perspective, cannot be represented as a negative number, in this context, a sign 

is associated with the distance. 

The data obtained from the computation of these distances are primarily 

evaluated for their mean and standard deviation. Another use of this data, highly 

valuable in the field of quality control, is the ability to associate a representative 

colour for deviation with each point on the target. In this way, it is possible to 

have a graphical representation of areas with greater deviation, and, in cases 

where distances have been calculated using the point-to-surface method, a 

judicious choice of the colour scale to use makes it evident which are the areas 

with over-material and which with under-material. The mean and standard 

deviation values obtained through the deviation analysis are subsequently 

employed to comprehensively assess the product's quality in relation to the 

fidelity of the piece's geometry compared to that of the reference model. 

Ideally, when dealing with two perfectly overlapping point clouds, it is 

evident that both the mean and the standard deviation should equate to zero. 

2.5.3 Issues and Limitations 

Despite this procedure for conducting geometric deviation analysis being 

widely used, as evidenced by research in the scientific literature, it does have 

some limitations that can lead to incorrect interpretations of the results. 

 
5 It requires processing of the point cloud to extract its interpolating or approximating surface points. 
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The primary limitation arises from the fact that the Euclidean distance 

used to assess the distance between points in two point clouds does not possess 

commutative properties [125]. For example, within a deviation analysis, 

calculating the distance between each point in the target and the nearest 

corresponding point in the model, and then considering the reverse scenario, 

i.e., calculating the distance between each point in the model and the nearest 

point in the target, results in different outcomes. This discrepancy occurs due to 

differences in the number of points between the two point clouds, and even if 

the number of points were the same, the values obtained would not coincide.  

The difference in the number and values of distances becomes even more 

pronounced under specific conditions often encountered in practice. These 

conditions include variations in global and local densities, the presence of noise 

or points belonging to the background, and the existence of empty spaces.  

All of these factors mean that the values of the mean and standard 

deviation are not representative and often divergent when assessing the quality 

of the object, leading to erroneous interpretations. 

To address these issues, several precautions are typically taken. When 

working with point clouds of different densities, it is good practice to select the 

denser point cloud as the model and the less dense one as the target. When noise 

is present (which ideally should have already been removed through denoising) 

or empty spaces, i.e., partial overlap between the two point clouds, it is 

advisable to choose the less extensive point cloud as the target. In other words, 

one should select the point cloud that is free of noise or background or that 

contains empty spaces. All of these precautions can be applied if only one of the 

two point clouds exhibits these undesirable characteristics, and if it is known in 

advance which of the two is affected by them. 



39 

 

2.6 Differential Entropy-based analysis 

2.6.1 Differential Entropy 

Differential entropy represents a concept of significant relevance in both 

information theory and probability theory. It is the entropy of a continuous 

random variable and serves as a quantitative measure of the information 

contained within the variable itself. The origin of this concept dates back to 

1948 when Claude Shannon introduced it in his article titled "A Mathematical 

Theory of Communication" [126]. This concept is sometimes referred to as 

Shannon entropy and is predominantly applied to discrete random variables.  

The Shannon entropy, denoted as 𝐻(𝑋), of a discrete random variable 𝑋 

with a probability distribution 𝑝(𝑥), is defined by the following expression: 

 𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log𝑏(𝑝(𝑥𝑖))
𝑖

 (8) 

Where: 

• 𝑝(𝑥𝑖) is the probability that the discrete random variable 𝑋 takes 

on the value 𝑥𝑖, and the sum is performed over all possible values 

of 𝑥𝑖.  

• 𝑏 is the radix of the logarithm.  

Given the frequent use of bits in computer science for encoding, it is a 

prevalent convention to employ the base 2 logarithm. As a result, differential 

entropy is quantified in bits, whereas the use of the natural logarithm introduces 

the nat unit of measurement, as initially exposed by Shannon. 

For continuous probability distributions, Shannon entropy assumes the 

following form [127]: 

 
𝐻(𝑋) =  − ∫ 𝑓(𝑥𝑖) log𝑏(𝑓(𝑥𝑖))

+∞

−∞

 (9) 

Where 𝑓(𝑥𝑖) is the Probability Density Function (PDF). 
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For each type of distribution employed, the expression for differential 

entropy varies. For instance, the differential entropy (expressed in nats) for a 

multivariate Normal distribution is: 

 
ℎ(𝑋) =

1

2
ln[(2𝜋𝑒)𝑁𝑑𝑒𝑡∑] (10) 

Where:  

• 𝑁 is the dimensionality of the data 

• ∑ is the covariance matrix. 

∑ is a square matrix, symmetric and positive semi-definite which 

contains, in its main diagonal, the variances. Trought the use of ∑ it is possible 

to generalise the concept of variance to multiple dimensions. 

The utilisation of the determinant of the covariance matrix (𝑑𝑒𝑡∑), also 

referred to as the “generalised variance”, was introduced by Wilks [128] as “a 

scalar measure of overall multidimensional dispersion” [129]. 

The applications of differential entropy are extensive and encompass 

several areas. In the field of information theory, differential entropy is employed 

to quantify the uncertainty or randomness associated with random variables, 

both continuous and discrete. The greater the entropy, the higher the degree of 

uncertainty associated with the random variable. In the context of data 

compression, it is utilised to determine the minimum number of bits required to 

efficiently represent a random variable. A notable example is Shannon coding, 

which is grounded in entropy theory. Differential entropy is also used in 

machine learning algorithms to assess the purity of a dataset, for instance, in 

decision trees-based methods. Minimising differential entropy enhances the 

algorithm's ability to learn more accurate predictions. Differential entropy also 

proves to be exceptionally valuable in the analysis of point clouds, particularly 

when examining the structure and randomness of data. 
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Point Clouds differential entropy 

In the context of point clouds analysis, the process commences with data 

representation, treating the point cloud as a discrete probability distribution, and 

assigning each point a probability based on its frequency or density. This 

representation allows for each point to be regarded as a potential outcome of a 

random variable. Subsequently, the differential entropy formula is calculated. 

This computation aims to quantify the information and uncertainty inherent in 

the data. The computed entropy can be interpreted within the specific context 

of the application. A low entropy value typically indicates the presence of 

structure or a concentration of points in specific regions of space, suggesting 

that the data follows a certain order. Conversely, a high entropy value indicates 

greater randomness and dispersion of points in space.  

2.6.2 CorAl Method 

Overview 

Drawing inspiration from the research of Droeschel and Behnke [130], 

Adolfsson et al. [131,132] introduced a novel approach: "Are the point clouds 

Correctly Aligned?" (CorAl). CorAl, grounded in the principles of differential 

entropy, provides a means to evaluate the precision of point clouds registration. 

The fundamental premise of this methodology lies in the idea that in cases where 

two point clouds are well-aligned, the entropy of their joint point cloud (union 

of the two point clouds) should not exhibit an increase in comparison to the sum 

of the entropies calculated individually for each of the two point clouds. 

Conversely, when minor misalignments are present between two point clouds, 

the joint entropy tends to increase. Consequently, the CorAl method employs 

this form of measurement to identify subtle alignment errors and, by introducing 

a quality index denoted as Q, assess the alignment's overall quality. 
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Method explanation  

Examining a point cloud 𝑃 consisting of a collection of points in the 3D 

Cartesian space (ℝ3) 𝑝𝑖 = [𝑥 𝑦 𝑧]. CorAl calculates the differential entropy ℎ𝑖 

for every point in 𝑃, in accordance with Eq. 5: 

 
ℎ𝑖(𝑝𝑘) =

1

2
𝑙𝑛[(2𝜋𝑒)𝑁𝑑𝑒𝑡∑(𝑝𝑘)] (11) 

Where:  

• 𝑁 = 3 (Dimensionality of the data)  

• 𝑘 is the count of points located within a neighbourhood (𝜌) 

defined by a radius r (assuming it to be circular) and cantered 

around each 𝑝𝑖 

• 𝑑𝑒𝑡∑(𝑝𝑘) is the determinant of the sample covariance matrix 

calculated based on the points 𝑝𝑘 located within the 

neighbourhood of 𝑃𝑖 

• 𝑝𝑘 is the set of k-points within the neighbourhood. 

The total differential entropy 𝐻 of the point cloud 𝑃 is obtained by 

summing the evaluated ℎ𝑖 values for each point: 

 

𝐻(𝑃) = ∑ ℎ𝑖(𝑝𝑘)

|𝑃|

𝑖=1

 (12) 

Where |𝑃| is the number of points in 𝑃. 

When dealing with two point clouds, 𝑃𝐴 and 𝑃𝐵, it is feasible to compute 

their separate entropy (𝐻𝑠𝑒𝑝) as well as their joint (𝐻𝐽) average differential 

entropy: 

 
𝐻𝑠𝑒𝑝 =

𝐻(𝑃𝐴) +  𝐻(𝑃𝐵)

|𝑃𝐴| + |𝑃𝐵|
 (13) 
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𝐻𝐽 =

𝐻(𝑃𝑗𝑜𝑖𝑛𝑡)

|𝑃𝑗𝑜𝑖𝑛𝑡|
=

𝐻(𝑃𝐴 ∪ 𝑃𝐵)

|𝑃𝐴| + |𝑃𝐵|
 

(14) 

Where:  

• 𝑃𝑗𝑜𝑖𝑛𝑡 is the joint point cloud (𝑃𝐴 ∪ 𝑃𝐵) 

• |𝑃𝑗𝑜𝑖𝑛𝑡| is the number of points in 𝑃𝑗𝑜𝑖𝑛𝑡. 

The alignment quality measure 𝑄 is subsequently derived using the 

following formula: 

 𝑄(𝑃𝐴, 𝑃𝐵) = 𝐻𝐽 − 𝐻𝑠𝑒𝑝 (15) 

It is also viable to assess the quality index on a per-point basis. This per-

point index 𝑞𝑖 enables the generation of a graphical representation depicting the 

misalignment of the points: 

 𝑞𝑖(𝑝𝑘) = [ℎ𝑖(𝑝𝑘)]𝑗𝑜𝑖𝑛𝑡 − [ℎ𝑖(𝑝𝑘)]𝑠𝑒𝑝 (16) 

The CorAl method is thus capable of assessing the quality of the 

registration of two point clouds by identifying discrepancies arising from both 

rigid misalignments and distortions that may occur during scanning, such as 

during a LiDAR scan in motion. 

3 MATERIALS AND METHODS 

3.1 Novelties overview 

The key innovations introduced in this thesis are based on the analysis of 

point clouds using differential entropy (chapter 2.6) and can be summarised as 

follows: 

1. Modification of the differential entropy formula for multivariate 

and univariate Gaussian distributions. (chapter 3.2) 
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2. New method for quality control through geometric deviation 

analysis. (chapter 3.3) 

3. Introduction of a compactness index for the analysis and 

description of systems representable by point clouds. (chapter 

3.4). 

It's worth noting that all the calculations and graphs were generated using 

Matlab [133]. 

3.2 Revised Differential Entropy Formulation 

The investigation into the differential entropy of point clouds, undertaken 

to formulate this thesis, has highlighted certain distinctive aspects of the 

methodology, which have been meticulously examined.  

3.2.1 Determinant Study 

In the formula (Equation 11) utilised for computing the differential 

entropy, the generalised variance (𝑑𝑒𝑡∑) is a prominent factor. Assuming a 3D 

point cloud is considered, and the neighbourhood 𝜌 for each point is evaluated, 

the study categorises four scenarios based on the number of points (𝑘) present 

in the neighbourhood: 

1. 𝑘 = 1 → Only the point under examination exists in 𝜌, and ∑ 

assumes a real value equal to its determinant, signifying the 

variance, which is zero for a single point. 

2. 𝑘 = 2 → In 𝜌, there is only one additional point alongside the one 

under examination. As two points always fall on the same line, 

considering the diagonal form of ∑, it becomes evident that it 

possesses only one non-zero eigenvalue, indicating that the points 

are aligned on a straight line. Consequently, the determinant will 

be zero. 
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3. 𝑘 = 3 →When three points in space are considered, and they are 

not aligned, they will invariably lie on the same plane. Therefore, 

by evaluating the eigenvalues of ∑, it becomes apparent that one 

of them will be zero, indicating a planar distribution of points. 

Once again, the determinant of ∑ will be zero. 

4. 𝑘 > 3 → When the number of points exceeds 3 and they are non-

coplanar, all eigenvalues and the determinant of ∑ will be non-

zero. 

3.2.2 Differential Entropy: negative values 

Depending on the arrangement of the points, the utilisation of Equation 

11 can yield negative entropy values, a scenario that arises when the argument 

of the logarithm is less than 1. Given the objectives of the applications put forth 

in this thesis, such as the analysis of geometric deviation and the introduction 

of the compactness index, efforts were made to mitigate this effect. As the 

contributions stemming from Equation 11 combine to determine the overall 

entropy of the point cloud, an adjustment was implemented to this equation, 

guided by the principles outlined in Equation 12. The primary goal was to 

standardise the entropic contributions of each point, making them comparable 

in magnitude and sign. This standardisation was essential to prevent potential 

compensation effects stemming from the simultaneous presence of both positive 

and negative values. 

This adaptation assumes particular significance in the context of 

deviation analysis. In cases where disparities exist between different point 

clouds, it becomes paramount that these disparities are equally weighted to 

derive an overarching index that accurately reflects the quality of the production 

part. Similarly, in the introduction of a compactness index, each point's 

significance is pivotal, especially concerning the proposed applications, as 

detailed in 3.4. 
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3.2.3 Modified differential entropy formula for a normal multivariate 

distribution 

The modification to the differential entropy is the following: 

 ℎ𝑖(𝑝𝑘) =
1

2
ln[(2𝜋𝑒)𝑁𝑑𝑒𝑡∑(𝑝𝑘) + 1] (17) 

The inclusion of the term (+1) in the formula effectively resolves both 

the issues associated with the null determinant of ∑ and those related to negative 

values of the differential entropy. Indeed, in all situations where the determinant 

is zero, the initial part of the logarithmic argument becomes null, and the 

addition of the value (+1) yields a differential entropy result of zero. 

Consequently, in cases where the number of points is 𝑘 ≤ 3, the entropic 

contribution becomes zero. 

Concerning a relatively dense point cloud, as typically obtained through 

scanning (such as in deviation analysis), the decision to "sacrifice" information 

in the presence of few points appears highly reasonable for two main reasons. 

First, it is exceedingly rare for a scanned point cloud (especially those generated 

using structured light scanners or confocal microscopy) to contain fewer than 4 

points unless extremely small search radii with no practical significance are 

used. However, in cases where this situation does occur, it may be attributed to 

the presence of noise. 

The second reason for adopting this modification to the formula is 

specifically tailored to address this condition. Noise, consisting of a few 

scattered and isolated points, should not contribute to the computation of the 

overall entropy of the point cloud. This feature proves particularly advantageous 

in the innovative applications introduced in this thesis: in the context of 

deviation analysis, noise would not adversely impact the quality index value, 

and in the context of a compactness index, a point sufficiently distant from 

others would not hold significance. 
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3.3 DEDA – “Differential Entropy for Deviation Analysis 

In this chapter, a novel method named "Differential Entropy for 

Deviation Analysis" (DEDA) is introduced. This method was developed during 

the course of this thesis and is based on the CorAl method, as previously 

described in chapter 2.6.2. As mentioned earlier, CorAl is a method that 

leverages the differential entropy of point clouds to assess the alignment 

between two sets of points obtained from LiDAR sensors, using a quality index 

denoted as 𝑄. The adjustments made to Equation 11 of differential entropy and 

the considerations outlined in chapter 3.2.1 led to the inception of DEDA. This 

innovative method is structured as a robust approach for the analysis of 

geometric deviations, particularly within the context of quality control for 

components produced using traditional or AM techniques. Furthermore, the 

method proposed in this thesis aims to address many of the limitations inherent 

in traditional methods, which are predominantly reliant on Euclidean distance 

calculations. 

3.3.1 Method  

The procedure behind DEDA is analogous to that of CorAl, as previously 

mentioned. Essentially, it involves the following steps: calculating the entropy 

of the two point clouds separately, calculating the entropy of the combined point 

cloud, and evaluating the difference between the entropy of the second and the 

first point cloud to obtain the quality index. 

The main differences are found in the modification of the differential 

entropy formula, using Equation 17 instead of Equation 11, as previously 

mentioned. This modification automatically permits the consideration of a null 

entropic contribution for the points that, in their neighbourhoods, encompass 

from one (themselves) to three points. This occurs because in 3D space, when 

the value of 𝑘 is less than or equal to 3, the determinant of the covariance matrix 

becomes zero and, adding the 1, will result in ℎ =  0. Consequently, 

neighbourhoods with a limited number of points do not impact the calculation 
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of the total entropy of the point cloud. This allows the exclusion of potential 

noise when evaluating the differential entropy of the acquired point cloud. It is 

important to note that in dense point clouds obtained through techniques such 

as structured light, the use of an appropriate value for the radius 𝑟 ensures that 

the number of points within each neighbourhood far exceeds 3. Consequently, 

excluding these points has no effect on the calculation of the total differential 

entropy of the point cloud. Furthermore, in all other cases where the value of 

𝑘 ≥ 4, modifying the formula ensures that the logarithm argument is always 

greater than 1, resulting in a logarithm that is consistently greater than 0. This 

implies that the entropy ℎ𝑖 will always be positive, in contrast to what occurs 

with Equation 11.  

In summary, it can be stated: 

 
ℎ𝑖(𝑝𝑘) = {

0                 𝑖𝑓    1 ≤ 𝑘 ≤ 3       
𝑎 ∈ ℝ: 𝑎 > 0     𝑖𝑓    𝑘 ≥ 4

  (18) 

  

Figure 2 schematically depicts the flowchart of the DEDA method. 

 
Figure 2. Flowchart of the DEDA method. 

3.3.2 Application 

For the application of the DEDA method, the choice was made to conduct 

geometric deviation analysis on objects produced using AM, specifically with 

FDM technology. The selected model is the Stanford Bunny (Figure 3), 

originally developed by Turk and Levoy [134].  
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Figure 3. Stanford Bunny model. 

This model is widely employed in scientific literature for similar 

applications. The fundamental approach involved printing samples of varying 

known qualities and subsequently performing deviation analyses using the 

DEDA method to verify whether the quality index accurately reflected the 

expected print quality.  

Additionally, a robustness analysis of the DEDA method was carried out 

to highlight its capability to address various limitations often encountered by 

classical methods. This analysis pertained to evaluating the DEDA method's 

performance in scenarios involving the presence of holes, noise, or background 

in the point cloud, as well as variations in point density between the two 

compared point clouds. 

Data preparation 

To simulate different print qualities, three Bunny objects were created 

with varying layer thicknesses6: 0.15 mm, 0.25 mm, and 0.32 mm.  All other 

printing parameters remained unchanged and are detailed in Table 1.  

 
6 There is therefore an increase in quality as the thickness of the layer decreases. 
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Table 1. Printing parameters. 

Parameter Value 

Nozzle diameter 0.4 mm 

Nozzle temperature 200 °C 

Bed temperature 60 °C 

Printing speed 50 mm s-1 

Printing infill 20 % 

The objects were produced using the Creality Ender 6 3D printer 

(Creality 3D Technology Co, Shenzhen, China). It's important to note that no 

support structures were used during printing, and the objects were crafted from 

the same coil of PolyLactic Acid (PLA) filament, stored in a specialised 

dehumidifier to preserve its properties. Subsequent to printing, the three 

samples were rendered opaque using a specialised spray to enable 3D scanning. 

Scanning was performed with a structured blue light optical scanner (ATOS 

Compact Scan 2M by GOM) with a projector and stereo-camera system. The 

key characteristics of the scanner used are provided in Table 2.  

Table 2. Characteristics of the 3D scanner. 

Characteristic Value 

Camera position 300 

Wavelength 400 – 500 nm 

Scanner focal length 12 mm 

Stereo camera focal length 17 mm 

Stereo camera angle 25° 

Stereo camera resolution 
1624×1236 px 

2,000,000 points per scan 

Distance scanner – subject 570 mm 

Measuring volume 250×190×190 mm 

Point spacing 0.153 mm 

Markers were employed during the scan and placed in close proximity to 

the object being scanned, aiding the scanner registration process to obtain a 

comprehensive point cloud of the object through multiple acquisitions from 

various views. 
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It is important to clarify that three scans were conducted for each Bunny, 

and all the numerical results presented refer to the mean values obtained. 

After obtaining the point clouds, each of them was aligned with the 

original point cloud (model) using a two-phase registration process carried out 

with the CloudCompare software [135]. The initial phase involved identifying 

four pairs of corresponding points in the two point clouds (target and model) to 

establish an initial pre-alignment. Subsequently, the ICP algorithm was 

employed in a point-to-point configuration. As previously mentioned, given that 

the calculation of the Euclidean distance between two point clouds is not 

commutative, distances between target-model and model-target were assessed. 

For clarity in presentation, an identifying code (ID) was assigned to each point 

cloud and each comparison performed, as illustrated in Table 3 and Table 4. 

Table 3. Point clouds description. 

Single point cloud ID No. points 

Bunny original (model) B0 31,994 

Bunny 1 (0.15 mm) B1 199,536 

Bunny 2 (0.25 mm) B2 201,548 

Bunny 3 (0.32 mm) B3 203,332 

 

In addition, it is important to note that Bunny 1, Bunny 2, and Bunny 3 

represent the samples obtained with different layer thicknesses, as indicated in 

parentheses. 

Table 4. Joint point clouds for geometric deviation analysis. 

Joint Point cloud ID 

B0 → B1 J1 

B1 → B0 J1’ 

B0 → B2 J2 

B2 → B0 J2’ 

B0 → B3 J3 

B3 → B0 J3’ 
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3.3.3 Results and Discussions 

 

Geometric Deviation Analysis: classical method 

The results of the deviation analysis, conducted by evaluating the 

Euclidean distance, are presented in Table 5 in terms of the mean (𝜇) and 

standard deviation (𝜎). 

Table 5. Results of geometric deviation analysis with classical method. 

Joint Point cloud μ σ 

J1 0.1660 0.0780 

J1’ 0.7659 2.0291 

J2 0.1618 0.0823 

J2’ 0.5731 1.5515 

J3 0.1638 0.0793 

J3’ 0.6487 1.7718 

 

From Table 3, it is evident that B0 is less dense than the point clouds 

obtained from scanning. Therefore, to evaluate the distance, the less dense point 

cloud should be considered in comparison to the denser one. In this case, this 

condition is known a priori, so only the analyses related to J1, J2, and J3 will be 

considered reliable. The others are presented merely to demonstrate the non-

commutativity of the Euclidean distance between two point clouds.  

In the analysis of the mean and standard deviation values obtained for J1, 

J2, and J3, there emerges a lack of a clear distinction in the quality of the 

produced pieces. Typically, lower mean and standard deviation values indicate 

better quality. However, upon examining the average values, we notice that J2 

has lower values than J3, while J3 has higher values than J1. This trend is not 

confirmed in the standard deviation values, as they are higher in J2 and lower 

in J1. Based solely on the average values, it would seem that the best quality 

should be attributed to J2 and the worst to J3. However, it's important to note 

that even though J3 exhibits the worst quality in terms of layer height, the best 

quality should be associated with J1 due to its lowest standard deviation. It's 
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therefore worth noting that an analysis based solely on these two parameters 

doesn't provide a definitive conclusion regarding the quality of the produced 

piece. 

Geometric Deviation Analysis: DEDA method 

Subsequently, the DEDA method was employed, and it is considered to 

be applied to J1, J2, and J3 for simplicity since the issue of commutativity does 

not arise. In this phase, the influence of the search radius on the quality index Q 

was also assessed, leading to analyses at various neighbourhood sizes (r = 1.5, 

2, 2.5, 3, 3.5 mm). Similar to the CorAl method, the DEDA method provides a 

global quality index (𝑄) and one relative to each point (𝑞𝑖). The first is used to 

express the quality of the object in terms of geometric fidelity to the reference 

model qualitatively and unequivocally. The second, plotted with a colour scale, 

enables visualization of the areas of the produced piece that deviate the most 

from the model. 

Table 6 displays the 𝑄 values obtained at varying search radii, while 

Figure 4 graphically represents them, emphasizing the results of the deviation 

analyses conducted using the DEDA method. 

Table 6. 𝑄 values at varying search radii. 

Radius (mm) QJ1 (10-3) QJ2 (10-3) QJ3 (10-3) 

1.5 1.371 1.541 1.728 

2 1.770 1.879 2.029 

2.5 1.18 1.25 1.528 

3 0.687 0.795 0.986 

3.5 1.503 1.676 1.799 
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Figure 4. 𝑄 trends at varying search radii. 

From the graphical representation, it is evident that the quality of the 

piece, measured using the 𝑄 index, is consistently distinguishable as the search 

radius varies. The closer the 𝑄 value is to zero, the better the alignment and, 

consequently, the fidelity to the model. Furthermore, as it is known a priori that 

J1 represents the best print quality and J3 the worst, it can be observed that, for 

each search radius, 𝑄𝐽1 is consistently the lowest, 𝑄𝐽3 consistently the highest, 

and 𝑄𝐽2 maintains an intermediate value. Therefore, the 𝑄 index evaluated using 

the DEDA method can uniquely and quantitatively assess the geometric 

deviation between the two point clouds. 

Finally, it is possible to visualise the point cloud where points are color-

coded based on 𝑞𝑖 (per-point quality index) to obtain a graphical representation 

of the areas of the piece with the greatest deviation. As an example, Figure 5 

illustrates the comparison between J1 and J3, the samples with the best and 

worst quality. 
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Figure 5. Comparison between J1(left) and J3(right), coloured with the per-point quality 

index. 

Analysing the colormap, it's noticeable that in J3 (on the right), the areas 

with higher q values (indicating lower quality) are more extensive compared to 

J1. 

DEDA Robustness assessment 

In order to evaluate the method's reliability and emphasise the benefits 

that DEDA offers for quality control, three distinct point clouds were 

intentionally generated by altering B1. The initial scenario simulates the 

existence of holes in the scan, attributed to the scanner's inability to detect points 

in shaded regions caused by specific geometrical characteristics of the sample. 

The second scenario replicates the presence of extraneous points that do not 

represent the target geometry, arising from factors like inadvertent background 

capture, noise or the partial overlap in two point clouds. The third scenario 

emulates the comparison of point clouds with varying point densities. All of 

these conditions pose significant challenges in traditional deviation analysis. 

This is because, in cases where a point cloud lacks a direct correspondence with 

another, the deviation can be considerably influenced. Furthermore, it's worth 

noting that deviation analysis, based on Euclidean distances, does not possess a 

commutative property, as previously discussed. 
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Additionally, to establish a reference for comparing deviations resulting 

from the aforementioned issues and actual alignment challenges, two additional 

point clouds were generated from B1. These were achieved through a 1 mm 

translation along the x-axis and a 1-degree rotation around the barycentric z-

axis. For this robustness analysis, the overlap of B1 with itself (denoted as RA0, 

representing the ideal scenario) and the overlap with the modified versions of 

B1 (RA1, RA2, RA3, RA4, and RA5) outlined in Table 7 was taken into 

consideration. This analysis encompassed the utilization of both conventional 

deviation analysis and the implementation of the DEDA method. 

Table 7. Joint point clouds for DEDA robustness assessment. 

Joint point cloud ID 

B1 – B1 RA0 

B1 – B1 External points RA1 

B1 – B1 holes RA2 

B1 – B1 50% downsampled RA3 

B1 – B1 translated RA4 

B1 – B1 rotated RA5 

The results of the deviation analysis for robustness assessment, 

conducted both with the classical method and with the DEDA method, are 

presented in Table 8. 

Table 8. Results of robustness assessment (classical and DEDA methods). 

ID μ (σ) Q 

RA0 0 (0) 0 

RA1 0.05 (0.89) 0 

RA2 0.05 (0.40) 1.70‧10-4 

RA3 0.12 (0.15) 9.30‧10-3 

RA4 0.46 (0.28) 1.36‧10-1 

RA5 0.23 (0.12) 3.18‧10-2 

 

From Table 8 the following considerations can be made.  

As evident, the values of 𝑄, 𝜇, and 𝜎 are all zero for RA0. However, for 

RA1, the 𝑄 value also remains at zero, in contrast to the relative values derived 
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from the classical analysis based on Euclidean distance. Comparatively, the 𝑄 

values for RA2 and RA3, in comparison to those for RA4 and RA5, are notably 

lower by one or two orders of magnitude. Conversely, the values obtained from 

the classical analysis exhibit variations. Notably, while μ remains lower in RA2 

and RA3 than in RA4 and RA5, 𝜎 values are either comparable or even higher 

in the former case. It is essential to note that, due to the non-commutative nature 

of the point cloud comparison (with classical methods), as previously done, 

deviation analysis was assessed in both directions, and the worst 𝜇 and 𝜎 values 

were considered. The decision to consider the worst conditions was based on 

the recognition that, unlike these artificially induced tests where issues were 

introduced into only one point cloud, real-world scenarios could typically affect 

both point clouds simultaneously. 

Figure 6 displays point clouds, coloured with the 𝑞𝑖, pertaining to the 

tests conducted in the robustness assessment. 
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Figure 6. Point clouds coloured with the per-point quality index for the robustness 

assessment. 

From Figure 6, it is evident that in RA0, as expected, the per-point 

quality index is zero in every area of the point cloud. This is also observed in 

RA1, where, despite the presence of points outside the point cloud, they are not 

computed in the deviation analysis using the DEDA method. In that area, since 

there are no points from the model point cloud, there is no difference between 

the entropy calculated in the individual point cloud and that calculated in the 
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combined point cloud. Therefore, the terms in Equation 16 are equal, resulting 

in a 𝑞𝑖 value of 0. 

 In RA2, the q value is zero over the entire point cloud, except in the 

interface areas between B1 and B1 holes. This occurs because the entropy varies 

in the joint point cloud due to the presence of a hole in the scan. The result is a 

slight edge effect, which becomes less pronounced with an increase in the search 

radius. 

 In RA3, a generalised increase in q values can already be observed, 

owing to the different point cloud densities. However, this increase is 

significantly less pronounced compared to real misalignments (RA4 and RA5). 

As indicated by the numerical data, the increase in 𝑄 in the presence of different 

point cloud densities is smaller than that observed in the presence of obvious 

misalignments, i.e., marked geometric differences between the two compared 

point clouds. 

3.4 DECI – “Differential Entropy-based Compactness Index” 

In this chapter, the "Differential Entropy-based Compactness Index" 

(DECI) will be introduced as an innovative metric, and its potential applications 

will be highlighted. This index, developed as a method for describing the spatial 

distribution of points, is believed to also provide a new approach to evaluate 

risk, congestion, and other aspects related to the representation of systems that 

can be schematised as point clouds.  

The possible applications of this method are broad and range from 

maritime, air, and road traffic control (including autonomous driving) to crowd 

density monitoring in public and indoor spaces. 

DECI could prove highly versatile in areas such as health, biology, and 

sports analytics, offering a broad spectrum of possible uses that merit further 

analysis and exploration. 
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3.4.1 Method 

Given what has been already said, the DECI index has been defined as 

follows: 

 
𝐷𝐸𝐶𝐼𝑖(𝑃𝑖) =

∑ 𝑑𝑒𝑐𝑖𝑖(𝑝𝑘)𝑛
1

𝑛
 (19) 

Where:  

 
𝑑𝑒𝑐𝑖𝑖(𝑝𝑘) = {

0            𝑖𝑓    ℎ𝑖(𝑝𝑘) = 0
1

ℎ𝑖(𝑝𝑘)
        𝑖𝑓    ℎ𝑖(𝑝𝑘) ≠ 0

  (20) 

In this way, an index is obtained that takes on a zero value for sufficiently 

sparse points distributions and increases as points get closer to each other. 

Figure 7 schematically illustrates the method used to obtain the DECI. 

 
Figure 7. Flowchart of the DECI. 

3.4.2 Application 

Based on the discussion in chapter 3.2.1 regarding the determinant of the 

covariance matrix, and for clarity in presentation, the following considerations 

can be made, assuming a 2D distribution: 

 𝑘 = 1 → ℎ𝑖 =  0 (21) 

 
𝑘 = 2 → ℎ𝑖 =

1

2
ln[(2𝜋𝑒)2 (𝜎𝑋 + 𝜎𝑌)2 + 1] (22) 



61 

 

 
𝑘 ≥ 3 → ℎ𝑖 =

1

2
ln[(2𝜋𝑒)2 det ∑ + 1] (23) 

Where: 

• 𝜎𝑋 and 𝜎𝑌 are the variances on X-axis and Y-axis respectively. 

In defining a compactness index, it is important that all points have their 

own weight if they interact with neighbouring points. Therefore, although an 

isolated point (Equation 21) has a zero influence since its entropic value, and 

consequently the value of the deci related to it, is also zero based on Equation 

20, in the case where 𝑘 = 2, it is not considered appropriate to bypass the 

calculation as done for deviation analysis. Therefore, in this condition, in which 

it is not possible to use det ∑ (as it is null), another type of invariant was sought 

to replace it while maintaining its geometric meaning.  

In fact, the determinant turns out to be an invariant, which means in 

practice that the entropy, and consequently the value of the compactness index, 

does not vary either with the rotation or with the translation of the point cloud. 

Another invariant that can be extracted from ∑ is its trace, given by the sum of 

the elements on its main diagonal, i.e., the sum of the variances in the two axes, 

𝑋 and 𝑌. The square of this sum was inserted to standardise the units of 

measurement. 

Application 

An application of the method on a 2D random point cloud is now 

presented to analyse the application characteristics and potential of the DECI 

index. In particular, the variation of the DECI value is examined as the search 

radius (r) changes. The experiment analyses first a random 2D point cloud (𝐷1) 

consisting of 100 points located within a 500×500 box with lower limits set at 

0 and upper limits set at 500 on both axes (𝑋 and 𝑌). The DECI of 𝐷1 was 
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assessed by altering the radius (𝑟) of the neighbourhood (radius values: 10, 20, 

30, 40, 50, 60, 70, +𝐼𝑛𝑓7). 

Another scenario was assessed in which, again using the distribution of 

𝐷1, a randomly varying search radius (0 < 𝑟 < 50) was assigned to each point 

(𝑝𝑛). No specific unit of measurement was employed, but it is important to note 

that this unit of measurement corresponds to the physical quantity of length. 

Results and Discussions 

The D1 distribution was analysed with a uniform search radius applied 

to each data point.   

Figure 8 illustrates the deci values for individual points and the resultant 

DECI value for the distribution when a search radius of 10 is utilised. In Figure 

9, a specific area within the distribution is examined to elucidate the operation 

of the compactness index.  

 
7 Radius value +𝐼𝑛𝑓 means a radius large enough to encompass all the points of the distribution. 
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Figure 8. DECI and deci values for D1 with a search radius of 10. 

 

 
Figure 9. Detail of D1 with a search radius of 10. 

 

It is evident that points sufficiently distant from others exhibit deci values 

of 0. Moreover, in the instance of two pairs of points situated in close proximity, 

the deci value is greater for the upper pair compared to the lower pair. 

Figure 10 and Figure 11 show two examples of D1 with different search 

radius values (20 and 30 respectively). An increase in DECI becomes evident. 
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Figure 10. DECI and deci values for D1 with a search radius of 20. 

 

 
Figure 11. DECI and deci values for D1 with a search radius of 30. 

 

A particular of the distribution is shown in Figure 12 and in Figure 13, in 

which is possible to see the behaviour of the deci as the radius increases (20 to 

30). 
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Figure 12. Detail of D1 with a search radius of 20. 

 

 
Figure 13. Detail of D1 with a search radius of 30. 

 

From the preceding images, variations in deci and DECI can be observed 

as the radius changes. An increase in DECI can already be noticed. Figure 14, 

Figure 15, Figure 16, and Figure 17 depict the other cases with radius value 

equal to 40, 50, 60, and 70 respectively. 
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Figure 14. DECI and deci values for D1 with a search radius of 40. 

 

 
Figure 15. DECI and deci values for D1 with a search radius of 50. 

 

 
Figure 16. DECI and deci values for D1 with a search radius of 60. 
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Figure 17. DECI and deci values for D1 with a search radius of 70. 

 

As can be discerned from the previous figures, the increase in DECI is 

not guaranteed, and it will not follow a linear pattern, as it is contingent on the 

arrangement of data points. Figure 18 depicts the DECI trend as the search 

radius varies and Table 9 presents the previous findings in a tabular format, 

including the scenario where the radius is set to +𝐼𝑛𝑓. 

 
Figure 18. DECI trend of D1 as the search radius varies. 
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 Table 9. DECI values of D1 as the search radius varies. 

Radius DECI 

10 0.039662 

20 0.096113 

30 0.113980 

40 0.116180 

50 0.113870 

60 0.108570 

70 0.108730 

+Inf 0.078814 

As noted by the previously presented considerations, assuming that the 

values of deci (and, consequently, the values of DECI) are null with search 

radius equal to zero, an initial increase in the DECI value for the distribution is 

observed as the search radius expands. Nevertheless, in contrast to the linear 

increase in radius value, DECI increment becomes progressively less 

prominent, culminating when the search radius attains a value of 40. This can 

be attributed to the initial predominance of the effect of incorporating 

neighbouring points within the search radius of each data point. Subsequently, 

the prevailing influence pertains to the spatial arrangement of the data points. 

Indeed, DECI takes into account not only the proximity of data points but also 

their positioning within the plane (or in space). 

Figure 19 now displays D1, with data points assigned variable search 

radii. 
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Figure 19. DECI and deci values for D1 with a variable search radius. 

The utilisation of a variable radius proves advantageous when 

considering the assignment of weights to individual data points. DECI, apart 

from being proposed as a method for describing a point cloud, holds the 

potential to be applied to a point cloud where these data points do not represent 

the geometry of a scanned object but rather serve as constituents of a system, 

encompassing objects of the same category dispersed in space, each possessing 

distinct characteristics. One conceivable application of DECI is in the capacity 

of serving as an indicator for congestion and risk within the transportation 

system. Notably, the data points could represent a range of vehicles, including 

cars, ships, and aircraft, each characterised by differing dimensions and speeds. 

Consequently, it is considered viable to tailor the radius, in proportion to both 

the velocity and size of the vehicle, alongside the potential hazards associated 

with the transported cargo. For instance, a significantly large and fast-moving 

vehicle offers heightened prospects for engagement with data points positioned 

at a greater distance, when compared to a smaller, slower, or stationary vehicle, 

thus exemplifying its adaptability and versatility in diverse transportation 

contexts. 
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3.4.3 Case study: DECI for maritime navigation risk assessment in the 

Strait of Messina 

Context 

The ongoing surge in vessel traffic is associated with an escalated 

likelihood of encountering highly congested waterways. This, in turn, augments 

the risk of maritime incidents such as collisions, which can have potentially 

catastrophic consequences, not only in terms of human lives but also 

economically and environmentally. To avert such unwelcome occurrences, 

various risk mitigation measures are presently implemented through the 

monitoring and management of maritime traffic. These measures encompass 

Traffic Separation Scheme (TSS), the establishment of areas governed by the 

Vessel Traffic Service (VTS), and pilotage, whether in a physical or remote 

capacity. These risk mitigation measures are selectively deployed, focusing on 

areas considered to be potentially more perilous. The utilisation of these 

measures necessitates a financial commitment by the state. In cases where 

resources are constrained, a judicious selection must be made regarding which 

risk mitigation measure to activate and, more crucially, in which areas to apply 

them. Consequently, it becomes imperative to compare multiple ports or 

navigable regions to ascertain how resources can be invested to enhance safety. 

However, the comparison of two or more dissimilar navigable areas is a non-

trivial task. This complexity arises from the inherent differences in morphology, 

the intensity and type of maritime traffic, which consistently distinguish one 

area from another. 

Several studies have been conducted over the years with the aim of 

assessing the risk associated with navigation in particular waterways considered 

interesting from the point of view of risk analysis. Some of them assess the risk 

based on the probability of collision or grounding phenomena occurring. Other 

studies instead focus on the analysis of maritime traffic looking for a risk index 

to be associated with the investigated area and, sometimes, dividing that area 

into several micro-areas with different risk index. 
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In accordance with the aforementioned considerations, it becomes 

evident that there is a pressing requirement for the development of a 

comprehensive risk index associated with the waterway under investigation. 

This index should not rely solely on the historical data of past accidents, which 

are typically few in number and hold limited statistical significance. Moreover, 

it should not be directly proportional to the number of ships in the area. This is 

because an equal quantity of vessels in a given area may assume different spatial 

configurations, consequently affecting the risk of accidents or traffic 

congestion. 

The intent of this case study is to use the DECI of the distribution of ships 

considered as a point cloud to establish a quantitative measure, also observable 

in real time, which reflects the potential level of risk of the navigable area.   

The used dataset for this application is composed by the “Automatic 

Identification System” (AIS) data. AIS data comprises information exchanged 

between ships and coastal stations to monitor and exchange navigation data. 

This system is widely employed to enhance safety, efficiency, and the 

management of maritime traffic. It finds utility among various stakeholders in 

the maritime sector, including ship operators, port authorities, maritime 

authorities, search and rescue services, maritime insurance companies, and 

other organizations involved in overseeing maritime traffic. AIS empowers 

ships to transmit, at predefined time intervals, and receive a wide array of 

information, including ship identification (name and unique identification 

number), location (latitude and longitude), navigation data (e.g., position time 

stamp, speed, and course), operating state (indicating whether ships are 

anchored, in motion, or operating under specific conditions), and ship static data 

(e.g., cargo type, length, width, height, and draught)8. In the context of this 

research, the AIS data used (granted by the Italian Coast Guard of Messina) 

cover a period of twelve months (from June 2018 to May 2019), specifically 

 
8 Resolution A.1106(29) by International Maritime Organization (IMO). 
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referring to the Strait of Messina (Italy). The entire available dataset consists of 

22,794,085 instances.  

For the specific application, the following AIS information is utilised: 

name, position time stamp, latitude, longitude, speed, and length. The name 

attribute serves the purpose of uniquely identifying a vessel. The position time 

stamp information is employed to establish the chosen time window for 

analysis. Latitude and longitude data are used to specify the position of the point 

cloud in the space, while speed and length are employed to determine the 

appropriate radius for the DECI evaluation. To enable a more precise analysis, 

it becomes necessary to correlate a ship's size and speed with the size of its 

neighbourhood. As a result, all the relevant quantities are expressed in degrees 

of latitude (or longitude).  

In particular, speed is converted from knots (kn) to degrees per second 

(deg/s), and the ship's length is transformed from meters to degrees. It's 

important to note that degrees of latitude (or longitude) do not correspond to 

consistent distances in meters across different locations on the Earth's surface. 

To analyse small sections of the sea, the reasonable approximation of treating 

the Earth as a sphere were made. Under this assumption, one degree of latitude 

is considered equivalent to one degree of longitude, and both represent the same 

distance in meters. Specifically, the Earth is approximated as a sphere with a 

radius of 6,371,000 meters, which represents the average value [136]. 

Employing this value, all required lengths are converted into degrees denoted 

as α, using the following formula that takes into account the small-angle 

approximation: 

 
𝛼 =

𝐿𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠

𝐸𝑎𝑟𝑡ℎ′𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠
 ∙

180

𝜋
 (24) 

This approach facilitates the analysis of small-scale marine 

environments, as it provides a practical way to equate geographic degrees to 

consistent measurements for various parameters. 



73 

 

The search radius to be used for the evaluation of differential entropy 

was chosen to be variable for each point (ship) according to the formula: 

 𝑟 = 𝑐𝑚 ∙ √𝜆 (25) 

Where 𝜆 represents the largest eigenvalue of the ∑ associated with the 

entire distribution 𝑝𝑛 and 𝑐𝑚 is a multiplicative coefficient defined as follow: 

 

𝑐𝑚 = 1000 ∙ √
𝑠𝑝𝑒𝑒𝑑 ∙ 𝑡 ∙ 𝑙𝑒𝑛𝑔ℎ𝑡

𝑑𝑚𝑖𝑛

 (26) 

Where: 

• 𝑠𝑝𝑒𝑒𝑑 is evaluated in deg/s 

• 𝑡 is the average time intercurrent between two consecutive AIS 

signals transmitted by a ship 

• 𝑙𝑒𝑛𝑔ℎ𝑡 is evaluated in deg 

• 𝑑𝑚𝑖𝑛 is the distance from the nearest ship (in deg). 

In particular, the product of 𝑠𝑝𝑒𝑒𝑑 and 𝑡 represents the distance that the 

ship would navigate between two consecutive AIS signals. The coefficient 

1000 was determined heuristically for the specific scenario. It is important to 

note that 𝑟 depends on the entire distribution, the speed and length of the ship, 

as well as the minimum distance from the nearest ship. It's worth mentioning 

that 𝑟 has dimensions of degrees, and it equals 0 if the ship has a null speed, 

indicating that it is stationary. This is in accordance with a risk index, where a 

stationary ship poses no collision risk due to its lack of movement, resulting in 

a deci value equal to zero. The other scenario in which a ship's deci is equal to 

zero is when there are no points within its neighbourhood.  

In the context of the DECI evaluation pertaining to the Strait of Messina, 

AIS data was examined with a sampling frequency of 60 seconds. 

Consequently, for each minute under consideration, a series of 2D data points 
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were generated to represent the positions of ships within the specified time 

interval in the sea area of interest. A search radius, in accordance with the 

Equation 25, was assigned to each data point. The DECI was subsequently 

calculated on a minute-by-minute basis for each of the 12 months available. 

From this analysis, the following data was derived: 

• Maximum, minimum, and average DECI values for each month 

(Table 10) 

• The average DECI value for each time interval (0-23) within each 

month (Figure 20). 

Due to the substantial range in the order of magnitude of the detected 

DECI values, with an average of approximately 108 nat, a logarithmic 

representation was employed, utilizing the natural logarithm to express this 

data9. 

Table 10. Maximum, minimum, and mean DECI values for each month. 

Month Max Min Mean 

January 25.51 5.22 19.08 

February 29.89 0 23.39 

March 29.49 5.94 22.96 

April 23.93 0 18.22 

May 25.04 0 19.32 

June 26.81 0 20.29 

July 24.88 5.31 18.69 

August 29.25 4.99 22.65 

September 22.71 0 17.31 

October 23.24 5.45 17.74 

November 31.47 3.70 24.90 

December 30.55 6.01 23.96 

Table 10 provides an overview of the maximum, minimum, and average 

DECI values for each month. The highest maximum value was recorded in June 

2018, with a value of 31.48, while the lowest maximum value occurred in April, 

 
9 DECI values that are equal to zero are also treated as zero on the logarithmic scale. 
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at 22.71. The minimum DECI value observed is 0, signifying instances where 

ships are either stationary or where a ship's search radius is so constrained that 

it does not encompass other vessels within its range. In terms of average values, 

they range between a minimum of 11.43 and a maximum of 12.84.  

Figure 20 illustrates the average DECI trend for each month, divided 

into time slots. 

 
Figure 20. The average DECI value for each time interval (0-23) within each 

month. 

These graphs enable the identification of the hours that are, on average, 

most congested, with variations from one month to another. 

As an example, a snapshot (Figure 21) of the Strait of Messina is presented, 

associated with a DECI value of 17.36 and a total of 22 ships, of which 8 are in 

motion, as indicated by their non-zero search radius. 
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Figure 21. Example of application in the Strait of Messina. 

In Figure 21, a point with the highest deci value is clearly visible, located in 

close proximity to a point with a deci of zero, which suggests the presence of a 

stationary ship. Additionally, there are four moving ships that can be observed, 

characterised by a deci of zero since there are no other ships within their 

respective search radius. On the other hand, the orange dots display an identical 

deci value because the same ships are encompassed within the search radius of 

each of them. 

In Figure 22, the hourly trend of DECI on a specific day is depicted, with 

snapshots representing the first minute of each hour. This day was chosen as an 

example. Furthermore, data is supplied regarding the number of ships present 

in each of these snapshots. 
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Figure 22. Hourly trend of DECI and number of ships on a specific day. 

The comparison with the number of ships was conducted to emphasise 

that DECI does not exhibit a direct correlation with the number of ships. As 

illustrated, for instance, at 9:00, there is a relative minimum in DECI and a 

relative maximum in the number of ships, while at 23:00, the opposite situation 

occurs. This suggests that DECI is not directly affected by the number of ships. 

4 CONCLUSIONS 

The research carried out in this thesis focused on the study and 

application of point cloud analysis using differential entropy. This study has led 

to the development of novel formulations, innovative research methods, and the 

identification of alternatives to existing methods, overcoming many previous 

limitations. 

A comprehensive analysis of the mathematical concepts underpinning 

differential entropy, as a measure of information within the data (point clouds), 

as well as statistical concepts and linear algebra associated with the inclusion of 

the covariance matrix and its determinant in the formulation, has resulted in a 

new formulation of differential entropy for both univariate and multivariate 

normal distributions. This modification ensures that the logarithmic argument 

in the formula is always greater than or equal to 1. This modification brings two 

significant advantages, particularly in conjunction with other innovations 
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presented in this work. It resolves the issue of nullifying the determinant of the 

covariance matrix and guarantees that the differential entropy value for each 

point is always greater than or equal to zero. This newly developed formulation, 

tailored specifically for the analysis of 2D and 3D point clouds, has given rise 

to two distinct innovations in separate domains. The introduction of the DEDA 

method for conducting geometric deviation analyses, primarily designed for 

industrial applications such as quality control, has proven to be highly effective. 

Unlike traditional methods based on Euclidean distance, which rely on mean 

and standard deviation for global assessment, the method proposed in this thesis, 

based on the new differential entropy formulation, not only enjoys commutative 

properties in evaluating differences but also provides a synthetic quality index. 

This index quantitatively assesses the conformity of a manufactured piece to its 

virtual model. Additionally, like traditional deviation analysis, it allows the 

visualization of a point cloud with color-coded points to identify areas that 

deviate the most from the model's geometry. This capability aids in identifying 

manufacturing issues and enables preventive measures, such as modifying the 

CAD model in areas with significant shrinkage in the case of AM using FDM 

technology. The DEDA method has also shown resilience in evaluating 

challenging cases involving noise, background interference, holes in the point 

cloud, partial overlap, and density variations between the compared point 

clouds. 

The introduction of the DECI, based on the new differential entropy 

formulation for univariate and multivariate distributions, has enabled the 

development of a novel point cloud analysis method. DECI provides a synthetic 

quantitative index describing the point cloud under consideration, particularly 

suitable for systems represented as point clouds. Its immediate application lies 

in the field of transportation, as demonstrated in the case study of maritime 

traffic analysis in the Strait of Messina (Italy), where DECI serves as a risk and 

congestion index for the affected sea area. The ability to use AIS data, which 
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includes real-time ship information, has allowed for both real-time and 

retrospective analyses. By applying DECI to the point cloud created from AIS 

data, it was possible to assess risk and congestion on an hourly, monthly, and 

annual basis. This analysis revealed minimum, average, and maximum values 

and the index's trend, providing insights into congested time intervals and 

forming the basis for congestion mitigation measures in affected sea areas. The 

DECI index's unique feature is its independence from the number of points but 

instead depends on their spatial distribution and interactions, as determined by 

the search radius. 

In terms of future developments stemming from the innovations in this 

thesis, there are several potential avenues to explore.  

With regards to the DEDA method, it could be extended to compare 

multiple objects to determine which one best matches the model in terms of 

geometric fidelity. Furthermore, the robustness of DEDA in the presence of 

noise, holes, and density variations suggests the potential for a novel point cloud 

registration method that can address these limitations more effectively than the 

conventional ICP method. Such a method, based on the new formulation of 

differential entropy, could iteratively minimise the quality index, offering a 

robust alternative to ICP. 

DECI, while initially applied in the maritime sector, demonstrates 

significant potential for diverse applications in the broader field of 

transportation, including road traffic, aviation, and drones. These applications 

could help identify congested areas, facilitating not only transportation planning 

but also environmental analysis for urban planning purposes. The versatility of 

DECI extends to various domains, making it a valuable tool in different 

contexts. It can be applied to crowd analysis, especially in safety and healthcare 

settings, such as managing overcrowded situations like the COVID-19 

epidemic. Additionally, DECI has potential commercial applications, as it could 

be employed in museums to draw attention to specific objects by placing them 
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in areas with high DECI values. DECI's utility can also be seen in the analysis 

of team sports, such as football. It could be used to evaluate a team's DECI trend, 

considering players as points, both in temporal and spatial terms. This analysis 

could reveal correlations between DECI and key actions or match outcomes. 

Similarly, DECI could find use in monitoring groups of animals, enabling the 

analysis of their movements and identification of behavioural patterns. In 

medicine, DECI could be valuable for analysing the distribution and evolution 

of specific cells, like tumour cells or reproductive cells, to identify correlations 

with disease stage and fertility. In materials science, particularly in metallic 

materials, DECI could be employed to analyse the distribution of defects or 

unwanted inclusions within the material, seeking correlations with its 

mechanical properties. Finally, in the context of topology optimization, 

especially in AM production, DECI could be used to create variable density 

structural components, offering new possibilities for enhancing materials and 

manufacturing processes. 
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