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Abstract: Landscape management requires spatially interpolated data, whose outcomes are strictly 
related to models and geostatistical parameters adopted. This paper aimed to implement and 
compare different spatial interpolation algorithms, both geostatistical and deterministic, of rainfall 
data in New Zealand. The spatial interpolation techniques used to produce finer-scale monthly 
rainfall maps were inverse distance weighting (IDW), ordinary kriging (OK), kriging with external 
drift (KED), and ordinary cokriging (COK). Their performance was assessed by the cross-validation 
and visual examination of the produced maps. The results of the cross-validation clearly evidenced 
the usefulness of kriging in the spatial interpolation of rainfall data, with geostatistical methods 
outperforming IDW. Results from the application of different algorithms provided some insights in 
terms of strengths and weaknesses and the applicability of the deterministic and geostatistical 
methods to monthly rainfall. Based on the RMSE values, the KED showed the highest values only 
in April, whereas COK was the most accurate interpolator for the other 11 months. By contrast, 
considering the MAE, the KED showed the highest values in April, May, June and July, while the 
highest values have been detected for the COK in the other months. According to these results, COK 
has been identified as the best method for interpolating rainfall distribution in New Zealand for 
almost all months. Moreover, the cross-validation highlights how the COK was the interpolator 
with the best least bias and scatter in the cross-validation test, with the smallest errors. 

Keywords: monthly rainfall; spatial analysis; inverse distance weighting (IDW); kriging; New 
Zealand; landscape management 
 

1. Introduction 
The accurate spatial modelling of rainfall distribution has a widely recognized value 

among scholars and practitioners of different scientific and engineering fields (e.g., 
hydrology, water balances and resources management, regional impacts of global change, 
etc.) [1–5]. Moreover, sustainable landscape management requires spatially interpolated 
data, whose outcomes are strictly related to models and geostatistical parameters 
adopted. In fact, temperature and rainfall patterns significantly contribute to the 
configuration of natural vegetation types [6] and affect the suitability of territory to 
specific crops. Moreover, an accurate mapping rainfall distribution represents a key data 
input in modelling and monitoring the effects of climate change [7,8]. Referring to these 
mentioned uses of spatial rainfall models at different timescales, it is worth highlighting 
their fundamental role in the parametrization of crop models simulating crop growth as 
well as in the implementation of hydrological models aiming at flood forecasting [9]. 
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A prerequisite for implementing the spatial rainfall distribution is the availability of 
official climate databases with sufficient temporal and spatial completeness. Indeed, to 
implement reliable hydrological or environmental models, there is the need to accurately 
assess the choice and set-up of spatial interpolation models that can affect the obtained 
results introducing significant errors. Rainfall is not a regular phenomenon and is 
characterized by high spatial variability. 

Usually, meteorological networks are widely dispersed in a territory without a 
defined sample scheme. Moreover, rain gauge networks just collect point estimates, and 
in most cases, their number is quite limited [10,11]. Thus, there is the need to estimate 
rainfall values at unrecorded locations using the values at surrounding sites [12] to 
spatially interpolate the original discrete point measurements so as to obtain continuous 
surfaces. Notwithstanding the possibility of using different precipitation products as 
rainfall proxies, rain gauge databases today represent the primary reference to implement 
hydrological models [13], largely because of the temporal consistency of these data that in 
most cases are multi-decades time-series. 

In the last two decades, several authors have attempted to identify the most reliable 
and accurate method of spatial rainfall interpolation in different geographical areas and 
spatial domains (continental, national, regional, local) [9–11,14–16]. Referring to the 
spatial interpolation of the rainfall phenomenon, we have to consider that the most 
reliable interpolator may vary depending on the different regions in which it is applied 
[3,17]. 

In the scientific literature, several spatial interpolation methods have been proposed 
and compared by scholars to map rainfall data in a reliable way in various world areas. 
There is no recent comprehensive review analysing the spatial interpolators tested for 
rainfall spatialisation to our best knowledge. Indeed, the work of Li and Heap [18] found 
more than fifty spatial interpolation models applied in the estimation of spatial rainfall 
spatial distribution. 

The spatial interpolation methods can be classified as deterministic/stochastics and 
probabilistic, either applied to a global or a local scale. The comparison of deterministic 
(multiple empirical regressions - [19,20]; splines [21]; inverse distance weighting, IDW - 
[22–25]) with geostatistical algorithms [26,27]) can be considered one of the most common 
in the climatology field of research. Several authors pointed out that the geostatistical 
approach, based on the regionalised variables [26,28,29], can lead to a more reliable 
estimate of rainfall distribution than the deterministic ones [12,17,30–33]. 

However, other authors have demonstrated that the reliability of the obtained results 
also depends on the point sampling density and distribution [34] while current scientific 
literature does not support the suitability for an interpolation method to be applied in 
every region of the Earth [24]. Therefore, a general consensus does not exist in the 
literature on the best method for interpolating monthly rainfall, and several research 
articles comparing different spatial interpolation methods have been published in recent 
years [10,14,15,35].  

The present paper aimed to compare different methods for interpolating spatial 
patterns of monthly rainfall in New Zealand. Considering that, in New Zealand, 
agriculture represents one of the most important economic sectors, including with 
reference to overseas exports, the knowledge of a reliable spatial distribution of rainfall in 
the different areas of this country is crucial. Moreover, these kinds of research findings 
are helpful in implementing sustainable landscape management programmes that require 
precise knowledge of diverse spatial phenomena and whose outcomes are frequently 
related to models and geostatistical parameters adopted. In the above-depicted scope, this 
research provides a comparative analysis with significant novelties. Among these, we 
proposed spatial interpolation approaches of monthly precipitation based on multivariate 
geostatistics integrating auxiliary variables such as elevation and geographic coordinates. 
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2. Study Area and Observation 
New Zealand is an island country located in the southwestern Pacific Ocean, east of 

the Australian continent, between 34° to 47° S and between 164° to 179° E, with an area of 
270,000 km2. It consists of two main islands presenting a northeast-southwest oriented 
shape. The North Island is mainly characterized by plains but it also presents mountains 
reaching a maximum altitude of more than 2700 m a.s.l. Conversely, the South Island is 
mainly mountainous, with the Southern Alps reaching an altitude of 3764 m (Figure 1). 

 
Figure 1. Geographic localisation of New Zealand and the selected 294 rain gauges (blue dots) over 
a digital elevation model (DEM). 

Generally, New Zealand’s weather patterns reflect those of the oceanic mid-latitude 
locations [36,37], but it is also affected by some physical factors [38]. The first factor is the 
location of the country in the Pacific Ocean, which influences air circulation and seasonal 
climate. The air masses coming from the tropical zones of the Pacific lead to a humid 
weather, with fresh summers and mild winters, and temperatures oscillating between 18 
°C and 21 °C, although snow and frost occur as a consequence of the oceanic currents from 
Antarctica. The presence of the mountains in the eastern side of the North Island and of 
the 750-km long, over 3000-m high Southern Alps traversing the South Island constitutes 
the second factor affecting air circulation and determining New Zealand’s climate [39,40]. 
As a result, large differences in the rainfall volumes occur even over short distances 
between the mountain areas and the eastward plans. Moreover, summers in the northern 
part of the North Island are influenced by the westerly wind perturbations [38]. Finally, 
although more than 2000 km divide New Zealand from the Australian continent, this 
significantly influences New Zealand seasonal climate because of the cyclogenesis region 
moving through the Tasman Sea which is responsible for the significant differences in the 
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precipitation amount occurring over short distances especially in the South Island [41–44]. 
Clear sky conditions in winter lead to considerable surface cooling, which, in turn, results 
in stable lower atmospheric conditions. This has an impact eastward since it prevents the 
western airflow from significantly affecting New Zealand. On the contrary, large 
convective hot air masses coming across the Tasman Sea cause robust airflows affecting 
New Zealand in summer [25]. 

New Zealand’s climate has been carefully described by The National Institute of Wa-
ter and Atmosphere Research (NIWA) of New Zealand [45]. According to NIWA, warm, 
humid summers and mild winters affect the North Island, in which winter is the rainiest 
period of the year, while summer and autumn are characterized by tropical storms and 
intense precipitation. The Central Region of the North Island is the least affected by winds 
that heavily sweep many areas of the country. Stable, dry, and warm summers with un-
stable cool winters are typical of this region. The south-west part of the North Island does 
not present many climate extremes with a stable weather in summer, which is usually 
warm, and at the beginning of autumn and unsettled, although not very cold, winters. 
The sunniest area of New Zealand is the northern part of the South Island, characterised 
by warm, dry and stable summer. In the western side of the South Island is affected by 
extreme yearly precipitation higher than average, although occasional dry spells my occur 
between the end of the summer and the winter months. The eastern and inland areas of 
the South Island are characterized by low mean annual rainfall and by long dry episodes 
in the summer season.  

With the aim to perform a spatial analysis of the rainfall in New Zealand, monthly 
observations have been extracted from the NIWA database for the period 1951–2012. Sev-
eral studies on New Zealand climate [36,46–50] made extensive use of this database, which 
has been acknowledged as a high-quality database with almost complete records. In 2012 
the original database included monthly observation from 3011 rain gauges (1 station per 
89 km2). In order to perform a reliable analysis, in this study only the stations working in 
2012, with more than 50 years of observation and less than 5% of missing data have been 
considered. As a result of this preliminary check a final database of monthly observation 
from 294 rain gauges (1 station per 913 km2) has been considered (Figure 1).  

3. Methodology 
With the aim to determine the best technique in reproducing the actual surface, both 

deterministic and geostatistical algorithms were applied to generate the rainfall maps of 
New Zealand at a monthly scale. The performance of each method was evaluated. All the 
procedures mentioned above have been implemented in an R statistical computing envi-
ronment, mainly using the ‘gstat’ package [51]. 

3.1. The Inverse Distance Weighting (IDW) 
One of the most popular and adopted deterministic methods in reproducing the ac-

tual surface is the IDW [52], which is a non-linear interpolation technique that considers 
the measured values in neighbouring points to evaluate a value for any unmeasured lo-
cation. A neighbourhood about the interpolated point is identified and a weighted aver-
age is taken of the observation values within this neighbourhood. The weights are a de-
creasing function of distance computed as follows. 
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The lower the exponent, the more uniformly all neighbours are incorporated into the 
calculation (regardless of their distance), and therefore, the “smoother” the estimated sur-
face. The higher the exponent, the more accentuated and “unsettled” is the surface be-
cause only the nearest neighbours’ weight is integrated into the interpolation. 

To minimise the interpolation errors, a power value of 2 for monthly time steps has 
been performed and applied in the estimation for IDW.  

3.2. Geostatistical Methods 
Although the IDW is largely applied, it lacks any direction-specific (anisotropic) in-

formation, thus ignoring the spatial correlations which are not incorporated into the esti-
mation. In some scientific contributions, the IDW was used as a basic approach (i.e., a 
reference) to assess the spatial prediction [53]. This weakness does not occur in geostatis-
tical approach. For interested readers a detailed presentation of geostatistical theories can 
be found in [26,54–56]. Usually the spatial interpolation is performed by using a weight 
of observed regionalised values to evaluate a regionalised value in unmeasured points. 
Kriging is a widely used interpolation technique that takes into account the spatial de-
pendent correlation of environmental variables assigning more weight to neighbouring 
points [56]. Kriging also provides an uncertainty estimate. Semi-variogram modelling [57] 
is the first and the key step between spatial description and spatial prediction in kriging 
computation. After computing the empirical semi-variogram, for all pairs of locations in 
a given distance, this is fitted with a theoretical model, which is a function of the lag of 
data pair values, that is used to evaluate the weight by means of the different equation 
systems of the several krigings: ordinary kriging (OK), kriging with an external drift 
(KED), and cokriging (COK). In this study, we did not provide local variograms, consid-
ering that, as demonstrated by Lloyd [53], their use leads to a small reduction in prediction 
errors. 

3.2.1. Ordinary Kriging (OK) 
Ordinary kriging is the most popular kriging interpolator. It provides an estimate of 

the value of the random variable Z(x) at an unsampled point x0 based on the weighted 
average of observed neighbouring points Z(xα) within a specific area [56]: 

( ) ( )
( )


=

=
0
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0

*
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OK xzxZ
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ααλ , (2)

where λα are the ordinary kriging weights and n(x0) is the number of measured values of 
pairs of points multiplied by their spatial distance h. The weights are obtained so that the 
estimate is unbiased and the variance is minimised. 

3.2.2. Kriging with an External Drift (KED) 
In geostatistics, the kriging with an external drift (KED) method allows the use of 

auxiliary information, available at all locations, which has an effect on the local spatial 
trend of the dependent variable. So, the predictions are made as with kriging, with the 
difference that the covariance matrix of residuals is extended with the auxiliary predictors. 

The secondary variable’s spatial behaviour is similar to an indicator of the general 
trend typical of predictions’ representation. In this study, the KED method was applied 
because it allows incorporation of the elevation and geographic coordinates as the sec-
ondary variables. This choice is in accordance with the rainfall observation analysed, 
which have a global elevation-controlled trend in the south-western to north-east direc-
tion. 

Let z(x) be the external deterministic variable. The model for the random function is: 

( ) ( ) ( )xYxzbaxY R++= . , (3)
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where YR(x) is a residual stationary random field, z(x) is known everywhere and a and b 
are coefficients to be estimated if YR(x) is needed. Kriging of Y at a location x0 where it is 
unknown is a linear combination of the data: 

( ) ( )i
n

i
i xxY 

=

=
1

0
* λ , (4)

where the Y(xi)’s are the values at the n measured sites and the λi’s solve the following 
kriging system: 
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The KED requires a less demanding semivariogram analysis compared to OK which 
requires a semivariogram for each of the covariates. 

The last constraint is added so that the linear predictor Y*(x0) filters the effect of the 
external drift, μ1 and μ2 are the Lagrange multipliers that account for the unbiasedness 
constraints with the minimal prediction variance. 

3.2.3. Ordinary Cokriging (COK) 
The last methodology applied in the present study is ordinary cokriging (COK). It 

offers additional advantages over ordinary kriging. It involves the use of a secondary var-
iable (covariate) that is cross-correlated with the primary or sample variable of interest. 
The secondary variable is usually sampled more frequently and regularly, thus allowing 
estimation of unknown points using both variables ‘globally’ for the mean of all estimates 
but also ‘conditionally’ for the estimates within individually specified grade categories. 
This can aid in minimizing the error variance of the estimation. 

3.3. Cross-Validation 
The process of deciding whether the numerical results quantified by different inter-

polators are acceptable as descriptions of the data, is known as cross-validation, which 
tests the model’s capability to predict data. Performing the cross-validation, some of the 
data are removed before training begins. Then when training is done, the data that were 
removed can be used to test the performance of the learned model on “new” data. The 
actual error incurred in this process is measured by the difference between the actual and 
estimated value [58–60].  

The accuracy of calculation was measured by the mean absolute error (MAE) and the 
root-mean-square error (RMSE). The MAE and RMSE are calculated for the data set as: 


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where iii yye ˆ−= , actual = iy, and predicted = iŷ. 
The closer the values of RMSE are to zero the more accurate the model results will 

be. 
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The RMSE value cannot be considered a performance criterion to define the reliabil-
ity of the kriging estimate [12], even if it is used in all geostatistical methods. Many studies 
regarding spatial interpolation of rainfall [34], evaluation of the best interpolation meth-
ods for mapping climatic variables at regional scale [61], and spatial distribution of rainfall 
[62] have performed the MAE and RMSE calculation in order to compare the results. A 
graphical result of the goodness of fitting actual and estimated values is given by the scat-
terplot: the closer its slope is 1, the more accurate the estimation is. 

4. Results and Discussion 
In this section, a comparison of the results obtained through deterministic and geo-

statistical algorithms is presented. In Table 1, the results of the exploratory statistical anal-
ysis of monthly rainfall are shown. Mean monthly rainfall ranges between 83.2 mm (Feb-
ruary) and 117.4 mm (July). The maximum and the minimum monthly values have been 
detected in January (632.6 mm) and in July (20.4 mm), respectively. 

Table 1. Descriptive statistics of the monthly precipitation observation for the 294 rainfall series. 

Month Mean Median Max Min CV SK KU 
January 90.0 77.3 632.6 36.9 0.66 5.21 35.06 

February 83.2 73.9 512.0 27.9 0.58 4.52 29.42 
March 94.4 80.9 609.7 40.8 0.60 4.81 33.29 
April 98.2 88.4 547.5 35.9 0.57 3.74 20.67 
May 113.0 102.9 553.5 31.8 0.54 3.09 14.98 
June 113.8 106.0 439.5 25.8 0.53 1.90 6.31 
July 117.4 111.8 380.0 20.4 0.49 1.41 3.42 

August 110.9 101.7 433.5 21.4 0.52 1.92 6.03 
September 98.9 85.6 542.3 26.5 0.64 3.42 16.52 

October 106.2 91.3 612.0 37.4 0.66 3.96 20.34 
November 94.5 79.7 573.3 34.5 0.66 4.27 23.48 
December 101.8 88.7 595.5 37.2 0.61 4.26 23.93 

CV = Coefficients of variation; SK = Coefficient of skewness; KU = Kurtosis. 

The coefficients of variation evaluated for the monthly rainfall values range between 
49% and 66%, thus evidencing a low spatial heterogeneity of rainfall in New Zealand (Ta-
ble 1). The exploratory statistical analysis of the precipitation observation was mainly per-
formed to evaluate whether the monthly values fit a normal distribution. Indeed normal-
ity is a desirable property for kriging, that will generate the best absolute estimate only if 
the random function fits a normal distribution [30]. As a result, appreciably different 
monthly mean and median values and high values of skewness coefficients were observed 
(Table 1). Therefore, a priori logarithmic transformation of the data was performed after 
which normality was obtained (similar mean and median values and close to zero values 
of the coefficients of skewness). 

Due to the station density, 1 station per 913 km2, the spatial variability has been con-
sidered to be equal in the different directions, and thus an omnidirectional semi-vario-
grams, evaluated for the monthly rainfall observation, has been considered to carried out 
the spatial dependence analysis. To represent the empirical semivariogram by fitting a 
theoretical model, it was found that using a combination of theoretical models results in 
a more accurate fit onto the empirical semivariance than using a single model. Therefore, 
the semivariance of three models, precisely Gaussian, spherical, and circular, were used 
to fit the empirical semivariograms of monthly rainfall observation and for avoidance of 
negative interpolations. For all cases, two models combined showed the best fittings. The 
results of variograms parameters are different for each month (not shown). An example 
of experimental semi-variograms and their fitted models for the three geostatistical meth-
ods, computed for June, is shown in Figure 2. 
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Figure 2. Scatterplots between observed and estimated monthly precipitation in June for (a) inverse 
distance weighting (IDW), (c) ordinary kriging (OK), (e) kriging with an external drift (KED), and 
(g) ordinary cokriging (COK). Related semi-variograms in June for (b) OK, (d) KED, and (f) cross-
variograms in June for COK. Distance is expressed in meters. DEM stands for Digital Elevation 
Model. 
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In order to match the interpolation performance of the adopted algorithms, the cross-
validation has been applied. The cross-validation results (scatter plots of predicted versus 
measured values) for June are shown for the four methods in Figure 2. 

4.1. The Inverse Distance Weighting (IDW) 
For the IDW interpolation, which uses a simple algorithm based on distance, the clos-

est measured values had the most influence. Typically, the spatial distribution evaluated 
with this method showed marked areas in correspondence of the high or low rainfall val-
ues (Figure 3). In fact, generally, this method produces spikes around the measured points 
[63], although it can depict well local detailed changing as shown by Shi et al. [64]. On the 
other hand, Chen and Liu [65], using IDW in estimating the spatial distribution of rainfall 
in the middle of Taiwan, obtained an higher accuracy in the dry season, also revealing a 
better ability of this estimator to predict the spatial distribution of small events. 

For the several months, the coefficient of determination (R2) of the IDW of measured 
versus predicted rainfall, showed the lowest values among the different interpolation 
methods, ranging between 0.5318 and 0.7324 (Figure 2 and Table 2). Moreover, as a con-
sequence of the cross-validation test, this method did not result, in any analysed month, 
the best interpolating rainfall method (Table 3). 

Table 2. Coefficient of determination (R2) of measured versus predicted monthly rainfall for the 
different interpolation methods (inverse distance weighting, IDW; ordinary kriging, OK; kriging 
with an external drift, KED; ordinary cokriging, COK). 

Month IDW OK KED COK 
January 0.5393 0.6375 0.7021 0.7089 

February 0.5329 0.6406 0.6711 0.6816 
March 0.5318 0.6551 0.6901 0.7098 
April 0.6178 0.7449 0.7748 0.7921 
May 0.6266 0.7515 0.7748 0.7766 
June 0.7151 0.8236 0.8492 0.8486 
July 0.7324 0.8277 0.8320 0.8332 

August 0.7043 0.8074 0.8194 0.8408 
September 0.6569 0.7825 0.7956 0.8055 

October 0.6097 0.7459 0.7723 0.7900 
November 0.5712 0.6963 0.7168 0.7422 
December 0.5562 0.6811 0.7064 0.7319 

Table 3. Best interpolation method (inverse distance weighting, IDW; ordinary kriging, OK; kriging 
with an external drift, KED; ordinary cokriging, COK) based on the cross-validation test (mean ab-
solute error, MAE; root-mean-square error, RMSE). 

Month MAE RMSE 
January COK COK 

February COK COK 
March COK COK 
April KED KED 
May KED COK 
June KED COK 
July KED COK 

August COK COK 
September COK COK 

October COK COK 
November COK COK 
December COK COK 
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4.2. Ordinary Kriging (OK) 
The ordinary kriging maps are more smoothed than the maps by IDW, especially for 

maximum and minimum rainfall values representations (Figure 4). Compared to the oth-
ers geostatistical methods, lower results for OK were achieved by correlation coefficients 
of measured versus predicted monthly rainfall, particularly for the wettest months, June 
(0.8236), July (0.8277), and August (0.8074) (Figure 2 and Table 2). 

Considering that the OK method tends to underestimate mean rainfall values, as well 
as IDW, it is not the best interpolator for spatially analysing the rainfall observation in any 
considered month. It is confirmed by the MAE and RMSE results. 

4.3. Kriging with an External Drift (KED) 
Improvements to accuracy for monthly rainfall interpolations in KED approach were 

realized by the use of elevation, extracted from a digital elevation model, and geographic 
coordinates as the secondary information. In the area without data, elevation, mainly ex-
tracted from a DEM, represents easily available data, which can be used to be incorporated 
into multivariate geostatistics of rainfall. A minimal improvement in the interpolation ac-
curacy for monthly rainfall occurred since elevation and geographic coordinates were 
used as secondary variables, considering that a significantly smaller error of estimates was 
not achieved. Figure 5 shows the rainfall maps for 12 months obtained by using the KED 
technique. The results of the correlation coefficients of measured versus predicted 
monthly rainfall, which ranging from 0.67 to about 0.85 (Figure 2 and Table 2), attest that 
the KED interpolator, in few months, operated better than the COK interpolator, which 
was, however, the best methods for most months. In fact, differently from the IDW and 
the OK, the MAE and RMSE results indicated that the KED method was the best approach 
in some autumn and winter months (Table 3). 

4.4. Ordinary Cokriging (COK) 
A comparison between the use of secondary information, such as elevation, both in 

KED and COK interpolators, confirms that the accuracy improvement was not reached 
considering the error of estimates. Consequently, although adding secondary variables 
can increase precision, in the case study the produced maps by COK are similar to those 
obtained by KED and OK. Figure 6 shows the rainfall maps for 12 months obtained by 
using the COK technique. Therefore, as already evidenced in previous studies [12] and 
confirmed in this one, when the correlation between rainfall and elevation is too small, 
the advantages derived by using multivariate techniques is negligible. The values of the 
correlation coefficients of measured versus predicted monthly rainfall ranged between 
0.68 and 0.84 (Figure 2 and Table 2). The COK interpolator can be evaluated as the best 
approach to analysing rainfall observation in many analysed months (Table 3) as con-
firmed by the MAE and the RMSE results. 

4.5. Comparison of the Interpolation Methods 
The analysis of deterministic and geostatistical methods allowed to identify strengths 

and weaknesses of the applicability of the different algorithms to monthly rainfall in New 
Zealand. Since IDW considers only the distance between estimated and sampled points 
and leaves out the pattern of spatial dependence of rainfall observation, as expected, sub-
stantially different results have been obtained by applying the IDW and the geostatistical 
methods. 

In Table 3 results of the cross-validation are shown in terms of MAE and RMSE val-
ues, providing clear indications of the effectiveness of kriging in the spatial interpolation 
of monthly rainfall observation in New Zealand. In fact, the IDW technique has been 
clearly outperformed by the geostatistical approaches, thus confirming past studies (e.g., 
[12,63]) which found IDW to be less accurate than geostatistical interpolators in the esti-
mation of monthly and annual rainfall.  



Appl. Sci. 2021, 11, 9566 11 of 18 
 

 
Figure 3. Mean monthly precipitation interpolated using inverse distance weighting (IDW) method. 
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Figure 4. Mean monthly precipitation interpolated using ordinary kriging (OK) method. 
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Figure 5. Mean monthly precipitation interpolated using ordinary kriging (OK) method. 
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Figure 6. Mean monthly precipitation interpolated using ordinary cokriging (COK) method. 

Specifically, considering the RMSE, the COK has been identified as the most accurate 
interpolator in 11 months with the exception of April when the KED resulted more pre-
cise. However, taking into account the MAE, the KED has been identified as the most 
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accurate interpolator in April, May, June and July, and the COK in the remaining months. 
The COK can be thus indicated as the best method for the spatial interpolation of rainfall 
in New Zealand for almost all months. The IDW and OK methods were not the best ap-
proaches for interpolating rainfall in any analysed month. Overall, the COK evidenced 
the best least bias and scatter in the cross-validation test, with the lowest errors. Finally, 
interesting results can be obtained from the visual comparison among the maps obtained 
from the application of the different geostatistical interpolation algorithms. In fact, similar 
rainfall spatial distributions, have been produced with the geostatististical interpolators, 
and all these distributions seem to be consistent with natural precipitation. In particular, 
as demonstrated in previous studies [12,14,53,66–68], adding elevation and geographical 
coordinates as secondary variables in the application of the KED and the COK, did not 
lead to a significant improvement of the results, that is explainable considering the weak 
correlation identified between precipitation and the secondary variables. In fact, as 
pointed out by Goovaerts [12], better results of the COK with respect to the OK can be 
observed with an increase in the correlation between precipitation and altitude. Moreover, 
Goovaerts [26] evidenced that the impact of the auxiliary data on the COK interpolations 
generally depends on the correlation between primary and secondary variables but also 
on their spatial continuity patterns. Perhaps, as suggested by Kyriakidis et al. [66], using 
monthly time series of covariates (e.g., monthly wind speed or humidity) as additional 
information in the KED and the COK instead of variables fixed in time (e.g., topography 
and geographical coordinates) can lead to a much better cross-validation than those ob-
tained by the OK. Unfortunately, these variables are available in New Zealand only for 
short observation periods and in very few stations. 

5. Conclusions 
Agriculture in New Zealand is the largest sector of the tradable economy; conse-

quently, knowledge of the spatial distributions of rainfall in this country is essential for 
water resource management. In fact, New Zealand presents large spatial differences in the 
rainfall distribution. As an example, although the Southern Alps are one of the rainiest 
places in the world, the east side of the South Island often suffers from droughts. Moreo-
ver, sustainable landscape management requires spatially interpolated data, whose out-
comes are strictly related to models and geostatistical parameters adopted. 

In this paper, in order to generate precipitation maps at monthly scale, both deter-
ministic (inverse distance weighting) and geostatistical (ordinary kriging, kriging with an 
external drift, and ordinary cokriging) methodologies have been applied and the predic-
tion performance of each method was evaluated through cross-validation and visual ex-
amination of the precipitation maps produced. Results of the cross-correlation confirmed 
the worse accuracy of IDW than geostatistical methods. In particular, although the COK 
has been identified as the best method in the interpolation of monthly rainfall in New 
Zealand, the visual comparison of the spatial results obtained with the different geostatis-
tical methods evidenced similar rainfall distributions, thus demonstrating that no signifi-
cant results have been achieved by adding elevation and geographical coordinates as sec-
ondary variables. Further analysis could be conducted to improve the spatial distribution 
of monthly rainfall by adding new secondary variables, such as wind speed or humidity. 
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