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A general centrality framework based on node
navigability

Pasquale De Meo, Mark Levene, Fabrizio Messina, and Alessandro Provetti

Abstract—Centrality metrics are a popular tool in Network Science to identify important nodes within a graph. We introduce the
Potential Gain as a centrality measure that unifies many walk-based centrality metrics in graphs and captures the notion of node
navigability, interpreted as the property of being reachable from anywhere else (in the graph) through short walks. Two instances of the
Potential Gain (called the Geometric and the Exponential Potential Gain) are presented and we describe scalable algorithms for
computing them on large graphs. We also give a proof of the relationship between the new measures and established centralities. The
geometric potential gain of a node can thus be characterized as the product of its Degree centrality by its Katz centrality scores. At the
same time, the exponential potential gain of a node is proved to be the product of Degree centrality by its Communicability index. These
formal results connect potential gain to both the “popularity” and “similarity” properties that are captured by the above centralities.

Index Terms—Centrality, Node Ranking in Graphs, Graph Navigability.

F

1 INTRODUCTION

Centrality metrics [1] provide a ubiquitous Network Sci-
ence tool for the identification of the “important” nodes
in a graph. They have been widely applied in a range of
domains such as early detection of epidemic outbreaks [2],
viral marketing [3], trust assessment in virtual communities
[4], preventing catastrophic outage in power grids [5] and
analysing heterogeneous networks [6].

Some centrality metrics define the importance of a node
i in a graph G as function of the distance of i to other nodes
in G: for instance, in Degree Centrality, the importance of i is
defined as the number of the nodes which are adjacent to i,
i.e. which are at distance one from i. Analogously, Closeness
Centrality [7], [8] classifies as important those nodes which
are few hops away from any other node in G.

Another class of centrality metrics looks at walk/path
structures in G: for instance, the Betweenness Centrality [7] of
a node depends on the number of shortest paths crossing it
and, thus, nodes with largest betweenness centrality scores
are those which intercept most of the shortest paths in G. A
further popular metric is the Katz’s Centrality Score [9], which
is understood as the weighted number of walks terminating
in the node. In Katz’s centrality metric the weighting factor
is inversely related to walk length and, thus, long (resp.,
short) walks have a small (resp., large) weight. For a suitable
choice of the weighting factor, the Katz centrality score
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converges to the Eigenvector Centrality [8], [10] and to the
PageRank [8], [11].

To the best of our knowledge, however, there is no previ-
ous work in which the centrality of a node is closely related
to the notion of navigability, defined as the ease at which it
is possible to reach a target node i regardless of the node
j chosen as source node. Navigability is one of the most
important features for a broad range of natural and artificial
systems which have the transportation of information (e.g.
a computer network) or the trade of goods (e.g. a road
network) as their primary purpose.

Early studies on graph navigability were inspired by the
seminal work of Travers and Milgram [12] on the “small
world” property for social networks: in a celebrated exper-
iment, randomly-chosen Nebraska residents were asked to
send a booklet to a complete stranger in Boston. Selected
individuals were required to forward the booklet to any
of their acquaintances whom they deemed likely to know
the recipient or at least might know people who did. In
some cases, the booklet actually reached the target recipient
by means, on average, of 5.2 intermediate contacts, thus
suggesting an intriguing feature of human societies: in large,
even planetary-scale, social networks, pairs of individuals
are connected through shorts chains of intermediaries and ordi-
nary people are able to uncover these chains [13], [14], [15].
Several empirical studies have revealed the small-world
effect in diverse domains such as metabolic and biological
networks [16], the Web graph [17], collaboration networks
among scientists [18] as well as social networks [19], [20].

So far, centrality metrics and navigability have been
investigated in parallel, yet their research tracks are discon-
nected. Thus, an important (and still unanswered) direction
of inquiry is the introduction of centrality metrics that are
related to the navigability of a node.

Our main contribution is to tackle the questions above
by extending previous work by Fenner et al. [21] who
studied navigability in the context of web surfing. The main
output of our research is a general framework in which the
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Potential Gain unifies several walk-based centrality metrics
and captures the notion of navigability.

The potential gain of a node i depends on the number
of walks wk(j, i) of length k that connect i with any other
node j. The underlying idea is that, for a fixed k, the larger
wk(j, i), the higher the chance that j will reach i, regardless
of the specific navigation strategy. In our model, the contri-
bution of each walk to the potential gain shall decrease with
its length k. This intuition is formalized by the introduction
of a weighting factor φ(k) which monotonically decreases
with k to penalize long walks.
We have developed two variants of the potential gain of
[21], namely:

• the Geometric Potential Gain, in which φ(k) decays as
δk, where δ is a parameter ranging between 0 and
the inverse of the spectral radius λ1 of G1, and

• the Exponential Potential Gain, in which φ(k) decays
in exponential fashion.

Both the geometric and exponential gain of i can be
thought as the product of one index (Degree Centrality) re-
lated to the popularity of i and another (Katz Centrality score,
for the geometric potential gain, and the Communicability
Index [22], [23] for the exponential potential gain) which
reflects the degree of similarity of i with all other nodes in
the network. The combination of popularity and similarity
has proven to closely resemble the way humans navigate
large social networks [24] or attempt to locate information
in large information networks such as Wikipedia [25], [26],
[27].

Our formalisation applies the Neumann series expan-
sion [28] to efficiently, yet accurately approximate both the
geometric and exponential gain. Both theoretical and ex-
perimental analysis show that our approach is appropriate
for accurately computing the geometric and exponential
potential gain in large real-life graphs consisting of millions
of nodes and edges, even with modest hardware resources.

We validated our approach on three large datasets:
FACEBOOK (a graph of friendships among Facebook users),
DBLP (a graph describing scientific collaboration among
researchers in Computer Science) and YOUTUBE (a graph
mapping friendship relationships among YouTube users).
The main findings of our study can be summarized as
follows:

1) The amount of time needed to compute the geo-
metric or the exponential potential gain does not
depend on the number of nodes/edges of a graph;
instead, it depends on the spectral radius λ1: the
larger λ1, the better connected the graph and, thus,
the larger the number of walks needed to get a
good approximation of the geometric/exponential
potential gain.

2) For small values of δ, the geometric potential gain is
highly correlated with Degree Centrality, while for
large values of δ it displays a strong and positive
correlation with Eigenvector Centrality.

3) In the case of the geometric potential gain, walks of
small length (i.e., up to ten) are sufficient to obtain

1. Recall that the spectral radius of G is defined as the largest
eigenvalue of the adjacency matrix of G.

a good approximation. In contrast, to compute the
exponential potential gain our algorithm needed
to construct longer random walks, in some cases
up to ten times longer than those required for the
computation of the geometric potential gain.

4) As a consequence of the above point, the geometric
potential gain seems to be the most efficient solution
for large graphs.

This article is organized as follows: in Section 2 we
provide basic definitions that will be used throughout the
paper. In Section 3 we review related work. Section 4 in-
troduces the geometric and exponential potential gain and
illustrates their main properties. In Section 5 we discuss how
to efficiently calculate the geometric and exponential poten-
tial gain, while Section 6 details the experiments we have
performed. Finally, in Section 7 we draw our conclusions.

2 BACKGROUND

In this section we introduce some basic terminology for
graphs that will be largely used throughout this article.

Let a graph G be an ordered pair G = 〈N,E〉 where N
is a set of nodes, here also called vertices, and E = {〈i, j〉 :
i, j ∈ V } is the set of edges. As usual, G is undirected if edges
are unordered pairs of nodes and directed otherwise. In this
article we will consider only undirected graphs.

Also, let n = |V | be the number of nodes, m = |E| the
number of edges of G. For any given node i its neighborhood
N (i) is the set of nodes directly connected to it; its degree di
is the number of edges incident onto it, i.e., di = |N (i)|.

A walk of length k (with k a non-negative integer) is
a sequence of nodes 〈i0, i1, . . . , ik〉 such that consecutive
nodes are directly connected: 〈i`, i`+1〉 ∈ E for ` ∈ [0..k−1].
Also, we use the term path for walks that do not have
repeated vertices. A walk will be closed if it starts and ends
at the same node.

We will represent graphs by their associated adjacency
matrix, A, defined as aij = 1 if 〈i, j〉 ∈ E and 0 other-
wise. Sometimes we may slightly simplify notation with
aij = Aij . The adjacency matrix provides a compact for-
malism to describe many graph properties: for instance, the
matrix A2 where a2ij =

∑n
r=1 airarj , gives the number of

walks of length two going from i to j. Inductively, for any
positive integer k, the matrix Ak will give the number of
closed (resp., distinct) walks of length m between any two
nodes i and j if i = j (resp., if i 6= j) [29].

It is a well-know fact that the adjacency matrix of any
undirected graph is symmetric and, hence, all its eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn are real. The largest eigenvalue λ1 of
A is also called its principal eigenvalue or spectral radius of G.
Moreover, the corresponding eigenvectors v1, . . . ,vn will
form an orthonormal basis in Rn [30]. Eigenpairs 〈λi,vi〉
are formed by the eigenvalue λi and the corresponding
eigenvector vi.

3 RELATED WORK

The task of searching for and navigating in large networks
has been extensively studied in the past for a broad range
of domains such as routing in small world networks [12],
locating pages in the World Wide Web [17], [31], finding the
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most knowledgeable individual in an enterprise/academic
social network, discovering resources in a P2P network
and building recommender systems [32]. Inspired by the
classification scheme introduced by Helic et al., [27], we
divide search and navigation into two main classes: (a)
Endogenous Search. In this class, there are multiple agents
embedded in the network and the navigation task is de-
picted as a decentralized decision process in which agents
collaborate to discover a path in the network. Agents are
assumed to have only a local knowledge of the network
topology and, in addition, querying a neighboring node
(e.g., to route a message) may have a non-negligible cost.
(b) Exogenous Search. This class occurs whenever a user aims
at navigating the Web [21], [33] or an information network
such as Wikipedia [26], [34]. In exogenous search, there is
only one agent involved in navigation task and it does not
belong to the network. As in endogenous search, the agent
(either human and artificial) only posses local knowledge
about the network topology. Unlike the endogenous search,
however, the cost for visiting a node is generally low.

In the following two sections we review methods in
endogenous and exogenous search (see Sections 3.1 and 3.2
below).

3.1 Endogenous search approaches

Many mathematical models have been proposed to explain
why networks are, in an informal sense, navigable. Some
of the best-known models are described in [13], [35], [36],
[37]. The original Watts-Strogatz (WS) model [20] generated
random graphs in which pairs of nodes belonging to distant
parts of the graph may be connected through random edges,
called long-range weak ties. The WS model was thus effective
in forcing the graph to be “small,” i.e., to assure the presence
of paths consisting of few edges between any pair of nodes.
Nevertheless, the WS model alone is unable to explain why
people are capable of discovering such paths.

One class of approaches to search large networks relies
on the notion of popularity. Adamic et al. [38] is perhaps
the best-known approach in that category: here the search
task is modelled as a random walk on the graph G. In a
specific step, if the walker occupies a node l which is not
the target one (and none of the neighbours of l is the target
one), then the walker chooses the unvisited neighbour with
largest degree.

Another class of approaches – called similarity-based
approaches – exploit homophily to speed up search tasks
[13], [37]. Kleinberg [35] described a generalization of the
WS model to explain why decentralized search is effective
in real networks. In Kleinberg’s model, nodes of a social
network are arranged to form a bi-dimensional grid (called a
lattice); each node is connected to its neighbours in the lattice
and, in particular, the distance d(u, v) between two nodes
equals the number of grid steps separating them. As a result,
each node v is connected to its four local contacts (i.e., nodes
at distance one from v). In addition, a random edge—called
a long range edge—connecting v with a node w is generated
with probability proportional to d(v, w)−q , q being the so-
called clustering exponent of the model. Kleinberg proved
that if q = 2, then the performance of decentralized search
is optimal, i.e. there exists an algorithm that, on average, is

able to deliver a message from an arbitrary source node to
an arbitrary target in O(log2 n) time.

Another contribution is due to Watts et al. [37] who
proposed a model to explain network navigability in which
nodes aggregate into groups on the basis of some shared
attributes such as job or geographic location. For each
attribute, a population can be split into a hierarchical set
of layers H in which the top layer describes the entire
population, while layers at increasing depth define a cog-
nitive division of the population into more specific groups.
Individuals can manage two kinds of information to decide
to whom a message should be forwarded to: first, social
distance, which accounts for the similarity of two nodes and,
second, network distance, i.e., the number of network paths
that can be detected by looking at the neighbors.

Social distance between two individuals i and j can
be estimated by considering the groups i and j belong
to and how distant these groups are in the layers of H.
As such, social distance is a kind of global metrics but,
unfortunately, it is not a true distance in the sense that
individuals belonging to close groups may be separated by
long paths in the social network graph.

Network distance, on the other hand, is a true distance
but a node only has access to a local portion of the network
and, thus, it can correctly calculate network distances only
for nodes which are separated from it by a few hops. By
means of simulations [37] demonstrated that social distance
is effective in approximating network distance and, thus, to
successfully in directing messages across the network.

More recently Csimcsek et al. [24] suggest to combine
popularity- and similarity-based methods and, to this end,
they describe a graph search algorithm that, at each step,
forwards a message from the current node i to one of its
neighbours, say j, such that the product di×qij is maximum;
here qij quantifies homophily between i and j.

Unlike the approaches above, which assume that some
attributes are available at each node, our approach only
makes use of connectivity patterns to calculate the centrality
of a node.

3.2 Exogenous search approaches

Exogenous search is mostly related to search in information
networks such as a collection of Web pages or Wikipedia.

One of the most common search strategies on the World
Wide Web (WWW) is surfing, in which a user moves from
a Web page to another one by following hyperlinks. Huber-
man et al. [39] introduced a probabilistic model to describe
surfing. In this model, the sequence of Web pages a user
visits is regarded as the realisation of a random process and
each Web page is associated with a value to the user. A user
will stop surfing if the estimated cost of accessing a new Web
page is bigger than the expected value of the information the
user may get from accessing it.

More recently, West and Leskovec [40] analysed how
people navigate an information network such as Wikipedia
in order to reach a specific target. To this end, they used
an online computation game, called Wikispeedia [25], in
which Wikipedia information seekers are given two ran-
dom articles and they are required to navigate from one
to the other by clicking as few hyperlinks as possible. In



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2947035, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

a subsequent paper [26], they compared the accuracy of
several decentralized search algorithms and benchmarked
them against the human navigation paths. Such a study
highlighted two main phases of human navigation in infor-
mation networks: (i) Zoom-Out: here, users strives to reach
the network core (or a hub in the network core); such a
core consists of a Wikipedia page with many links to other
pages in Wikipedia. In this step, humans would prefer pages
with many outgoing links (high degree pages). (ii) Zoom-
in, in which users leave the core to get closer to a topic.
Specifically, if we think of segmenting Wikipedia pages into
clusters on the basis of their topics, such a phase would
consist of entering into a cluster. In the zoom-in phase,
users prefer to look for similar nodes in order to orient their
search.

A nice approach to combine decentralized search was
described by Helic et al. [27] who applied decentralized
search algorithms such as those described in [35] to model
human navigation in information networks. They consid-
ered an online navigation game (called WikiGame); in this
game, a user starts from a random Wikipedia page and
navigates to a target page. More than 250,000 click paths
were collected and studied to determine the factors influ-
encing players’ decisions. The main finding in [27] is that
two mechanisms regulate the way humans seek for infor-
mation in large networks: i) exploitation, i.e., humans follow
specific hyperlinks whenever they are confident enough that
those will get them closer to the target they want, and ii)
exploration, i.e., users navigate at random an information
network, when their knowledge about how current links
relates to a target Web page is insufficient. The quantitative
analysis showed that exploration steps account, on average,
for 15−20% of collected links, while exploitation accounted
for the remaining 80− 85% of collected links.

4 A MODEL OF NETWORK NAVIGABILITY

In this section we introduce our notion of network naviga-
bility, in Subsection 4.1 along with the Potential Gain as a
new centrality measure and a new general framework that
unifies many walk-based centrality indices and captures
our notion of navigability. In Section 4.2 we describe two
versions of the potential gain, called the geometric and the
exponential potential gains. In Subsection 4.3 we compare
the two versions of potential gain with other, well-known,
centrality metrics from the literature. In Subsection 4.4 we
investigate the relationship between the geometric and the
exponential potential gain. Finally, 4.5 outlines our approach
to calculating the geometric and exponential potential gain.

4.1 Network navigability and the potential gain

Starting from the Travers-Milgram’s experiment [12], sev-
eral studies have sought to characterize under which con-
ditions a graph is deemed navigable. According to Kleinberg
[35], a graph G is navigable if i) its diameter is bounded by a
polynomial in log n (here n is the number of nodes in G) and
ii) it has a strongly-connected component which contains
almost all of the nodes of G. Kleimberg’s navigability is a
property of the graph, whereas our purpose is to define the
notion of navigability at the node level.

For navigability at the node level we leverage the main
findings of Lamprecht et al. [41] on the navigability of a
recommender network built on top of the Internet Movie
Database (IMDB). Their work introduced some topological
indices to quantify how difficult it is to navigate the recom-
mender network. Specifically, they suggested to compute
the eccentricity ecc(j) of each node j, defined as the length
of the longest shortest-path converging to j from any other
node belonging to the same connected component of j.
Thus, nodes with small eccentricity (also termed efficient
reachability can be easily reached from any other node of
the graph.

Eccentricity may seem a good starting point for the for-
malisation of network navigability but “suffers” from some
known issues. First, the eccentricity ecc(j) is dominated by
the distance, from j to the farthest node: as a consequence, j
could have a large eccentricity even if it is close to almost all
of nodes in G. Second, any time the length of the shortest
path connecting node i to j is above a threshold θ, the
navigation from i to j is considered “hard,” regardless of
the topology.

The starting point for our work is the framework pro-
posed by Fenner et al. [21] who studied the problem of
identifying “good pages” from which to start exploring the
Web. They classify a page p as a good starting point if it
satisfies the following criteria: (1) it is relevant, i.e. the content
of p closely matches user’s information goals, (2) page p is
central, i.e., the distance of p to other Web pages in the Web
graph is as low as possible and (3) page p is connected, in the
sense that p is able to reach a maximum number of other
pages via its outlinks.
A key difference between Fenner et al. and our work is that
they defined the navigability score of a page/a node as its
ability to act as the source node for reaching all the other
nodes. In our setting, instead, we consider the node as the
target of search, as described next.

Let us fix a source node j and a target node i and
provide an estimate τ(j, i) of how “easy” it will be for i
to be reached if we choose j as source node. Intuitively,
the larger the number of walks from j to i, the easier it
would be to reach i when starting from j. In addition,
assume that the task of exploring a graph is costly and
such a cost increases as the length of the walks/paths we
use for exploration purposes increases. Therefore, shorter
walks should be preferred to longer ones. By combining the
requirements above, we obtain:

τ(j, i) =
+∞∑
k=1

φ(k) · wk(j, i) (1)

here wk(j, i) is the number of walks of length k going from
j to i and the non-increasing function φ(k) acts as penalty
for longer walks. If we sum over all possible source nodes
j, we obtain a global centrality index pg(i) for i:

pg(i) =
∑
j∈N

τ(j, i). (2)

In analogy to Fenner et al., let pg(i) be the potential gain of i.
In conclusion, the main differences between Potential

Gain and Eccentricity are : i) the computation of PG is
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grounded on walks while the computation of the eccentric-
ity is based on paths, ii) the potential gain consider all walks
converging to a target node j while the eccentricity consider
only shortest paths reaching j and, iii) in the potential gain,
the contribution of a walk of length k is penalized by a factor
φ(k), while in the calculation of the eccentricity we take the
length of the shortest path as is (i.e., with no penalization).

4.2 The geometric and exponential potential gain
Given the above specifications, we first define the potential
gain in matrix notation. For the base case, consider walks
of length k=1, i.e., direct connections. Only the neighbours
of a node i will contribute to the potential gain of i, which
leads to the trivial conclusion that, at k = 1, nodes with the
largest degree are also those ones with the largest potential
gain.

We define the vector p such that pi = pg(i) for every
node i:

p = φ(1) ·A× 1. (3)

If we include walks of length two, then we have to consider
the squared adjacency matrix A2. So, we add a contribution
φ(2) ·A2 × 1 to the potential gain.

By induction, nodes capable of reaching from i through
walks of length up to k provide a contribution to the
potential gain equal to φ(k) · Ak × 1. By summing over
all possible values of k we get to the following expression
for p:

(4)
p = φ(1)A× 1 + φ(2)A2× 1 + . . .+ φ(k)Ak × 1 + . . .

=
+∞∑
k=1

(
φ(k)Ak × 1

)
=

(
+∞∑
k=1

φ(k)Ak

)
× 1

To attenuate the effect of the walks’ length, we will
consider two weighting functions, namely:

1) Geometric: φ(k) = δk−1 with δ ∈ (0, 1). So we define
the geometric potential gain, g:

g =
(
A + δA2 + . . .+ δk−1Ak + . . .

)
× 1 (5)

2) Exponential: φ(k) = 1
(k−1)! . So we define the expo-

nential potential gain, e:

e =

(
A + A2 + . . .+

1

(k − 1) !
Ak + . . .

)
× 1 (6)

4.3 Relation to centrality measures
The geometric and the exponential potential gain intro-
duced above yield a ranking of network nodes and, there-
fore, it is instructive to compare them with popular central-
ity metrics. Recall that we defined the spectral radius λ1 of A
as the largest eigenvalue of A.

As for the geometric potential gain, if we let δ < λ−11 ,
the following expansion holds:

(7)

g =
(
A + δA2 + . . .+ δk−1Ak + . . .

)
× 1

= A×
(
I + δA + . . .+ δk−1Ak−1 + . . .

)
× 1

= A× (I− δA)
−1 × 1

in which we make use of the Neuman series [28]:

(
I + . . .+ δk−1Ak−1 + . . .

)
= (I− δA)

−1
. (8)

At this point, the term (I− δA)
−1 × 1 is exactly the

Katz centrality score [9], [42], a popular centrality metric
that defines the importance of a node as a function of
its similarity with other nodes in G. Hence, we can say
that the geometric potential gain combines two kind of
contributions: popularity, as captured by node degree, and
similarity as captured by Katz’s similarity score.

It is also instructive to consider what happens for ex-
treme values of δ: if δ → 0, then the geometric potential
gain tends to A×1, i.e., it coincides with degree. In contrast,
if δ → 1

λ1
, then the Katz centrality score converges to

eigenvector centrality [10], another popular metric adopted
in Network Science. Boldi and Vigna [8] show that the Katz
Centrality score is also strictly related to the PageRank. More
specifically, the PageRank vector p coincides with the Katz
Centrality score provided that the adjacency matrix A is
replaced by its row-normalized version A:

p = (1− α)
+∞∑
k=0

αiA
i × 1 (9)

Here, the parameter α is the so-called PageRank damping
factor. Let us now concentrate on the exponential potential
gain. We rewrite Equation 6 as follows:

(10)

e =

(
A + A2 + . . .+

1

(k − 1) !
Ak + . . .

)
× 1

= A×
(

I + A + . . .+
1

k!
Ak + . . .

)
× 1

= A× exp(A)× 1

where exp(A) =
∑+∞
k=1

1
k!A

k is the exponential of A [43].
The exponential of a matrix has been used to introduce

other centrality scores such as communicability or subgraph
centrality [10], [44].

Specifically, exp (A)ij measures how easy is to send a
unit of flow from a node i to a node j and vice versa.
Such a parameter is known as communicability and it can be
regarded as a measure of similarity between a pair of nodes.
Communicability has been successfully used to discover
communities in networks [44]. The product exp(A) × 1
yields a centrality metric which defines the importance of a
node as function of its ability to communicate with all other
nodes in the network. In turn, the diagonal entry exp (A)ii
of the matrix exponential defines a further centrality metric
called subgraph centrality [23]. As a result of the rewriting
above, we clearly see the exponential potential gain as
dependent on two factors: popularity of i (i.e., its degree)
and similarity of i with all other nodes in the network.

The computation of the geometric (resp., exponential)
potential gain for all nodes in G needs the specification of
the full adjacency matrix A; in this sense, the geometric and
the exponential potential gain should be considered as global
centrality metrics, on par with the Katz centrality score and
subgraph centrality.
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4.4 The relation between the geometric and the expo-
nential potential gain
In this section we present some guidelines on how to choose
the δ factor discussed in the previous section.

A straightforward choice would be to set δ = (2λ1)−1

as in [9] or, in analogy with the Google PageRank damping
factor, δ = 0.85λ−11 [22]. On the other hand, Foster et al. [45]
suggested the following:

δ =
1

‖A‖∞ + 1

where ‖A‖∞ = max1≤i≤n
∑n
j=1|Aij |.

It is instructive to investigate the existence of a crossover
point δc, i.e. to discover a value of δ at which the geometric
and the exponential gain of a node i coincide. To this end,
we provide the following result.

Theorem 1. Let G be a graph with adjacency matrix A and
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. For each node i and for
δ ∈ (0, λ−11 ), the geometric and the exponential gains of i coincide
if and only if one of the following holds:

1) λi = 0, or
2) δ = δc = eλi−1

λieλi
, provided that δc < λ−11 .

Proof. Recall that for sufficiently large values of k, we can
approximate the geometric and the exponential gain as
follows:

g = A× (I− δA)
−1 × 1 and e = A× exp(A)× 1

Recall that A is a square and symmetric matrix. Thus, it
admits the following eigendecomposition,

A = D−1 ×Λ×D

where Λ is a diagonal matrix storing the eigenvalues
λ1, λ2, . . . , λn of A and D is an orthonormal matrix, whose
columns coincide with the eigenvectors u1,u2, . . .un of A.

Now recall [43] that, for any function f , the matrix f(A)
is still diagonalisable and, for any eigenvalue λi of A we
have that f(λi) is an eigenvalue of f(A). In addition, the
matrices A and f(A) share the same eigenvectors so we
have f(A) = D−1 × f(Λ)×D.

Let us consider now the application of the two functions
f1(x) = x

1−δx and f2(x) = xex to matrix A. The eigenvalues
of the matrix f1(A) = A× (I− δA)

−1 are

λ1
1− δλ1

,
λ2

1− δλ2
, . . . ,

λn
1− δλn

(11)

whereas the eigenvalues of the matrix f2(A) = A ×
exp(A) are

λ1e
λ1 , λ2e

λ2 , . . . , λne
λn . (12)

Let us introduce Λg and Λe, the diagonal matrices
storing the eigenvalues of the matrices A × exp(A) and
A × (I− δA)

−1, respectively. Let us now compute the
difference between the geometric and potential gain:

(13)
g − e = A× (I− δA)

−1 × 1−A× exp(A)× 1

= D−1 ×Λg ×D× 1−D−1 ×Λe ×D× 1

=
(
D−1 × (Λg −Λe)×D

)
× 1

We focus on the i-th component of vector g − e and
observe that its value ∆i is given as:

∆i =

(
λie

λi − λi
1− δλi

)
uTi ui =

(
λie

λi − λi
1− δλi

)
Here we used the fact that eigenvectors of A form an

orthonormal basis. If we assume that λi 6= 0, then ∆i = 0 if
and only if:

δ =
eλi − 1

λieλi
(14)

which completes the proof.

4.5 Calculation of geometric and exponential potential
Gains
In this section we present our algorithm for the computation
of the geometric potential and exponential potential gain.

Our algorithm can be implemented in few lines of code
in any high-level programming language, since it applies
the expansion series provided in Equations 7 and 10. Our
approach provides insight on how the walk length k affects
the calculation of the geometric (resp., exponential) potential
gain: indeed, if we stop the expansion of Equation 7 (resp.
Eq. 10) after the first k terms, then, we would only include
the walks up to length k in the calculation of the geometric
(resp., exponential) potential gain.

Let us consider the computational complexity of our
solution. We begin with the geometric potential gain and
assume that we stop expanding the Neumann series after
generating walks of length k?. In such a case, it is easy to
see that cost will be in O(k?|E|). In fact, for any j such that
1 < j < k?, let us set yj = δj−1Aj × 1 and suppose that
we have stored the sequence Y = {y1,y2, . . . ,yj−1}, with
y1 = 1, y2 = A× 1.
Hence, the following recurrence holds:

(15)
yj = δj−1Aj × 1

= (δA)×
(
δj−2Aj−1 × 1

)
= (δA)× yj−1

The last equality states that any term yj can be calculated
as the product of a sparse matrix (δA) by a vector (yj−1), al-
ready computed in the previous iteration. Such an operation
takes O(|E|) steps which, in the case of sparse networks, is
O(n).

Similarly, given that g can be expressed as g '
∑k?

j=0 yj ,
we conclude that the cost required to compute the geometric
potential gain amounts is O(k?n). As for space complexity,
the cost for computing g is O(|E|).

The computation of the geometric potential gain requires
to fix δ beforehand, which, in turn, requires to fix an
approximation of the spectral radius λ1. The literature on
the estimation of λ1 provides some bounds on it [46], [47]
but, available upper bounds are often not tight and, thus,
uninformative; therefore, an alternate way to approximate
λ1 is to rely on algorithms such as the Power Iteration Method
[48]. On the other hand, if we target very large graphs,
sampling techniques seem the best option [49].

Analogous results for both time and space complexity
hold for the computation of the exponential potential gain
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as we show next. Define a sequence Z = {zi} recursively as
follows:

z1 = 1

z2 = A× 1

. . .

zi =
1

i− 2
A× zi−1

Therefore, any term zj can be calculated as the product
of a sparse matrix (A) by a vector (zj−1), which has been al-
ready computed in the previous iteration. Such an operation
takes O(|E|).

Given that e can be expressed as e '
∑k?

j=0 zj , we
can conclude that the (worst-case) time complexity for the
calculation of the exponential potential gain is O(k?|E|);
similarly the space complexity is O(|E|), hence for sparse
graphs both time and space complexity reduce to O(n).

5 METHODS FOR COMPUTING THE GEOMETRIC
AND EXPONENTIAL POTENTIAL GAIN

In this section we prove that our algorithm to calculate the
geometric and the exponential potential gain is convergent,
and we provide an upper bound on the rate of convergence.

Let g be the true value of the geometric potential gain
and let gk be the approximate value of geometric potential
gain we would obtain by considering walks up to length k.
We wish to estimate:

εg(k) =
‖g − gk‖
‖g‖

(16)

Analogously, the approximation error associated with the
calculation of the exponential potential gain is given by

εe(k) =
‖e− ek‖
‖e‖

(17)

The evaluation of εg(k) and εe(k) requires us to evaluate
the norm of some matrices; here we will rely on the L2 matrix
norm (also known as the spectral norm), which, in case of
symmetric matrices coincides exactly with λ1 [48].

Since all matrix norms defined over a space of finite-
dimension matrices are equivalent, our results generalize to
other matrix norms; the only requirement is that the sub-
multiplicative property holds, i.e., ‖X×Y‖ ≤ ‖X‖ ‖Y‖ for
any pair of matrices X and Y.

5.1 Rate of convergence for the geometric potential
gain

Regarding the assessment of εg(k), we note that the source
of error in approximating the geometric potential gain de-
pends on the early stopping of the Neumann series, i.e., on
the approximation:

(I− δA)
−1 ' I + δA + δ2A2 + . . . δkAk (18)

Now, if we set Sk =
∑k
i=0 δ

iAi, the error εg(k) depends on:

(19)
(I− δA)

−1 − Sk = (δA)
k

+ (δA)
k+1

+ . . .

= (δA)
k × (I + δA + . . .)

= (δA)
k

(I− δA)
−1

As k →∞ we obtain:

(20)

∥∥∥(I− δA)
−1 − Sk

∥∥∥ 1
k

=
∥∥∥(δA)

k
(I− δA)

−1
∥∥∥ 1
k

≤
∥∥∥δkAk

∥∥∥ 1
k
∥∥∥(I− δA)

−1
∥∥∥ 1
k

Moreover, as k → +∞,
∥∥δkAk

∥∥ 1
k converges to λ1 [29].

This result, however, is rather weak as it does not give us
a realistic estimation of the number of iterations that are
required to assure that εg(k) ≤ ε, for any ε > 0.

A more refined estimation of the rate of convergence of
εg(k) that applies to the general case of square complex
matrices is due to Young [50], who provides a bound of
the form O(λk−n1 kn); it depends on λ1, on the number k of
iterations and, finally, on the size n of A.

Since we are dealing with symmetric matrices, we can
derive simpler bounds that are independent of the matrix
size, as proved below.

Theorem 2. Let G be a graph with adjacency matrix A and let
λ1 be its spectral radius; also let δ ∈

(
0, λ−11

)
. Then εg(k) → 0

with convergence rate (δλ1)
k.

Proof. Recall that matrix A is square and symmetric thus it
admits the following eigendecomposition

A = D−1 ×Λ×D

where Λ is a diagonal matrix storing the eigenvalues of
A and D is an orthonormal matrix, whose columns coincide
with the eigenvectors of A.

In the light of the eigendecomposition of A we get:

(21)

∥∥∥(I− δA)
−1 − Sk

∥∥∥ =
∥∥∥δkAk + δk+1Ak+1 + . . .

∥∥∥
≤
∥∥∥δkAk

∥∥∥+
∥∥∥δk+1Ak+1

∥∥∥+ . . .

= δk
∥∥∥Ak

∥∥∥+ δk+1
∥∥∥Ak+1

∥∥∥+ . . .

which can be further simplified by observing that, for any j:

(22)
∥∥Aj

∥∥ =
∥∥D−1ΛD

∥∥ ≤ ∥∥D−1∥∥ ∥∥Λj
∥∥ ‖D‖

=
∥∥Λj

∥∥ ≤ ‖Λ‖j = λj1

Here we used the fact that D and D−1 are orthonormal
so their L2 norm is equal to 1. In addition, Λ has the same
spectrum of A hence its L2 norm coincides with the spectral
radius λ1 of A. By putting together the previous results we
obtain:

(23)

∥∥∥(I− δA)
−1 − Sk

∥∥∥ ≤ δkλk1 + δk+1λk+1
1 + . . .

= δkλk1
(
1 + δλ1 + δ2λ21 + . . .

)
= δkλk1

1

1− δλ1
= (δλ1)

k 1

1− δλ1
as required.
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5.2 Rate of convergence for the exponential potential
gain

The convergence result obtained with Theorem 2 above has
a counterpart for the exponential potential gain. In Theorem
3 below we give an exponential convergence result for the
exponential potential gain case.

Theorem 3. Let G be a graph with adjacency matrix A and let
λ1 be the spectral radius of A. If k is at least 2eλ1 then(

1

2

)2eλ1

λ
− 1

2
1

is an upper bound for εe(k).

Proof. Thanks to Equation 6 we can define:

S =
+∞∑
i=1

1

i!
Ai and Sk =

k∑
i=1

1

i!
Ai

Next, we exploit the sub-multiplicativity property of the L2

norm to obtain:

(24)
‖e− ek‖ = ‖A× S× 1−A× Sk × 1‖

= ‖A× (S− Sk)× 1‖
≤ ‖A‖ ‖Rk‖ ‖1‖

with Rk = S − Sk. Also, by repeated application of the
triangle inequality we obtain:

(25)
‖Rk‖ =

∥∥∥∥∥ Ak+1

(k + 1) !
+

Ak+2

(k + 2) !
+ . . .

∥∥∥∥∥
≤
∥∥Ak+1

∥∥
(k + 1) !

+

∥∥Ak+2
∥∥

(k + 2) !
+ . . .

Recall that G is undirected so its adjacency matrix A
is symmetric. Thus, the L2 norm of A coincides with its
spectral radius. Also, for any r ∈ N, Ar is still symmetric
and, due to the sub-multiplicativity of the L2 norm, we get
‖Ar‖ ≤ λr1, which allows us to simplify Equation 25 as
follows:

‖Rk‖ ≤
λ
(k+1)
1

(k + 1)!
+

λ
(k+2)
1

(k + 2)!
+ . . . =

=
λ
(k)
1

k!

[
1 +

λ1
k + 1

+
λ21

k(k + 1)
+

λ31
k(k + 1)(k + 2)

+ . . .

]
≤ λ

(k)
1

k!

[
1 +

λ1
k + 1

+
λ21

(k + 1)2
+

λ31
(k + 1)3

+ . . .

]
=

=
λk1
k!

+∞∑
r=0

(
λ1
k + 1

)r
(26)

Now, since k + 1 > k ' 2eλ1 > λ1, we have that∑+∞
r=0

(
λ1

k+1

)r
converges to the constant value k+1

k+1−λ1
'

2e
2e−1 .

The final step corresponds to applying Stirling’s formula
[51], which states that, for sufficiently large values of k,
k!'

√
2πk

(
k
e

)k
, which implies k! = 2

√
πλ

1
2
1 (2λ1)

2eλ1 if
k ' 2eλ1. Therefore, after some simplifications, we obtain

λk1
k!
' 1

2
√
π

(
1

2

)2eλ1

λ
− 1

2
1 .

which completes the proof.

5.3 Computational Analysis

Many previous studies focused on the problem of efficiently
calculating the product F (A)×b where A ∈ Rn×n, b ∈ Rn
and F (·) is an arbitrary function defined over the spectrum
of A [52].
In many applications A is large and, thus, it is computation-
ally prohibitive to first compute F (A) and, then, to form the
product F (A)× b.
A clever strategy consists of projecting A (resp., b) onto a
matrix H (resp., a vector w) of size r× r (resp., r) belonging
to a subspace Ω such that r is much smaller than n: in this
way, we estimate the product F (A)×b as F (H)×w which
is much easier to compute.
The task of projecting A and b onto H and w is equivalent
to constructing an orthonormal matrix V = [v1,v2, . . . ,vr]
whose columns span Ω. If such a matrix V is available, then
H is defined as H = VTAV and the vector b is mapped
onto the vector w = VT × b.
The procedure for calculating V depends on both the spec-
tral features of A as well as on the approximation accuracy
we plan to obtain; in practice, the size of V could be very
large and, thus, optimization techniques have been exten-
sively studied to generate good approximations of F (A)×b.
One of the most popular techniques is the Krylov subspace
[48], [53]

Definition 1 (Standard Krylov Subspace). Let A ∈ Rn×n
matrix and let b ∈ Rn. The standard Krylov subspace of
dimension t associated with A and b is defined as the

Kt(A,b) = span{b,A× b, . . . ,At−1 × b}

One could construct the standard Krylov subspace
Kt(A,b) and identify an orthonormal basis for Kt(A,b);
the vectors in such a basis constitute the columns of the
matrix V we would like to compute.
Since A is symmetric the most efficient technique to find
such an orthonormal basis for Kt(A,b) is the symmetric
Lanczos algorithm [48]. Such an algorithm performs `
iterations and, at each iteration, the most time-expensive
step consists of calculating the product of the matrix A by
a vector of size n. If A is large but sparse, the cost of each
iteration is O(n) and the overall cost is O(`n) which is
equal to the asymptotic cost of our algorithm.
A further, computationally-appealing option is to
approximate F (·) by means of a rational function g(x)
defined as the ratio of two polynomials, pν(x) and qµ(x),
of degree ν and µ, respectively [52], [54]. In this way, the
problem of calculating F (A) × b is equivalent to evaluate
g(A) × b which should be hopefully easier to calculate. If
we denote as σ1, σ2, . . . σµ the poles of g(x), i.e, the roots of
qµ(x), then we introduce the following definition:
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Dataset Nodes Edges λ1 Year
1 Facebook Friendship 63 731 817 035 132.57 2009
2 DBLP co-authorship 317 080 1 049 866 115.85 2012
3 Youtube friendship 1 134 890 2 987 624 210.40 2012

TABLE 1
Key features of the datasets employed in our experimental tests. For

each dataset we report the number of nodes, the number of edges, the
spectral radius and the year in which data were collected.

Definition 2 (Rational Krylov Subspace). Let A ∈ Rn×n
matrix and let b ∈ Rn. The rational Krylov subspace of
dimension t associated with A and b is defined as the

K?t (A,b) = span{b, (A−σ1I)−1×b, . . . , (A−σtI)−1×b}

Rational Krylov subspace methods are often more ac-
curate than standard ones but they require to solve, at
each iteration, a linear system; such a task is equivalent to
computing terms of the form (A − σiI)−1 × b and such a
procedure is usually much more expensive than standard
Krylov methods.
Theorems 2 and 3 indicate that our procedure is capable
of achieving an exponentially decay error: consequently, we
are able to achieve the accuracy we wish with a relatively
small number of iterations.

6 EXPERIMENTAL VALIDATION

In this section we report on the experiments we carried
out to assess the effectiveness of geometric and exponential
potential gain on real-world datasets. Our experiments aim
at answering the following questions:

Q1 : How sensitive are our approximations of the geo-
metric and the exponential potential gain w.r.t. the
length k of walks?

Q2 : Do our algorithms scale up to real graphs?
Q3 : How do the geometric and exponential potential

gain correlate with other, popular, centrality metrics
such as Degree, Katz, PageRank and Eigenvector
Centrality? Are the aforementioned centrality met-
rics good candidates for assessing the navigability
of a node in the sense defined in this paper?

To answer these questions, we considered three large,
real datasets, taken from [55], whose features are described
in Table 1. The first dataset – FACEBOOK – is a sample of the
Facebook user connections graph: in it, a node represents a
Facebook user and an edge represents a friendship between
two users. The second dataset, called DBLP, is a sample
of the DBLP computer science bibliography: authors corre-
spond to nodes and two nodes are linked by an edge if the
corresponding authors have published at least one paper
together. Finally, YOUTUBE, is a sample of the friendship
network between YouTube users.

We implemented our algorithms in Python (with the
Scipy module) on a hardware platform with the following
features: AMD Ryzen 5 1600 CPU, 16GB RAM and Ubuntu
17.10.
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scale for DBLP

6.1 The impact of walk length on the approximation of
geometric/exponential potential gains

The aim of this section is to answer question Q1 and,
specifically, to study the quality of the approximation of the
geometric and exponential potential gain in relation to walk
length. Ideally, one would like geometric (resp., exponential)
potential gain values to stabilize already for small values of
k. It would mean that, for any node i, it suffices to consider
nodes located a few hops away from i to get a satisfactory
approximation of its geometric (resp., exponential) potential
gain.

To perform our study we experimentally studied the
decrease of εg(k) and εe(k) as function of k. We start by
discussing the results for the geometric potential gain, in
Figures 1, 2 and 3.

A notable feature of our algorithm is that conver-
gence is very fast, independently of the size and nature
of the dataset under investigation. For instance, with the
YOUTUBE dataset– the largest tested here – walks up to
length k = 20 are sufficient to achieve εg(k) lesser than
10−6.

A further observation is that, for a fixed value of k,
the larger δ, the slower the convergence of εg(k) to zero,
and that our results perfectly agree with the statement of
Theorem 2.
It is also instructive to study how εg(k) varies across
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datasets: for any value of δ, εg(k) for DBLP converges to
zero faster than it does for FACEBOOK, despite the fact that
DBLP is about five times larger than FACEBOOK (see Figures
2 and 3). It is also possible to appreciate small differences in
the slopes of straight lines plotting log εg(k) as a function of
k.

The important finding described above is mirrored by
a similar result for the exponential potential gain, as illus-
trated by Figure 4. Once again we notice that graph size
has a small impact on the convergence of our algorithm.
From Theorem 2, in fact, λ1 is the dominant parameter: the
smaller λ1, the faster the algorithm converges to the true
value of the exponential potential gain. Notice also how
the exponential potential gain needs walks that are longer
than those needed for the geometric potential gain: we need
walks up to length 169, 189 and 279 for DBLP, FACEBOOK
and YOUTUBE, respectively.
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Fig. 4. Values of εe(k) as a function of k for the FACEBOOK, DBLP, and
YOUTUBE datasets plotted in semi-logarithmic scale.

The main results of our experimental validation can be
now summarized as follows: (i) For the geometric potential
gain, small values of δ should be used. Walks of length
between 4 and 10 are sufficient to get a very good ap-
proximation. (ii) The time needed to compute the geometric
and the exponential potential gain does not depend on the
graph size but it only depends on λ1: the larger λ1 the more
dense/connected the graph is and, thus, a larger number
of walks is needed to achieve a good approximation. (iii)
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Fig. 5. Computation times vs. δλ1 for the geometric potential gain

Computing the exponential potential gain is slower than
computing geometric potential gain and, experimentally, it
might require walks whose length is ten times larger. This
finding suggests that we should consider as future work to
introduce a decay factor of the form δk

k! to penalize long
walks.

6.2 Scalability Analysis

In this section we address question Q2 by studying how
our algorithms scale over FACEBOOK, DBLP and YOUTUBE.
We measured the execution times as a function of the walk
length k. In particular, for the geometric potential gain we
were concerned with understanding how δ affected the
performance of our approach. The results we obtained are
plotted in Figure 5.

Clearly, an increase of δ yields an increase in compu-
tational time. This is due to the fact that larger values of
δ force our algorithm to explore the graph in more depth.
Such effect can be clearly seen in Figure 5; the increase is
approximately linear in δ so we can conclude that the com-
putational impact of increasing δ is limited. Of course, larger
datasets still require greater computational resources since
we will have multiply the adjacency matrix A by a vector.
However, for sparse adjacency matrices the calculation is
still fast, e.g., it takes less than one second for the three
datasets considered here.

Table 2 reports the computation times of the exponen-
tial potential gain. Again we may notice how exponential
potential gain is computationally more demanding than the
geometric potential gain as we need many more iterations.
In addition, notice how the computational time for DBLP
is about three times slower than for FACEBOOK despite the
fact that the latter needed 20 iterations more. Such difference
depends on the difference in size between the two datasets.

Dataset Time (sec.)
Facebook 0.525
DBLP 1.568
YouTube 11.878

TABLE 2
Computational times for the exponential potential gain
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Fig. 6. Spearman’s ρ correlation between DEG, EPG, EC and PR on
the FACEBOOK dataset.

Fig. 7. Spearman’s ρ correlation between DEG, EPG, EC and PR on
the DBLP dataset.

6.3 Relation with other centrality metrics

In this section we investigate how the geometric and the
exponential potential gain are correlated with some popular
centrality metrics. Specifically, we compared the Geometric
(GPG) and the Exponential Potential Gain (EPG) with De-
gree Centrality (DEG), Eigenvector Centrality (EC), PageR-
ank (PR) and Katz Centrality (Katz). As for PR, we fixed
the damping factor equal to 0.85. For a fair comparison,
we choose the same value of δ forGPG and Katz. We used
Spearman’s ρ coefficient to calculate the correlation between
the ranked lists of nodes that each of these centrality metrics
generates on the datasets above.

Let us now analyse how DEG, PR and EC correlate each
other and how they are related with EPG. (EPG is discussed
later as it does not depend on any parameter). The main
findings of our analysis are plotted in Figures 6 - 8 and can
be summarized as follows:

1) DEG and PR are strongly positively correlated: we
found Spearman’s ρ correlation coefficients ranging
from 0.84 (on YOUTUBE) to 1 (on FACEBOOK). Such

Fig. 8. Spearman’s ρ correlation between DEG, EPG, EC and PR on
the YOUTUBE dataset.

correlation is well-known in the literature because,
in the case of undirected graphs, the PR scores of
nodes are almost proportional to their degrees.

2) On FACEBOOK EPG and EC are highly correlated
while at the same time display a perfect negative
correlation on the other two datasets. This result is
related to the property that the EPG of a node is
always proportional to its communicability, as we
have shown in Section 4.2. When the spectral gap
between the largest and the second-largest eigen-
value, i.e., λ1 − λ2, is large, then communicability
is, up to a constant factor, exactly equal to EC;
see [22] for a detailed proof. As a consequence, for
graphs with a large spectral gap the EPG of a node
is proportional to its EC; this explaining the large
correlation values we observed in our tests.

3) The topological features of the given graph have a
huge impact on ρ: for instance, DEG and EC are pos-
itively correlated on FACEBOOK (ρ = 0.52) but they
are negatively correlated on DBLP and YOUTUBE.
Analogously, EPG and PR are positively correlated
on FACEBOOK and YOUTUBE (ρ = 0.64 and 0.44,
respectively) but almost unrelated on DBLP.

Let us now consider the correlation between DEG, EC,
PR and EPG and GPG; such correlation varies upon different
choices of the parameter δ. Figures 9, 10 and 11, show how
ρ varies as function of δ? = δ/δmax, where δmax = 1

λ1
. We

can draw the following conclusions:

1) The GPG and Katz have an almost perfect correla-
tion, as one would expect (red line). In fact, GPG and
Katz differ by a multiplicative and constant factor
given by the degree.

2) We note some interesting facts about the correlation
of GPG and EPG (orange line). Firstly, if δ? increases,
then we generally have a (sometimes slight) increase
in ρ. The correlation coefficient ρ is always positive
but it ranges from 0.45 in DBLP to 1 (on FACEBOOK
and YOUTUBE).
To explain the differences emerging across our
datasets we observe the difference of the geometric
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Fig. 9. Spearman’s ρ correlation between GPG and DEG, EC, PR, Katz
as function of δ? on the FACEBOOK dataset.

and the exponential potential gain of a node i de-
pends on λi

1−λi − λie
λi (see Equation 13). Therefore,

on the basis of the distribution of eigenvalues, we
conclude that for some datasets GPG and EPG might
be strongly and positively correlated while they are
negatively correlated elsewhere.

3) As for the correlation between EC and GPG (green
line), we find a positive correlation on FACEBOOK
and a negative correlation on DBLP and YOUTUBE.
In fact, for a fixed node, the GPG is proportional
to the Katz score of that node; if δ? → 1, then the
Katz score converges to EC and, in this case, the
GPG of a node is proportional to its EC. Similar
considerations hold for GPG and PR (magenta line).

4) Consider now DEG (see blue line). An increase in δ?

generally causes a decrease in ρ, with the exception
of the DBLP dataset where the correlation between
DEG and GPG is almost perfect. As expected, when
δ? → 0 the GPG is well approximated by DEG. Vice
versa, as δ? increases, walks of length greater than
one increasingly contribute to GPG, thus amplifying
the difference between DEG and GPG.

The detailed analysis of the experimental results strongly
suggests that the potential gain is a general framework,
which unifies some of the main walk-based centralities.

7 CONCLUSIONS

We have introduced the potential gain, a general framework
which captures the ability of a node to act as a target point
for navigation within a graph and unifies several walk-
based centrality indices in graphs. We have defined two
variants of the potential gain, the geometric and exponential
potential gain and proposed two iterative algorithms for
each of them. The convergence of the algorithms was also
proved; their scalability was tested against three real large
datasets.

The present results provide a starting point to a better
understanding of the theoretical properties of the potential
gain. Previous research has sought to axiomatise centrality

Fig. 10. Spearman’s ρ correlation between GPG and DEG, EC, PR, Katz
as function of δ? on the DBLP dataset.

Fig. 11. Spearman’s ρ correlation between GPG and DEG, EC, PR, Katz
as function of δ? on the YOUTUBE dataset.

and its metrics, and it would be extremely interesting to
study which of these axioms are satisfied by the Potential
gain. For instance, Boldi and Vigna [8] proposed three
axioms, called size, density and score monotonicity, which may
play a role in axiomatising the Potential Gain itself.

Another topic for future work is investigation of the
relationship between network robustness and network nav-
igability. To this end, we intend to design an experiment
in which graph nodes are ranked on the basis of their
geometric/exponential potential gain and then are pro-
gressively removed from the graph. Basic properties about
graph topology, such as the number and size of connected
components shall be re-evaluated upon node deletion. We
also plan to study how adding edges can increase the
geometric/exponential potential gain of a target group of
nodes.
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