
Citation: Crupi, M.; Ficarra, A.

Cohen–Macaulayness of Vertex

Splittable Monomial Ideals.

Mathematics 2024, 12, 912.

https://doi.org/10.3390/

math12060912

Academic Editors: Philippe Gimenez,

Ignacio García Marco and Eduardo

Sáenz De Cabezón

Received: 8 February 2024

Revised: 12 March 2024

Accepted: 16 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Cohen–Macaulayness of Vertex Splittable Monomial Ideals
Marilena Crupi *,†,‡ and Antonino Ficarra †,‡

Department of Mathematics and Computer Sciences, Physics and Earth Sciences, University of Messina,
Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; antficarra@unime.it
* Correspondence: mcrupi@unime.it
† These authors contributed equally to this work.
‡ These authors are members of GNSAGA of INDAM (Italy).

Abstract: In this paper, we give a new criterion for the Cohen–Macaulayness of vertex splittable ideals,
a family of monomial ideals recently introduced by Moradi and Khosh-Ahang. Our result relies on a
Betti splitting of the ideal and provides an inductive way of checking the Cohen–Macaulay property.
As a result, we obtain characterizations for Gorenstein, level and pseudo-Gorenstein vertex splittable
ideals. Furthermore, we provide new and simpler combinatorial proofs of known Cohen–Macaulay
criteria for several families of monomial ideals, such as (vector-spread) strongly stable ideals and
(componentwise) polymatroidals. Finally, we characterize the family of bi-Cohen–Macaulay graphs
by the novel criterion for the Cohen–Macaulayness of vertex splittable ideals.

Keywords: minimal resolutions; graded Betti numbers; Betti splittings; Cohen–Macaulay ideals;
vertex splittable ideals
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1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring with coefficients in a field K. In [1], Moradi
and Khosh-Ahang introduced the notion of a vertex splittable ideal, an algebraic analog of the
vertex decomposability property of a simplicial complex. In more detail, let ∆ be a simplicial
complex and let F be a face of ∆. One can associate with ∆ two special simplicial complexes:
the deletion of F, defined as del∆(F) = {G ∈ ∆ : F ∩ G = ∅}, and the link of F, defined
as lk∆(F) = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆}. For F = {x}, one sets del∆({x}) = del∆(x)
and lk∆({x}) = lk∆(x). The notion of vertex decomposition was introduced by Provan
and Billera [2] for a pure simplicial complex, and afterwards, it was extended to nonpure
complexes by Bjor̈ner and Wachs [3]. A vertex decomposable simplicial complex ∆ is recursively
defined as follows: ∆ is a simplex or ∆ has some vertex x such that (1) both del∆ x and lk∆ x are
vertex decomposable, and (2) there is no face of lk∆ x which is also a facet of del∆ x. An ideal
I of S is called vertex decomposable if I = I∆, with ∆ being a vertex decomposable simplicial
complex. We recall that I∆ is the Stanley–Reisner ideal of ∆ over K, that is, the ideal of S
generated by the squarefree monomial xF = ∏xj∈F xj, for all F ∈ ∆. It is well-known that
for a simplicial complex ∆, the following implications hold: vertex decomposable ⇒ shellable ⇒
sequentially Cohen–Macaulay (see, for instance, [4]). Moreover, there exist characterizations of
shellable, sequentially Cohen–Macaulay and Cohen–Macaulay complexes ∆ via the Alexander
dual ideals I∆∨ (see [5] [Theorem 1.4], [6] [Theorem 2.1], [7] [Theorem 3], respectively), where
∆∨ = {X \ F : F /∈ ∆} is the Alexander dual simplicial complex associated with ∆.

Inspired by the above results, in [1], Moradi and Khosh-Ahang asked and solved the
following question: Is it possible to characterize a vertex decomposable simplicial complex ∆ by
means of I∆∨? For this aim, they introduced the notion of the vertex splittable monomial
ideal (Definition 1) and proved that a simplicial complex ∆ is vertex decomposable if and
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only if I∆∨ is a vertex splittable ideal [1] [Theorem 2.3]. Moreover, the authors in [1] proved
that a vertex splittable ideal has a Betti splitting (see Definition 2 and Theorem 1).

Determining when a monomial ideal is Cohen–Macaulay is a fundamental and chal-
lenging problem in commutative algebra. Motivated by this and the results of [1], in this
paper, we tackle the Cohen–Macaulayness of vertex splittable ideals. Our main contribution
(Theorem 2) is a new characterization of the Cohen–Macaulayness of a vertex splittable
ideal in terms of a Betti splitting. This new criterion provides a neat and effective inductive
strategy to determine when a vertex splittable ideal is Cohen–Macaulay.

This article is organized as follows. In Section 2.2, we recall relevant definitions and
auxiliary results that we will use later on. In Section 3, we state a new criterion for the
Cohen–Macaulayness of vertex splittable ideals (Theorem 2). As a consequence, we obtain
characterizations for Gorenstein, level and pseudo-Gorenstein Cohen–Macaulay vertex
splittable ideals (Corollary 1). The results in this section will be used in the subsequent
section (Section 4), where we recover some interesting Cohen–Macaulay classifications of
families of monomial ideals: (vector-spread) strongly stable ideals and (componentwise)
polymatroidal ideals. Moreover, a new characterization of bi-Cohen–Macaulay graphs is
presented (Theorem 6). Finally, Section 5 contains our conclusions and perspectives.

2. Preliminaries

In this section, we recall the basic notions and notations we will use in the body of the
paper [1,8].

Let S = K[x1, . . . , xn] be a polynomial ring in n variables over a field K with the
standard grading, i.e., each deg xi = 1. For any finitely generated graded S-module M,
there exists the unique minimal graded free S-resolution

F : 0 → Fp
dp−−→ Fp−1

dp−1−−→ · · · d2−−→ F1
d1−−→ F0

d0−−→ M → 0,

with Fi =
⊕

j S(−j)βi,j . The numbers βi,j = βi,j(M) are called the graded Betti numbers
of M, while βi(M) = ∑j βi,j(M) are called the total Betti numbers of M. Recall that the
projective dimension and the Castelnuovo–Mumford regularity of M are defined as follows:

pd M = max{i : βi(M) ̸= 0},

reg M = max
{

j − i : βi,j(M) ̸= 0, for some i and j
}

.

More precisely, the projective dimension pd(M) is the length of a minimal graded free
resolution of the finitely generated graded S-module M.

2.1. Cohen–Macaulay Property

In this subsection, we introduce the notion of the Cohen–Macaulay ring and some
related notions.

Firstly, let m = (x1, . . . , xn) be the unique maximal homogeneous ideal of S, and let M
be a finitely generated graded S-module M.

A sequence f = f1, . . . , fd of homogeneous elements of m is called an M-sequence if the
following criteria are met:

(1) the multiplication map M/( f1, . . . , fi−1)M
fi−→ M/( f1, . . . , fi)M is injective for all i.

(2) M/(f)M ̸= 0.

The length of a maximal homogeneous M-sequence is called the depth of M. By the
Auslander–Buchsbaum formula (see, for instance, [9]), we have

depth M + pd M = n. (1)

A finitely generated graded S-module M is called a Cohen–Macaulay module (CM
module for short) if depth M = dim M, where dim M is the Krull dimension of M [9]. Let I
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be a graded ideal of S; the graded ring S/I is said to be CM if S/I, viewed as an S-module,
is CM. The graded ideal I is called a CM ideal.

Let I ⊂ S be a graded CM ideal, and let p = pd(S/I) be the projective dimen-
sion of S/I. The Cohen–Macaulay type (CM type for short) of S/I is defined as the in-
teger CM-type(S/I) = βp(S/I). It is well-known that S/I is Gorenstein if and only if
CM-type(S/I) = 1. We say that I is Gorenstein if S/I is such.

By [10] [Corollary 2.17], the graded Betti number βp,p+reg S/I(S/I) is always nonzero.
We say that S/I is level if and only if βp(S/I) = βp,p+reg S/I(S/I). Following [11], we say
that S/I is pseudo-Gorenstein if and only if βp,p+reg S/I(S/I) = 1. Hence, S/I is Gorenstein
if and only if it is both level and pseudo-Gorenstein.

For more details on this subject, see, for instance, [9,10,12,13].

2.2. Vertex Splittable Monomial Ideals

In this subsection, we discuss the notions of vertex splittable monomial ideals and of
Betti splittings.

Let I ⊂ S be a monomial ideal. We denote by G(I) the unique minimal monomial
generating set of I. We recall the following notion [1] [Definition 2.1].

Definition 1. The ideal I is called vertex splittable if it can be obtained by the following recur-
sive procedure:

(i) If u is a monomial and I = (u), I = 0 or I = S, then I is vertex splittable.

(ii) If there exists a variable xi and vertex splittable ideals I1 ⊂ S and I2 ⊂ K[x1, . . . , xi−1,
xi+1, . . . , xn] such that I = xi I1 + I2, I2 ⊆ I1 and G(I) is the union of G(xi I1) and G(I2),
then I is vertex splittable.
In this case, we say that I = xi I1 + I2 is a vertex splitting of I and xi is a splitting vertex of I.

Remark 1. One can observe that while in general, the Cohen–Macaulayness of S/I depends
on the field K ([9] (p. 236)), if I is a vertex splittable ideal, then this is not the case. Indeed,
the Krull dimension of S/I, where I is a monomial ideal, does not depend on K. Furthermore, by [1]
[Theorem 2.4], vertex splittable ideals have linear quotients. Hence, depth S/I is also independent
from K.

In [8], the next concept was introduced.

Definition 2. Let I, J, L be monomial ideals of S such that G(I) is the disjoint union of G(J) and
G(L). We say that I = J + L is a Betti splitting if

βi,j(I) = βi,j(J) + βi,j(L) + βi−1,j(J ∩ L), for all i, j. (2)

When I = J + L is a Betti splitting, important homological invariants of the ideal I are
related to the invariants of the smaller ideals J and L. Indeed, in [8] [Corollary 2.2], it is
proved that if I = J + L is a Betti splitting, then

pd I = max{pd J, pd L, pd(J ∩ L) + 1}. (3)

We quote the next crucial result from [1].

Theorem 1 ([1] [Theorem 2.8]). Let I = xI1 + I2 be a vertex splitting for the monomial ideal I of
S. Then I = xI1 + I2 is a Betti splitting.

For recent applications of vertex splittings, see the papers [14,15].
We close this subsection by introducing two families of monomial ideals: the t-spread

strongly stable ideals and the (componentwise) polymatroidal ideals. We will show in
Section 4 that they are families of vertex splittable ideals (see Propositions 1 and 4.2).
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A very meaningful class of monomial ideals of the polynomial ring S is the class of
strongly stable monomial ideals. They are fundamental in commutative algebra, because if K
has the characteristic zero, then they appear as generic initial ideals [16]. In [17], the concept
of a strongly stable ideal was generalized to that of the t-spread strongly stable ideal.

Let d ≥ 2, t = (t1, . . . , td−1) ∈ Zd−1
≥0 be a (d − 1) tuple, and let u = xi1 · · · xiℓ ∈ S be a

monomial, with 1 ≤ i1 ≤ · · · ≤ iℓ ≤ n and ℓ ≤ d. We say that u is t-spread if

ij+1 − ij ≥ tj for all j = 1, . . . , ℓ− 1.

A monomial ideal I ⊂ S is called t-spread if G(I) consists of t-spread monomials.
A t-spread ideal I ⊂ S is called t-spread strongly stable if for all t-spread monomials
u ∈ I and all i < j such that xj divides u and xi(u/xj) is t-spread, then xi(u/xj) ∈ I.
For t = (0, . . . , 0) and t = (1, . . . , 1), we obtain the strongly stable and the squarefree
strongly stable ideals [13].

Another fundamental family of monomial ideals of S is that of the so-called polyma-
troidal ideals.

Let I ⊂ S be a monomial ideal generated in a single degree. We say that I is polyma-
troidal if the set of the exponent vectors of the minimal monomial generators of I is the set
of bases of a discrete polymatroid [13].

Polymatroidal ideals are characterized by the exchange property [13] [Theorem 2.3].
For a monomial u ∈ S, let

degxi
(u) = max{j : xj

i divides u}.

Lemma 1. Let I ⊂ S be a monomial ideal generated in a single degree. Then I is polymatroidal
if and only if the following exchange property holds: for all u, v ∈ G(I) and all i such that
degxi

(u) > degxi
(v), there exists j with degxj

(u) < degxj
(v) such that xj(u/xi) ∈ G(I).

An arbitrary monomial ideal I is called componentwise polymatroidal if the component
I⟨j⟩ is polymatroidal for all j. Here, for a graded ideal J ⊂ S and an integer j, we denote by
J⟨j⟩ the graded ideal generated by all polynomials of degree j belonging to J.

Polymatroidal ideals are vertex splittable [18] [Lemma 2.1]. In Proposition 4.2, we
prove the analogous case for componentwise polymatroidal ideals.

3. A Cohen–Macaulay Criterion

In this section, we introduce a new criterion for the Cohen–Macaulayness of vertex
splittable ideals. As a result, we obtain characterizations for Gorenstein, level and pseudo-
Gorenstein vertex splittable ideals.

The main result in the section is the following.

Theorem 2. Let I ⊂ S be a vertex splittable monomial ideal such that I ⊆ m2, and let xi be a
splitting vertex of I. Then, the following conditions are equivalent:

(a) I is CM.
(b) (I : xi), (I, xi) are CM, and depth S/(I : xi) = depth S/(I, xi).

Proof. We may assume i = 1. Let I = x1 I1 + I2 be the vertex splitting of I. Since
I = xi I1 + I2 is a Betti splitting (Theorem 1), then Formula (3) together with the Auslander–
Buchsbaum Formula (1), implies

depth S/I = min{depth S/(x1 I1), depth S/I2, depth S/(x1 I1 ∩ I2)− 1}.
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Notice that depth S/x1 I1 = depth S/I1 and x1 I1 ∩ I2 = x1(I1 ∩ I2) = x1 I2, be-
cause I2 ⊆ I1 and x1 does not divide any minimal monomial generator of I2. Consequently,
depth S/(x1 I1 ∩ I2) = depth S/(x1 I2) = depth S/I2, and so

depth S/I = min{depth S/I1, depth S/I2 − 1}. (4)

We have the short exact sequence

0 → S/(I : x1) → S/I → S/(I, x1) → 0.

Notice that (I : x1) = (x1 I1 + I2) : x1 = (x1 I1 : x1) + (I2 : x1) = I1 + I2 = I1,
because x1 does not divide any minimal monomial generator of I2 and I2 ⊆ I1. Since
I ⊆ m2, we have x1 /∈ I. Thus, I1 ̸= S. Moreover, (I, x1) = (x1 I1 + I2, x1) = (I2, x1), and so
we obtain the short exact sequence

0 → S/I1 → S/I → S/(I2, x1) → 0.

Hence, dim S/I = max{dim S/I1, dim S/(I2, x1)}. Since S/(I2, x1) ∼= K[x2, . . . , xn]/I2,
we obtain that dim S/(I2, x1) = dim K[x2, . . . , xn]/I2 = dim S/I2 − 1. Hence,

dim S/I = max{dim S/I1, dim S/I2 − 1}. (5)

(a)⇒(b) Suppose that I is CM. By Equations (4) and (5), we have

dim S/I ≥ dim S/I1 ≥ depth S/I1 ≥ depth S/I = dim S/I,

and
dim S/I ≥ dim S/I2 − 1 ≥ depth S/I2 − 1 ≥ depth S/I = dim S/I.

Hence, S/I1, S/I2 are CM and depth S/I1 = depth S/I = depth S/I2 − 1.

(b)⇒(a) Conversely, assume that S/I1 and S/I2 are CM and that
depth S/I1 = depth S/I2 − 1. Then,

min{depth S/I1, depth S/I2 − 1} = depth S/I1,

and
max{dim S/I1, dim S/I2 − 1} = dim S/I1.

Equations (4) and (5) imply that depth S/I = depth S/I1 = dim S/I1 = dim S/I and
so S/I is CM.

The next important vanishing theorem due to Grothendieck [9] [Theorem 3.5.7] will
be crucial to characterize Gorenstein, level and pseudo-Gorenstein vertex splittable ideals.
If (R,m, k) is a Noetherian local ring and M a finitely generated R-module, we denote by
Hi

m(M) the ith local cohomology module of M with support on m [9].

Theorem 3. Let (R,m, k) be a Noetherian local ring and M a finitely generated R-module of depth
t and dimension d. Then

(a) Hi
m(M) = 0 for i < t and i > d.

(b) Ht
m(M) ̸= 0 and Hd

m(M) ̸= 0.

Corollary 1. Let I ⊂ S be a vertex splittable CM ideal such that I ⊆ m2, and let I = xi I1 + I2 be
a vertex splitting of I. Then, the following statements hold:

(a) CM-type(S/I) = CM-type(S/I1) + CM-type(S/I2).
(b) S/I is Gorenstein if and only if I is a principal ideal.
(c) S/I is level if and only if S/I1 and S/I2 are level and reg S/I1 + 1 = reg S/I2.
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(d) S/I is pseudo-Gorenstein if and only if one of the following occurs: Either S/I1 is pseudo-
Gorenstein and reg S/I1 + 1 > reg S/I2 or S/I2 is pseudo-Gorenstein and reg S/I1 + 1 <
reg S/I2.

(e) Hdim S/I
m (S/I)/Hdim S/I

m (S/(I : xi)) ∼= Hdim S/I
m (S/(I, xi)).

Proof. We may assume that xi = x1. Since S/I is CM, Theorem 2 guarantees that S/I1, S/I2
are CM and depth S/I1 = depth S/I2 − 1. Hence, pd S/I1 = pd S/I2 + 1. Let p = pd S/I1.
In particular, we have p = pd S/I. Now, by [1] [Remark 2.10], we have for all j

βp,p+j(S/I) = βp,p+j−1(S/I1) + βp,p+j(S/I2) + βp−1,p−1+j(S/I2).

Since pd S/I2 = p − 1, the above formula simplifies to

βp,p+j(S/I) = βp,p+j−1(S/I1) + βp−1,p−1+j(S/I2). (6)

From this formula, we deduce that

reg S/I = max{reg S/I1 + 1 reg S/I2}.

We obtain the following:
(a) The assertion follows immediately from (6).
(b) In the proof of Theorem 2 we noted, that I1 ̸= 0, S. Thus, CM-type(S/I1) ≥ 1.

By (a), it follows that I is Gorenstein if and only if I1 is Gorenstein, and I2 = 0. Using
Formula (4) and Theorem 2 (b),we obtain depth S/I = n− 1. Since depth S/I = n−pd S/I,
we have pd S/I = 1, equivalent to saying that I is a principal ideal.

(c) Assume that S/I is level. Then βp,p+j(S/I) ̸= 0 only for j = reg S/I. Since
reg S/I = max{reg S/I1 + 1, reg S/I2} and βp,p+reg S/I1(S/I1), βp−1,p−1+reg S/I2(S/I2) are
both nonzero, we deduce from Formula (6) that reg S/I1 + 1 = reg S/I2 and that S/I1, S/I2
are level. Conversely, if reg S/I1 + 1 = reg S/I2 and S/I1, S/I2 are level, we deduce from
Formula (6) that S/I is level.

(d) Assume that S/I is pseudo-Gorenstein. Then βp,p+reg S/I(S/I) = 1. Since
reg S/I = max{reg S/I1 + 1, reg S/I2} and βp,p+reg S/I1 (S/I1), βp−1,p−1+reg S/I2 (S/I2)
are both nonzero, we deduce from Formula (6) that either S/I1 is pseudo-Gorenstein
and reg S/I1 + 1 > reg S/I2 or S/I2 is pseudo-Gorenstein and reg S/I1 + 1 < reg S/I2.
The converse can be proved in a similar way.

(e) Since S/I is CM, Theorem 2 implies that S/(I : xi) and S/(I, xi) are CM and
dim S/(I : xi) = dim S/(I, xi) = dim S/I. As shown in the proof of Theorem 2, we have
the short exact sequence

0 → S/(I : xi) → S/I → S/(I, xi) → 0.

This sequence induces the long exact sequence of local cohomology modules:

· · · → Hi−1
m (S/(I, xi)) → Hi

m(S/(I : xi)) → Hi
m(S/I) → Hi

m(S/(I, xi)) → · · · .

Let M be a finitely generated CM S-module. By Theorem 3, Hi
m(M) ̸= 0 if and only if

i = depth M = dim M. Thus, the above exact sequence simplifies to

0 → Hdim S/I
m (S/(I : xi)) → Hdim S/I

m (S/I) → Hdim S/I
m (S/(I, xi)) → 0,

and the assertion follows.

Remark 2. It is clear that any ideal I ⊂ S generated by a subset of the variables of S is Gorenstein
and vertex splittable. Hence, Corollary 1 implies immediately that the only Gorenstein vertex
splittable ideals of S are the principal monomial ideals and the ideals generated by a subset of
the variables.
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4. Families of Cohen–Macaulay Vertex Splittable Ideals

In this section, by using Theorem 2, we recover in a simple and very effective manner
Cohen–Macaulay criteria for several families of monomial ideals. We use the fact that if
I = xi I1 + I2 is a vertex splitting, then I1, I2 are vertex splittable ideals that, in good cases,
belong again to a given family of vertex splittable monomial ideals and to which one may
apply inductive arguments.

The first two families were introduced in Section 2.2.

4.1. (Vector-Spread) Strongly Stable Ideals

In [19] [Theorem 4.3], we classified the CM t-spread strongly stable ideals. Here, we
recover this result using Theorem 2.

Proposition 1. Let I ⊂ S be a t-spread strongly stable ideal such that I ⊆ m2. Then

(a) I is vertex splittable;
(b) I is CM if and only if there exists ℓ ≤ d such that

xn−(t1+t2···+tℓ−1)
xn−(t2+t3···+tℓ−1)

· · · xn−tℓ−1 xn ∈ G(I).

Proof. (a) We proceed by double induction on the number of variables n and the highest
degree d of a generator u ∈ G(I). If n = 1, then I is a principal ideal whether or not
the integer d is, and so it is vertex splittable. Suppose n > 1. If d = 1, then I is an
ideal generated by a subset of the variables and it is clearly vertex splittable. Suppose
d > 1. We can write I = x1 I1 + I2, where G(I1) = {u/x1 : u ∈ G(I), x1 divides u} and
G(I2) = G(I) \ G(x1 I1). It is immediately clear that I1 ⊂ S is (t2, . . . , td−1)-spread strongly
stable and that I2 is a t-spread strongly stable ideal of K[x2, . . . , xn]. By induction on n and
d, we have that I1 and I2 are vertex splittable. Hence, so is I.

(b) We may suppose that xn divides some minimal generator of I. Otherwise, we
can consider I as a monomial ideal of a smaller polynomial ring. If I is principal, then
we have I = (u) = (x1x1+t1 · · · x1+t1+···+tℓ−1), with n = 1 + t1 + · · · + tℓ−1, and ℓ ≤ d.
Otherwise, if I is not principal, then pd S/I > 1, and we can write I = x1 I1 + I2 as above.
By Theorem 2, I2 is CM and pd S/I2 = pd S/I + 1 > 1. Thus, I2 ̸= 0. Hence, by induction,
there exists ℓ ≤ d such that

xn−(t1+···+tℓ−1)
· · · xn−tℓ−1 xn ∈ G(I2).

Since G(I2) ⊂ G(I), the assertion follows.

4.2. Componentwise Polymatroidal Ideals

In this subsection, we prove that componentwise polymatroidal ideals are also ver-
tex splittable.

A longstanding conjecture of Bandari and Herzog predicted that componentwise
polymatroidal ideals have linear quotients [20]. This conjecture was solved recently in [21]
[Theorem 3.1]. Inspecting the proof of this theorem, we obtain the following:

Proposition 2. Componentwise polymatroidal ideals are vertex splittable.

Proof. Let I ⊂ S be a componentwise polymatroidal ideal. We prove the statement by
induction on |G(I)|. We may assume that all variables xi divide some minimal mono-
mial generator of I. Moreover, it holds that for any variable xi which divides a min-
imal monomial generator of minimal degree of I, we can write I = xi I1 + I2, where
G(xi I1) = {u ∈ G(I) : xi divides u}, G(I2) = G(I) \ G(xi I1) and the following properties
are satisfied (see the proof of [21] [Theorem 3.1]):
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(i) I2 ⊆ I1 as monomial ideals of S.
(ii) xi I1 is a componentwise polymatroidal ideal of S.
(iii) I2 is a componentwise polymatroidal ideal of K[x1, . . . , xi−1, xi+1, . . . , xn].

By induction, it follows that both I1 and I2 are vertex splittable. Hence, so is I.

We have the following corollary.

Corollary 2. Let I ⊂ S be a componentwise polymatroidal ideal and let xi be any variable dividing
some minimal monomial generator of least degree of I. Suppose that I ⊆ m2. Then, the following
conditions are equivalent.

(a) I is CM.
(b) (I : xi), (I, xi) are CM componentwise polymatroidal ideals and depth S/(I : xi) =

depth S/(I, xi).

Moreover, if I ⊂ S is a polymatroidal ideal generated in degree d ≥ 2 and xi is a variable dividing
some monomial of G(I), then (I : xi) is polymatroidal. And, in addition, if I is CM, then (I : xi) is
also CM.

Proof. It follows by combining the vertex splitting presented in the proof of Proposi-
tion with the facts (ii) and (iii) and with Theorem 2. For the last statement, see [22]
[Lemma 5.6].

At the moment, to classify all CM componentwise polymatroidal ideals seems a
hopeless task. For instance, let J be any componentwise polymatroidal ideal. Let ℓ be the
highest degree of a minimal monomial generator of J, and let d > ℓ be any integer. It is
easy to see that I = J +md is componentwise polymatroidal. Since dim S/I = 0, then S/I
is automatically CM.

Example 1. Consider the ideal I = (x2
1, x1x3, x2

3, x1x2x4, x2x3x4, x2
2x2

4) of S = K[x1, x2, x3, x4],
see [21] [Example 3.2]. One can easily check that I is a CM componentwise polymatroidal ideal.
Indeed, it is not difficult to check that I⟨j⟩ is polymatroidal for j = 0, 1, 2, 3, 4. For j ≥ 5,
the ideal I⟨j⟩ = mj−4 I⟨4⟩ is polymatroidal because it is the product of two polymatroidal ideals [16]
[Theorem 12.6.3]. Notice that in this case, dim S/I > 0.

Nonetheless, if I is generated in a single degree, that is, if I is actually polymatroidal,
then Herzog and Hibi [23] [Theorem 4.2] showed that I is CM if and only if (i) I is a
principal ideal, (ii) I is a squarefree Veronese ideal In,d, that is, it is generated by all squarefree
monomials of S of a given degree d ≤ n, or (iii) I is a Veronese ideal, that is, I = md for some
integer d ≥ 1.

The proof presented by Herzog and Hibi is based on the computation of
√

I. We
now present a different proof based on the criterion for Cohen–Macaulayness proved in
Theorem 2.

Corollary 3. A polymatroidal I ⊂ S is CM if and only if I is one of the following:

(a) A principal ideal.
(b) A Veronese ideal.
(c) A squarefree Veronese ideal.

For the proof, we need the following well-known identities. For the convenience of
the reader, we provide a proof that uses the vertex splittings technique.

Lemma 2. Let n, d ≥ 1 be positive integers. Then

pd S/md = n, and pd S/In,d = n + 1 − d.
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Proof. Since dim S/md = 0, we have depth S/md = 0 and pd S/md = n. If d = 1, then
In,1 = m and pd S/In,1 = n. If 1 < d ≤ n, we notice that In,d = xn In−1,d−1 + In−1,d is a
vertex splitting. By Formula (4) and induction on n and d,

pd S/In,d = min{pd S/In−1,d−1, pd S/In−1,d + 1}
= min{n − 1 + 1 − (d − 1), n − 1 + 1 − d + 1}
= n + d − 1,

as wanted.

We are now ready for the proof of Corollary 3.

Proof of Corollary 3. Let I be a polymatroidal ideal. We proceed by induction on |G(I)|.
If |G(I)| = 1, then I is principal and it is CM. Now, let |G(I)| > 1. If I = m, then I is CM.
Thus, we assume that I is generated in degree d ≥ 2, that all variables xi divide some
minimal monomial generator of I and that the greatest common divisor of the minimal
monomial generators of I is one. By Proposition 4.2 and Corollary 2, we have a vertex
splitting I = xi I1 + I2 for each variable xi I1 and I2 are CM polymatroidal ideals with
depth S/I1 = depth S/I2 − 1. Thus, pd S/I1 = pd S/I2 + 1. We may assume that xi = xn.

Since |G(xn I1)|, |G(I2)| are strictly less than |G(I)|, by induction, it follows that I1 is
either a principal ideal, a Veronese ideal or a squarefree Veronese ideal, and the same
possibilities occur for I2. We distinguish the various possibilities.

Case 1. Let I2 be a principal ideal, then pd S/I2 = 1. Thus, pd S/I1 = 2.

Under this assumption, I1 cannot be principal because pd S/I1 = 2 ≥ 1.
Assume that I1 is a Veronese ideal in m variables. Since all variables of S divide some

monomial of G(I) and I2 ⊂ I1, then I1 = md or I1 = nd, where m = (x1, . . . , xn) and
n = (x1, . . . , xn−1). Thus, m = n or m = n − 1. Lemma 2 implies m = pd S/I1 = 2. So,
n = 2 or n = 3.

If n = 2, then I = x2(x1, x2)
d−1 + (xd

1) = (x1, x2)
d, which is CM and Veronese, or

I = x2(xd−1
1 ) + (xd

1) = xd−1
1 (x1, x2), which is not CM.

Otherwise, if n = 3, then I = x3(x1, x2, x3)
d−1 + (u) or else I = x3(x1, x2)

d−1 + (u)
where u ∈ K[x1, x2] is a monomial of degree d. If d = 2, then one easily sees that only in
the second case and for u = x1x2 we have that I is a CM polymatroidal ideal, which is
the squarefree Veronese I3,2. Otherwise, suppose d ≥ 3. We may assume that x2

1 divides
u. In the first case, (I : x1) = x3(x1, x2, x3)

d−2 + (u/x1) is not principal, nor Veronese, nor
squarefree Veronese. Thus, by induction, (I : x1) is not a CM polymatroidal ideal, and by
Corollary 2, we deduce that I is also not CM. Similarly, in the second case, we see that
(I : x1) = x3(x1, x2)

d−1 + (u/x1), and thus also I, is not a CM polymatroidal ideal.
Assume now that I1 is a squarefree Veronese ideal in m variables. Then as argued in

the case 1.2 we have m = n or m = n − 1. Lemma 2 gives pd S/I1 = m + 1 − (d − 1) = 2.
Thus, d = m. Hence d = n or d = n − 1. So I = xn In,n−1 + (u) or I = xn In−1,n−2 + (u)
where u ∈ K[x1, . . . , xn−1] is a monomial of degree d = n in the first case or d = n − 1
in the second case. In the first case there is i such that x2

i divides u. Say i = 1. Then
(I : x1) = xn(In,n−1 : x1) + (u/x1) is not a principal ideal, neither a Veronese ideal,
neither a squarefree Veronese. Therefore, by induction (I : x1) we see that is not a CM
polymatroidal ideal, and by Corollary 2 I is also not a CM polymatroidal ideal. Similarly,
in the second case, if u = x1 · · · xn−1, then I = In,n−1 is a CM squarefree Veronese ideal.
Otherwise, x2

i , say with i = 1, divides u, and then, arguing as before, we see that I is not a
CM polymatroidal ideal.

Case 2. Let I2 be a Veronese ideal in m variables, then pd S/I2 = m ≤ n − 1.

Under this assumption, I1 cannot be principal because pd S/I1 = m + 1 > 1.
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Assume that I1 is a Veronese ideal in ℓ variables. Then ℓ = n or ℓ = n − 1. Lemma 2
implies that ℓ = pd S/I1 = pd S/I2 + 1 = m + 1. Thus, ℓ = n and m = n − 1 or ℓ = n − 1
and m = n − 2. In the first case, I = xnm

d−1 + (x1, . . . , xn−1)
d = md is a CM Veronese ideal.

In the second case, up to relabeling, we can write I = xn(x1, . . . , xn−1)
d−1 + (x1, . . . , xn−2)

d.
However, this ideal is not polymatroidal. Otherwise, by the exchange property (Lemma 1)
applied to u = xnxd−1

n−1 and v = xd
n−2, we should have xn−2xd−1

n−1 ∈ I, which is not the case.
Assume now that I1 is a squarefree Veronese ideal in ℓ variables.Then ℓ = n or

ℓ = n − 1. Lemma 2 implies that pd S/I1 = ℓ+ 1 − (d − 1) = ℓ+ 2 − d = pd S/I2 + 1 =
m + 1. Thus, either m = n + 1 − d or m = n − d. Up to relabeling, we have either
I = xn In,d−1 + (x1, . . . , xn+1−d)

d or I = xn In−1,d−1 + (x1, . . . , xn−d)
d. If d = 2, then these

ideals become either I = (x1, . . . , xn)2, which is a CM Veronese ideal, or
I = xn(x1, . . . , xn−1) + (x1, . . . , xn−2)

2, which is not polymatroidal because the exchange
property does not hold for u = xnxn−1 and v = x2

n−2 since xn−1xn−2 /∈ I. If d ≥ 3, then the
above ideals are not polymatroidal. In the first case, the exchange property does not hold
for u = xd

n+1−d ∈ I2 and v = (xn+2−d · · · xn)xn ∈ xn I1, otherwise xjxd−1
n+1−d ∈ I for some

n + 2 − d ≤ j ≤ n, which is not the case.

Case 3. Let I2 be a squarefree Veronese in m variables, m ≤ n − 1. Then Lemma 2 implies
pd S/I2 = m + 1 − d with d ≤ m. Hence, pd S/I1 = m + 2 − d.

In such a case, the ideal I1 cannot be principal because pd S/I1 = m + 2 − d > 1.
Assume that I1 is a Veronese ideal in ℓ variables. Then ℓ = n or ℓ = n − 1. Lemma 2

implies that ℓ = pd S/I1 = m + 2 − d. Hence, either d = m − n + 2 or d = m − n + 3.
Since m ≤ n − 1, either d ≤ 1 or d ≤ 2. Only the case d = 2 is possible. If d = 2,
then ℓ = m = n − 1 and we have I = xn(x1, . . . , xn−1) + (x1, . . . , xn−1)

2. This ideal is
not CM, otherwise it would be height-unmixed. Indeed, (I : xn) = (x1, . . . , xn−1) and
(I : xn−1) = (x1, . . . , xn) are two associated primes of I having different heights.
Finally, assume that I1 is a squarefree Veronese ideal in ℓ variables. Then ℓ = n or ℓ = n − 1.
Lemma 2 implies that pd S/I1 = ℓ+ 1 − (d − 1) = ℓ+ 2 − d = m + 2 − d. Thus, ℓ = m
and so either ℓ = m = n or ℓ = m = n − 1. The first case is impossible because m ≤ n − 1.
In the second case, we have I = xn In−1,d−1 + In−1,d = In,d which is a CM squarefree
Veronese ideal.

4.3. Bi-Cohen–Macaulay Graphs

Let I ⊂ S be a squarefree monomial ideal. Then I may be seen as the Stanley–Reisner
ideal of a unique simplicial complex on the vertex set {1, . . . , n}. Attached to I is the
Alexander dual I∨, which is again a squarefree monomial ideal. We say that I is bi-Cohen–
Macaulay (bi-CM for short) if both I and I∨ are CM. By the Eagon–Reiner criterion [16]
[Theorem 8.1.9], I has a linear resolution if and only if I∨ is CM. Hence, I is bi-CM if and
only if it is CM with linear resolution.

Let G be a finite simple graph on the vertex set V(G) = {1, . . . , n} with edge set E(G).
The edge ideal I(G) of G is the squarefree monomial ideal of S generated by the monomials
xixj with {i, j} ∈ E(G) [4]. The Alexander dual of I(G) is the squarefree monomial ideal of
S generated by the squarefree monomial xi1 · · · xit such that {i1, . . . , it} is a minimal vertex
cover of G [4]. Such an ideal is denoted by J(G) and, since its definition, it is often called
the cover ideal of G.

We say that G is a bi-CM graph if I(G) is bi-CM.

Let G be a graph. The open neighborhood of i ∈ V(G) is the set

NG(i) = {j ∈ V(G) : {i, j} ∈ E(G)}.

A graph G is called chordal if it has no induced cycles of a length bigger than three. A
perfect elimination order of G is an ordering v1, . . . , vn of its vertex set V(G) such that NGi (vi)
induces a complete subgraph on Gi, where Gi is the induced subgraph of G on the vertex
set {i, i + 1, . . . , n}. Hereafter, if 1, 2, . . . , n is a perfect elimination order of G, we highlight
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it by x1 > x2 > · · · > xn. For a complete graph G, we mean a graph satisfying the property
that every set {i, j} with i, j ∈ V(G), i ̸= j is an edge of G.

Theorem 4 ([24]). A finite simple graph G is chordal if and only if G admits a perfect elimina-
tion order.

The edge ideals with linear resolution were classified by Fröberg [25]. Recall that the
complementary graph Gc of G is the graph with vertex set V(Gc) = V(G) and where {i, j}
is an edge of Gc if and only if {i, j} /∈ E(G). A graph G is called cochordal if and only if Gc

is chordal.

Theorem 5 ([25] [Theorem 1]). Let G be a finite simple graph. Then I(G) has a linear resolution
if and only if G is cochordal.

We quote the next fundamental result which was proved by Moradi and Khosh-
Ahang [1] [Theorem 3.6, Corollary 3.8].

Proposition 3. Let G be a finite simple graph. Then I(G) has linear resolution if and only if I(G)
is vertex splittable. Furthermore, if x1 > · · · > xn is a perfect elimination order of Gc, then

I(G) = x1(xj : j ∈ NG(1)) + I(G \ {1})

is a vertex splitting of I(G).

Combining the above result with Theorem 2, we obtain the next characterization of
the bi-CM graphs.

Theorem 6. For a finite simple graph G, the following conditions are equivalent.

(a) G is a bi-CM graph.
(b) Gc is a chordal graph with perfect elimination order x1 > · · · > xn and

|NG(i) ∩ {i, . . . , n}| = |NG(j) ∩ {j, . . . , n}|+ (j − i),

for all 1 ≤ i ≤ j ≤ n such that |NG(i) ∩ {i, . . . , n}|, |NG(j) ∩ {j, . . . , n}| > 0.

In particular, if any of the equivalent conditions hold, then

pd S/I(G) = |NG(i) ∩ {i, . . . , n}|+ (i − 1),

for any 1 ≤ i ≤ n such that |NG(i) ∩ {i, . . . , n}| > 0.

Proof. We proceed by induction on n = |V(G)|. By Theorem 5, G must be cochordal. Fix
x1 > · · · > xn, which is a perfect elimination order of Gc. By Proposition 3, I(G) = x1(xj :
j ∈ NG(1)) + I(G \ {1}) is a vertex splitting. Applying Theorem 2, I(G) is CM if and only if
J = (xj : j ∈ NG(1)) and I(G \ {1}) are CM and pd S/I(G) = pd S/J = pd S/I(G \ {1}) +
1. J is CM because it is an ideal generated by variables and pd S/J = |NG(1)|. Notice that
x2 > · · · > xn is a perfect elimination order of (G \ {1})c.

If I(G \ {1}) = 0, then pd S/I(G) = pd S/J = pd S/I(G \ {1}) + 1 = 1 and I(G) is
principal, say I(G) = (x1x2). In this case, the thesis holds.

Suppose now that I(G \ {1}) ̸= 0. Then, by induction on n, I(G \ {1}) is CM if and
only if

|NG\{1}(i) ∩ {i, . . . , n}| = |NG\{1}(j) ∩ {j, . . . , n}|+ (j − i), (7)

for all 2 ≤ i ≤ j ≤ n such that |NG\{1}(i) ∩ {i, . . . , n}|, |NG\{1}(j) ∩ {j, . . . , n}| > 0
and moreover

pd S/I(G \ {1}) = |NG\{1}(i) ∩ {i, . . . , n}|+ (i − 2), (8)
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for any 2 ≤ i ≤ n such that |NG\{1}(i) ∩ {i, . . . , n}| > 0.
Notice that NG(i) ∩ {i, . . . , n} = NG\{1}(i) ∩ {i, . . . , n} for all 2 ≤ i ≤ n. Thus, by

combining (7) and (8) with the equality pd S/I(G) = pd S/J = pd S/I(G \ {1}) + 1, we
see that I(G) is CM if and only if

|NG(1)| = |NG(1) ∩ {1, . . . , n}| = |NG\{1}(i) ∩ {i, . . . , n}|+ (i − 2) + 1

= |NG(i) ∩ {i, . . . , n}|+ (i − 1),

for all 2 ≤ i ≤ n such that |NG\{1}(i) ∩ {i, . . . , n}| > 0.
Thus, we deduce that |NG(i) ∩ {i, . . . , n}| = |NG(j) ∩ {j, . . . , n}| + (j − i) for all

1 ≤ i ≤ j ≤ n such that |NG(i) ∩ {i, . . . , n}|, |NG(j) ∩ {j, . . . , n}| > 0, as desired. The induc-
tive proof is complete.

Notice that in the above characterization, the field K plays no role. In other words,
the bi-CM property of edge ideals does not depend on the field K. This also follows from
the work of Herzog and Rahimi [26] [Corollary 1.2 (d)], where other classifications of the
bi-CM graphs are given.

We end this paper with a couple of examples of a bi-CM and a non-bi-CM graph.

Examples 1. (a) Consider the graph G on five vertices and its complementary graph Gc depicted
below in Figure 1.

4 5 3

2

1

3 4 5

1 2
G Gc

Figure 1. A bi-CM graph.

Notice that x1 > x2 > x3 > x4 > x5 is a perfect elimination order of Gc, so that Gc is chordal
(Theorem 4). We have |NG(i) ∩ {i, . . . , 5}| > 0 only for i = 1, 2, 3. It is easy to see that con-
dition (b) of Theorem 6 is verified. Hence G is bi-CM, as one can also verify by using Macaulay2 [27].

(b) Consider the graph H and its complementary graph Hc depicted below in Figure 2.

4 5 3

2

1

3 4 5

1 2
H Hc

Figure 2. A not bi-CM graph.

As before, x1 > x2 > x3 > x4 > x5 is a perfect elimination order of Hc, and Hc is chordal.
We have |NH(i) ∩ {i, . . . , 5}| > 0 only for i = 1, 2, 3. However, condition (b) of Theorem 6 is not
verified. Indeed,

|NH(1) ∩ {1, . . . , 5}| = |NH(2) ∩ {2, . . . , 5}| = |{4, 5}| = 2,

but |NH(1)∩ {1, . . . , 5}| ̸= |NH(2)∩ {2, . . . , 5}|+ 1. Hence, H is not bi-CM. We can also verify
this by using Macaulay2 [27]. Indeed J(H), the cover ideal of H, is not CM.
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5. Conclusions and Perspectives

In view of our main Theorem 2, one can ask for a similar criterion for the sequentially
Cohen–Macaulayness of vertex splittable monomial ideals.

Question 1. Let I ⊂ S be a vertex splittable ideal, and let I = xi I1 + I2 be a vertex splitting of I.
Can we characterize the sequentially Cohen–Macaulayness of I in terms of I1 and I2?

This question could have interesting consequences for the theory of polymatroidal
ideals. Indeed, a classification of the sequentially Cohen–Macaulay polymatroidal ideals
has long been elusive.

On the computational side, to check if a monomial ideal is vertex splittable is far
easier than to check if it admits a Betti splitting. Indeed, it is enough to check recursively
Definition 1. It could be useful to write a package in Macaulay2 [27] that checks the vertex
splittable property and some related properties.
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