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a b s t r a c t

In this paper the triangle intersection problem for S(2, 4, v) designs is investigated. Let
tv = v(v − 1)/3 and IT (v) = {0, 1, . . . , tv − 30} ∪ {tv − 27, tv − 24, tv − 18, tv}.
Let JT (v) = {s| there exist two S(2, 4, v) designs with s common triangles}. We show
that for any positive integer v ≡ 1, 4 (mod 12), JT (v) = IT (v) when v ≥ 121, and
IT (v) \ {tv − 33} ⊆ JT (v) ⊆ IT (v)when 49 ≤ v ≤ 112.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let H be a simple graph and G a subgraph of H . A G-design of H ((H,G)-design in short) is a pair (X,B) where X is the
vertex set of H and B is an edge-disjoint decomposition of H into isomorphic copies (called blocks) of the graph G. If H is
the complete graph Kv , we refer to such a G-design as one of order v. If G is the complete graph Kk, a Kk-design of order v is
called a Steiner system S(2, k, v).
The intersection problem for (H,G)-designs is the determination of all pairs (v, s) such that there exists a pair of (H,G)-

designs (X,B1) and (X,B2)with |X | = v and |B1∩B2| = s. This problemwas first considered for S(2, k, v) designs (cf. [9]).
A complete solution to the intersection problem for S(2, 3, v) designs was given by Lindner and Rosa [11]. The intersection
problem for S(2, 4, v) designs was dealt with by Colbourn et al. [6], apart from three undecided values for v = 25, 28 and
37. The intersection problem is also considered for many other different types of combinatorial structures. The interested
reader may refer to [2,8], for example.

Theorem 1.1 ([6]). Let J(v) = {s| there exist two S(2, 4, v) designs with s common blocks }. Let bv = v(v − 1)/12 and
I(v) = {0, 1, 2, . . . , bv} \ {bv − 7, bv − 5, bv − 4, bv − 3, bv − 2, bv − 1}. Then

(1) J(v) ⊆ I(v) for all v ≡ 1, 4 (mod 12).
(2) J(v) = I(v) for all v ≡ 1, 4 (mod 12) and v ≥ 40.
(3) J(13) = I(13) and J(16) = I(16) \ {7, 9, 10, 11, 14}.
(4) I(25) \ {31, 33, 34, 37, 39, 40, 41, 42, 44} ⊆ J(25) and {42, 44} 6⊆ J(25).
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(5) I(28) \ {44, 46, 49, 50, 52, 53, 54, 57} ⊆ J(28).
(6) I(37) \ {64, 66, 76, 82, 84, 85, 88, 90–94, 96–101} ⊆ J(37).

Let B be a simple graph. Denote by T (B) the set of all triangles of the graph B. For example, if B is the graph with vertices
a, b, c, d and edges ab, ac, bc, cd (such a graph called a kite), then T (B) = {{a, b, c}}. The triangle intersection problem for
(H,G)-designs is the determination of all pairs (v, s) such that there exists a pair of (H,G)-designs (X,B1) and (X,B2)with
|X | = v and |T (B1) ∩ T (B2)| = s, where T (Bi) =

⋃
B∈Bi

T (B), i = 1, 2.
The triangle intersection problemwas introduced by Lindner and Yazici [12], who gave a complete solution to the triangle

intersection problem for kite systems (a kite system is a G-design when G is a kite). Recently, Billington et al. [3] discussed
the triangle intersection problem for K4 − e designs.
In this paper we shall investigate the triangle intersection problem for S(2, 4, v) designs. In what follows we always

assume that tv = v(v − 1)/3, IT (v) = {0, 1, . . . , tv − 30} ∪ {tv − 27, tv − 24, tv − 18, tv} and JT (v) = {s| there exist two
S(2, 4, v) designs with s common triangles}. As the main result, we are to prove the following theorem.

Theorem 1.2. (1) For v ≡ 1, 4 (mod 12) and v ≥ 121, JT (v) = IT (v); In particular, JT (40) = IT (40).
(2) For v ≡ 1, 4 (mod 12) and 49 ≤ v ≤ 112, IT (v) \ {tv − 33} ⊆ JT (v) ⊆ IT (v).
(3) JT (13) = IT (13) \ {1, 2, 9} and JT (16) = IT (16) \ {37, 39, 41, 43, 45–50, 53, 62}.
(4) {0–122, 124–131, 134, 135, 137, 140, 143, 146, 155, 158, 164, 200} ⊆ JT (25) ⊆ IT (25) \ {176, 182}.
(5) {0–149, 156, 158, 160, 162, 164, 166, 168, 180, 204, 252} ⊆ JT (28) ⊆ IT (28).
(6) {0–251, 258–276, 285–294, 444} ⊆ JT (37) ⊆ IT (37).

2. Necessary conditions

In this section, we establish necessary conditions for JT (v). A Steiner (4, 2) trade {T1, T2} of volume m consists of two
disjoint sets T1 and T2, each containingm 4-subsets (called blocks) of some set V , such that every pair of V occurs in at most
one block of T1, and any pair from V occurs in a block of T1 if and only if it occurs in a block of T2.

Lemma 2.1. Suppose that {T1, T2} is a Steiner (4, 2) trade of volume m. If there exists b1 ∈ T1 such that |b1 ∩ e| ≤ 2 for each
e ∈ T2, then m ≥ 10.

Proof. Suppose that b1 = {1, 2, 3, 4} ∈ T1 satisfying |b1 ∩ e| ≤ 2 for each e ∈ T2. Then the pairs {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4} appear in distinct blocks of T2, and the number of blocks containing i in T1 for any i ∈ {1, 2, 3, 4} is no less than
3. This means that |T1| = |T2| = m ≥ 9 and T1 contains 9 blocks of the form

{1, 2, 3, 4}, {1, ∗, ∗, ∗}, {1, ∗, ∗, ∗}, {2, ∗, ∗, ∗}, {2, ∗, ∗, ∗},
{3, ∗, ∗, ∗}, {3, ∗, ∗, ∗}, {4, ∗, ∗, ∗}, {4, ∗, ∗, ∗}.

If m = 9, it is readily checked that the number of blocks containing i in Tj is 3 for each i ∈ {1, 2, 3, 4}, j ∈ {1, 2}. And we
have the fact that there exists e1 ∈ T2 such that |e1 ∩ b| ≤ 2 for each b ∈ T1. Otherwise, for any c ∈ T2, there exists c ′ ∈ T1
such that |c ∩ c ′| = 3. Take c1, c2 ∈ T2, c1 6= c2. Then there are c ′1, c

′

2 ∈ T1 such that |c1 ∩ c
′

1| = 3 and |c2 ∩ c
′

2| = 3. Because
every pair occurs in at most one block of T2, we have c ′1 6= c

′

2. Due to |T1| = |T2|, there must be a block d ∈ T2 such that
|d ∩ b1| = 3. A contradiction occurs.
Considering |e1 ∩ b1|, we have the following three possibilities.

Case 1. |e1 ∩ b1| = 0. Let e1 = {5, 6, 7, 8}. Because |e1 ∩ b| ≤ 2 for each b ∈ T1, the pairs {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8},
{7, 8} must appear in distinct blocks of T1. Without loss of generality, we may assume that the blocks {1, 5, 6, ∗} and
{1, 7, 8, ∗} are contained in T1. Then the pairs {1, 5}, {1, 6}, {1, 7}, {1, 8} must appear in distinct blocks in T2. Because the
number of blocks containing 1 in T2 is 3, a contradiction occurs.
Case 2. |e1 ∩ b1| = 1. Let e1 = {1, 5, 6, 7}. Because |e1 ∩ b| ≤ 2 for each b ∈ T1, the pairs {1, 5}, {1, 6}, {1, 7} must appear in
distinct blocks of T1. Then there are 4 blocks containing 1 in T1. That is a contradiction.
Case 3. |e1 ∩ b1| = 2. Let e1 = {1, 2, 5, 6}. The pairs {1, 5}, {1, 6}, {2, 5}, {2, 6}, {5, 6} must appear in distinct blocks of T1.
Without loss of generality, we may assume that {3, 5, 6, ∗} ∈ T1. Then the pairs {3, 5}, {3, 6}must appear in distinct blocks
of T2. Because there are only 3 blocks containing 3 in T2 (i.e., {1, 3, ∗, ∗}, {2, 3, ∗, ∗}, {3, 4, ∗, ∗}), a contradiction occurs. This
completes the proof. �

Lemma 2.2. For any positive integer v ≡ 1, 4 (mod 12) and v ≥ 13, JT (v) ⊆ IT (v). In particular, JT (16) ⊆ IT (16) \ {45–50,
53, 62} and JT (25) ⊆ IT (25) \ {176, 182}.

Proof. Suppose that (X,B1) and (X,B2) are two S(2, 4, v)designs,which intersect in tv−s triangles. ConsiderD1 = B1\B2
and D2 = B2 \ B1. For any block D ∈ D1, |T (D)

⋂
T (D2)| = 0 or 1. Let C0 = {D ∈ D1 : |T (D)

⋂
T (D2)| = 0} and

C1 = {D ∈ D1 : |T (D)
⋂
T (D2)| = 1}. Denote by J(v) the set of intersection sizes of S(2, 4, v) designs. It is easy to see that{

|D1| = |C0| + |C1|,
s = 4|C0| + 3|C1|,
bv − (|C0| + |C1|) ∈ J(v),
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where bv is the number of blocks of an S(2, 4, v) design. By Lemma 2.1 when |D1| ≤ 9, we have |C0| = 0. Combine the
results from Theorem 1.1. It is readily checked that the desired results hold. For example, verify 176 6∈ JT (25). In this case
t25 = 200 and s = 24. Solve the equation 24 = 4|C0|+3|C1|. Due to |C0|+ |C1| ≤ 9, we have |C0| = 0 and |C1| = 8, which
implies 42 ∈ JT (25). That is contradicted to 42 6∈ JT (25) from Theorem 1.1(4). �

3. Recursive constructions

In this section we give two recursive constructions for the triangle intersection problem. The concept of GDDs plays an
important role in these constructions.
Let K be a set of positive integers. A group divisible design (GDD) K -GDD is a triple (X,G,A) satisfying the following

properties: (1) G is a partition of a finite set X into subsets (called groups); (2)A is a set of subsets of X (called blocks), each
of cardinality from K , such that a group and a block contain at most one common point; (3) every pair of points from distinct
groups occurs in exactly one block.
If G contains ui groups of size gi for 1 ≤ i ≤ s, then we call g

u1
1 g

u2
2 · · · g

us
s the group type (or type) of the GDD. If K = {k},

we write {k}-GDD as k-GDD. A K -GDD of type 1v is commonly called a pairwise balanced design, denoted by (v, K , 1)-PBD.
When K = {k}, a pairwise balanced design is just a Steiner system S(2, k, v), called a balanced incomplete block design,
denoted by (v, k, 1)-BIBD. A K -GDD of type 1v−hh1 is commonly called an incomplete pairwise balanced design, denoted by
(v, h; K , 1)-IPBD. When K = {k}, an incomplete pairwise balanced design is called an incomplete balanced incomplete block
design, denoted by (v, h; k, 1)-IBIBD. Obviously a (v, h; k, 1)-IBIBD is also a ((Kv \ Kh), Kk)-design.
A GDD is resolvable if its blocks can be partitioned into parallel classes; a parallel class is a set of point-disjoint blocks

whose union is the set of all points. The notation K -RGDD is used for a resolvable K -GDD. If K = {k}, we write {k}-RGDD as
k-RGDD. A 3-RGDD of type 1v is commonly called a Kirkman triple system, denoted by KTS(v). It is well known that a KTS(v)
exists if and only if v ≡ 3(mod 6) [14].
Let H = {H1,H2, . . . ,Ht} be a partition of a finite set X into subsets (called holes), where |Hi| = ni for 1 ≤ i ≤ t .

Let Kn1,n2,...,nt be the complete multipartite graph on X with the ith part on Hi. A holely G-design is a triple (X,H,B) such
that (X,B) is a (Kn1,n2,...,nt ,G)-design. The hole type (or type) of the holely G-design is {n1, n2, . . . , nt}. We usually use an
‘‘exponential’’ notation to describe hole types: the hole type gu11 g

u2
2 · · · g

us
s denotes ui occurrences of gi for 1 ≤ i ≤ s.

A pair of holely G-designs (X,H,B1) and (X,H,B2) are said to intersect in l triangles if |T (B1) ∩ T (B2)| = l, where
T (Bi) =

⋃
B∈Bi

T (B), i = 1, 2. The following construction is a variation of Wilson’s Fundamental Construction [16].

Construction 3.1 (Weighting Construction). Suppose that (X,G,A) is a K -GDD, and let ω : X 7−→ Z+ ∪ {0} be a weight
function. For every block A ∈ A, suppose that there is a pair of holely G-designs of type {ω(x) : x ∈ A}, which intersect in tA
triangles. Then there exists a pair of holely G-designs of type {

∑
x∈G ω(x) : G ∈ G}, which intersect in

∑
A∈A tA triangles.

Proof. For every x ∈ X , let S(x) be a set of ω(x) ‘‘copies’’ of x. For any Y ⊆ X , let S(Y ) =
⋃
x∈Y S(x). For every block

A ∈ A, construct a pair of holely G-designs {S(A), {S(x) : x ∈ A},BA} and {S(A), {S(x) : x ∈ A},B ′A}, which intersect
in tA triangles. Then it is readily checked that there exists a pair of holely G-designs (S(X), {S(G) : G ∈ G},∪A∈A BA) and
(S(X), {S(G) : G ∈ G},∪A∈A B ′A), which intersect in

∑
A∈A tA triangles. �

Construction 3.2 (Filling Construction). Let a be a nonnegative integer. Suppose that there exists a pair of holely G-designs
of type {g1, g2, . . . , gs}, which intersect in t triangles. If there is a pair of ((Kgi+a \ Ka),G)-designs with the same subgraph
Ka removed for each 1 ≤ i ≤ s − 1, which intersect in ti triangles, and there is a pair of (Kgs+a,G)-designs, which intersect
in ts triangles, then there exists a pair of (Kv+a,G)-designs intersecting in t +

∑s
i=1 ti triangles, where v =

∑s
i=1 gi.

Proof. Let (X,H,B1) and (X,H,B2) be a pair of holely G-designs of type {g1, g2, . . . , gs}, which intersect in t triangles. Let
H = {H1,H2, . . . ,Hs}with |Hi| = gi for 1 ≤ i ≤ s, and Y be a set of cardinality a such that X∩Y = ∅. For each 1 ≤ i ≤ s−1,
construct a pair of ((Kgi+a\Ka),G)-designs (Hi

⋃
Y ,A1i ) and (Hi

⋃
Y ,A2i )with the same subgraph Ka defined on Y removed,

which intersect in ti triangles. By the assumption, we also have a pair of (Kgs+a,G)-designs (Hs
⋃
Y ,A1s ) and (Hs

⋃
Y ,A2s ),

which intersect in ts triangles. It is readily checked that there exists a pair of (Kv+a,G)-designs (X
⋃
Y , (∪si=1A1i )

⋃
B1) and

(X
⋃
Y , (∪si=1A2i )

⋃
B2), which intersect in t +

∑s
i=1 ti triangles, where v =

∑s
i=1 gi. �

It is well known that a 5-GDD of type g5 is equivalent to three mutually orthogonal Latin squares (MOLS) of order g . Thus
we quote the following result for later use.

Lemma 3.3 ([1]). There exists a 5-GDD of type g5 for any positive integer g ≥ 4 except for g ∈ {6, 10}.

Lemma 3.4 ([5]). The necessary and sufficient conditions for the existence of a 4-GDD of type gn are (1)n ≥ 4, (2)(n − 1)g ≡
0 (mod 3), (3)n(n− 1)g2 ≡ 0 (mod 12), with the exception of (g, n) ∈ {(2, 4), (6, 4)}, in which case no such GDD exists.

4. Ingredients

Lemma 4.1. Let J1(13) = {s| there exist two S(2, 4, 13) designs with s common triangles and at least one common block }. Then
IT (13) \ {0, 1, . . . , 7, 19} ⊆ J1(13).
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Proof. Let X = Z13 and B = {{i, 1 + i, 3 + i, 9 + i} : 0 ≤ i ≤ 12}. Then (X,B) is an S(2, 4, 13) design. Consider the
following permutations on X .

π8 = (4 5 6)(7 12 10 11 8), π9 = (4 5 6)(7 12 10)(8 11),
π10 = (4 5 6 7 10 12 11 8), π11 = (4 5 6 7 12 10 11 8),
π12 = (4 5 6 7 12 8)(10 11), π13 = (4 5 6 7 12)(10 11),
π14 = (4 5 6 7 12 8 10), π15 = (4 5 6 8 7)(11 12),
π16 = (4 5 6 8 12 11 7), π17 = (4 5 6 8 12 11 10),
π18 = (4 5 6 8)(7 11 12), π20 = (7 8)(11 12),
π21 = (6 7)(8 10 12), π22 = (6 7)(8 12)(10 11),
π25 = (10 11 12), π28 = (8 10)(11 12),
π34 = (11 12), π52 = (1).

It is readily checked that {0, 1, 3, 9} ∈ πjB
⋂

B and |πjT (B)
⋂
T (B)| = j for each j ∈ IT (13) \ {0, 1, . . . , 7, 19} ⊆

J1(13). �

Lemma 4.2. IT (13) \ {1, 2, 19} ⊆ JT (13).

Proof. Take the S(2, 4, 13) design (X,B) constructed in Lemma 4.1. Consider the following permutations on X .

π0 = (3 4)(6 7 8 10)(9 11 12), π3 = (5 6 7 8)(9 11 10 12),
π4 = (5 6 7 8 9)(10 12 11), π5 = (6 7 8 9)(10 12 11),
π6 = (5 6)(7 8 9)(10 11 12), π7 = (6 7 8 9 10 12 11).

It is readily checked that |πiT (B)
⋂
T (B)| = i for each i ∈ {0, 3, 4, 5, 6, 7}. Combining the results from Lemma 4.1, we

complete the proof. �

Lemma 4.3. Let J1(16) = {s| there exist two S(2, 4, 16) designs with s common triangles and at least one common block }. Then
IT (16) \ {0, 1, 2, 3, 37, 39, 41, 43, 45–50, 53, 62} ⊆ J1(16).

Proof. Construct an S(2, 4, 16) design (X,B)with X = Z16. All blocks ofB are listed below, which can be found in Example
1.31 in [13].

{0, 1, 2, 3}, {0, 4, 5, 6}, {0, 7, 8, 9}, {0, 10, 11, 12}, {0, 13, 14, 15},
{1, 4, 7, 10}, {1, 5, 11, 13}, {1, 6, 8, 14}, {1, 9, 12, 15}, {2, 4, 12, 14},
{2, 5, 7, 15}, {2, 6, 9, 11}, {2, 8, 10, 13}, {3, 4, 9, 13}, {3, 5, 8, 12},
{3, 6, 10, 15}, {3, 7, 11, 14}, {4, 8, 11, 15}, {5, 9, 10, 14}, {6, 7, 12, 13}.

Consider the following permutations on X .

π4 = (5 7 13 15 9)(6 11 14 10 12), π5 = (6 7 11 9 14 15 10 12 13 8),
π6 = (6 7 8 15 9 10)(11 14 13 12), π7 = (6 7 8)(9 14 11 10 12 13 15),
π8 = (6 7)(8 9 10 13 14 11 12 15), π9 = (6 7)(9 10 15 13 14 11 12),
π10 = (6 7)(10 12 11 14 13 15), π11 = (7 8)(9 10 12 13 11 14 15),
π12 = (8 9 12 11)(10 13 15 14), π13 = (8 10 14 13 15 9 12 11),
π14 = (8 9 10)(11 12 15)(13 14), π15 = (8 9 10 12 15 14 13 11),
π16 = (9 10 11 12 15 13 14), π17 = (9 10 11)(12 13 14 15),
π18 = (9 10 11 12)(13 14 15), π19 = (9 10)(11 12 13)(14 15),
π20 = (9 10)(12 13 14 15), π21 = (9 10)(12 14 13 15),
π22 = (10 11 12 13 14 15), π23 = (9 10)(12 13)(14 15),
π24 = (10 11)(12 13 14 15), π25 = (10 11 13 15 12 14),
π26 = (10 11)(12 13)(14 15), π27 = (10 11 12 13 15 14),
π28 = (9 10)(12 13 14), π29 = (11 12 13)(14 15),
π30 = (11 12 13 15 14), π31 = (11 13 12 15 14),
π32 = (10 13 11 14 12 15), π33 = (11 13)(12 14 15),
π34 = (12 13 14 15), π35 = (11 12)(13 14 15),
π36 = (12 13)(14 15), π38 = (11 12 13 15),
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π40 = (9 10)(12 13), π42 = (11 12)(14 15),
π44 = (13 14 15), π56 = (14 15),
π80 = (1).

It is readily checked that the block {0, 1, 2, 3} ∈ πiB
⋂

B and |πiT (B)
⋂
T (B)| = i for each i ∈ IT (16) \ {0, 1, 2, 3, 37,

39, 41, 43, 45–50, 53, 62}. �

Lemma 4.4. IT (16) \ {37, 39, 41, 43, 45–50, 53, 62} ⊆ JT (16).

Proof. Take the S(2, 4, 16) design (X,B) constructed in Lemma 4.3. Consider the following permutations on X .

π0 = (2 4)(3 8 10 13 15 12 11 6 9 14), π1 = (3 4)(6 7 12 15 13 10 11)(8 14 9),
π2 = (3 4)(6 7)(8 11 10 13 15)(9 14 12), π3 = (3 4)(7 9 15 13)(8 10 14 11 12).

It is readily checked that |πiT (B)
⋂
T (B)| = i for each i ∈ {0, 1, 2, 3}. Combining the results from Lemma 4.3, we complete

the proof. �

Lemma 4.5. {0, 1, 2, 200} ⊆ JT (25).

Proof. Construct an S(2, 4, 25) design (X,B) with X = Z25. All blocks of B are listed below, which can be found in Table
1.34 in [13] (the 18th design).

{0, 1, 2, 3}, {0, 4, 5, 6}, {0, 7, 8, 9}, {0, 10, 11, 12}, {0, 13, 14, 15},
{0, 16, 17, 18}, {0, 19, 20, 21}, {0, 22, 23, 24}, {1, 4, 7, 10}, {1, 5, 8, 13},
{1, 6, 11, 16}, {1, 9, 17, 19}, {1, 12, 20, 22}, {1, 14, 18, 23}, {1, 15, 21, 24},
{2, 4, 8, 18}, {2, 5, 7, 20}, {2, 6, 19, 24}, {2, 9, 10, 14}, {2, 11, 15, 22},
{2, 12, 16, 23}, {2, 13, 17, 21}, {3, 4, 17, 22}, {3, 5, 12, 21}, {3, 6, 7, 15},
{3, 8, 19, 23}, {3, 9, 11, 13}, {3, 10, 18, 24}, {3, 14, 16, 20}, {4, 9, 12, 24},
{4, 11, 14, 21}, {4, 13, 20, 23}, {4, 15, 16, 19}, {5, 9, 16, 22}, {5, 10, 15, 23},
{5, 11, 18, 19}, {5, 14, 17, 24}, {6, 8, 14, 22}, {6, 9, 21, 23}, {6, 10, 17, 20},
{6, 12, 13, 18}, {7, 11, 17, 23}, {7, 12, 14, 19}, {7, 13, 16, 24}, {7, 18, 21, 22},
{8, 10, 16, 21}, {8, 11, 20, 24}, {8, 12, 15, 17}, {9, 15, 18, 20}, {10, 13, 19, 22}.

Consider the following permutations on X .

π0 = (0 23 2 14)(1 5 9 11 22 18 24 19 20 6 8 12)(3 21 16 17 13 10 7 4 15),
π1 = (0 23 16 24 13 10 7 4 15 3 21 18 20 2 14)(1 5 9 11 22 19 17 6 8 12),
π2 = (0 23 2 14)(1 5 9 11 22 18 24 19 20 6 8 12)(3 21 13 10 7 4 15)(16 17),
π200 = (1).

It is readily checked that |πiT (B)
⋂
T (B)| = i for each i ∈ {0, 1, 2, 200}. �

Lemma 4.6. There exists a pair of S(2, 4, 25) designs with exactly one common block and 4 common triangles.

Proof. Take the S(2, 4, 25)design (X,B) constructed in Lemma4.5. Consider thepermutationπ = (4132318)(57171011
22 12 19 8 15 14 16 9 20 24). It is readily checked that {0, 1, 2, 3} ∈ πB

⋂
B and |πT (B)

⋂
T (B)| = 4. �

Lemma 4.7. {0, 252} ⊆ JT (28).

Proof. Construct an S(2, 4, 28) design (X,B)with X = Z28. All blocks ofB are divided into two parts. The first part consists
of {i, 7+ i, 14+ i, 21+ i}, 0 ≤ i ≤ 6. Develop the following base blocks by+4 modulo 28 to obtain the second part ofB.

{0, 1, 2, 3}, {0, 4, 9, 12}, {0, 6, 11, 22}, {0, 10, 13, 18},
{0, 15, 19, 27}, {0, 17, 23, 26}, {1, 5, 13, 23}, {1, 14, 18, 27}.

Consider the following permutations on X .

π0 = (0 15 26 25 9 10)(1 12 5 27 18 22 6 7 20)(2 8 14 24 16 21 19 13 23 17 4 3),
π252 = (1).

It is readily checked that |πjT (B)
⋂
T (B)| = j for each j ∈ {0, 252}. �

Lemma 4.8. {1, 2} ⊆ JT (49).
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Proof. Construct two S(2, 4, 49) designs (X,B1) and (X,B2). Only base blocks are listed below. Develop these base blocks
by+1 modulo 49 to obtain all blocks ofBi, i = 1, 2.

B1 : {0, 1, 10, 22}, {0, 2, 5, 13}, {0, 4, 20, 35}, {0, 6, 25, 32}.
B2 : {0, 1, 3, 8}, {0, 4, 18, 29}, {0, 6, 21, 33}, {0, 9, 19, 32}.

Consider the following permutations on X .

π1 = (46 47 48), π2 = (47 48).

It is readily checked that |πjT (B2)
⋂
T (B1)| = j for each j ∈ {1, 2}. �

Lemma 4.9. There exists a pair of 4-GDDs of type 34 with i common triangles, i ∈ {9, 12, 18, 36}.

Proof. Take the S(2, 4, 13) design (X,B) constructed in Lemma 4.1. Delete the point 0 from this design to obtain a 4-GDD
of type 34(X \ {0},G,B ′), where G = {{1, 3, 9}, {4, 5, 7}, {6, 10, 11}, {2, 8, 12}}, andB ′ = B \ {B ∈ B : 0 ∈ B}. Consider
the following permutations on X \ {0}, which keep G invariant.

π9 = (6 10 11), π12 = (8 12)(10 11),
π18 = (10 11), π36 = (1).

It is readily checked that |πiT (B ′)
⋂
T (B ′)| = i for each i ∈ {9, 12, 18, 36}. �

Lemma 4.10. There exists a pair of 4-GDDs of type 35 with i common triangles, i ∈ {0, 60}.

Proof. Take the S(2, 4, 16) design (X,B) constructed in Lemma 4.3. Delete the point 0 from this design to obtain a 4-GDD
of type 35 (X \ {0},G,B ′), where G = {{1 + 3j, 2 + 3j, 3 + 3j} : 0 ≤ j ≤ 4}, andB ′ = B \ {B ∈ B : 0 ∈ B}. Consider the
following permutations on X \ {0}, which keep G invariant.

π0 = (2 3)(5 6)(7 8)(10 12)(13 15), π60 = (1).

It is readily checked that |πiT (B ′)
⋂
T (B ′)| = i for each i ∈ {0, 60}. �

Lemma 4.11. There exists a pair of 4-GDDs of type g4 without common triangles for g ∈ {4, 5, 9}.

Proof. Let X = GF(g)× {0, 1, 2, 3} and G = {GF(g)× {i} : i ∈ {0, 1, 2, 3}}. Let

B1 = {{(j, 0), (k, 1), (j+ λk, 2), (j+ µk, 3)} : j, k ∈ GF(g)},
B2 = {{(j, 0), (k, 1), (j+ λk+ α, 2), (j+ µk+ β, 3)} : j, k ∈ GF(g)},

where λ,µ, α, β ∈ GF(g), λ,µ 6= 0 and λ 6= µ. Then (X,G,B1) and (X,G,B2) are two 4-GDDs of type g4.
It is readily checked that if one can choose λ,µ, α, β ∈ GF(g) \ {0} such that λ 6= µ, α 6= β and λβ 6= µα, then

|T (B1)
⋂
T (B2)| = 0. Thus for g = 4, one may take (λ, µ, α, β) = (1, x, x, 1), where x is a primitive element of GF(4)

satisfying 1+ x+ x2 = 0. For g = 5, take (λ, µ, α, β) = (1, 2, 2, 1). For g = 9, take (λ, µ, α, β) = (1, 2, 1, x), where x is a
primitive element of GF(9) satisfying 2+ x+ x2 = 0. �

Lemma 4.12. There exists a pair of 4-GDDs of type 44 with i common triangles, i ∈ {0, 64}.

Proof. The case of i = 0 comes immediately from Lemma 4.11. Take the identity permutation to act on the block sets of
two same 4-GDDs of type 44 to obtain the case of i = 64. �

5. Applying the recursions

Lemma 5.1. For any positive integer v ≡ 1, 13 (mod 48) and v ≥ 49, IT (v) \ {1, 2, tv − 33} ⊆ JT (v).

Proof. Let v = 12u + 1 with u ≡ 0, 1 (mod 4) and u ≥ 4. Start from a 4-GDD of type 3u from Lemma 3.4. Give each
point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-GDDs of type 44 with α common triangles, α ∈ {0, 64}. Then
apply Construction 3.1 to obtain a pair of 4-GDDs of type 12u with

∑b
i=1 αi common triangles, where b = 3u(u− 1)/4 and

αi ∈ {0, 64} for 1 ≤ i ≤ b. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs with βj (1 ≤ j ≤ u)
common triangles from Lemma 4.2, we have a pair of S(2, 4, 12u + 1) designs with

∑b
i=1 αi +

∑u
j=1 βj common triangles,

where βj ∈ JT (13) for 1 ≤ j ≤ u. It is readily checked that for any integer n ∈ IT (v) \ {1, 2, tv − 33}, n can be written as the
form of

∑b
i=1 αi +

∑u
j=1 βj, where αi ∈ {0, 64} (1 ≤ i ≤ b), βj ∈ JT (13) (1 ≤ j ≤ u). �

Lemma 5.2. {1, 2} ⊆ JT (97).
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Proof. There exists a 4-GDD of type 3462 [10]. Give each point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-
GDDs of type 44 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 124242 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, and a pair of S(2, 4, 25) designs with βj (1 ≤ j ≤ 2) common triangles from Lemma 4.5, we have a pair of
S(2, 4, 97) designs with β1 + β2 common triangles, where βj ∈ {0, 1, 2} for 1 ≤ j ≤ 2. �

Lemma 5.3. For any positive integer v ≡ 1 (mod 24) and v ≥ 121, {1, 2} ⊆ JT (v).

Proof. For any positive integer u ≥ 5, there exists a 4-GDD of type 6u from Lemma 3.4. Give each point of the GDD weight
4. By Lemma 4.12, there is a pair of 4-GDDs of type 44 without common triangles. Then apply Construction 3.1 to obtain a
pair of 4-GDDs of type 24u without common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 25) designs
with βj (1 ≤ j ≤ u) common triangles from Lemma 4.5, we have a pair of S(2, 4, 24u + 1) designs with

∑u
j=1 βj common

triangles, where βj ∈ {0, 1, 2} for 1 ≤ j ≤ u. �

Combining the results from Lemmas 4.8 and 5.1–5.3, we have the following

Lemma 5.4. For any positive integer v ≡ 1 (mod 48) and v ≥ 49, IT (v) \ {tv − 33} ⊆ JT (v).

Lemma 5.5. {1, 2} ⊆ JT (61).

Proof. Start from a 4-GDD of type 34 from Lemma 3.4. Give each point of the GDD weight 5. By Lemma 4.11, there is a pair
of 4-GDDs of type 54 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 154 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 16) designs with βj (1 ≤ j ≤ 4) common
triangles from Lemma 4.4, we have a pair of S(2, 4, 61) designs with

∑4
j=1 βj common triangles, where βj ∈ {0, 1, 2} for

1 ≤ j ≤ 4. �

Lemma 5.6. {1, 2} ⊆ JT (109).

Proof. Start from a 5-GDD of type 75 from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10, there is a pair
of 4-GDDs of type 35 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 215 without
common triangles. By Construction 3.2, filling in the first four holes by a pair of S(2, 4, 25) designswith exactly one common
block and 4 common triangles from Lemma 4.6, and filling in the last hole by a pair of S(2, 4, 25) designs with β common
triangles from Lemma 4.5, we have a pair of S(2, 4, 109) designs with β common triangles, where β ∈ {1, 2}. �

Lemma 5.7. There exists a pair of S(2, 4, 49) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13).

Proof. Start from a 4-GDD of type 34 from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.12, there is a pair
of 4-GDDs of type 44 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 124 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, we have a pair of S(2, 4, 49) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13). �

Lemma 5.8. {1, 2} ⊆ JT (157).

Proof. Start from a 4-GDD of type 94 from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.12, there is a
pair of 4-GDDs of type 44 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 364
without common triangles. By Construction 3.2, filling in the first three holes by a pair of S(2, 4, 49) designs containing
a common S(2, 4, 13) as a subdesign from Lemma 5.7, which have no common triangles except for the triangles in the
common S(2, 4, 13), and filling in the last hole by a pair of S(2, 4, 49) designs with β common triangles from Lemma 4.8,
we have a pair of S(2, 4, 157) designs with β common triangles, where β ∈ {1, 2}. �

Lemma 5.9. There exists a pair of S(2, 4, 61) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13).

Proof. Start from a 5-GDD of type 45 from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10, there is a pair
of 4-GDDs of type 35 without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 125 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, we have a pair of S(2, 4, 61) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13). �

Lemma 5.10. For any positive integer v ≡ 13 (mod 48) and v ≥ 205, {1, 2} ⊆ JT (v).
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Proof. For any positive integer u ≥ 4, there exists a 4-GDD of type 12u from Lemma 3.4. Give each point of the GDD weight
4. By Lemma 4.12, there is a pair of 4-GDDs of type 44 without common triangles. Then apply Construction 3.1 to obtain a
pair of 4-GDDs of type 48uwithout common triangles. By Construction 3.2, filling in the fist u−1 holes by a pair of S(2, 4, 61)
designs containing a common S(2, 4, 13) as a subdesign from Lemma 5.9, which have no common triangles except for the
triangles in the common S(2, 4, 13), and filling in the last hole by a pair of S(2, 4, 61) designs with β common triangles from
Lemma 5.5, where β ∈ {1, 2}, we have a pair of S(2, 4, 48u+ 13) designs with β common triangles. �

Combining the results from Lemmas 5.1, 5.5, 5.6, 5.8 and 5.10, we have the following

Lemma 5.11. For any positive integer v ≡ 13 (mod 48) and v ≥ 61, IT (v) \ {tv − 33} ⊆ JT (v).

Lemma 5.12 ([4]). There exists a (v, {4, 7∗}, 1)-PBDwith exactly one block of size 7 for any positive integer v ≡ 7, 10 (mod 12)
and v 6= 10, 19.

Lemma 5.13. For any positive integer v ≡ 25, 37 (mod 48) and v ≥ 73, IT (v) \ {tv − 33} ⊆ JT (v).

Proof. Let v = 12u + 1 with u ≡ 2, 3 (mod 4) and u ≥ 7. There exists a (3u + 1, {4, 7∗}, 1)-PBD from Lemma 5.12,
which contains exactly one block of size 7. Take a point from the block of size 7. Delete this point to obtain a 4-GDD of type
3u−261. Give each point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-GDDs of type 44 with α common triangles,
α ∈ {0, 64}. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 12u−2241 with

∑b
i=1 αi common triangles, where

b = 3(u2−u−2)/4 andαi ∈ {0, 64} for 1 ≤ i ≤ b. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designswith
βj (1 ≤ j ≤ u − 2) common triangles from Lemma 4.2, and a pair of S(2, 4, 25) designs with βu−1 common triangles from
Lemma 4.5, we have a pair of S(2, 4, 12u+1) designs with

∑b
i=1 αi+

∑u−2
j=1 βj+βu−1 common triangles, where βj ∈ JT (13)

for 1 ≤ j ≤ u− 2 and βu−1 ∈ JT (25). It is readily checked that for any integer n ∈ IT (v) \ {tv − 33}, n can be written as the
form of

∑b
i=1 αi +

∑u−2
j=1 βj + βu−1, where αi ∈ {0, 64} (1 ≤ i ≤ b), βj ∈ JT (13) (1 ≤ j ≤ u− 2), βu−1 ∈ {0, 1, 2, 200}.

When v = 73, start from an S(2, 5, 25). Delete a point from this design to obtain a 5-GDD of type 46. Give each point of
the GDD weight 3. By Lemma 4.10, there is a pair of 4-GDDs of type 35 with α common triangles, α ∈ {0, 60}. Then apply
Construction 3.1 to obtain a pair of 4-GDDs of type 126with

∑24
i=1 αi common triangles, whereαi ∈ {0, 60} for 1 ≤ i ≤ 24. By

Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs with βj (1 ≤ j ≤ 6) common triangles from Lemma 4.2,
we have a pair of S(2, 4, 73) designs with

∑24
i=1 αi +

∑6
j=1 βj common triangles, where βj ∈ JT (13) for 1 ≤ j ≤ 6. It is

readily checked that for any integer n ∈ IT (73) \ {t73 − 33}, n can be written as the form of
∑24
i=1 αi +

∑6
j=1 βj, where

αi ∈ {0, 60} (1 ≤ i ≤ 24), βj ∈ JT (13) (1 ≤ j ≤ 6). �

Lemma 5.14. Let E(v) = {tv−18, tv−27, tv−30, tv−31, tv−32, tv−33, tv−34, tv−35, tv−37, tv−39, tv−41, tv−43}.
For any positive integer v ≡ 4 (mod 12) and v ≥ 52, IT (v) \ E(v) ⊆ JT (v).

Proof. We divide the problem into two cases.
Case 1: Let v = 12u+4with u ≡ 0, 1 (mod 4) and u ≥ 4. By similar arguments as in Lemma 5.1, there is a pair of 4-GDDs

of type 12uwith
∑b
i=1 αi common triangles,where b = 3u(u−1)/4 andαi ∈ {0, 64} for 1 ≤ i ≤ b. By Construction 3.2, filling

in the holes by a pair of S(2, 4, 16) designs with βj (1 ≤ j ≤ u− 1) common triangles and at least one common block from
Lemma 4.3, and a pair of S(2, 4, 16) designs with βu common triangles from Lemma 4.4, we have a pair of S(2, 4, 12u+ 4)
designs with

∑b
i=1 αi +

∑u−1
j=1 (βj − 4) + βu common triangles, where βj ∈ J1(16) for 1 ≤ j ≤ u − 1 and βu ∈ JT (16). It is

readily checked that for any integer n ∈ IT (v) \ E(v), n can be written as the form of
∑b
i=1 αi +

∑u−1
j=1 (βj − 4)+ βu, where

αi ∈ {0, 64} (1 ≤ i ≤ b), βj ∈ J1(16) (1 ≤ j ≤ u− 1), βu ∈ JT (16).
Case 2: Let v = 12u + 4 with u ≡ 2, 3 (mod 4) and u ≥ 7. By similar arguments as in Lemma 5.13, there is a pair of

4-GDDs of type 12u−2241 with
∑b
i=1 αi common triangles, where b = 3(u

2
− u − 2)/4 and αi ∈ {0, 64} for 1 ≤ i ≤ b.

By Construction 3.2, filling in the holes by a pair of S(2, 4, 16) designs with βj (1 ≤ j ≤ u − 2) common triangles and at
least one common block from Lemma 4.3, and a pair of S(2, 4, 28) designs with βu−1 common triangles from Lemma 4.7,
we have a pair of S(2, 4, 12u + 4) designs with

∑b
i=1 αi +

∑u−2
j=1 (βj − 4) + βu−1 common triangles, where βj ∈ J1(16) for

1 ≤ j ≤ u− 2 and βu−1 ∈ JT (28). It is readily checked that for any integer n ∈ IT (v) \ E(v), n can be written as the form of∑b
i=1 αi +

∑u−2
j=1 (βj − 4)+ βu−1, where αi ∈ {0, 64} (1 ≤ i ≤ b), βj ∈ J1(16) (1 ≤ j ≤ u− 2), βu−1 ∈ {0, 252}.

When v = 76, start from a 5-GDD of type 55 from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10,
there is a pair of 4-GDDs of type 35 with α common triangles, α ∈ {0, 60}. Then apply Construction 3.1 to obtain a pair of
4-GDDs of type 155 with

∑25
i=1 αi common triangles, where αi ∈ {0, 60} for 1 ≤ i ≤ 25. By Construction 3.2, filling in the

holes by a pair of S(2, 4, 16) designs with βj (1 ≤ j ≤ 5) common triangles from Lemma 4.4, we have a pair of S(2, 4, 76)
designs with

∑25
i=1 αi+

∑5
j=1 βj common triangles, where βj ∈ JT (16) for 1 ≤ j ≤ 5. It is readily checked that for any integer

n ∈ IT (76) \ E(76), n can be written as the form of
∑25
i=1 αi +

∑5
j=1 βj, where αi ∈ {0, 60} (1 ≤ i ≤ 25), βj ∈ JT (16) (1 ≤

j ≤ 5). �
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Lemma 5.15 ([15]). If v ≡ 1, 4 (mod 12), w ≡ 1, 4 (mod 12) and v ≥ 3w + 1, then there is an S(2, 4, v) containing an
S(2, 4, w) as a subdesign.

Lemma 5.16. For any positive integer v ≡ 1, 4 (mod 12) and v ≥ 40, E(v) ⊆ JT (v), where E(v) is defined as in Lemma 5.14.

Proof. By Lemma 5.15, there is an S(2, 4, v) (X,B) containing an S(2, 4, 13) (Y ,A) as a subdesign, where Y ⊆ X . By
Lemma 4.2, there is a pair of S(2, 4, 13) (Y ,A1) and (Y ,A2) such that |T (A1)

⋂
T (A2)| = r, r ∈ {9, 11, 13, 15, 17, 18, 20,

21, 22, 25, 34}. It is readily checked that (X, (B\A)
⋃

A1) and (X, (B\A)
⋃

A2) are two S(2, 4, v) designswith s common
triangles, s ∈ E(v). �

Combining the results from Lemmas 5.14 and 5.16, we have the following

Lemma 5.17. For any positive integer v ≡ 4 (mod 12) and v ≥ 52, IT (v) \ {tv − 33} ⊆ JT (v).

Lemma 5.18. IT (40) \ {0, 1, . . . , 11, t40 − 33} ⊆ JT (40).

Proof. By Lemma 4.11 there is a pair of 4-GDDs of type 94without common triangles. By Construction 3.2, filling in the holes
by a pair of S(2, 4, 13) designs with βi (1 ≤ i ≤ 3) common triangles and at least one common block from Lemma 4.1, and
a pair of S(2, 4, 13) designs with β4 common triangles from Lemma 4.2, we have a pair of S(2, 4, 40) designs with

∑4
i=1 βi

common triangles, where βi ∈ J1(13) for 1 ≤ i ≤ 3 and β4 ∈ JT (13). Let N = {12, 13, . . . , 162, 164, 165, 166, 169,
172, 178, 196}. It is readily checked that for any integer n ∈ N, n can be written as the form of

∑4
i=1 βi, where βi ∈

J1(13) (1 ≤ i ≤ 3) and β4 ∈ JT (13). Thus N ⊆ JT (40).
Start from a 4-GDD of type 34 from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.9, there is a pair

of 4-GDDs of type 34 with α common triangles, α ∈ {9, 12, 18, 36}. Then apply Construction 3.1 to obtain a pair of 4-
GDDs of type 94 with

∑9
i=1 αi common triangles, where αi ∈ {9, 12, 18, 36} for 1 ≤ i ≤ 9. By Construction 3.2, filling

in the holes by a pair of S(2, 4, 13) designs with βj (1 ≤ j ≤ 3) common triangles and at least one common block from
Lemma 4.1, and a pair of S(2, 4, 13) designs with β4 common triangles from Lemma 4.2, we have a pair of S(2, 4, 40) de-
signs with

∑9
i=1 αi +

∑4
j=1 βi common triangles, where βj ∈ J1(13) (1 ≤ j ≤ 3) and β4 ∈ JT (13). Let M = {93, 94, . . . ,

486, 488, 489, 490, 493, 496, 502, 520}. It is readily checked that for any integer m ∈ M,m can be written as the form of∑9
i=1 αi +

∑4
j=1 βi, where αi ∈ {9, 12, 18, 36} (1 ≤ i ≤ 9), βj ∈ J1(13) (1 ≤ j ≤ 3) and β4 ∈ JT (13). ThusM ⊆ JT (40). This

completes the proof. �

Lemma 5.19. t40 − 33 ∈ JT (40).

Proof. It is well known that a 3-RGDD of type 93 is equivalent to two mutually orthogonal Latin squares (MOLS) of order
9. Thus there exists a 3-RGDD of type 93 [1]. Let X = {1, 2, . . . , 27},G1 = {1, 2, . . . , 9}, G2 = {10, 11, . . . , 18},G3 =
{19, 20, . . . , 27} and G = {G1,G2,G3}. Let (X,G,B) be a 3-RGDD of type 93, which has 9 parallel classes P1, P2, . . . , P9.
Without loss of generality we assume that P1 contains 9 blocks of the form

{7, 10, 19}, {8, 11, 20}, {9, 12, 21}, {1, ∗, ∗}, {2, ∗, ∗}, {3, ∗, ∗},
{4, ∗, ∗}, {5, ∗, ∗}, {6, ∗, ∗}.

Construct three KTS(9)s on G1,G2 and G3, respectively. Each of them has 4 parallel classes Qi1,Qi2,Qi3,Qi4, i = 1, 2, 3.
Without loss of generality we assume that

Q11 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
Q12 = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}},
Q13 = {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}},
Q14 = {{2, 4, 9}, {3, 5, 7}, {1, 6, 8}},
Q21 = {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
Q22 = {{10, 13, 16}, {11, 14, 17}, {12, 15, 18}},
Q23 = {{10, 14, 18}, {11, 15, 16}, {12, 13, 17}},
Q24 = {{11, 13, 18}, {12, 14, 16}, {10, 15, 17}},
Q31 = {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}},
Q32 = {{19, 22, 25}, {20, 23, 26}, {21, 24, 27}},
Q33 = {{19, 23, 27}, {20, 24, 25}, {21, 22, 26}},
Q34 = {{20, 22, 27}, {21, 23, 25}, {19, 24, 26}}.

Let P10 = Q11
⋃
Q22

⋃
Q32, P11 = Q12

⋃
Q21

⋃
Q31, P12 = Q13

⋃
Q23

⋃
Q33 and P13 = Q14

⋃
Q24

⋃
Q34. Obviously

for each j ∈ {10, 11, 12, 13}, Pj is a partition of X into 9 3-subsets. Construct an S(2, 4, 13) design (Y ,A) on Y =
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{∞1,∞2, . . . ,∞13}. Let C = {B ∪ {∞l} : B ∈ Pl, l ∈ {1, 2, . . . , 13}}
⋃

A. It is readily checked that (X ∪ Y ,C) is an
S(2, 4, 40) design.
Pay attention to the blocks with underlines listed above. Take U ⊆ C consisting of the following 11 blocks

{∞1, 7, 10, 19}, {∞1, 8, 11, 20}, {∞1, 9, 12, 21}, {∞10, 1, 2, 3},
{∞10, 4, 5, 6}, {∞10, 7, 8, 9}, {∞11, 1, 4, 7}, {∞11, 2, 5, 8},
{∞11, 3, 6, 9}, {∞11, 10, 11, 12}, {∞11, 19, 20, 21}.

Let U ′ consist of the following 11 4-subsets of X ∪ Y

{∞1, 7, 8, 9}, {∞1, 10, 11, 12}, {∞1, 19, 20, 21}, {∞10, 1, 4, 7},
{∞10, 2, 5, 8}, {∞10, 3, 6, 9}, {∞11, 1, 2, 3}, {∞11, 4, 5, 6},
{∞11, 7, 10, 19}, {∞11, 8, 11, 20}, {∞11, 9, 12, 21}.

It is readily checked that (U,U ′) is a Steiner (4, 2) trade of volume 11. Let D = (C \ U)
⋃
U ′. Thus (X ∪ Y ,D) is also an

S(2, 4, 40) design. It is easy to verify that |T (C)
⋂
T (D)| = t40 − 33. This completes the proof. �

Lemma 5.20. 0 ∈ JT (40).

Proof. Construct an S(2, 4, 40) design (X,B) with X = Z5 × {1, 2, 3, 4, 5, 6, 7, 8}. Only base blocks are listed below. All
other blocks ofB are obtained by developing these base blocks by (+1 mod 5,−). This construction can be found in [7].

{(2, 1)(3, 1)(2, 3)(0, 5)}, {(4, 1)(0, 3)(2, 4)(0, 5)}, {(1, 1)(0, 4)(1, 4)(0, 5)},
{(2, 2)(1, 3)(3, 3)(0, 6)}, {(3, 2)(4, 2)(4, 4)(0, 6)}, {(1, 2)(4, 3)(3, 4)(0, 6)},
{(0, 1)(3, 1)(1, 2)(0, 7)}, {(1, 1)(3, 3)(4, 3)(0, 7)}, {(0, 2)(2, 2)(2, 3)(0, 7)},
{(4, 1)(3, 2)(1, 4)(0, 8)}, {(2, 1)(4, 2)(3, 4)(0, 8)}, {(1, 3)(2, 4)(4, 4)(0, 8)},
{(0, 1)(1, 6)(0, 8)(2, 8)}, {(0, 1)(2, 6)(3, 6)(3, 7)}, {(0, 1)(4, 6)(1, 7)(4, 8)},
{(0, 2)(1, 5)(2, 7)(3, 8)}, {(0, 2)(2, 5)(1, 7)(0, 8)}, {(0, 2)(3, 5)(4, 5)(4, 8)},
{(0, 3)(2, 5)(4, 7)(1, 8)}, {(0, 3)(1, 5)(4, 5)(3, 6)}, {(0, 3)(0, 6)(2, 8)(3, 8)},
{(0, 4)(2, 5)(0, 6)(3, 6)}, {(0, 4)(1, 5)(1, 7)(4, 7)}, {(0, 4)(4, 6)(2, 7)(3, 7)},
{(0, 1)(0, 2)(0, 5)(0, 6)}, {(0, 3)(0, 4)(0, 7)(0, 8)}.

Consider the permutation π on X , such that for any (a, b) ∈ B, B ∈ B, π keeps the first component of (a, b) invariant, that
is, π : (a, b) −→ (a, c). Thus we only list the action of π on the second component of (a, b) as follows

(1)(2 3)(4 7)(5 6 8).

It is readily checked that |πT (B)
⋂
T (B)| = 0. �

Lemma 5.21. {1, 2, . . . , 11} ⊆ JT (40).

Proof. Construct an S(2, 4, 40) design (X,B)with X = Z40. All blocks ofB are divided into two parts. The first part consists
of {i, 10+ i, 20+ i, 30+ i}, 0 ≤ i ≤ 9. Develop the following base blocks by+1 modulo 40 to obtain the second part ofB.

{0, 1, 4, 13}, {0, 2, 7, 24}, {0, 6, 14, 25}.

Consider the following permutations on X .

π1 = (1 29 37 7 16 4 33 13 22 26 39 31 12 30 34 8 32 9 27 20 3 35 24 21 28 18 15)

(0 23)(2 10)(5 6 17 14)(11 36 38 19 25),

π2 = (2 34 30 16 39 36 26 35 4 37 27 17 19 8 11 25 5 29 13 20 6 9 12 38 14 33 21 31)

(0 28 22)(3 10 7)(15 32 18 24 23),

π3 = (0 37 5 25 22 38 8 19 4 16 39 12 34 9 32 14 23 17)(1 20 30 7 2 6 28 10 27 11)

(3 24 29 13 33 15 35 31 18 36 26 21),

π4 = (0 6 29 3 33 18 31 21 14 7 38 23 11 12 19 17 25 1 20)(2 35 8 13 37 24 9 16 26)

(4 27 34 36 32 28 15 10 39 5),

π5 = (2 35 36 18 31 21 14 7 38 32 8 13 37 24 9 16 26)(4 27 34 28 15 10 39 5)

(0 6 29 3 33 23 11 12 19 17 25 1 20),

π6 = (0 19 3 18 4 24 38 6 25 33 14 21 2 31 35 29 28 7 10 16 30 8)(5 9)

(1 15 36 32 20 13 39 22 23 12 34 37 17 27 11 26),

π7 = (0 19 3 18 4 24 38 14 21 2 31 35 29 28 7 10 16 30 8)(6 25 33)(12 34 22 23)

(5 9)(1 15 36 32 20 13 39 37 17 27 11 26),
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π8 = (0 19 3 18 4 24 38 6 25 33 14 21 2 31 32 35 29 28 7 10 16 30 8)(5 9)

(1 15 36 17 27 11 26)(12 34 37 20 13 39 22 23),

π9 = (1 34 8 17 18 39 24 19 21 15 2 27 35 37 32 28 7 25 22 12 13)(5 36 20 38)

(0 10 9 3 29 11 30 31)(6 16 14 26 23 33),

π10 = (0 39 19 6)(1 23 5 12 38)(2 22 7 3 21 34 29 32 27 4 15 8 13 26 28 11)(17 37)

(9 33 24 16 35 30 31 18 25 14 10 20 36),

π11 = (0 39 1 23 5 12 38 19 6)(2 22 7 3 21 34 29 32 27 4 15 8 13 26 28 11)(17 37)

(9 33 24 16 35 30 31 18 25 14 10 20 36).

It is readily checked that |πjT (B)
⋂
T (B)| = j for each j ∈ {1, 2, . . . , 11}. �

Lemma 5.22. For any positive integer v ≡ 1, 4 (mod 12) and v ≥ 121, tv − 33 ∈ JT (v).

Proof. By Lemma 5.15, there is an S(2, 4, v)(X,B) containing an S(2, 4, 40)(Y ,A) as a subdesign, where Y ⊆ X . By
Lemma 5.19, there is a pair of S(2, 4, 40)(Y ,A1) and (Y ,A2) such that |T (A1)

⋂
T (A2)| = t40 − 33. It is readily checked

that (X, (B \A)
⋃

A1) and (X, (B \A)
⋃

A2) are two S(2, 4, v) designs with tv − 33 common triangles. �

6. The case of v = 25, 28, 37

Lemma 6.1. (1) {3–122, 124–131, 134, 135, 137, 140, 143, 146, 155, 158, 164} ⊆ JT (25).
(2) {1–149, 156, 158, 160, 162, 164, 166, 168, 180, 204} ⊆ JT (28).
(3) {0–251, 258–276, 285–294, 444} ⊆ JT (37).

Proof. (1) Take the S(2, 4, 25) design (X,B) listed in Lemma 4.5. Apply random permutations on X to obtain
{3, 4, . . . , 111} ⊆ JT (25). Take four pairs of S(2, 4, 25) designs listed in Table 6.2 in [6]. For each pair of S(2, 4, 25) designs,
apply random permutation to obtain {112–122, 124–131, 134, 135, 137, 140, 143, 146, 155, 158, 164} ⊆ JT (25).
(2) Take the S(2, 4, 28) design (X,B) constructed in Lemma 4.7. Apply random permutation on X to obtain

{1, 2, . . . , 149, 156, 158, 160, 162, 164, 166, 168, 180, 204} ⊆ JT (28).
(3) Construct two S(2, 4, 37) designs (X,Bi)(i = 1, 2) with X = Z37. Only base blocks are listed below. Develop these

base blocks by+1 modulo 37 to obtain all blocks ofBi, i = 1, 2.

B1 : {0, 1, 3, 24}, {0, 4, 9, 15}, {0, 7, 17, 25}.
B2 : {0, 1, 8, 21}, {0, 2, 11, 34}, {0, 4, 19, 31}.

One can find suitable random permutations πj on X to obtain |πjT (B2)
⋂
T (B1)| = j for each j ∈ {0, 1, . . . , 35} and

|πjT (B1)
⋂
T (B1)| = j for each j ∈ {36, 37, . . . , 251, 258–276, 285–294, 444}.

To save space we do not include these random permutations here. The interested reader may get a copy from the
authors. �

7. Conclusion

Proof of Theorem 1.2. (1) Combining the results of Lemmas 2.2, 5.4, 5.11, 5.13, 5.17 and 5.22, we have that for any
positive integer v ≡ 1, 4 (mod 12) and v ≥ 121, JT (v) = IT (v). By Lemmas 5.18–5.21, we have JT (40) = IT (40). (2)
Combining the results of Lemmas 2.2, 5.4, 5.11, 5.13 and 5.17, we have that for any positive integer v ≡ 1, 4 (mod 12)
and 49 ≤ v ≤ 112, JT (v) ⊆ IT (v) and IT (v) \ {tv − 33} ⊆ JT (v). (3) By computer exhaustive search, we have that
1, 2, 9 6∈ JT (13) and 37, 39, 41, 43 6∈ JT (16). Thus by Lemmas 2.2, 4.2 and 4.4, we have that JT (13) = IT (13) \ {1, 2, 9}
and JT (16) = IT (16) \ {37, 39, 41, 43, 45–50, 53, 62}.
Combining the results of Lemmas 2.2, 4.5 and 6.1(1), (4) of Theorem 1.2 holds. By Lemmas 2.2, 4.7 and 6.1(2), (5) holds.

By Lemma 6.1(3), (6) holds. This completes the proof. �
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