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1. Introduction

Let H be a simple graph and G a subgraph of H. A G-design of H ((H, G)-design in short) is a pair (X, 8) where X is the
vertex set of H and 8 is an edge-disjoint decomposition of H into isomorphic copies (called blocks) of the graph G. If H is
the complete graph K, we refer to such a G-design as one of order v. If G is the complete graph K}, a Ki-design of order v is
called a Steiner system S(2, k, v).

The intersection problem for (H, G)-designs is the determination of all pairs (v, s) such that there exists a pair of (H, G)-
designs (X, 81) and (X, B,) with |[X| = vand |81 NB;| = s. This problem was first considered for S(2, k, v) designs (cf. [9]).
A complete solution to the intersection problem for S(2, 3, v) designs was given by Lindner and Rosa [11]. The intersection
problem for S(2, 4, v) designs was dealt with by Colbourn et al. [6], apart from three undecided values for v = 25, 28 and
37. The intersection problem is also considered for many other different types of combinatorial structures. The interested
reader may refer to [2,8], for example.

Theorem 1.1 ([6]). Let J(v) = {s]| there exist two S(2, 4, v) designs with s common blocks }. Let b, = v(v — 1)/12 and
Iwv)y=1{0,1,2,...,b,}\ {b, —7,b, — 5,b, — 4, b, — 3, b, — 2, b, — 1}. Then

(1) J(w) C I(v) forallv =1, 4 (mod 12).

(2) J(v) =I(v) forallv = 1,4 (mod 12) and v > 40.

(3) J(13) = 1(13) and J(16) = I1(16) \ {7, 9, 10, 11, 14}.

(4) 1(25) \ {31, 33, 34, 37, 39, 40, 41, 42, 44} C J(25) and {42, 44} Z J(25).
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(5) 1(28) \ {44, 46, 49, 50, 52, 53, 54, 57} C J(28).
(6) 1(37) \ {64, 66, 76, 82, 84, 85, 88, 90-94, 96-101}  J(37).

Let B be a simple graph. Denote by T (B) the set of all triangles of the graph B. For example, if B is the graph with vertices
a, b, c, d and edges ab, ac, bc, cd (such a graph called a kite), then T(B) = {{a, b, c}}. The triangle intersection problem for
(H, G)-designs is the determination of all pairs (v, s) such that there exists a pair of (H, G)-designs (X, 8B1) and (X, B,) with
[X] =vand |T(B1) NT(B,)| = s, where T(B;) = UBE&_ T(B),i=1,2.

The triangle intersection problem was introduced by Lindner and Yazici [ 12], who gave a complete solution to the triangle
intersection problem for kite systems (a kite system is a G-design when G is a kite). Recently, Billington et al. [3] discussed
the triangle intersection problem for K, — e designs.

In this paper we shall investigate the triangle intersection problem for S(2, 4, v) designs. In what follows we always
assume thatt, = v(v — 1)/3,Ir(v) = {0, 1,...,t, — 30} U {t, — 27,t, — 24, t, — 18, t,} and Jr (v) = {s| there exist two
S(2, 4, v) designs with s common triangles}. As the main result, we are to prove the following theorem.

Theorem 1.2. (1) For v= 1,4 (mod 12) and v > 121, J;(v) = It (v); In particular, J; (40) = It (40).

(2) Forv=1,4 (mod 12) and49 < v < 112, It (v) \ {t, — 33} C Jr(v) C I7(v).

(3) Jr(13) = Ir(13) \ {1, 2, 9} and J7 (16) = I7(16) \ {37, 39, 41, 43, 45-50, 53, 62}.

(4) {0-122, 124-131, 134, 135, 137, 140, 143, 146, 155, 158, 164, 200} C Jr(25) C I7(25) \ {176, 182}.
(5) {0-149, 156, 158, 160, 162, 164, 166, 168, 180, 204, 252} C J;(28) C I (28).

(6) {0-251, 258-276, 285-294, 444} C Jr(37) C I+ (37).

2. Necessary conditions

In this section, we establish necessary conditions for Jr(v). A Steiner (4, 2) trade {Ty, To} of volume m consists of two
disjoint sets Ty and T, each containing m 4-subsets (called blocks) of some set V, such that every pair of V occurs in at most
one block of Ty, and any pair from V occurs in a block of Ty if and only if it occurs in a block of T>.

Lemma 2.1. Suppose that {T1, T»} is a Steiner (4, 2) trade of volume m. If there exists by € Ty such that |b; Ne| < 2 for each
e € Ty, thenm > 10.

Proof. Suppose that b; = {1, 2, 3, 4} € T; satisfying |b; Ne| < 2 for each e € T,. Then the pairs {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4} appear in distinct blocks of T,, and the number of blocks containing i in T; for any i € {1, 2, 3, 4} is no less than
3. This means that |T;| = |T,| = m > 9 and T; contains 9 blocks of the form

{1,2,3,4}, {1 %%}, {1,%,%%}, {2,% % %}, {2,%, %, %},
{3,%,%, %}, {3, %, %, %}, {4, %% %}, {4, % * x}.

If m = 9, it is readily checked that the number of blocks containing i in T; is 3 for each i € {1, 2, 3, 4},j € {1, 2}. And we
have the fact that there exists e; € T, such that |e; N b| < 2 for each b € T;. Otherwise, for any ¢ € T,, there exists ¢’ € Ty
such that [c N ¢’| = 3.Take ¢y, ¢; € Ty, ¢1 # c,. Then there are ¢y, ¢ € T such that [c; Ncj| = 3and |c; N c}| = 3. Because
every pair occurs in at most one block of T, we have ¢; # c;. Due to |T;| = |T|, there must be a block d € T, such that
|d N bqy| = 3. A contradiction occurs.

Considering |e; N by|, we have the following three possibilities.
Case 1. |e; N by| = 0. Lete; = {5, 6,7, 8}. Because |e; N b| < 2 for each b € Ty, the pairs {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8},
{7, 8} must appear in distinct blocks of T;. Without loss of generality, we may assume that the blocks {1, 5, 6, %} and
{1, 7, 8, x} are contained in T;. Then the pairs {1, 5}, {1, 6}, {1, 7}, {1, 8} must appear in distinct blocks in T,. Because the
number of blocks containing 1 in T is 3, a contradiction occurs.
Case2.|le;Nby| = 1.Lete; = {1, 5, 6, 7}. Because |e; N b| < 2 foreach b € Ty, the pairs {1, 5}, {1, 6}, {1, 7} must appear in
distinct blocks of T. Then there are 4 blocks containing 1 in T;. That is a contradiction.
Case 3. |e; N by| = 2. Lete; = {1, 2, 5, 6}. The pairs {1, 5}, {1, 6}, {2, 5}, {2, 6}, {5, 6} must appear in distinct blocks of T;.
Without loss of generality, we may assume that {3, 5, 6, *} € T,. Then the pairs {3, 5}, {3, 6} must appear in distinct blocks
of T,. Because there are only 3 blocks containing 3in T, (i.e., {1, 3, %, %}, {2, 3, *, %}, {3, 4, *, *}), a contradiction occurs. This
completes the proof. O

Lemma 2.2. For any positive integer v = 1,4 (mod 12) and v > 13, Jr(v) C Iy (v). In particular, Jr(16) C Ir(16) \ {45-50,
53,62} and J1(25) C I+(25) \ {176, 182}.

Proof. Suppose that (X, 8;) and (X, 8B;) aretwoS(2, 4, v) designs, which intersect in t, —s triangles. Consider D1 = 81\ B>
and O, = B, \ By. For any block D € D4, [T(D)((T(D2)| = 0or 1. Let = {D € Dy : |T(D)(T(D2)| = 0} and
¢ =1{D € D, : |T(D)(T(D2)| = 1}. Denote by J (v) the set of intersection sizes of S(2, 4, v) designs. It is easy to see that

|D1] = [Col +C4l,
s = 4|Co| + 3|C4l,
by = (ICol +1C1]) € J(v),
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where b, is the number of blocks of an S(2, 4, v) design. By Lemma 2.1 when |D;| < 9, we have |G| = 0. Combine the
results from Theorem 1.1. It is readily checked that the desired results hold. For example, verify 176 ¢ Jr(25). In this case
ts = 200 and s = 24. Solve the equation 24 = 4|Cqy| + 3|C4|. Due to |Co| + |C1] < 9, we have |Cy| = 0 and |G| = 8, which
implies 42 € Jr(25). That is contradicted to 42 ¢ J;(25) from Theorem 1.1(4). O

3. Recursive constructions

In this section we give two recursive constructions for the triangle intersection problem. The concept of GDDs plays an
important role in these constructions.

Let K be a set of positive integers. A group divisible design (GDD) K-GDD is a triple (X, §, +) satisfying the following
properties: (1) 4 is a partition of a finite set X into subsets (called groups); (2) + is a set of subsets of X (called blocks), each
of cardinality from K, such that a group and a block contain at most one common point; (3) every pair of points from distinct
groups occurs in exactly one block.

If g contains u; groups of size g; for 1 < i < s, then we call gi”ggz -+ - gis the group type (or type) of the GDD. If K = {k},
we write {k}-GDD as k-GDD. A K-GDD of type 1" is commonly called a pairwise balanced design, denoted by (v, K, 1)-PBD.
When K = {k}, a pairwise balanced design is just a Steiner system S(2, k, v), called a balanced incomplete block design,
denoted by (v, k, 1)-BIBD. A K-GDD of type 1"~"h! is commonly called an incomplete pairwise balanced design, denoted by
(v, h; K, 1)-IPBD. When K = {k}, an incomplete pairwise balanced design is called an incomplete balanced incomplete block
design, denoted by (v, h; k, 1)-IBIBD. Obviously a (v, h; k, 1)-IBIBD is also a ((K, \ Kp), Ki)-design.

A GDD is resolvable if its blocks can be partitioned into parallel classes; a parallel class is a set of point-disjoint blocks
whose union is the set of all points. The notation K-RGDD is used for a resolvable K-GDD. If K = {k}, we write {k}-RGDD as
k-RGDD. A 3-RGDD of type 1" is commonly called a Kirkman triple system, denoted by KTS(v). It is well known that a KTS(v)
exists if and only if v = 3(mod 6) [14].

Let ## = {Hy, H>, ..., H;} be a partition of a finite set X into subsets (called holes), where |H;| = n;for1 < i < t.
Let Ky, n,,....n, be the complete multipartite graph on X with the ith part on H;. A holely G-design is a triple (X, #, 8) such
that (X, 8) is a (Ku; n,,....n,» G)-design. The hole type (or type) of the holely G-design is {nq, ny, ..., n;}. We usually use an
“exponential” notation to describe hole types: the hole type glu ! ggz -+ - g&s denotes u; occurrences of g for 1 <i <s.

A pair of holely G-designs (X, #, 81) and (X, #, B,) are said to intersect in [ triangles if |T(81) N T(B;)| = I, where
T(B) = Upe g 1(B),i=12 The following construction is a variation of Wilson’s Fundamental Construction [16].

Construction 3.1 (Weighting Construction). Suppose that (X, g, 4) is a K-GDD, and let w : X —— Z* U {0} be a weight
function. For every block A € A, suppose that there is a pair of holely G-designs of type {w(x) : x € A}, which intersect in t,

triangles. Then there exists a pair of holely G-designs of type {} ", .. w(x) : G € §}, which intersectin ) _,_, ta triangles.

Proof. For every x € X, let S(x) be a set of w(x) “copies” of x. For any Y C X, let S(Y) = |J,.y S(x). For every block
A € s, construct a pair of holely G-designs {S(A), {S(x) : x € A}, Ba} and {S(A), {S(x) : x € A}, 8,}, which intersect
in t, triangles. Then it is readily checked that there exists a pair of holely G-designs (S(X), {S(G) : G € 4}, Uac Ba) and
(SX), {S(G) : G € §}, Uac By), which intersectin ) _,_ . ta triangles. O

Construction 3.2 (Filling Construction). Let a be a nonnegative integer. Suppose that there exists a pair of holely G-designs
of type {g1, &, - .., &}, which intersect in t triangles. If there is a pair of ((Kg4q \ Ky), G)-designs with the same subgraph
K, removed for each 1 < i < s — 1, which intersect in t; triangles, and there is a pair of (K4, G)-designs, which intersect
in t; triangles, then there exists a pair of (K14, G)-designs intersecting in t + Zle t; triangles, where v = Zfz] gi.

Proof. Let (X, #, B1) and (X, #, B,) be a pair of holely G-designs of type {g1, g2, . . . , &}, which intersect in ¢ triangles. Let
H = {Hy,H,, ..., H;}with |[H;| = g;for1 <i < s,and Y be a set of cardinality a suchthat XNY = @J.Foreach1 <i <s—1,
construct a pair of ((Kg,1q \Ka), G)-designs (H; | J Y, A}) and (H; Y, Aiz) with the same subgraph K, defined on Y removed,
which intersect in t; triangles. By the assumption, we also have a pair of (Kg+4, G)-designs (H; | Y, AS‘) and (H;|J Y, Af),
which intersect in t; triangles. It is readily checked that there exists a pair of (K,.q, G)-designs (X [ J Y, (U;_, Ail) J B1) and
XUY, (UL, A} U B,), which intersect in t + Y _:;_, t; triangles, wherev = Y ; ,g. O

It is well known that a 5-GDD of type g° is equivalent to three mutually orthogonal Latin squares (MOLS) of order g. Thus
we quote the following result for later use.

Lemma 3.3 ([1]). There exists a 5-GDD of type g° for any positive integer g > 4 except for g € {6, 10}.

Lemma 3.4 ([5]). The necessary and sufficient conditions for the existence of a 4-GDD of type g" are (1)n > 4, 2)(n — 1)g =
0 (mod 3), 3)n(n — 1)g? = 0 (mod 12), with the exception of (g,n) € {(2, 4), (6, 4)}, in which case no such GDD exists.

4. Ingredients

Lemma 4.1. Let J;(13) = {s| there exist two S(2, 4, 13) designs with s common triangles and at least one common block }. Then
I(13)\ {0, 1,..., 7,19} C J;(13).
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Proof. let X = Zizand 8 = {{i,1+i,3+i,941i} : 0 < i < 12}. Then (X, B) is an S(2, 4, 13) design. Consider the
following permutations on X.

s = (456)(71210118), 79 = (456)(7 12 10)(8 11),

T =(45671012118), 711 =(45671210118),

w1, = (4567 128)(1011), w13 =(456712)(1011),

w14 = (4567128 10), w5 =(45687)(11 12),

e =(456812117), w17 =(4568121110),

mg = (4568)(7 11 12), o0 = (7 8)(11 12),

71 = (67)(810 12), Ty = (67)(8 12)(10 11),

5 = (1011 12), s = (8 10)(11 12),

734 = (11 12), 752 = (1).
It is readily checked that {0, 1,3,9} € 7;8( )8 and |7 T(B) [ T(B)| = jforeachj € Ir(13) \ {0,1,...,7,19} C
J1(13). O

Lemma 4.2. I7(13) \ {1, 2, 19} C J;(13).
Proof. Take the S(2, 4, 13) design (X, 8) constructed in Lemma 4.1. Consider the following permutations on X.

o= (34)(67810)(91112), 73 =(5678)(9111012),
na=(56789)(101211), 75 = (6789)(101211),
76 =(56)(789)(101112), 7, = (67891012 11).

It is readily checked that |;T(8) [\ T(B)| = iforeachi € {0, 3, 4,5, 6, 7}. Combining the results from Lemma 4.1, we
complete the proof. O

Lemma 4.3. Let J,(16) = {s| there exist two S(2, 4, 16) designs with s common triangles and at least one common block }. Then
Ir(16) \ {0, 1, 2, 3, 37, 39, 41, 43, 45-50, 53, 62} < J;(16).

Proof. ConstructanS(2, 4, 16) design (X, 8) with X = Z;5. All blocks of B are listed below, which can be found in Example
1.31in[13].

{0, 1, 2, 3}, {0, 4, 5, 6}, {0,7,8,9}, {o, 10, 11, 12}, {0, 13, 14, 15},
{1,4,7,10}, {1,5,11,13}, {1,6,8,14}, {1,9,12,15}, ({2,4, 12,14},
{2,5,7,15}, {2,6,9,11}, {2,8,10,13}, {3,4,9, 13}, {3,5, 8, 12},
{3,6, 10,15}, {3,7,11,14}, {4,8,11,15}, {5,9,10,14}, {6,7,12,13}.

Consider the following permutations on X.

ma=(713159)(611141012), 75= (6711914151012 138),
76 =(67815910)(11141312), 7, = (678)(914111012 13 15),
753 =(67)(89101314111215), 7o = (67)(91015 13 14 11 12),
T =(67)(101211141315), 7y, = (78)(91012 13 11 14 15),
7, =(891211)(1013 15 14), 713 = (810141315912 11),

74 = (8910)(111215)(1314), 75 = (891012 151413 11),
e =(9101112151314), 77 = (910 11)(12 13 14 15),

s =(9101112)(131415), 719 = (9 10)(11 12 13)(14 15),

70 = (910)(12131415), 75 = (9 10)(12 14 13 15),

7 = (10111213 1415), 73 = (9 10)(12 13)(14 15),

7s = (1011)(1213 14 15), 75 = (1011 13 15 12 14),

7 = (10 11)(12 13)(14 15), 77 = (10 11 12 13 15 14),

Tos = (910)(12 13 14), e = (1112 13)(14 15),

7o = (1112131514), 73, = (1113 12 15 14),

73 = (10131114 1215), 733 = (11 13)(12 14 15),

7= (12131415), 735 = (1112)(13 14 15),

736 = (1213)(1415), 735 = (1112 13 15),
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Ty = (910)(12 13), g = (1112)(14 15),

w4 = (1314 15), 56 = (14 15),

780 = (1).
It is readily checked that the block {0, 1, 2,3} € m;8 (B and |7, T(B) (T(B)| = iforeachi € Ir(16) \ {0, 1, 2, 3,37,
39, 41, 43,45-50,53,62}. O

Lemma 4.4. I (16) \ {37, 39, 41, 43, 45-50, 53, 62} C Jr(16).
Proof. Take the S(2, 4, 16) design (X, 8B) constructed in Lemma 4.3. Consider the following permutations on X.

To=(24)(3810131512116914), ;= (34)(67 12151310 11)(8 149),
= G4)67)(811101315)(91412), 73 = (34)(79 15 13)(8 10 14 11 12).

Itis readily checked that |7, T(8) ([ T(8)| = iforeachi € {0, 1, 2, 3}. Combining the results from Lemma 4.3, we complete
the proof. O

Lemma 4.5. {0, 1, 2, 200} C Jr(25).

Proof. Construct an S(2, 4, 25) design (X, 8) with X = Z,s. All blocks of 8 are listed below, which can be found in Table
1.34in [13] (the 18th design).

{0,1,2,3}, {0,4,5,6}, {0,7,8, 9}, {0,10, 11,12}, {0, 13, 14, 15},
{0,16, 17,18}, {0,19,20,21}, {0,22,23,24}, {1,4,7,10},  {1,5,8, 13},

{1,6,11,16}, {1,9,17,19}, {1,12,20,22}, {1,14,18,23}, {1,15,21,24},
{2,4,8,18),  {2,5,7,20},  {2,6,19,24}, {2,9,10,14}, {2,11,15,22},
{2,12,16,23}, {2,13,17,21}, {3.4,17,22}, {3,5,12,21}, {3,6,7, 15},

(3,8,19,23}, {3,9,11,13}, {3,10,18,24}, {(3,14,16,20}, {4,9, 12,24},

{4,11,14,21), {4,13,20,23}, {4,15,16,19}, {5,9,16,22}, {5, 10, 15,23},
{5,11,18,19}, {5,14,17,24}, 16,8,14,22}, {6,9,21,23}, {6, 10, 17,20},
{6,12,13,18), {7,11,17,23}, {7,12,14,19}, {7,13,16,24}, {7,18,21,22},
(8,10, 16,21}, {8,11,20,24}, {8,12,15,17}, {9,15,18,20}, {10, 13,19, 22}.

Consider the following permutations on X.

T =1(023214)(1591122182419206812)(3211617 13107 4 15),
w1 =(0231624131074153211820214)(159112219176 8 12),
T, =(023214)(15911221824192068 12)(32113107 4 15)(16 17),
7200 = (1).

It is readily checked that |7, T(8) [\ T(B)| = iforeachi € {0, 1,2,200}. O

Lemma 4.6. There exists a pair of S(2, 4, 25) designs with exactly one common block and 4 common triangles.

Proof. TaketheS(2, 4, 25) design (X, 8B) constructed in Lemma 4.5. Consider the permutationz = (41323 18)(57171011
221219815 14 16 9 20 24). It is readily checked that {0, 1, 2,3} e 7 8B and [ T(B) (T(B)|=4. O

Lemma 4.7. {0, 252} C Jr(28).

Proof. ConstructanS(2, 4, 28) design (X, 8) with X = Z,g. All blocks of B are divided into two parts. The first part consists
of {i,7+1i,14+1i,21+i},0 < i < 6. Develop the following base blocks by +4 modulo 28 to obtain the second part of 3.

{0, 1,2, 3}, {0, 4,9, 12}, {0,6, 11,22}, {0, 10, 13, 18},
(0,15, 19,27}, {0,17,23,26}, {1,5,13,23}, {1,14,18,27}.

Consider the following permutations on X.

o =1(0152625910)(11252718226720)(28142416211913231743),
7252 = (1).

It is readily checked that |7;T(8) (T(8)| = jforeachj € {0,252}. O

Lemma 4.8. {1, 2} C Jr(49).
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Proof. Construct two S(2, 4, 49) designs (X, $87) and (X, 8;). Only base blocks are listed below. Develop these base blocks
by +1 modulo 49 to obtain all blocks of B;,i = 1, 2.

8;: {0,1,10,22}, {0,2,5, 13}, {0,4,20,35}, {0,6,25,32}.
8 : {0,1,3,8), {0,4,18,29}, {0,6,21,33}, {0,9,19,32}.

Consider the following permutations on X.
1 = (46 47 48), T, = (47 48).
It is readily checked that |77;T(8;) (| T(B1)| =jforeachje {1,2}. O

Lemma 4.9. There exists a pair of 4-GDDs of type 3* with i common triangles, i € {9, 12, 18, 36}.

Proof. Take the S(2, 4, 13) design (X, 8) constructed in Lemma 4.1. Delete the point 0 from this design to obtain a 4-GDD
of type 3*(X \ {0}, , B'), where § = {{1, 3,9}, {4, 5,7}, {6, 10,11}, {2, 8, 12}},and B’ = B \ {B € B : 0 € B}. Consider
the following permutations on X \ {0}, which keep 4 invariant.

w9 = (610 11), w1, = (812)(10 11),

s = (10 11), 736 = (1).

It is readily checked that |7;T(8') (T(8')| = iforeachi € {9, 12, 18,36}. O

Lemma 4.10. There exists a pair of 4-GDDs of type 3° with i common triangles, i € {0, 60}.

Proof. Take the S(2, 4, 16) design (X, 8B) constructed in Lemma 4.3. Delete the point 0 from this design to obtain a 4-GDD
of type 3°> (X \ {0}, §, B'), where ¢ = {{1+3j,2+3j,3+3j}:0<j<4},and B = B8\ {B € B : 0 € B}. Consider the
following permutations on X \ {0}, which keep § invariant.

o= (23)(56)(78)(1012)(13 15), g0 = (1).
It is readily checked that |7;T(8') (T(8)| = iforeachi € {0,60}. O

Lemma 4.11. There exists a pair of 4-GDDs of type g* without common triangles for g € {4, 5, 9}.
Proof. Let X = GF(g) x {0,1,2,3}and ¢ = {GF(g) x {i} : i € {0, 1, 2, 3}}. Let

B1 = {{(,0), (k, 1), G+ Ak, 2), G+ puk,3)} : j, k € GF(g)},
B, ={{(,0), (k, 1), G+ Ak + e, 2), G+ pk+ B,3)}:j, k € GF(g)},
where A, i, o, B € GF(g), A, u # 0and A # . Then (X, ¢, 87) and (X, 4, 8B,) are two 4-GDDs of type g*.

It is readily checked that if one can choose A, u, @, 8 € GF(g) \ {0} such that A # u,«o # B and A # ua, then
IT(81) (T(B2)| = 0. Thus for g = 4, one may take (A, u, @, ) = (1, x, x, 1), where x is a primitive element of GF(4)
satisfying 1 +x + x> = 0.Forg = 5, take (A, u, «, B)=(1,2,2,1).Forg = 9,take (A, u, @, B) = (1, 2, 1, x), wherex is a
primitive element of GF(9) satisfying2 + x4+ x> =0. O

Lemma 4.12. There exists a pair of 4-GDDs of type 4* with i common triangles, i € {0, 64}.

Proof. The case of i = 0 comes immediately from Lemma 4.11. Take the identity permutation to act on the block sets of
two same 4-GDDs of type 4* to obtain the case ofi = 64. 0O

5. Applying the recursions

Lemma 5.1. For any positive integer v = 1, 13 (mod 48) and v > 49, It (v) \ {1, 2, t, — 33} C Jr (v).

Proof. Let v = 12u + 1 withu = 0,1 (mod 4) and u > 4. Start from a 4-GDD of type 3" from Lemma 3.4. Give each
point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-GDDs of type 4* with « common triangles, o € {0, 64}. Then
apply Construction 3.1 to obtain a pair of 4-GDDs of type 12" with 2?21 o; common triangles, where b = 3u(u — 1)/4 and
a; € {0,64} for 1 < i < b. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs with 8; (1 < j < u)
common triangles from Lemma 4.2, we have a pair of S(2, 4, 12u + 1) designs with Zle o + Z;;] B;j common triangles,
where f; € Jr(13) for 1 < j < u.lItis readily checked that for any integer n € Iy (v) \ {1, 2, t, — 33}, n can be written as the
formof 3, o + Y i, fj. where o;; € {0,64} (1 <i<b). B ejr(13) 1 <j<u). O

Lemma 5.2. {1, 2} C J;(97).
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Proof. There exists a 4-GDD of type 362 [10]. Give each point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-
GDDs of type 4* without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 124242 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, and a pair of S(2, 4, 25) designs with §; (1 < j < 2) common triangles from Lemma 4.5, we have a pair of
S(2, 4, 97) designs with 8; 4+ B, common triangles, where g; € {0, 1,2}for1 <j<2. O

Lemma 5.3. For any positive integer v = 1 (mod 24) and v > 121, {1, 2} C Jr(v).

Proof. For any positive integer u > 5, there exists a 4-GDD of type 6" from Lemma 3.4. Give each point of the GDD weight
4. By Lemma 4.12, there is a pair of 4-GDDs of type 4* without common triangles. Then apply Construction 3.1 to obtain a
pair of 4-GDDs of type 24" without common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 25) designs
with B; (1 <j < u) common triangles from Lemma 4.5, we have a pair of S(2, 4, 24u + 1) designs with Zl'l=1 B;j common
triangles, where §; € {0, 1,2} for1 <j <u. O

Combining the results from Lemmas 4.8 and 5.1-5.3, we have the following
Lemma 5.4. For any positive integer v = 1 (mod 48) and v > 49, It (v) \ {t, — 33} C Jr (v).

Lemma 5.5. {1, 2} C Jr(61).

Proof. Start from a 4-GDD of type 3* from Lemma 3.4. Give each point of the GDD weight 5. By Lemma 4.11, there is a pair
of 4-GDDs of type 5% without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 154 without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 16) designs with §; (1 < j < 4) common
triangles from Lemma 4.4, we have a pair of S(2, 4, 61) designs with Z;-l:] B; common triangles, where g; € {0, 1, 2} for
1<j<4 O

Lemma 5.6. {1, 2} C Jr(109).

Proof. Start from a 5-GDD of type 7° from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10, there is a pair
of 4-GDDs of type 3° without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 21> without
common triangles. By Construction 3.2, filling in the first four holes by a pair of S(2, 4, 25) designs with exactly one common
block and 4 common triangles from Lemma 4.6, and filling in the last hole by a pair of S(2, 4, 25) designs with 8 common
triangles from Lemma 4.5, we have a pair of S(2, 4, 109) designs with 8 common triangles, where g € {1,2}. O

Lemma 5.7. There exists a pair of S(2, 4, 49) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13).

Proof. Start from a 4-GDD of type 3* from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.12, there is a pair
of 4-GDDs of type 4* without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 12# without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, we have a pair of S(2, 4, 49) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13). O

Lemma 5.8. {1, 2} C Jr(157).

Proof. Start from a 4-GDD of type 9* from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.12, there is a
pair of 4-GDDs of type 4* without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 36*
without common triangles. By Construction 3.2, filling in the first three holes by a pair of S(2, 4, 49) designs containing
a common S(2, 4, 13) as a subdesign from Lemma 5.7, which have no common triangles except for the triangles in the
common S(2, 4, 13), and filling in the last hole by a pair of S(2, 4, 49) designs with 8 common triangles from Lemma 4.8,
we have a pair of S(2, 4, 157) designs with § common triangles, where 8 € {1,2}. O

Lemma 5.9. There exists a pair of S(2, 4, 61) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13).

Proof. Start from a 5-GDD of type 4° from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10, there is a pair
of 4-GDDs of type 3° without common triangles. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 12> without
common triangles. By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs without common triangles from
Lemma 4.2, we have a pair of S(2, 4, 61) designs containing a common S(2, 4, 13) as a subdesign, which have no common
triangles except for the triangles in the common S(2, 4, 13). O

Lemma 5.10. For any positive integer v = 13 (mod 48) and v > 205, {1, 2} C Jr(v).
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Proof. For any positive integer u > 4, there exists a 4-GDD of type 12 from Lemma 3.4. Give each point of the GDD weight
4. By Lemma 4.12, there is a pair of 4-GDDs of type 4* without common triangles. Then apply Construction 3.1 to obtain a
pair of 4-GDDs of type 48" without common triangles. By Construction 3.2, filling in the fist u— 1 holes by a pair of S(2, 4, 61)
designs containing a common S(2, 4, 13) as a subdesign from Lemma 5.9, which have no common triangles except for the
triangles in the common S(2, 4, 13), and filling in the last hole by a pair of S(2, 4, 61) designs with 8 common triangles from
Lemma 5.5, where 8 € {1, 2}, we have a pair of S(2, 4, 48u + 13) designs with 8 common triangles. O

Combining the results from Lemmas 5.1, 5.5, 5.6, 5.8 and 5.10, we have the following
Lemma 5.11. For any positive integer v = 13 (mod 48) and v > 61, It (v) \ {t, — 33} C Jr(v).

Lemma 5.12 ([4]). There exists a (v, {4, 7*}, 1)-PBD with exactly one block of size 7 for any positive integer v = 7, 10 (mod 12)
and v # 10, 19.

Lemma 5.13. For any positive integer v = 25, 37 (mod 48) and v > 73, Ir (v) \ {t, — 33} C Jr (v).

Proof. Let v = 12u + 1 withu = 2,3 (mod 4) and u > 7. There exists a (3u + 1, {4, 7*}, 1)-PBD from Lemma 5.12,
which contains exactly one block of size 7. Take a point from the block of size 7. Delete this point to obtain a 4-GDD of type
34=261, Give each point of the GDD weight 4. By Lemma 4.12, there is a pair of 4-GDDs of type 4* with @ common triangles,
a € {0, 64}. Then apply Construction 3.1 to obtain a pair of 4-GDDs of type 124~224! with Z?zl «; common triangles, where
b =3Ww?—u—2)/4ando; € {0, 64} for 1 < i < b.By Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs with
Bj (1 <j < u — 2) common triangles from Lemma 4.2, and a pair of S(2, 4, 25) designs with 8,_; common triangles from
Lemma 4.5, we have a pair of S(2, 4, 12u + 1) designs with ZL] o+ Z;:]z Bj + Bu—1 common triangles, where g; € Jr(13)
for1 <j<u-—2and B,_1 € Jr(25).Itis readily checked that for any integer n € It (v) \ {t, — 33}, n can be written as the
form of 30, & + Y4=7 B + Bu—1, Where a; € {0,64} (1 <i < b), fj € Jr(13) (1 <j < u—2), Buy € {0, 1,2,200}.

When v = 73, start from an S(2, 5, 25). Delete a point from this design to obtain a 5-GDD of type 4°. Give each point of
the GDD weight 3. By Lemma 4.10, there is a pair of 4-GDDs of type 3> with o common triangles, « € {0, 60}. Then apply
Construction 3.1 to obtain a pair of 4-GDDs of type 128 with Ziz;l] «; common triangles, where «; € {0, 60} for 1 < i < 24.By
Construction 3.2, filling in the holes by a pair of S(2, 4, 13) designs with 8; (1 < j < 6) common triangles from Lemma 4.2,
we have a pair of S(2, 4, 73) designs with 2?11 o + Z;'i=1 B;j common triangles, where §; € Jr(13) for 1 < j < 6.1Itis
readily checked that for any integer n € Ir(73) \ {t;3 — 33}, n can be written as the form of Ziz:] o + Zle Bj, where
«; €{0,60} (1=i=<24),B€)r(13)(1<j=<6). O

Lemma 5.14. Let E(v) = {t,—18,t,—27,t,—30,t,—31,t,—32,t,—33,t,—34,t,—35,t,—37,t,—39, t,—41, t,—43}.
For any positive integer v = 4 (mod 12) and v > 52, It (v) \ E(v) C Jr(v).

Proof. We divide the problem into two cases.

Case 1: Let v = 12u+4 withu = 0, 1 (mod 4) and u > 4. By similar arguments as in Lemma 5.1, there is a pair of 4-GDDs
of type 12¥ with Zf’;l o common triangles, whereb = 3u(u—1)/4and o; € {0, 64} for 1 < i < b.By Construction 3.2, filling
in the holes by a pair of S(2, 4, 16) designs with 8; (1 < j < u — 1) common triangles and at least one common block from
Lemma 4.3, and a pair of S(2, 4, 16) designs with 8, common triangles from Lemma 4.4, we have a pair of S(2, 4, 12u + 4)
designs with Z?:l o + }’;11 (B — 4) + B, common triangles, where g; € J;(16) for 1 <j < u — 1and 8, € Jr(16).1tis
readily checked that for any integer n € Iy (v) \ E(v), n can be written as the form of Zf’:l o + ;';]1 (B — 4) + Bu, where
i €{0,64}(1<i<Dh),B€/i(16) 1 =j=<u-—1),p €Jr(16).

Case 2: Let v = 12u + 4 withu = 2, 3 (mod 4) and u > 7. By similar arguments as in Lemma 5.13, there is a pair of
4-GDDs of type 1247224 with Zf;l «; common triangles, where b = 3(u?> —u — 2)/4and o; € {0,64} for 1 < i < b.
By Construction 3.2, filling in the holes by a pair of S(2, 4, 16) designs with 8; (1 < j < u — 2) common triangles and at
least one common block from Lemma 4.3, and a pair of S(2, 4, 28) designs with §,_; common triangles from Lemma 4.7,
we have a pair of S(2, 4, 12u + 4) designs with Z?:] o + ;':_12 (Bi — 4) + Bu—1 common triangles, where g; € J;(16) for
1 <j<u-2andg,—1 € Jr(28).Itis readily checked that for any integer n € It (v) \ E(v), n can be written as the form of
S+ Y (B — 4) + Pu—r, Where o € {0,64) (1 <i<b), i €Ji(16) (1 <j <u~—2), B € {0,252},

When v = 76, start from a 5-GDD of type 5> from Lemma 3.3. Give each point of the GDD weight 3. By Lemma 4.10,
there is a pair of 4-GDDs of type 3° with & common triangles, « € {0, 60}. Then apply Construction 3.1 to obtain a pair of
4-GDDs of type 15> with 212:5] «; common triangles, where «; € {0, 60} for 1 < i < 25. By Construction 3.2, filling in the
holes by a pair of S(2, 4, 16) designs with 8; (1 < j < 5) common triangles from Lemma 4.4, we have a pair of S(2, 4, 76)
designs with ij i+ st:l B; common triangles, where g; € Jr(16) for 1 < j < 5.Itis readily checked that for any integer
n € Ir(76) \ E(76), n can be written as the form of Y>>, o; + 3>, f;, where o; € {0, 60} (1 < i < 25), §j € Jr(16) (1 <
j<5). O
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Lemma 5.15 ([15]).If v = 1,4 (mod 12), w = 1,4 (mod 12) and v > 3w + 1, then there is an S(2, 4, v) containing an
S(2, 4, w) as a subdesign.

Lemma 5.16. For any positive integer v = 1, 4 (mod 12) and v > 40, E(v) C Jr(v), where E(v) is defined as in Lemma 5.14.

Proof. By Lemma 5.15, there is an S(2, 4, v) (X, 8) containing an S(2, 4, 13) (Y, ) as a subdesign, where Y C X. By
Lemma 4.2, there is a pair of S(2, 4, 13) (Y, +1) and (Y, +;) such that [T(41) ((T(A2)| =71, 1 € {9, 11, 13, 15, 17, 18, 20,
21, 22, 25, 34}. Itis readily checked that (X, (B8\ ) | #1) and (X, (8\4) | 42) are two S(2, 4, v) designs with s common
triangles,s € E(v). O

Combining the results from Lemmas 5.14 and 5.16, we have the following
Lemma 5.17. For any positive integer v = 4 (mod 12) and v > 52, It (v) \ {t, — 33} € Jr(v).

Lemma 5.18. [7(40) \ {0, 1, ..., 11, tsg — 33} C Jr(40).

Proof. By Lemma 4.11 there is a pair of 4-GDDs of type 9 without common triangles. By Construction 3.2, filling in the holes
by a pair of S(2, 4, 13) designs with 8; (1 < i < 3) common triangles and at least one common block from Lemma 4.1, and
a pair of S(2, 4, 13) designs with 8, common triangles from Lemma 4.2, we have a pair of S(2, 4, 40) designs with Z?:l Bi
common triangles, where 8; € J;(13) for 1 < i < 3and B4 € Jr(13).Let N = {12,13,..., 162, 164, 165, 166, 169,
172, 178, 196}. It is readily checked that for any integer n € N, n can be written as the form of Zf:] Bi, where B; €
J1(13) (1 <i < 3)and B4 € Jr(13). Thus N < Jr(40).

Start from a 4-GDD of type 3* from Lemma 3.4. Give each point of the GDD weight 4. By Lemma 4.9, there is a pair
of 4-GDDs of type 3* with & common triangles, @« € {9, 12, 18, 36}. Then apply Construction 3.1 to obtain a pair of 4-
GDDs of type 9* with Z?:l a; common triangles, where «o; € {9, 12, 18,36} for 1 < i < 9. By Construction 3.2, filling
in the holes by a pair of S(2, 4, 13) designs with §; (1 < j < 3) common triangles and at least one common block from
Lemma 4.1, and a pair of S(2, 4, 13) designs with 8, common triangles from Lemma 4.2, we have a pair of S(2, 4, 40) de-
signs with Z?:l o + Zf;l Bi common triangles, where 8; € J1(13) (1 < j < 3) and B4 € Jr(13).Let M = {93,94, ...,
486, 488, 489, 490, 493, 496, 502, 520}. It is readily checked that for any integer m € M, m can be written as the form of
2?21 o + Z?:l Bi, where o;; € {9,12,18,36} (1 <i<9), B €J1(13) (1 <j < 3)and B4 € Jr(13). Thus M C Jr(40). This
completes the proof. O

Lemma 5.19. t4 — 33 € J7(40).

Proof. It is well known that a 3-RGDD of type 93 is equivalent to two mutually orthogonal Latin squares (MOLS) of order
9. Thus there exists a 3-RGDD of type 93 [1]. Let X = (1,2,...,27},G; = {1,2,...,9},G, = {10,11,...,18},G; =
{19, 20, ...,27} and ¢ = {G, Gy, G3}. Let (X, &, B) be a 3-RGDD of type 93, which has 9 parallel classes Py, P,, ..., Po.
Without loss of generality we assume that P; contains 9 blocks of the form

{7,10,19}, {8,11,20}, {9,12,21}, {1,%, %}, {2,%,%}, ({3,%, %},
{4, *, x}, {5, *, x}, {6, *, x}.

Construct three KTS(9)s on G1, G, and Gs, respectively. Each of them has 4 parallel classes Qi, Qi2, Qi3, Qis, i = 1, 2, 3.
Without loss of generality we assume that
Qi ={{1,2,3},{4,5,6},{7,8,9}},
Q2 ={{1,4,7}.{2,5,8},{3,6,9}},
Qi3 = {{1,5,9}{2,6,7}, {3,4, 8}},
Qs ={{2,4,9}{3,5,7},{1,6, 8}},
Q21 = {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
Q2 = {{10, 13, 16}, {11, 14, 17}, {12, 15, 18}},
Q3 = {{10, 14, 18}, {11, 15, 16}, {12, 13, 17}},
Qx4 = {{11, 13, 18}, {12, 14, 16}, {10, 15, 17}},

Qs1 = {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}},
Qs = {{19, 22, 25}, {20, 23, 26}, {21, 24, 27}},
Q33 = {{19, 23, 27}, {20, 24, 25}, {21, 22, 26}},
Qsa = {{20, 22, 27}, {21, 23, 25}, {19, 24, 26}}.

Let Py = Q1UQa2UQs Pi = QuUQ1 U1, P2 = Q3 UQs3UQss and P13 = Qi4(J Qa4 {J Qa4. Obviously
for each j e ({10, 11, 12, 13}, P; is a partition of X into 9 3-subsets. Construct an S(2, 4, 13) design (Y, A) on Y =
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{001, 007,...,0013}. Let € = {BU {oo)} : B € Pl € {1,2,...,13}} | . It is readily checked that (X U Y, @) is an
S(2, 4, 40) design.
Pay attention to the blocks with underlines listed above. Take U C € consisting of the following 11 blocks

{001777 107 19}3 {001583 11720}7 {001797 12521}7 {00107 ], 273}7
{0010, 4,5,6},  {0010,7,8,9}, {oo11, 1,4, 7}, {oo11, 2,5, 8},
{o011,3,6,9},  {oonr, 10,11, 12}, {ooq1, 19, 20, 21}.

Let U’ consist of the following 11 4-subsets of X U Y

{001,7,8,9}, {001, 10,11, 12}, {001, 19, 20, 21}, {0010, 1,4, 7},
{0010, 2,5, 8}, {oo10, 3,6, 9}, {oo11, 1,2, 3}, {o011, 4,5, 6},
{o011,7,10,19}, {ooq1,8, 11,20}, {o011,9, 12,21}

It is readily checked that (U, U’) is a Steiner (4, 2) trade of volume 11. Let & = (€ \ U) |JU’. Thus (X U Y, D) is also an
S(2, 4, 40) design. It is easy to verify that |T(C) [ T(D)| = ts — 33. This completes the proof. O

Lemma 5.20. 0 € J7(40).

Proof. Construct an S(2, 4, 40) design (X, 8) with X = Zs x {1, 2, 3,4, 5, 6, 7, 8}. Only base blocks are listed below. All
other blocks of B are obtained by developing these base blocks by (+1 mod 5, —). This construction can be found in [7].

{2, DB, D(2,3)(0,5},  {(4,1)(0,3)(2,4(0,5}, {(1,1)(0,4)(1,4)(0,5)},
{(2,2)(1,3)(3,3)(0,6)},  {(3,2)(4,2)(4,4)(0,6)}, {(1,2)(4,3)(3,4)(0,6)},
{0, DB, D(1,2)(0,7)},  {(1,1)(3,3)(4,3)(0,7)},  {(0,2)(2,2)(2,3)(0, 7},
{4, 1D(3,2)(1,4)(0,8)}, {(2,1)(4,2)(3,4(0,8)}, {(1,3)(2,4)(4,4)(0, 8)},
{(0, 1)(1,6)(0,8)(2,8)},  {(0,1)(2,6)(3,6)(3,7)}, {(0,1)(4,6)(1,7)(4,8)},
{(0,2)(1,5)(2,7)(3,8)},  {(0,2)(2,5)(1,7)(0,8)}, {(0,2)(3,5)(4,5)(4,8)},
{(0,3)(2,5)(4,7)(1,8)},  {(0,3)(1,5)(4,5)(3,6)}, {(0, 3)(0,6)(2,8)(3,8)},
{(0,4)(2,5)(0,6)(3,6)}, {(0,4(1,5)(1,7)(4,7)}, {(0,4)(4,6)(2,7)(3, 7},
{(0, 1)(0,2)(0,5)(0,6)},  {(0,3)(0,4)(0,7)(0, 8)}.

Consider the permutation v on X, such that for any (a, b) € B, B € B, 7 keeps the first component of (a, b) invariant, that
is,  : (a, b) —> (a, ¢). Thus we only list the action of 7 on the second component of (a, b) as follows

(1H(23)(47)(568).
It is readily checked that |z T(8) (T(8)|=0. O

Lemma 5.21. {1, 2, ..., 11} C Jr(40).

Proof. ConstructanS(2, 4, 40) design (X, 8) with X = Z4. All blocks of B are divided into two parts. The first part consists
of {i, 10 +1i,20 4+ i, 30 + i}, 0 < i < 9. Develop the following base blocks by +1 modulo 40 to obtain the second part of B.

{0,1,4,13}, {0,2,7,24}, {0,6,14,25}.
Consider the following permutations on X.

7 = (12937716433 132226393112303483292720335242128 18 15)
(023)(2 10)(5 6 17 14)(11 36 38 19 25),

7, = (2343016393626354372717198 1125529 132069 12 38 14332131)
(02822)(3107)(15 32 18 24 23),

73 = (0375252238819416391234932142317)(120307 2628 1027 11)
(32429 1333 15 35 31 18 36 26 21),

s = (06293331831211473823 1112191725 120)(2 358 1337249 16 26)
(4273436322815 1039 5),

7s = (23536 183121147 383281337249 16 26)(427 3428 15 10 39 5)
(0629333231112 191725 120),

ms = (019318424386253314212313529287 10 16 308)(59)
(115363220 13392223 12 3437 17 27 11 26),

77 = (0193 184243814212313529287 10 16 30 8)(6 25 33)(12 3422 23)
(59)(1 15 36 3220 13 39 37 17 27 11 26),
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g =(019318424386253314212313235292871016308)(59)
(115361727 1126)(12 34 37 20 13 39 22 23),

m9g = (134817183924 192115227 353732287 252212 13)(5362038)
(0109329113031)(6 16 14 26 23 33),

w0 = (039196)(12351238)(2227321342932274158 132628 11)(17 37)
(9332416353031 1825 141020 36),

w11 =(03912351238196)(2227321342932274158 132628 11)(17 37)
(9332416353031 1825141020 36).

It is readily checked that |7;T(8) (\T(8)| =jforeachje {1,2,...,11}. O

Lemma 5.22. For any positive integer v = 1,4 (mod 12) and v > 121, t, — 33 € Jr(v).

Proof. By Lemma 5.15, there is an S(2, 4, v)(X, 8) containing an S(2, 4, 40)(Y, ) as a subdesign, where Y C X. By
Lemma 5.19, there is a pair of S(2, 4, 40)(Y, #1) and (Y, #>) such that |T (A1) [ T(A2)| = ts — 33. It is readily checked
that (X, (8 \ 4) | #41) and (X, (B8 \ 4) | 4,) are two 5(2, 4, v) designs with t, — 33 common triangles. O

6. The case of v = 25, 28, 37

Lemma 6.1. (1) {3-122, 124-131, 134, 135, 137, 140, 143, 146, 155, 158, 164}  J;(25).
(2) {1-149, 156, 158, 160, 162, 164, 166, 168, 180, 204} < J;(28).
(3) {0-251, 258-276, 285-294, 444}  J;(37).

Proof. (1) Take the S(2, 4, 25) design (X, 8) listed in Lemma 4.5. Apply random permutations on X to obtain
{3,4, ..., 111} C Jr(25). Take four pairs of S(2, 4, 25) designs listed in Table 6.2 in [6]. For each pair of S(2, 4, 25) designs,
apply random permutation to obtain {112-122, 124-131, 134, 135, 137, 140, 143, 146, 155, 158, 164} C Jr(25).

(2) Take the S(2, 4, 28) design (X, B) constructed in Lemma 4.7. Apply random permutation on X to obtain
{1,2,..., 149, 156, 158, 160, 162, 164, 166, 168, 180, 204} C Jr(28).

(3) Construct two S(2, 4, 37) designs (X, B;)(i = 1, 2) with X = Z37. Only base blocks are listed below. Develop these
base blocks by +1 modulo 37 to obtain all blocks of B;,i = 1, 2.

By: {0,1,3,24}, {0,4,9,15}, {0,7,17,25}.
B,: {0,1,8,21}, {0,2,11,34}, {0,4,19,31}.

One can find suitable random permutations 7; on X to obtain |7;T(8;) (| T(B1)| = jforeachj € {0,1,...,35} and
|7, T(B1) () T(B1)| =j for eachj € {36, 37, ..., 251, 258-276, 285-294, 444}.

To save space we do not include these random permutations here. The interested reader may get a copy from the
authors. O

7. Conclusion

Proof of Theorem 1.2. (1) Combining the results of Lemmas 2.2, 5.4, 5.11, 5.13, 5.17 and 5.22, we have that for any
positive integer v = 1,4 (mod 12) and v > 121, Jr(v) = Ir(v). By Lemmas 5.18-5.21, we have J;r(40) = I;(40). (2)
Combining the results of Lemmas 2.2, 5.4, 5.11, 5.13 and 5.17, we have that for any positive integer v = 1,4 (mod 12)
and 49 < v < 112,Jr(v) € Ir(v) and It(v) \ {t, — 33} C Jr(v). (3) By computer exhaustive search, we have that
1,2,9 ¢ Jr(13) and 37, 39, 41, 43 ¢ Jr(16). Thus by Lemmas 2.2, 4.2 and 4.4, we have that J7(13) = I+(13) \ {1, 2,9}
and J;(16) = Ir(16) \ {37, 39, 41, 43, 45-50, 53, 62}.

Combining the results of Lemmas 2.2, 4.5 and 6.1(1), (4) of Theorem 1.2 holds. By Lemmas 2.2, 4.7 and 6.1(2), (5) holds.
By Lemma 6.1(3), (6) holds. This completes the proof. O
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