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Introduction
Over recent years a huge effort has been dedicated to the elucidation 

of the mechanisms responsible for the capability of many organisms 
to survive under environmental stress conditions [1-10]. Homologous 
disaccharides (C12H22O11), e.g. sucrose, maltose and trehalose,play 
an important role in nature as bioprotectant systems. In particular, 
trehalose(α-D-glucopyranosyl, α-D-glucopyranoside), a non-reducing 
sugar, is synthesized by several organisms, called “extremophiles” 
[11-18] to overcome harsh conditions by entering into a state of 
suspended animation, called “cryptobiosis”. To exemplify, trehalose is 
one of the survival strategies for tardigrada, microorganisms which are 
classified as “polyextremophiles” due to their capability to survive at 
very low and very high temperatures, hard vacuum and high radiation 
concentrations; Artemia Salina, a crustacean surviving at high salinity 
levels, and Resurrection plants, living several years in dry conditions.

Although many studies have been focused on ternary systems such 
as biostructure/water/disaccharide [19-27], many researchers retain 
that the protein dynamics is strongly coupled with, and depends on, 
the solvent properties [28-36] and, for this reason, their attention 
has been mainly addressed to the disaccharide/water mixtures. Many 
light and neutron scattering findings on disaccharide/water mixtures 
indicate that the molecular mechanisms underlying the trehalose 
bioprotective effectiveness lie on the peculiar interaction between 
trehalose and water [37-41]. Green and Angell [42] have hypothesized 
that the bioprotectant effectiveness of trehalose could be related to the 
higher value of its glass transition in comparison with its homologous. 
However, other systems, such as dextran, present a comparable Tgvalue, 
but do not show an analogous bioprotective action. On the other hand, 
Crowe et al. [43] suggests a direct interaction between the sugar and 
the biomolecule: in particular their “water replacement hypothesis” 
justifies the trehalose protective function with the existence of direct 
hydrogen bonding of trehalose with the polar head groups of the 
lipids. This hypothesis was strengthened by the simulation reported 
by Donnamaria et al. [44], which argue that the structure of trehalose 
is perfectly adaptable to the tetrahedral coordination of pure water, 
whose structural and dynamical properties are not significantly affected 
by trehalose.

As a matter of fact experimental findings obtained by several 
spectroscopic techniques indicate clearly that the structural 
and dynamical properties of water, even at relatively low sugar 
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concentration, result drastically perturbed by disaccharides, and in 
particular by trehalose [45-59]. 

More specifically, neutron diffraction results [53] show for 
all disaccharides, and for trehalose to a larger extent, a significant 
perturbation of the spectral contributions associated with the water 
hydrogen-bonded network that can be attributed to the destroying of 
the tetrahedral coordination of pure water. Simulations by the EPSR 
code [54], performed in combination with further neutron diffraction 
investigations, confirm that the water structure is strongly perturbed by 
trehalose, with an effect on the water second hydration shell resembling 
that produced by high pressure. Coherently Raman spectroscopy, by 
the analysis of the intramolecular OH stretching vibration band, shows 
that the addition of trehalose, in respect to the other disaccharides, more 
deeply destroys the tetrahedral intermolecular network of water, which 
by lowering temperature would give rise to ice. As a confirmation, 
Uchida et al. [55], detecting freeze-fractured replica images of the 
three disaccharides by a field-emission type transmission electron 
microscope (FE-TEM), confirm that trehalose, in respect to the other 
disaccharides, has a higher inhibitory effect on the growth of ice crystals. 
QENS experiments [17,37,38] show that also the water dynamics is 
significantly affected by the presence of disaccharides and in particular 
by trehalose, while Lerbretet al. [56] by molecular dynamics simulation 
studies confirmed for trehalose a higher distortion of the hydrogen 
bonded network of water from its tetrahedrality and have shown that 
the relaxation times of water in the presence of disaccharides result 1.2 
to 10 times longer than those of pure water.

Cordoneet al. [57] and Cottoneet al. [58] by complementary 
techniques showed that sugar matrices lock the surface of the protein 
hindering large amplitude solvent coupled protein motions.

Finally, Caliskan et al. [59] have investigated the influence of 
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glycerol and trehalose on lysozyme by Raman scattering showing that 
protein dynamics couples to that of trehalose and glycerol with glycerol 
providing a higher suppression of protein dynamics than trehalose at 
low temperatures, while trehalose is more effective than glycerol at 
higher temperatures. 

It is well known that neutrons with a 1Å wavelength and an energy 
close to 1 kcal/mol represent an excellent probe to characterize thermal 
molecular motions and conformational changes in biological systems 
[60-67]; this is essentially due to the time-space scale to which is sensitive, 
to the simplification brought about by the neutron-nucleus interaction 
and to the distinctive isotopic character. From the experimental point 
of view, the characterization of the different molecular processes 
involved in the dynamics of some systems of biophysical interest can 
be successfully investigated by Elastic Incoherent Neutron Scattering 
(EINS) [68] by means of the so called “fixed-windows” method [69], 
where the scattered intensity is collected at ω=0 with a fixed “energy 
windows” corresponding to the instrumental energy resolution. As far 
as the wavelet analysis is concerned, it is possible to extract information 
from a non-stationary signal in terms of functional forms called “mother 
wavelet”. More precisely, the translated-version wavelets locate where 
one concerns, whereas the scaled-version wavelets allows to analyze 
the signal in different scale [70-72]. The square of the modulus of the 
wavelet transform is called scalogram, which transform shows how the 
energy of the signal varies as a function of the independent variable and 
of its conjugate variable. 

In a previous work [73] a wavelet analysis has been performed 
on EINS data in order to localize anomalies in the trend of the Mean 
Square Displacement (MSD) against temperature; in the present work 
the aim is to report the findings of a new wavelet analysis of EINS 
intensity data on three homologous disaccharides water mixtures. 
This analysis allows to compare the spatial properties of the three 
systems revealing the existence of different kinds of protons dynamics 
in different wavevector ranges. In particular, it will be shown that the 
scalogram of the signal, i.e. of the elastically scattered intensity, along 
the wavevector range for trehalose is markedly less extended in respect 
to the other two disaccharides. In other terms, these findings point out 
a lower flexibility and a lower fragile character of the trehalose matrix 
in which biostructures are immersed, so highlighting the different 
nature of the involved dynamical processes in bioprotection that can 
justify the highest trehalose “cryptobiotic” effectiveness.

Methods
Ultrapure powdered sucrose, maltose and trehalose, and H2O, 

purchased by Aldrich-Chemie, were used to prepare solutions at 
a weight fraction corresponding to 6 and 19 water molecules for 
each disaccharide molecule. Measurements were performed in the 
temperature range of 20–310K on hydrogenated sucrose, maltose and 
trehalose in H2O at a weight fraction value of φ=0.5, corresponding 
to 19 water molecules for each disaccharide molecule. At such a 
concentration value different spectroscopic techniques indicate that 
the disaccharides in water solution are bonded to more than ≈22 water 
molecules at room temperature, this hydration number increasing by 
lowering temperature. In the used IN13 configuration the incident 
wavelength was 2.23 Å and the Q-range was 0.28-4.87Å-1. Raw data were 
corrected for cell scattering and detector response and normalized to 
unity at Q= Å-1. EINS measurements have been carried out across the 
glass transition temperature values on sucrose, maltose and trehalose/
H2O mixtures by using the IN13 backscattering spectrometer at the 
Institute Laue Langevin (ILL, Grenoble, France). The IN13 peculiarity 

is the relatively high energy of the incident neutrons (16 meV) which 
makes it possible to span a wide range of momentum transfer Q(≤4.87 
Å-1) with a very good energy resolution (~8μeV). 

Results and Discussion
With the aim of to clarify the reasons that make trehalose the 

most effective bioprotectant among the investigated homologous 
disaccharides, in the present work the attention is addressed to 
the differences in the dynamical behavior of the water mixtures of 
trehalose, maltose and sucrose. More specifically, a wavevector analysis 
of these EINS data through a wavelet approach is performed. Such 
an analysis puts into evidence, for the three investigated disaccharide 
mixtures by varying temperature, the existence of different kinds of 
protons dynamics which interest different wavevector ranges.In the 

Figure 1: 3D scalograms obtained by wavelet analysis for EINS spectra for 
trehalose water mixtures at three different temperatures, i.e. T=19 K (a), 264 
K (b) and 284 K (c).
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present paper, the Mexican hat has been considered, which is defined:
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In Figure 1, as an example, the 3D scalograms as resulting from 
a wavelet analysis for trehalose/water mixtures, at the concentration 
value of 19 H2O for each disaccharide molecule, for three different 
temperature values, i.e. T=19 K (a), 264 K (b) and 284 K (c), are 
shown. The employment of the wavelet analysis to the whole set of 
experimental data puts into evidence the presence of two distinct 
kinds of motions which cover different space ranges. In particular, 
at the lowest investigated temperature, 19 K, only one broad spectral 
contribution which spans in the whole investigated wavevector range, 
i.e. from Q=0.27 Å-1 to Q=4.27 Å-1, is revealed, as reported in Figure 1 
(a); such a spectral contribution can be assigned mainly to the vibration 
motions of the system protons. As reported in Figure 1 (b), which 
reports the 3D scalogram at the intermediate temperature value of T= 
264 K, by rising temperature a different contribution, at low wavevector 
values and specifically below Q=0.25 Å-1,clearly emerges. Finally, at the 
temperature value of T=284K (c) the weight of the low Q contribution 
increases with temperatureFigure 1 (c).

In order to better highlight the different behaviour in the 
investigated systems, figure 2 shows a comparison of the scalogram 
for sucrose, maltose and trehalose at the intermediate temperature of 
T=264 K. As it can be seen, the spectral energy density distribution 
as a function of the wavevector shows different features for the three 
disaccharides increasing temperature. In particular, the energy 
distribution along the wavevector range appears to be markedly less 
broadened for trehalose in respect to its homologous. More in detail, 
for the case of trehalose/water mixture the low Q contribution is less 
high and wide in respect to sucrose/water mixture. Furthermore the 
minor side contribution appears to be more pronounced and covers 
a lower wavevector range. Therefore the wavevector contribution for 
trehalose by increasing temperature is constantly sharper. 

Such a scalogram comparison allows to highlight both the 
differences among the homologous disaccharides, with a specific 
reference to the different explored wavevector ranges, and a higher 
thermal restrain for trehalose in respect to the other homologous 
disaccharides.

Conclusions
The wavevector analysis performed by wavelet transform of EINS 

data allows to compare the spatial properties of trehalose, maltose and 

sucrose, in the wavevector range of Q=0.28-4.27 Å-1, revealing the 
existence of different kinds of protons dynamics. The wide explored 
wavevector range allows to characterize and to compare the system 
molecular motions according to their spatial extent and amplitude. The 
experimental results reveal that the scattered intensity shows an almost 
linear trend at the lowest temperature, T=19 K, whereas, at higher 
temperature values, it drops in Q fulfilling a decaying behaviour which 
results less marked in the case of trehalose in respect to sucrose and 
maltose. 

By the wavelet analysis of the scattered intensity as a function of 
exchanged momentum, for the three disaccharide/H2O mixtures, the 
existence of two different classes of protons dynamics, which explore 
different wavevector ranges, is shown. More specifically, at the lowest 
temperature, 19 K, only one spectral contribution is revealed; such a 
wide and flat contribution spans the whole wavevector range and is 
almost equal for all the investigated disaccharide/water systems; it can 
be attributed to the vibrational motions of the scatterer particles, i.e. 
the protons. At higher temperature values, the weight of the low Q 
contribution tends to increase and shows a different increasing rate for 
the three homologous disaccharides. These findings confirm that the 
system spectral energy density as a function wavevector is distributed in 
a different way for the three disaccharides:for trehalose/water mixture 
the low Q contribution is less high and wide and the side contribution 
is more pronounced and covers a lower wavevector range. 

What it emerges is that both the low and high wavevector 
contributions for trehalose, at all the investigated temperature values, 
are constantly lower and sharper, giving rise to a global energy 
distribution along the wavevector range markedly less extended. It 
is possible to conclude that the structural resistance to temperature 
changes and the system rigidity decrease by following the order 
trehalose  maltose  sucrose. 

By a molecular point of view, the implications of the present 
EINS findings are strictly connected to the biological aspect. More 
specifically, they elucidate molecular mechanisms of the flexibility/
stability relation. Extreme conditions induce both structural and 
dynamical instability which affects the biomolecular functional states. 
If a constant equilibrium between molecular stability and structural 
flexibility is maintained, biomolecular and metabolic functions can be 
preserved even in harsh external conditions. In this frame, a key role 
is played by trehalose, which is capable to encapsulate biostructures 
in a more rigid and more temperature insensitive environment in 
respect to other two disaccharides. In this glassy shell, biomolecules are 
preserved maintaining the requested delicate balance between rigidity 

Figure 2: A comparison of the 3D scalogram for sucrose (a), maltose (b) and trehalose (c) at the intermediate temperature of T=264 K.

0

5

10

15

(a) (b) (c)

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Scale

Q (A-1 )◦
Scale Scale

Q (A-1 )◦ Q (A-1 )◦

1.5
1.0
0.5
0.0
-0.5

 0

1.5
1.0
0.5
0.0
-0.5

 0

1.5
1.0
0.5
0.0
-0.5

 01
2

3
1

2
3

1
2

30

5

10

15

0

5

10

15

0

5

10

15

http://dx.doi.org/10.4172/2161-0398.1000118


J Phys Chem Biophys
ISSN: 2161-0398 JPCB an open access journal

Citation: Migliardo F, Caccamo MT, Magazù S (2013) Thermal Properties Investigation on Systems of Biophysical Interest by EINS and Wavelet 
Analysis. J Phys Chem Biophys 3: 118. doi:10.4172/2161-0398.1000118

Page 4 of 5

Volume 3 • Issue 2 • 1000118
J Phys Chem Biophys
ISSN: 2161-0398 JPCB an open access journal

and molecular fluctuations and then their fundamental biological 
functions.
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