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The existence of a new force beyond the Standard Model is compelling because it could explain several 
striking astrophysical observations which fail standard interpretations. We searched for the light vector 
mediator of this dark force, the U boson, with the KLOE detector at the DA�NE e+e− collider. Using an 
integrated luminosity of 1.54 fb−1, we studied the process e+e− → Uγ , with U → e+e−, using radiative 
return to search for a resonant peak in the dielectron invariant-mass distribution. We did not find ev-
idence for a signal, and set a 90% CL upper limit on the mixing strength between the Standard Model 
photon and the dark photon, ε2, at 10−6–10−4 in the 5–520 MeV/c2 mass range.
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1. Introduction

The Standard Model (SM) of particle physics has received fur-
ther confirmation with the discovery of the Higgs boson [1–3], 
however, there are strong hints of physics it cannot explain, such 
as neutrino oscillations [4] and the measured anomalous magnetic 
moment of the muon [5]. Furthermore, the SM does not provide 
a dark matter (DM) candidate usually advocated as an explanation 
of the numerous gravitational anomalies observed in the universe. 
Many extensions of the SM [6–10] consider a Weakly Interacting 
Massive Particle (WIMP) as a viable DM candidate and assume that 
WIMPs are charged under a new kind of interaction. The mediator 
of the new force would be a gauge vector boson, the U boson, 
also referred to as a dark photon or A′ . It would be produced dur-
ing WIMP annihilations, have a mass less than two proton masses, 
and a leptonic decay channel in order to explain the astrophysical 
observations recently reported by many experiments [11–21].

In the minimal theoretical model, the U boson is the lightest 
particle of the dark sector and can couple to the ordinary SM pho-
ton only through loops of heavy dark particles charged under both 
SM U(1)Y and dark U(1)D symmetries [6,22–26]. These higher-
order interactions would open a so-called kinetic mixing portal de-
scribed in the theory by the Lagrangian term Lmix = − ε2 F EW

i j F i j
Dark, 

where F EW
i j is the SM hypercharge gauge field tensor and F ij

Dark
is the dark field tensor. The ε parameter represents the mixing 
strength and is the ratio of the dark and electromagnetic coupling 
constants. In principle, the dark photon could be produced in any 
process in which a virtual or real photon is involved but the rate 
is suppressed due to the very small coupling (ε < 10−2). In this 
respect, high-luminosity O(GeV)-energy e+e− colliders play a cru-
cial role in dark photon searches [27–29].

We investigated the e+e− → Uγ process by considering the 
U boson decaying into e+e− . At the level of coupling accessible by 
KLOE in this channel the U boson is expected to decay promptly
leaving its signal as a resonant peak in the invariant-mass distribu-
tion of the lepton pair. The energy scan was performed by applying 
the radiative return method which consists of selecting the events 
in which either electron or positron emits an initial-state radiation 
(ISR) photon which carries away a part of the energy and effec-
tively changes the amount of the energy available for U boson pro-
duction. The selected initial- and final-state particles are the same 
as in the radiative Bhabha scattering process so we receive contri-
butions from resonant s-channel, non-resonant t-channel U boson 
exchanges, and from s–t interference. The finite-width effects re-
lated to s-channel annihilation sub-processes, scattering t-channel 
and s–t interference are of order of �U/mU for the integrated 
cross section and can be neglected with respect to any potential 
resonance we would observe; �U ∼ 10−7–10−2 MeV for the cou-
pling strengths to which we are sensitive [30]. The non-resonant 
t-channel effects would not produce a peak in the invariant-mass 
distribution but could, in principle, appear in analyses of angular 
distributions or asymmetries. We are going to report exclusively on 
resonant s-channel U boson production.

Using a sample of KLOE data collected during 2004–2005, cor-
responding to an integrated luminosity of 1.54 fb−1, we derived 
a new limit on the kinetic mixing parameter, ε2, approaching the 
dielectron mass threshold.
Fig. 1. Cross section of the KLOE detector.

2. KLOE detector

The Frascati φ factory, DA�NE, is an e+e− collider running 
mainly at a center-of-mass energy of 1.0195 GeV, the mass of the 
φ meson. Equal energy electron and positron beams collide at an 
angle of ∼25 mrad, producing φ mesons nearly at rest.

The KLOE detector consists of a large cylindrical Drift Cham-
ber (DC) [31] with a 25 cm internal radius, 2 m outer radius, and 
3.3 m length, comprising ∼56,000 wires for a total of about 12,000 
drift cells. It is filled with a low-Z (90% helium, 10% isobutane) 
gas mixture and provides a momentum resolution of σp⊥/p⊥ ≈
0.4%. The DC is surrounded by a lead-scintillating fiber electro-
magnetic calorimeter (EMC) [32] composed of a cylindrical bar-
rel and two end-caps providing 98% coverage of the total solid 
angle. Calorimeter modules are read out at both ends by 4880 
photomultiplier tubes, ultimately resulting in an energy resolu-
tion of σE/E = 5.7%/

√
E(GeV) and a time resolution of σt =

57 ps/
√

E(GeV) ⊕ 100 ps. A superconducting coil around the EMC 
provides a 0.52 T field to measure the momentum of charged par-
ticles. A cross sectional diagram of the KLOE detector is shown in 
Fig. 1.

The trigger [33] uses energy deposition in the calorimeter and 
drift chamber hit multiplicity. To minimize backgrounds the trig-
ger system includes a second-level cosmic-ray muon veto based on 
energy deposition in the outermost layers of the calorimeter, fol-
lowed by a software background filter based on the topology and 
multiplicity of energy clusters and drift chamber hits to reduce 
beam background. A downscaled sample is retained to evaluate the 
filter efficiency.

3. Event selection

Using 1.54 fb−1 of KLOE data we have searched for U boson 
production in the process e+e− → Uγ followed by U → e+e− . The 
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Fig. 2. (Color online.) The track mass distribution before event selection for mea-
surement and expected background simulations. Some of the simulations had a 
prescaling for Mtrack < 80 MeV/c2, which has been accounted for in the background 
evaluation. The measurement data set was prescaled for Mtrack > 85 MeV/c2. The 
track mass variable peaks at the mass of the charged track in the final state for 
events with two charged tracks and a photon. The selection region is Mtrack <

70 MeV/c2.

center-of-mass energy of the collision depends on the amount of 
energy carried away by the initial-state radiation (ISR) photon. The 
irreducible background originates from the e+e− → e+e−γ radia-
tive Bhabha scattering process, having the same three final-state 
particles. The reducible backgrounds consist of e+e− → μ+μ−γ , 
e+e− → π+π−γ , e+e− → γγ (where one photon converts into an 
e+e− pair), and e+e− → φ → ρπ0 → π+π−π0, as well as other φ
decays. The expected U boson signal would appear as a resonant 
peak in the invariant-mass distribution of the e+e− pair, mee. This 
search differs from the previous KLOE searches [34–36] in its ca-
pability to probe the low mass region close to the dielectron mass 
threshold.

We selected events with three separate calorimeter energy de-
posits corresponding to two oppositely-charged lepton tracks and 
a photon. The final-state electron, positron, and photon were re-
quired to be emitted at large angle (55◦ < θ < 125◦) with re-
spect to the beam axis, such that they are explicitly detected in 
the barrel of the calorimeter, see Fig. 1. The large-angle selection 
greatly suppresses the t-channel contribution from the irreducible 
Bhabha-scattering background which is strongly peaked at small 
angle. Since we are interested mostly in the low invariant-mass 
region, we select only events with a hard photon, Eγ > 305 MeV, 
chosen to select a subsample of the events generated by our MC 
simulation. We required both lepton tracks to have a first DC hit 
within a radius of 50 cm from the beam axis and a point-of-
closest-approach (PCA) to the beam axis within the fiducial cylin-
der, ρPCA < 1 cm and −6 < zPCA < 6 cm, entirely contained within 
the vacuum pipe eliminating background events from photons 
converting on the vacuum wall. We eliminated tightly spiralling 
tracks by requiring either a large transverse or a large longitu-
dinal momentum for each of the lepton tracks, pT > 160 MeV/c
or pz > 90 MeV/c. We require that the total momentum of the 
charged tracks is (|pe+| + |pe−|) > 150 MeV/c to avoid the pres-
ence of poorly reconstructed tracks. A pseudo-likelihood discrim-
inant was used to separate electrons from muons and pions [37]. 
A further discrimination from muons and pions was achieved using 
the Mtrack variable. Mtrack is the X mass for an X+ X−γ final state, 
computed using energy and momentum conservation, assuming 
mX+ = mX− [37]. In Fig. 2 the Mtrack distribution is reported for 
measured data and for all the relevant MC simulated background 
components. Including the cut Mtrack < 70 MeV/c2 we were left 
with 681,196 events at the end of the full analysis chain.
Fig. 3. (Color online.) Dielectron invariant-mass distribution from measurement data 
with non-irreducible backgrounds subtracted compared to the Babayaga-NLO MC 
simulation.

4. Simulation and efficiencies

We used MC event generators interfaced with the full KLOE de-
tector simulation, GEANFI [38], including detector resolutions and 
beam conditions on a run-by-run basis, to estimate the level of 
background contamination due to all of the processes listed in the 
previous section. Excluding the irreducible background from radia-
tive Bhabha scattering events, the contamination from the sum of 
residual backgrounds after all analysis cuts is less than 1.5% in the 
whole mee range, and none of the background shapes are peaked, 
eliminating the possibility of a background mimicking the resonant 
U boson signal. The irreducible Bhabha scattering background was 
simulated using the Babayaga-NLO [39–42] event generator imple-
mented within GEANFI (including the s-, t-, and s–t interference 
channels) and is shown in Fig. 3 along with the measured data 
after subtracting the non-irreducible background components. No 
signal peak is observed.

In order to evaluate the U boson selection efficiency we used 
a modified version of the Babayaga-NLO event generator imple-
mented within GEANFI, such that the radiative Bhabha scattering 
process was only allowed to proceed via the annihilation channel, 
in which the U boson resonance would occur. In order to create 
a large-statistics sample in our region of interest we restricted the
Babayaga-NLO generated events to within 50◦ < θMC

e+,e− < 130◦ and 
EMC

γ > 300 MeV. The generator-level efficiency due to this restric-
tion was evaluated using a Phokhara MC simulation [43]. The total 
efficiency is evaluated as the product of the generator-level ef-
ficiency and the event-selection efficiency, containing the cuts in 
Section 3 conditioned to the generator-level restriction as well as 
the trigger efficiency, and is shown in Fig. 4. The decrease in ef-
ficiency as mee → 2me comes from the requirement on the total 
momentum of the charged tracks.

5. Upper limit evaluation

We used the CLS technique [44] to determine the limit on the 
number of signal U boson events, NU, at 90% confidence level us-
ing the mee distribution. The invariant-mass resolution, σmee , is in 
the range 1.4 < σmee < 1.7 MeV/c2. Chebyshev polynomials were 
fit to the measured data (±15σmee ), excluding the signal region 
of interest (±3σmee ). The polynomial with χ2/Ndof closest to 1.0 
was used as the background. A Breit–Wigner peak with a width 
of 1 keV smeared with the invariant-mass resolution was used 
as the signal. An example of one specific CLS result is shown in 
Fig. 5, yielding an upper limit of NU = 215 U boson events at 



636 A. Anastasi et al. / Physics Letters B 750 (2015) 633–637
Fig. 4. Smoothed distribution of the total efficiency defined as the product of the 
selection efficiency for the e+e− → Uγ → e+e−γ final state evaluated using the 
Babayaga-NLO event generator modified to allow only the s-channel process, and 
the generator-level efficiency evaluated from a Phokhara MC simulation.

Fig. 5. (Color online.) The CLS result at 90% CL for mU = 155.25 MeV/c2 showing the 
measured data, the Chebyshev-polynomial sideband fit, and the signal shape scaled 
to the CLS result.

Fig. 6. Upper limit on the cross section σ
(
e+e− → Uγ,U → e+e−)

.

mU = 155.25 MeV/c2 at the 90% confidence level. The χ2/Ndof was 
1.09 for this Chebyshev-polynomial sideband fit.

The upper limit at 90% confidence level on the number of U bo-
son events, UL (NU), can be translated into a limit on the cross 
section,

UL
[
σ

(
e+e− → Uγ,U → e+e−)] = UL (NU)

L ε eff
, (1)

where L is the luminosity and εeff is the total selection efficiency. 
The limit is shown in Fig. 6.
Fig. 7. (Color online.) Exclusion limits on the kinetic mixing parameter squared, ε2, 
as a function of the U boson mass. The red curve labeled KLOE(3) is the result 
of this article while the curves labeled KLOE(1) and KLOE(2) indicate the previous 
KLOE results. Also shown are the exclusion limits provided by E141, E774, Apex, 
WASA, HADES, A1, BaBar, and NA48/2. The gray band delimited by the dashed white 
lines indicates the mixing level and mU parameter space that could explain the 
discrepancy observed between the measurement and SM calculation of the muon 
(g−2)μ .

We then translated the limit on NU to a 90% confidence level 
limit on the kinetic mixing parameter as a function of mee as 
in [36],

ε2(mee) = NU(mee)

ε eff(mee)

1

H(mee) I(mee) L
, (2)

where the radiator function H(mee) was extracted from

dσeeγ/dmee = H
(
mee, s, cos(θγ)

) · σ QED
ee (mee)

using the Phokhara MC simulation [43] to determine the radiative 
differential cross section, I(mee) is the integral of the cross section 
σ(e+e− → U → e+e−), L = 1.54 fb−1 is the integrated luminos-
ity, and εeff (mee) is the total efficiency described in Section 4. 
Our limit is shown in Fig. 7 along with the indirect limits from 
the measurements of (g − 2)e and (g − 2)μ at 5σ shown with 
dashed curves. Limits from the following direct searches are shown 
with shaded regions and solid curves: E141 [45], E774 [45], KLOE 
(φ → ηU, U → e+e−) [34,35], Apex [46], WASA [47], HADES [48], 
A1 [49], KLOE (e+e− → Uγ , U → μ+μ−) [36], BaBar [50], and 
NA48/2 [51].

6. Systematic uncertainties

The background was determined by Chebyshev-polynomial 
sideband fits. The parameters of the polynomials were then varied 
within 1σ to determine the maximum variation of the polyno-
mial shape. The uncertainty of each bin was set to the extent of 
that variation evaluated at the bin center. An example of the er-
ror bars on the Chebyshev-polynomial sideband fits can be seen 
in Fig. 5. These bin uncertainties were taken into account in the 
CLS procedure when determining NCLS (mee). Since the irreducible 
background is smooth for each fit range, we assume the Chebyshev 
polynomials sufficiently represent the background with negligi-
ble systematic uncertainty. Any uncertainty in the shape of the 
smeared resonant peak was also taken to be negligible.

The efficiency of the e+e− → e+e−γ event selection was de-
termined by taking the ratio of the set of simulated events that 
passed the selection criteria to the total simulated sample. We 
apply a 0.1% systematic uncertainty due to the Babayaga-NLO 
event generator [39–42], a 0.1% systematic uncertainty for the 
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Table 1
Summary of systematic uncertainties. The uncertainties on the efficiency, radiator 
function, and cross-section integral vary as a function of mee. The numbers quoted 
here correspond to the largest estimate within our mee range.

Systematic source Relative uncertainty

Background (sideband fit) negl.
εeff (mee) 2%

MC generator, 0.1%
Trigger, 0.1%
Software background filter, 0.1%
Event selection, 2%

H (mee) 0.5%
I (mee) negl.
L 0.3%

trigger, and a 0.1% systematic uncertainty for the software back-
ground filter. All together the uncertainty on the selection effi-
ciency is dominated by the statistical uncertainty on the selected 
sample. A Phokhara MC simulation [43] was performed to eval-
uate the generator-level efficiency due to the restriction EMC

γ >

300 MeV and 50◦ < θMC
e+,e− < 130◦ . The selection efficiency and the 

generator-level efficiency are combined to give the total efficiency, 
ε eff(mee). The uncertainty is given as the error band in Fig. 4, again 
dominated by the statistical uncertainties in the simulated data set.

There are two effects that contribute to the uncertainty in 
the radiator function, H(mee). First, since the value of H(mee) is 
taken from simulated data, we must take into account the sta-
tistical uncertainty on those values. Second, we assume a uni-
form 0.5% systematic uncertainty in the calculation of H(mee), as 
quoted in [43,52–54]. The uncertainty in the integrated luminosity 
is 0.3% [37]. The uncertainties on H(mee), ε eff(mee), and L, propa-
gate to the systematic uncertainty on ε2(mee) via (2). A summary 
of systematic uncertainties is presented in Table 1.

7. Conclusions

We performed a search for a dark gauge U boson in the process 
e+e− → Uγ with U → e+e− using the radiative return method and 
1.54 fb−1 of KLOE data collected in 2004–2005. We found no ev-
idence for a U boson resonant peak and set a 90% CL upper limit 
on the kinetic mixing parameter, ε2, at 10−6–10−4 in the U-boson 
mass range 5–520 MeV/c2. This limit partly excludes some of the 
remaining parameter space in the low dielectron mass region al-
lowed by the discrepancy between the observed and predicted 
(g − 2)μ .
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