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ABSTRACT. A differential constraints analysis is worked out for a quasilinear hyperbolic
system of first order PDEs written in terms of Riemann invariants which models multi-
component ideal chromatography. Depending on the appended constraints, different exact
solutions can be obtained which exhibit inherent wave features. Among others, there are
determined generalized simple wave solutions which are parameterized by an arbitrary
function so that they may also fit suitable boundary value problems. Within the latter
framework an example is given.

1. Introduction

Along the years a variety of mathematical methods for finding exact solutions to nonlinear
partial differential equations have been proposed. Among others the approach based on the
use of differential constraints is of relevant interest. The method is based upon appending
a set of PDEs to a given governing system of field equations and it was first applied
by Janenko (1964) to the gas dynamics model. The auxiliary equations play the role of
differential constraints because they select classes of solutions of the system under interest.
The procedure is based on two steps: first the compatibility of the over determined set of
equations consisting of the governing equations along with the differential constraints must
be assured, then exact solutions to the entire set of equations to which correspond particular
solutions of the original field equations can be obtained.

In view of solving problems of interest in the applications, the key question is on the form
of differential constraints which can be appended to the given system of equations. That
aspect can be considered by means of “ad hoc” requirements on the reduction procedure
to be developed or on the form of exact solutions which are to be expected (see Fusco and
Manganaro 1994a,b, 1996, 2008; Manganaro and Meleshko 2002; Meleshko and Shapeev
1999).

Along the latter lines of investigation, reduction procedures based on the use of differ-
ential constraints have been proposed for studying soliton-like interactions described by
homogeneous and non homogeneous hyperbolic 2 x 2 systems (Currd, Fusco, and Manga-
naro 2012c, 2013, 2015) as well as for solving problems of interest in wave propagation
(Currd, Fusco, and Manganaro 2012a,b; Curré and Manganaro 2013).
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Here the attention is focussed on a system of conservation laws which was considered
by Rhee Hyun-Ku, Aris, and Amundson (1970) and Rhee Hyun-Ku, Aris, and Amundson
(1971) to model the dynamics of multicomponent chromatography. Actually, it has to be
noticed that Hankins and Helfferich (1999), Helfferich and Whitley (1996), Helfferich
(1997), and Ting and Helfferich (1999) worked out an exhaustive study of the experimental
validation of theoretical predictions as those provided by the model in point. Therefore,
in fields of chemical engineering application this system of PDEs has played a prominent
role over the years (Butté, Storti, and Mazzotti 2008; Canon 2012; Canon and James 1992;
Golshan-Shirazi and Guiochon 1989; Gritti and Guiochon 2013; Hankins and Helfferich
1999; Helfferich 1997; Helfferich and Whitley 1996; Helfreich and Klein 1970; Rhee
Hyun-Ku, Aris, and Amundson 1970; Mazzotti and Rajendran 2013; Rhee Hyun-Ku, Aris,
and Amundson 1971, 2001; Rouchon et al. 1987; Seidel-Morgenstein 2004; Shen and Smith
1968; Siitonen and Sainio 2011; Ting and Helfferich 1999; Urbach 1992; Urbach and Bokx
1992).

As significant mathematical aspect of distinguishing, the system under interest belongs
to the class of homogeneous semi-hamiltonian systems of hydrodynamic type which can
be diagonalized in terms of suitable field variables which represent, in fact, Riemann
invariants. Hence via the generalized hodograph method, solutions of these systems can be
obtained by integrating, in principle, a linear set of equations (Tsarev 1991, 2000). Further,
in a very recent paper Currd, Fusco, and Manganaro (2015) performed an accurate and
exact description of the hyperbolic wave interaction processes which are associated to the
governing model proposed by Rhee Hyun-Ku, Aris, and Amundson (1970, 1971).

In order to accomplish an exhaustive validation of the model of ideal chromatography in
terms of exact solutions, in this paper a differential constraints analysis is developed. These
solutions in suitable space-time domains behave as regular solutions of nonlinear hyperbolic
models until they do not evolve into a shock (Jeffrey 1976; Whitham 1974). It has to
be remarked that the appended constraints select given families of characteristic curves
along which the resulting solutions are defined. Thus, within the well established nonlinear
hyperbolic wave theory, the solutions in point have inherent wave features since they may
describe propagating signals. Apart from their own theoretical value, these solutions can be
also useful for testing numerical procedures for the quasilinear hyperbolic system of PDEs
under interest.

The paper is organized as follows. In section 2 we give a short survey of the main results
which are related to the differential constraints method for quasilinear hyperbolic systems.
In section 3 we introduce the governing system of ideal chromatography which is the subject
of our study. In section 4 we analyse the possible cases of differential constraints which are
consistent with the model under interest. Depending on the appended constraints, different
exact solutions can be obtained. Among others, a class of generalized simple wave solutions
are obtained. Since the latter solutions are parameterized by an arbitrary function, they are
flexible to fit suitable boundary value problems.

2. Differential Constraints Method
Let us consider the system

U, +A(U)U, =B(U), )
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where x and ¢ are space and time coordinates, respectively; U € RN is a column vector
denoting the dependent field variables; A (U) and B (U) are matrix coefficients. Hereafter
a subscript denotes a derivative with respect to the indicated variable. The system (1) is
assumed to be strictly hyperbolic, namely the N—th order matrix A is required to admit N real
eigenvalues so that A0 #A 1), vi, j = 1...N to which there correspond N right eigenvectors
d® and N left eigenvectors 1) spanning the Euclidean space EN. Moreover we assume,
without loss of generality, 10) . d(/) = §(/),

Along the lines of investigation carried out by Janenko (1964), Meleshko and Shapeev
(1999), and Meleshko (1980) we append to system (1) the set of differential constraints

10U, = ¢V (x,1,0), i=1.M<N, 2

where the functions q(i) have to be determined through later consistency requirement to the
given governing model. Relations (2) represent the most general set of first order differential
constraints which can be appended to strictly hyperbolic first order quasilinear systems of
PDEs (Meleshko 1980).

The first step in the procedure at hand is to require the differential compatibility between
equations (1) and (2). That leads to an overdetermined set of conditions to be fulfilled by the
functions ¢() which also impose restrictions on the structural form of the matrix coefficients
A and B, whereupon classes of material response functions (Model Constitutive Laws) are
characterized in order that the approach under interest holds. In current literature on the
subject of group or reduction approaches, the expression "Model Constitutive Laws" refers
to special forms to be adopted by the material response functions which are involved in
a class of Constitutive Laws. Once the consistency conditions have been satisfied, then
a class of exact solutions to a given governing model can be obtained by integrating the
overdetermined system (1), (2). Thus the differential constraints (2) select particular exact
solutions to the original system (1).

The solutions resulting from the differential constraints method depend on
N — M arbitrary functions so that they generalize the so-called multiple wave solutions
and may be useful to solve suitable classes of initial and/or boundary value problems. The
two limiting cases M = N and M = N — 1 are of a certain theoretical interest (Fusco and
Manganaro 1996; Manganaro and Meleshko 2002; Meleshko and Shapeev 1999).

Actually, for M = N the equations (1) and (2) assume, respectively, the form

U, = —A(U)P(x,t,U)+B(U), U, =P(x,,U). 3)

Owing to the special structure of system (3), we can integrate separately the set of differential
equations (3);, or alternatively (3),, so that later substitution into the remaining set of
equations provides to (1) a class of exact solutions parameterized by N arbitrary constants.
It is simple to prove that such a class of solutions include the well known “nonclassical
similarity solutions” (Bluman and Cole 1969; Fusco and Manganaro 1996).

When M = N — 1 it is straigtforward to ascertain that (1) and (2) lead to

N—1
U +ANU, =B+ Y ¢ (JL<N) fl("))d("), @)
i=1

so that the searched solutions of the governing equations can be obtained through integration
along the characteristic curves associated to the eigenvalue AN, namely along the family of
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characteristics selected by the equations (2) which must be also satisfied by the initial data
U(x,0). In passing we notice that when in (1) and (2) B =0 and qm = 0 then (4) determines
the classical simple wave solution to a homogeneous hyperbolic model. Therefore the
solutions of (1) defined by (4) and (2) inherit all the main features of simple waves and also
take into account source-like effects in hyperbolic wave processes.

3. The governing model

Chromatographic separation processes are based on the adsorption of the components
of a mixture. In gas or liquid chromatograhy the separation is achieved by injecting a
pulse of the solute mixture into a column containing an active sorption material (solid
phase). The components move with different velocities through the column in function of
their affinity for the solid phase. Hence, as the low retained component exits the column
earlier than the more retained one, the separation is achieved. Under the assumption of an
”ideal column” the chromatographic separation of different chemical species in the case of
Langmuir sorption is described by the following first order quasilinear strictly hyperbolic
PDEs system (Rhee Hyun-Ku, Aris, and Amundson 1970; Rozhdestvenskii and Janenko

1990)
V%‘;+§t<vi+r;vl) =0, i=1,.n, 5)
where x and ¢ are space and time coordinates, v; are the normalized concentrations of the
components in the mixture and V is the constant rate of motion of the mixture in the column.
Furthermore p=1+v;+..+ Vv, whereas I'| < .. < T, are characteristic parameters named
the Henry coefficients. The quasilinear system pf PDEs (5) results to be strictly hyperbolic
(see, for instance, Janenko 1964).

The equations (5) have been studied by Rhee Hyun-Ku, Aris, and Amundson (1970)
who used the method of characteristics to solve several Riemann problems. Integrability of
(5) was also established by Tsarev (1991) with a generalized hodograph method suitable for
reducing the problem of solution of the above system to a linear problem was given. The
concentrations V; can be expressed as (Rhee Hyun-Ku, Aris, and Amundson 1970):

I ) o Gi—w)Ty
vi=(—-1 i, ©)
< o; j:IITIj;éi ([ —T) o,
being ®; Riemann invariants satisfying the characteristic equations
8a)k ~ Ba)k
— —A4—— =0, k=1,..,n), 7
an “ ot ( ") ™

/ik = <H (1)j> s (8)
j=1

where

~1
n
n:x<HFj> , T=x—Vt. ©)]
j=1
Owing to the hyperbolicity of (5), the Riemann invariants ay fulfil the conditions:
O<o<I'<m<Ih<..<o, <. (10)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 93, No. 1, A2 (2015) [14 pages]



EXACT SOLUTIONS IN IDEAL CHROMATOGRAPHY ... A2-5

For the sake of simplicity in the following we consider the case of a mixture of three
solutes and we set

(D]ZR, (lh:S, QB:R (11)
so that equations (7) specializes to the homogeneous system
Ry —AR; =0,
Pn — VPT = 0,
where
A =R?SP, u=RS’P, v=RSP? (13)
which belongs to the class of hyperbolic models (1) with
R A 0 O
U= 1|S], A=|(0 u 0], B=0. (14)
P 0 0 v

Therefore, the integration of the system of equations (12) give rise, through (6), to exact
solutions of the governing model (5).

Finally, inserting into (2) the left eigenvectors 1) (i = 1,2,3) associated to the diagonal
matrix (14),, the only possible first order differential constraints whoch can be compatible
with (12) are

RT:a(n)TaR757P)7 (15)
ST:ﬁ(n?T7R7S7P)a (16)
PT:Y(T]7T’R;S7P)' (17)

4. Differential Constraints Analysis

For the overdetermined system resulting from (12) and (15), (16), (17) three possible
cases arise.

1. Three constraints.
First we append to the system (12) the differential constraints (15), (16) and (17) where-
upon, by cross differentiation the resulting consistency conditions specialize to

oy —Ade = AR + (A —p)as +Asa) B+ (A —v)op+Apa)y,  (18)
Bn — 1B = psB> + (1 —A) Br+ urP) ot + (L = v) Bp+ ppB) Y, (19)
o= Ve = VPV +((V=A) o+ VRY) &+ (v — 1) 15+ Vs7) B. (20)

In order to determine solutions of (18), (19) and (20), we assume o(n,7,R), B(n,7,S) and
v(n, T, P). Double differentiation of equation (18) with respect to S and further differentation
with respect to P gives rise to

ﬁ :ﬁO(naT)S+B1(nvr)' (21)
In a similar way, multiple differentiations of the equations (19) and (20) lead to
a:a()(nvf)R+al(naT)a 7:7/0(7777)13“‘?’1(7777)7 (22)
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where g, a1, Bo, Bi, 1 and y; are functions to be determine.
Finally, by inserting (21) and (22) into (18), (19), (20) and requiring the resulting
conditions to be fulfilled VR, S, P, after some simple calculations, we obtain

d'(7) da(7) a(7)
a= R, = ——, = ——"—P, 23
a(7) P a(t)+k 4 a(t)+k 23)
where k; and k; are arbitrary constants, while the function a(7) must satisfy the equation
a(7) (a(7) + ki) (a() + ko) &' (7) = co. (24)

being cp an arbitrary constant and the prime means for ordinary differentiation.
Next, by taking (23) into account, the set of Riemann equations (12) and the constraint
equations (15), (16), (17) specialize, respectively to

Cl/ a/ /
R, =R3SP—, S, =RS’P——, P, =RSP’ 25
n a’ " atk’ " atky’ (25)
and
a a a 26
R.=—R, §;= S, Pr= .
T a ) T Cl+k1 9 T Cl+k2 ( )
Thus, after some elementary algebra the integration of (25) and (26) leads to
_a(t) o a(t)+k P a(t)+k o7

ST T f)mT o f()+m
where m; and m, are arbitrary constants while the function f(n) is determined by the
equation

F) (f() +m1) (f(n) +m2) f'(n) = —co. (28)
Finally the integration of (24) and (28) give rise to the relations
at+ g (ki + ko) a® + 2kikaa® = cot, (29)
4
o3 Omi - mo) £ 4 2muma f = —com, (30)

which define the functions a(7) and f(1). Once a(t) and f(n) are specified according to
(29) and (30), respectively, an exact solution of (12) parameterized by arbitrary constants is
obtained.

2. One constraint
Here we add to the equations (12) one of the possible constraints, say (15). In this case
the resulting compatibility conditions take the form
(‘LL — A«)OCS = )szC,
(v—»_A)ap = Apa, 3D
oty — Aot = Agot®.
Now we prove that, if & # 0, then the overdetermined system (31) does not admit any
solution. In fact by introducing the variable transformation

a=cé,
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the equations (31), taking (13) into account, assume the form

R
bs=s5=ry

R
bp= m, (32)

by = R*SPb; +2RSPe".

Finally, from (32) it is simple matter to verify that the equations bsy = bys and bpy = byp
are not compatible so that the equations (31) are not consistent. Therefore, if o # 0, the
governing system (12) is not compatible with only one appended constraint.

Hence the equations (31) admit only the solution o = 0. In this case the constraint (15),
along with (12), leads to R = const.. In terms of the original variables vy, V;, v3 the latter
result characterizes an exact solution belonging to the well known class of double wave (i.
e. a solution depending on two parameters).

3. Two constraints
In the present case we append to the system (12) the differential constraints (15) and (16)
so that the resulting consistency conditions are

(v—2A)ap = Apa, (33)
oy —Ade = Agot? + (A — p) as + Asa) B, (34)
(v—u)Bpr = urp, (35)
By — 1Be = usB? + (1 —2) Br+ 1rPB) . (36)

Along the some line of approach outlined in the case 1, after some algebra the solution of
(33), (34), (35) and (36) is given by

“= 2RS(R—S)T]1+A(R7S,G) P;R’ 37
p= 2RS(S—R)nl+B(R,S, ) Pz_)s’ (38)
where the functions A(R,S, o) and B(R, S, o) satisfy the system
A(2R—RSBg) +R(R— S)Bg +SB =0, (39)
B(2S — RSAg) +S(S— R)As +RA =0, (40)

being 6 = 7+ R*S°n.
Several cases of integration in a closed form can be considered for the pair of conditions
(39) and (40). Here we limit our attention on the particular solution of form

A=kRS(R—S),  B=kRS(S—R), (41)
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where k is an arbitrary constant. In this case, owing to (4) and by taking (37) and (38) into
account, the system (12) can be recast as

(R—P)?
Ry—VR; = — i~ 42
Ve T T RS2+ k) “2)
(S—P)?
Sp—vSi=—-—"—"——. 43
K " (R-5)(2n +k) “43)
Py —vP, =0, (44)
while the constraints (15) and (16) specialize, respectively, to
1 P—R
R, = 45
" RS(R-S)2n+k) P “45)
1 P—
. > (46)

T RSS—-R)2n+k) P

The next step is to integrate (42), (43), (44) along with (45) and (46) under the initial
conditions

R(7,0) =Ro(71), S(1,0)=S0(7), P(7,0)="P(7). 47)

We remark that, owing to (9), in terms of the original variables x and ¢ the initial data (47)
correspond to boundary data. Therefore the solution we are looking for will fit a boundary
value problem for the model (5).

Equations (42), (43) and (44) involve the directional derivative of R, S, and P along the
characteristic associated to v, so that in order to integrate them, we can use the standard
method of characteristics. In particular from (44) we find

P= PO(Z)7 (48)

where z is the parameter determining the curves of the characteristics family, while from
(42) and (43) we have

2P — (R+S
(R+S)nv(R+S)102n(+: ), (49)
RS—P}
wwnvaST:2n+£, (50)

whose solution is given by

R+S:2Po(z)+(R0(z)+S0(Z)—2Po(Z))\/E, (1)
M=%@+mmm@—%@hbﬁﬁ, (52)

T—ﬂQMH&@%@%@%@D<2tMQ+L (53)

along with
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Finally, in view of integrating the equations (45) and (46), it is more convenient to rewrite
them under the form

1
(R+S8), = TPRS2N 1K) (54)
1

According to the differential constraints theory and by taking (53) into account, later
substitution of (48), (49) and (50) into (54) and (55) yields

dRo+S0) 1 (56)
dz kPyRoSo’
d(R()So) 1
=— 57
dz kR()S() ’ ( )

which select the class of initial data (47) allowing the present procedure to hold. Therefore
the relations (48), (49) and (50) along with (53), (56) and (57) provide an exact solution of
(12) parameterized by one arbitrary function. In fact from (56), (57) one of the three initial
functions Ry, So, Py results to be arbitrary so that the corresponding solution generalizes the
well known simple wave solution.

In order to get a deeper insight into the method which was developed hitherto, now
we determine an exact solution to the governing model (12) in a case where the wavelet
parameter z can be explicitly calculated from (53).

Actually, by requiring

RoSo = cP3, (58)

with ¢ an arbitrary constant, from (53) and (57) we obtain

1 2
PP—x_,/_Z 59
0 =T\ 7% (59
2
RoSo = F %o (60)
2kt
2= ) : ©1)
2 (—n +(c—1) (\/k(2n +k) —k)) +c2k
while, by assuming ¢ > 0, from (56) we deduce
2\
Ro+So = 52/e (—kz) | (©)

Thus, relations (48), (54) and (55), supplemented by (59)-(62) provide an exact solution of
the set of equations (12) which, through (6), give rise to an explicit solution of the governing
system (5) provided that the conditions (10) are satisfied. The intrinsic wave features of the
solution under interest are highlighted by its 3D-plot shown in fig. 1 and which describes
the propagation of a single concentration of the mixture. The resulting behavior fits with
that one reported by Helfferich and Whitley (1996) for the case in point.
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FIGURE 1. 3-D-plot of v; concentration given by (6) withI'y =6, =7 and '3 =8,

5. Conclusion and final remarks

Along the lines of the differential constraints method, in this paper a comprehensive
analysis has been worked out for the quasilinear hyperbolic system of first order PDEs
(5) which was proposed by Rhee Hyun-Ku, Aris, and Amundson (1970, 1971) to model
multicomponent chromatography for an ideal column in terms of wave processes. Actually,
in fields of chemical engineering application this mathematical model played a prominent
role over the years, because its leading assumptions represented the very first step to derive
updated and more accurate models for describing interactions between different solutes
in multicomponent systems (Butté, Storti, and Mazzotti 2008; Canon 2012; Canon and
James 1992; Golshan-Shirazi and Guiochon 1989; Gritti and Guiochon 2013; Hankins
and Helfferich 1999; Helfferich 1997; Helfferich and Whitley 1996; Helfreich and Klein
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1970; Rhee Hyun-Ku, Aris, and Amundson 1970; Mazzotti and Rajendran 2013; Rhee
Hyun-Ku, Aris, and Amundson 1971, 2001; Rouchon et al. 1987; Seidel-Morgenstein 2004;
Shen and Smith 1968; Siitonen and Sainio 2011; Ting and Helfferich 1999; Urbach 1992;
Urbach and Bokx 1992). Apart from its own theoretical value, as significant mathematical
aspect of distinguishing the system under interest belongs to the class of homogeneous
semi-hamiltonian systems of hydrodynamic type involving N > 2 dependent variables and
which, nevertheless, can be diagonalized in terms of Riemann invariants.

Very recent papers (Currd, Fusco, and Manganaro 2015) have been devoted to perform
an accurate and exact description of the hyperbolic wave interaction processes which are
associated to the hyperbolic governing system (5). The results obtained therein by means
of a generalized hodograph method (Tsarev 1991) were in line with the main theoretical
predictions which are expected from the model in point (Hankins and Helfferich 1999;
Helfferich 1997; Helfferich and Whitley 1996; Ting and Helfferich 1999).

Here in order to accomplish an exhaustive theoretical validation, exact solutions to the
model (12) are searched by means of the differential constraints method. In section 4 there
have been considered the possible constraints which can be appended to system (12). The
case 1 provides exact solutions which are parameterized by arbitrary constants and that
induces a strong restriction on the initial data which can be fitted. Next, the consistency
of (12) and (18) gives rise to the trivial solution R = const. Finally in case 3 the resulting
solutions are parameterized by an arbitrary function so that they are flexible to fit suitable
boundary value problems. Since these solutions are obtained by integrating along charac-
teristic curves they have inherent wave features. Apart from their own theoretical value,
all these solutions can be also useful for testing numerical procedures for the quasilinear
hyperbolic system of PDEs under interest.
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