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ABSTRACT. The exploitation of second law of thermodynamics for a mixture of two fluids
with a scalar internal variable and a first order nonlocal state space is achieved by using the
extended Liu approach. This method requires to insert as constraints in the entropy inequality
either the field equations or their gradient extensions. Consequently, the thermodynamic
restrictions imposed by the entropy principle are derived without introducing extra terms
neither in the energy balance equation nor in the entropy inequality.

1. Introduction

In many applications, models of fluid continua need to be treated as mixtures (de Groot
and Mazur 1962; Müller 1968; Bowen 1976), i.e., as continua microscopically formed
by two or more separate components having different specific physical properties. These
models are particularly effective when they are used to describe the thermodynamical
behaviour of composite materials, e.g. polymers, or fluxes through porous media and in
presence of liquid Helium, as well as mixtures of granular media (Goodman and Cowin
1972).

Whenever a continuum is composed as two or more internal phases, the properties are
in general known not as single deterministic components but rather as suitable averages
of microlocal phenomena; hence, a convenient modelization technique may pass through
the use of so–called internal variable approach (Coleman and Gurtin 1967; Maugin and
Muschik 1994a,b; Verhás 1997). The internal variables are introduced to describe phenom-
ena occurring at the microscopic or mesoscopic level that can not be controlled in their full
detail but only in average over small portions of the continuum. These microlocal phenom-
ena (which are typical of non–equilibrium and dissipation processes) are thus modeled by
introducing a set of extra variables, the so–called internal variables, which depend on the
particular model, and obey a number of phenomenological equations. Usually, the internal
variables enter directly the state functions and the constitutive laws, but it is sometimes
convenient to adopt more general models in which these averages are non–uniform in space
so that the internal variables appear together with their spatial gradients. Moreover, the
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constitutive equations may include the gradients of field variables (Ván 2003) to take into
account nonlocal effects.

As discussed by Ván, Berezovski, and Engelbrecht (2008), there are two basic methods
to generate the evolution equations for internal variables. Several authors have given a
distinction between these two methods (Maugin and Muschik 1994a,b) and proposed a large
number of applications (Maugin 1990). In this paper, we follow the approach introduced by
Coleman and Gurtin (1967), and postulate the existence of internal state variables which
influence the free energy and whose rate of change is governed by a (generally nonlinear)
function of all the state variables.

In a previous paper Francaviglia, Palumbo, and Rogolino (2006) analyzed a model of
a mixture with N different components from a thermodynamical viewpoint with internal
variables, both in the presence and absence of viscosity; the general thermodynamical
restrictions and residual dissipation inequalities have been obtained by Clausius–Duhem
inequality along with the Coleman–Noll procedure (Coleman and Noll 1963). The behaviour
of the mixture has been described by a state space W with local coordinates

W ⌘ (r,ca ,q ,gA,—gA), a = 1, . . . ,N �1, A = 1, . . . ,N, (1)

where r is the mass density of the mixture, ca the concentrations of N �1 components, q
the absolute temperature of the mixture, gA and —gA the N internal variables together with
their gradients, respectively.

A different procedure for the exploitation of the second law, based on the method of
Lagrange multipliers, was introduced by Liu (1972). Lagrange multipliers are used in
non–equilibrium thermodynamics in the method proposed by Liu to take into account the
restrictions placed on the thermodynamic fields by the balance equations. In recent years,
some extensions of these two classical techniques, the Coleman–Noll procedure and the
Liu one, have been proposed (see Cimmelli, Oliveri, and Triani 2011; Cimmelli, Sellitto,
and Triani 2010; Triani et al. 2008, and references therein) in order to include additional
restrictions consistent with higher–order nonlocal constitutive equations. Remarkably, these
extended procedures (see, for instance, Cimmelli, Oliveri, and Pace 2011, 2013, 2015) for
their application in some thermodynamic models), when nonlocal constitutive equations
are used, do not require the introduction of extra terms or extra fluxes (Dunn 1986; Dunn
and Serrin 1985; Gurtin and Vargas 1971; Müller 1967) neither in the balance equation for
energy nor in the entropy inequality. In particular, the extended Liu technique requires to
add to the entropy inequality a linear combination of the field equations and of the spatial
gradients of the latter up to the order of the gradients entering the state space.

In this paper, our aim is to apply the extended Liu method to a model of mixtures
composed by two fluid components, in order to obtain the restrictions on the constitutive
relations arising from the entropy principle in the case in which nonlocal effects of all
variables and not only of the internal variables are considered, so generalizing the results
obtained in a previous paper (Francaviglia, Palumbo, and Rogolino 2008).

The plan of the paper is the following. In Sec. 2, we fix the balance equations of the
two–component mixture described by the total mass density, the concentration of one
constituent, the barycentric velocity, the total internal energy density and a scalar internal
variable. In Sec. 3, after setting the state space, we exploit the entropy inequality by using the
extended Liu procedure and derive a set of thermodynamic restrictions. In Sec. 4, a suitable
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representation of the specific entropy is assumed and some solutions of the thermodynamic
restrictions are recovered; in particular, it is shown how the thermodynamic constraints can
be integrated in the case of a mixture of perfect fluids in three space dimensions and in the
case of a mixture of viscous fluids in one space dimension; in the latter case a complete
solution to all thermodynamical constraints is provided.

2. Balance equations for the mixture

Let us consider a mixture made by components whose state variables are labeled with
a capital roman letter. The mixture occupies a region W ⇢ R3. At any time t � 0, the
thermodynamic state of the mixture is described by N partial mass densities rA, by N partial
velocities vA of the constituents and by the temperature q of the mixture.

We can define the total mass density r and the barycentric velocity v of the mixture by
the positions

Â
A

rA = r, Â
A

rAvA = rv. (2)

Also, we may introduce the diffusion velocities dA and the corresponding diffusional
mass fluxes JA,

dA = vA �v, JA = rAdA, Â
A

JA = 0, (3)

as well as the concentrations of the constituent A, cA = rA/r .
Mixtures can be modeled at different degrees of detail:

• models where primitive variables are the mass densities of the constituents, the
barycentric velocity v and the temperature q of the mixture (Class I);

• models where primitive variables are the mass densities and the velocities of the
constituents, and the temperature q of the mixture (Class II);

• models where the primitive variables are the partial mass densities, the velocities
and the temperatures of the constituents (Class III).

For models of Class III it is worth of being quoted the paper by Gouin and Ruggeri (2008)
where a physically consistent way of defining an average temperature in a multitemperature
mixture of fluids is considered.

The total mass of a mixture is a conserved quantity, while the mass of a particular
component is not conserved, if chemical reactions occur, i.e.,

∂rA

∂ t
+— · (rAvA) = Pchem

A , (4)

where Pchem
A is a production terms of mass due to chemical reactions.

In this paper, we consider models of Class I, and, in particular, models of mixtures
with two components. Instead of the partial mass densities, we use the mass density of the
mixture and the concentration c of one arbitrarily chosen constituent.
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According to the third metaphysical principle given by Truesdell (1984), let us write the
balance equations for the mixture as a whole:

∂r
∂ t

+— · (rv) = 0,

∂
∂ t

(rv)+— · (rv⌦v�T ) = rf,

∂
∂ t

✓
r(e + 1

2
v ·v)

◆
+— ·

✓
q�T ·v+rv(e + 1

2
v ·v)

◆
�r(f ·v+ r) = 0,

(5)

where T denotes the (symmetric) Cauchy stress tensor, f is the specific density of volume
forces, e the specific internal energy density (internal energy per unit mass), q the heat flux
density, and r the energy supply density. To properly describe the mixture we add to (5) the
balance equation for the concentration c of one of the two constituents (say, the first one),

r dc
dt

+— ·J = Pchem
1 (J = J1), (6)

where
d
dt

=
∂
∂ t

+v ·— is the material time derivative. In the following, we will set Pchem
1 = 0.

Finally, in order to consider dissipative effects due to thermo–diffusion we introduce
a scalar internal variable, which we denote by g , whose time evolution is governed by an
equation of the form:

r
✓

∂g
∂ t

+v ·—g
◆
+— ·F = G, (7)

where F denotes the flux associated to the internal variable g , and G represents a suitable
production term.

We postulate a balance law for the internal variable g even if we are aware that this
form can be a consequence of the exploitation procedure of the entropy principle (Ván,
Berezovski, and Engelbrecht 2008). A comment is in order regarding the divergence term in
the balance equations for concentration and the internal variables, since they imply the need
to fix data at boundaries. In fact, along with Maugin and Muschik (1994a), we can say that
a clever physicist will always manage to detect the internal variables and to measure them.
However, in general, he cannot control them, i.e., to adjust their value on the boundary
through a direct action of surface or body forces. On the other hand, a large number of
physical phenomena exhibiting a spatial localization or a marked diffusion of dissipative
processes, are directly amenable by means of spatially non-uniform internal variables
(Maugin 1990), whose evolution is determined by complete balance laws, including both a
rate term and a divergence term. If the body occupies a bounded domain, such balance laws
require appropriate boundary conditions which, in turn, cannot be assigned if the internal
variables are not controllable. In a series of papers (Valanis 1996, 1997, 1998) Valanis
derived suitable boundary conditions in particular cases by applying a variational method. A
different method introduced by Waldmann (1967) also constitutes a good way to construct
boundary conditions associated with a diffusive internal variable. A deep discussion on this
topic was given by Cimmelli (2002), who showed how it is possible to force the internal
variable or its gradient in some cases to assume given values on the boundary by using the
second law of thermodynamics.
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3. Thermodynamical restrictions

We assume that the mixture is described by a state space W with local coordinates

W ⌘ {r,c,e,g,—r,—c,—e,—g,—v}, (8)

i.e., we put ourselves in the framework of a first order nonlocal theory. Notice that we are
using the canonically conjugate variable e instead of the absolute temperature.

The system above must be closed by a suitable set of constitutive equation for the stress
tensor T , for the fluxes J, q, F, and for the internal source of energy r and the production
G of the internal variable; these constitutive relations have to be assigned in such way the
local entropy production is nonnegative, i.e.,

ss = r
✓

∂ s
∂ t

+v ·—s
◆
+— ·J(s) � 0, (9)

s and J(s) being the specific entropy and entropy flux, respectively. Also the specific entropy
and the entropy flux are thought of as functions of the state variables (8).

Since we are considering a nonlocal theory, we exploit the entropy inequality by means
of the Liu’s extended procedure (Cimmelli, Oliveri, and Triani 2011; Triani et al. 2008);
therefore, we need to compute the gradients of the fundamental balance equations.

By neglecting the external body forces and the internal sources of energy, let us rewrite
in components the set of field equations:

r,t + vir,i +rvi,i = 0,
rc,t +rvic,i + Ji,i = 0,
rv j,t +rviv j,i �Tji,i = 0,
re,t +rvie,i +qi,i �Ti jvi, j = 0,
rg,t +rvig,i +Fi,i �G = 0,

(10)

where the indices ,t and ,i stand for the partial derivatives with respect to the time t and the
coordinate xi (i = 1,2,3) (the Einstein summation convention over repeated indices is used),
and compute their first order gradients:

r,kt + vi,kr,i + vir,ki +r,kvi,i +rvi,ik = 0,
r,kc,t +rc,kt +r,kvic,i +rvi,kc,i +rvic,ki + Ji,ki = 0,
r,kv j,t +rv j,kt +r,kviv j,i +rvi,kv j,i +rviv j,ki �Tji,ki = 0,
r,ke,t +re,kt +r,kvie,i +rvi,ke,i

+rvie,ki +ri,ki �Ti j,kvi, j �Ti jvi,k j = 0,
r,kg,t +rg,kt +r,kvig,i +rvi,kg,i +rvig,ki +Fi,ki �G,k = 0.

(11)

Now let us introduce some Lagrange multipliers; we use lower case greek letters for the
Lagrange multipliers related to the field equations, and capital greek letters for the Lagrange
multipliers related to the gradients of the field equations. Therefore, let us multiply the
equations (10)1�5, by the Lagrange multipliers l (m), l (c), l (mv)

j , l (e) and l (g), respectively,

and the equations (11)1�5 by L(m)
k , L(c)

k , L(mv)
jk , L(e)

k , L(g)
k , respectively; then, let us subtract

the equations so obtained from (9).
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After some lengthy but straightforward computations (that can be done almost automati-
cally by means of the package LiuExt, written by one of the authors, F.O., in the Computer
Algebra System Reduce (Hearn 1995)), the entropy inequality (9) can be put in the following
form:

✓
r ∂ s

∂r
�l (m)

◆
r,t +

✓
r ∂ s

∂c
�rl (c)�L(c)

j r, j

◆
c,t

+

✓
r ∂ s

∂e
�rl (e)�r, jL(e)

j

◆
e,t +

✓
r ∂ s

∂g
�rl (g)�r, jL(g)

j

◆
g,t

�
⇣

r, jL(mv)
i j +rl (mv)

i

⌘
vi,t +

✓
r ∂ s

∂r,i
�L(m)

i

◆
r,it

+

✓
r ∂ s

∂c,i
�rL(c)

i

◆
c,it +

✓
r ∂ s

∂e,i
�rL(e)

i

◆
e,it

+

✓
r ∂ s

∂g,i
�rL(g)

j

◆
g, jt +

✓
r ∂ s

∂vi, j
�rL(mv)

i j

◆
vi, jt

�
✓

L(e)
j

∂qk

∂r,m
+L(c)

j
∂Jk

∂r,m
+L(g)

j
∂Fk

∂r,m
�L(mv)

i j
∂Tik

∂r,m

◆
r,m jk

�
✓

L(e)
j

∂qk

∂c,m
+L(c)

j
∂Jk

∂c,m
+L(g)

j
∂Fk

∂c,m
�L(mv)

i j
∂Tik

∂c,m

◆
c,m jk

�
✓

L(e)
j

∂qk

∂e,m
+L(c)

j
∂Jk

∂e,m
+L(g)

j
∂Fk

∂e,m
�L(mv)

i j
∂Tik

∂e,m

◆
e,m jk

�
✓

L(e)
j

∂qk

∂g,m
+L(c)

j
∂Jk

∂g,m
+L(g)

j
∂Fk

∂g,m
�L(mv)

i j
∂Tik

∂g,m

◆
g,m jk

�
✓

L(e)
j

∂qk

∂vn,m
+L(c)

j
∂Jk

∂vn,m
+L(g)

j
∂Fk

∂vn,m
�L(mv)

i j
∂Tik

∂vn,m

◆
vn,m jk

+ f (r,r,i,r,i j,c,c,i,c,i j,e,e,i,e,i j,vi,vi, j,vi, jk,g,g, j,g, jk)� 0.

(12)

According to the procedure described by Cimmelli, Oliveri, and Triani (2011), the
terms entering the inequality (12) and not included in f are linear combinations of highest
derivatives, i.e., the first–order time derivatives of r , c, vi, e , g , r,i, c,i, vi, j, e,i, g,i, and
the third–order space derivatives of the fields r , c, vi, e and g . The values of the highest
derivatives are completely arbitrary and independent of their coefficients, which, in turn,
depend only on the state variables. Then, even if only one of the coefficients of the
highest derivatives is different from zero, the corresponding highest derivative could assume
arbitrary negative values and the entropy inequality violated. As a consequence, all the
coefficients of the highest derivatives must vanish, so providing the expression of the
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Lagrange multipliers,

l (m) = r ∂ s
∂r

, l (c) =
∂ s
∂c

� 1
r

L(c)
j r, j, r ∂ s

∂e
= rl (e) +r, jL(e)

j ,

r ∂ s
∂g

= rl (g) +L(g)
1 j r, j, r, jL(mv)

i j +rl (mv)
i = 0, L(m)

i = r ∂ s
∂r,i

,

L(c)
i =

∂ s
∂c,i

, L(e)
i =

∂ s
∂e,i

, L(mv)
i j =

∂ s
∂vi, j

, L(g)
j =

∂ s
∂g,i

,

(13)

and the following thermodynamics restrictions:
⌧

L(e)
j

∂qk

∂r,m
+L(g)

j
∂Fk

∂r,m
+L(c)

j
∂Jk

∂r,m
�L(mv)

i j
∂Tik

∂r,m

�

( jkm)

= 0,

⌧
L(e)

j
∂qk

∂c,m
+L(g)

j
∂Fk

∂c,m
+L(c)

j
∂Jk

∂c,m
�L(mv)

i j
∂Tik

∂c,m

�

( jkm)

= 0,

⌧
L(e)

j
∂qk

∂e,m
+L(g)

j
∂Fk

∂e,m
+L(c)

j
∂Jk

∂e,m
�L(mv)

i j
∂Tik

∂e,m

�

( jkm)

= 0,

⌧
L(e)

j
∂qk

∂g,m
+L(g)

j
∂Fk

∂g,m
+L(c)

j
∂Jk

∂g,m
�L(mv)

i j
∂Tik

∂g,m

�

( jkm)

= 0,

⌧
L(e)

j
∂qk

∂vn,m
+L(g)

j
∂Fk

∂vn,m
+L(c)

j
∂Jk

∂vn,m
�L(mv)

i j
∂Tik

∂vn,m

�

( jkm)

= 0,

(14)

where the angular parentheses are used to denote the symmetric parts of the included
tensorial quantities with respect to the indicated indices; thus, (12) reduces to

f (r,r,i,r,i j,c,c,i,c,i j,e,e,i,e,i j,vi,vi, j,vi, jk,g,g, j,g, jk)� 0. (15)

The inequality (15) is not linear in the spatial gradients whose order is higher than that
appearing in the state space (the higher derivatives). In fact, it contains both quadratic and
linear terms in the higher derivatives r,i j, c,i j, e,i j, vi, jk and g,i j; by denoting with

Y = (r,i j,c,i j,e,i j,vi, jk,g,i j)
T

the vector of higher derivatives, a direct computation shows that (15) can be written as

YT AY+B ·Y+C � 0, (16)

where A is a symmetric matrix, B a vector, C a scalar depending only on the state functions,
and the superscript T stands for transposition.

Because of a theorem proved by Cimmelli, Oliveri, and Triani (2011), the necessary
and sufficient conditions in order that the inequality (16) is satisfied are that A is a positive
semidefinite matrix, B ⌘ 0 and C � 0. The requirement B ⌘ 0 provides the following set of
additional thermodynamic restrictions:
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*
∂J(s)i
∂r,k

+

(i,k)

=

⌧
l (c) ∂Ji

∂r,k
+l (e) ∂qi

∂r,k
+l (g) ∂Fi

∂r,k

�l (mv)
j

∂Ti j

∂r,k
�L(e)

i
∂Tl j

∂r,k
vl, j �L(g)

i
∂G

∂r,k

+L(e)
i

✓
∂qk

∂r
+

∂ 2q j

∂r,k∂r
r, j +

∂ 2q j

∂r,k∂c
c, j +

∂ 2q j

∂r,k∂e
e, j +

∂ 2q j

∂r,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂r,k∂r
r, j +

∂ 2qi

∂r,k∂c
c, j +

∂ 2qi

∂r,k∂e
e, j +

∂ 2qi

∂r,k∂g
g, j
◆

+L(c)
i

✓
∂Jk

∂r
+

∂ 2Jj

∂r,k∂r
r, j +

∂ 2Jj

∂r,k∂c
c, j +

∂ 2Jj

∂r,k∂e
e, j +

∂ 2Jj

∂r,k∂g
g, j
◆

+L(e)
j

✓
∂ 2Ji

∂r,k∂r
r, j +

∂ 2Ji

∂r,k∂c
c, j +

∂ 2Ji

∂r,k∂e
e, j +

∂ 2Ji

∂r,k∂g
g, j
◆

+L(g)
i

✓
∂Fk

∂r
+

∂ 2F j

∂r,k∂r
r, j +

∂ 2F j

∂r,k∂c
c, j +

∂ 2F j

∂r,k∂e
e, j +

∂ 2F j

∂r,k∂g
g, j
◆

+L(g)
j

✓
∂ 2Fi

∂r,k∂r
r, j +

∂ 2Fi

∂r,k∂c
c, j +

∂ 2Fi

∂r,k∂e
e, j +

∂ 2Fi

∂r,k∂g
g, j
◆

+L(mv)
ji

 
∂Tjk

∂r
+

∂ 2Tjl

∂r,k∂r
r,l +

∂ 2Tjl

∂r,k∂c
c,l +

∂ 2Tjl

∂r,k∂e
e,l +

∂ 2Tjl

∂r,k∂g
g,l

!

+L(mv)
jl

✓
∂ 2Tji

∂r,k∂r
r,l +

∂ 2Tji

∂r,k∂c
c,l +

∂ 2Tji

∂r,k∂e
e,l

∂ 2Tji

∂r,k∂g
g,l
◆�

(i,k)
,

(17)

*
∂J(s)i
∂c,k

+

(i,k)

=

⌧
l (c) ∂Ji

∂c,k
+l (e) ∂qi

∂c,k
+l (g) ∂Fi

∂c,k

�l (mv)
j

∂Ti j

∂c,k
�L(e)

i
∂Tl j

∂c,k
vl, j �L(g)

i
∂G
∂c,k

+L(e)
i

✓
∂qk

∂r
+

∂ 2q j

∂c,k∂r
r, j +

∂ 2q j

∂c,k∂c
c, j +

∂ 2q j

∂c,k∂e
e, j +

∂ 2q j

∂c,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂c,k∂r
r, j +

∂ 2qi

∂c,k∂c
c, j +

∂ 2qi

∂c,k∂e
e, j +

∂ 2qi

∂c,k∂g
g, j
◆

+L(c)
i

✓
∂Jk

∂r
+

∂ 2Jj

∂c,k∂r
r, j +

∂ 2Jj

∂c,k∂c
c, j +

∂ 2Jj

∂c,k∂e
e, j +

∂ 2Jj

∂c,k∂g
g, j
◆

+L(e)
j

✓
∂ 2Ji

∂c,k∂r
r, j +

∂ 2Ji

∂c,k∂c
c, j +

∂ 2Ji

∂c,k∂e
e, j +

∂ 2Ji

∂c,k∂g
g, j
◆

+L(g)
i

✓
∂Fk

∂r
+

∂ 2F j

∂c,k∂r
r, j +

∂ 2F j

∂c,k∂c
c, j +

∂ 2F j

∂c,k∂e
e, j +

∂ 2F j

∂c,k∂g
g, j
◆

+L(g)
j

✓
∂ 2Fi

∂c,k∂r
r, j +

∂ 2Fi

∂c,k∂c
c, j +

∂ 2Fi

∂c,k∂e
e, j +

∂ 2Fi

∂c,k∂g
g, j+

◆

+L(mv)
ji

 
∂Tjk

∂r
+

∂ 2Tjl

∂c,k∂r
r,l +

∂ 2Tjl

∂c,k∂c
c,l +

∂ 2Tjl

∂c,k∂e
e,l +

∂ 2Tjl

∂c,k∂g
g,l

!

+L(mv)
jl

✓
∂ 2Tji

∂c,k∂r
r,l +

∂ 2Tji

∂c,k∂c
c,l +

∂ 2Tji

∂c,k∂e
e,l +

∂ 2Tji

∂c,k∂g
g,l
◆�

(i,k)
,

(18)
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*
∂J(s)i
∂e,k

+

(i,k)

=

⌧
l (c) ∂Ji

∂e,k
+l (e) ∂qi

∂e,k
+l (g) ∂Fi

∂e,k

�l (mv)
j

∂Ti j

∂e,k
�L(e)

i
∂Tl j

∂e,k
vl, j �L(g)

i
∂G
∂e,k

+L(e)
i

✓
∂qk

∂r
+

∂ 2q j

∂e,k∂r
r, j +

∂ 2q j

∂e,k∂c
c, j +

∂ 2q j

∂e,k∂e
e, j +

∂ 2q j

∂e,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂e,k∂r
r, j +

∂ 2qi

∂e,k∂c
c, j +

∂ 2qi

∂e,k∂e
e, j +

∂ 2qi

∂e,k∂g
g, j
◆

+L(c)
i

✓
∂Jk

∂r
+

∂ 2Jj

∂e,k∂r
r, j +

∂ 2Jj

∂e,k∂c
c, j +

∂ 2Jj

∂e,k∂e
e, j +

∂ 2Jj

∂e,k∂g
g, j
◆

+L(e)
j

✓
∂ 2Ji

∂e,k∂r
r, j +

∂ 2Ji

∂e,k∂c
c, j +

∂ 2Ji

∂e,k∂e
e, j +

∂ 2Ji

∂e,k∂g
g, j
◆

+L(g)
i

✓
∂Fk

∂r
+

∂ 2F j

∂e,k∂r
r, j +

∂ 2F j

∂e,k∂c
c, j +

∂ 2F j

∂e,k∂e
e, j +

∂ 2F j

∂e,k∂g
g, j
◆

+L(g)
j

✓
∂ 2Fi

∂e,k∂r
r, j +

∂ 2Fi

∂e,k∂c
c, j +

∂ 2Fi

∂e,k∂e
e, j +

∂ 2Fi

∂e,k∂g
g, j
◆

+L(mv)
ji

 
∂Tjk

∂r
+

∂ 2Tjl

∂e,k∂r
r,l +

∂ 2Tjl

∂e,k∂c
c,l +

∂ 2Tjl

∂e,k∂e
e,l +

∂ 2Tjl

∂e,k∂g
g,l

!

+L(mv)
jl

✓
∂ 2Tji

∂e,k∂r
r,l +

∂ 2Tji

∂e,k∂c
c,l +

∂ 2Tji

∂e,k∂e
e,l +

∂ 2Tji

∂e,k∂g
g,l
◆�

(i,k)
,

(19)

*
∂J(s)i
∂g,k

+

(i,k)

=

⌧
l (c) ∂Ji

∂g,k
+l (e) ∂qi

∂g,k
+l (g) ∂Fi

∂g,k

�l (mv)
j

∂Ti j

∂g,k
�L(e)

i
∂Tl j

∂g,k
vl, j �L(g)

i
∂G
∂g,k

+L(e)
i

✓
∂qk

∂g
+

∂ 2q j

∂g,k∂r
r, j +

∂ 2q j

∂g,k∂c
c, j +

∂ 2q j

∂g,k∂e
e, j +

∂ 2q j

∂g,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂g,k∂r
r, j +

∂ 2qi

∂g,k∂c
c, j +

∂ 2qi

∂g,k∂e
e, j +

∂ 2qi

∂g,k∂g
g, j
◆

+L(c)
i

✓
∂Jk

∂r
+

∂ 2Jj

∂g,k∂r
r, j +

∂ 2Jj

∂g,k∂c
c, j +

∂ 2Jj

∂g,k∂e
e, j +

∂ 2Jj

∂e,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂g,k∂r
r, j +

∂ 2qi

∂g,k∂c
c, j +

∂ 2qi

∂g,k∂e
e, j +

∂ 2qi

∂g,k∂g
g, j
◆

+L(g)
i

✓
∂Fk

∂g
+

∂ 2F j

∂g,k∂r
r, j +

∂ 2F j

∂g,k∂c
c, j +

∂ 2F j

∂g,k∂e
e, j +

∂ 2F j

∂g,k∂g
g, j
◆

+L(g)
j

✓
∂ 2Fi

∂g,k∂r
r, j +

∂ 2Fi

∂g,k∂c
c, j +

∂ 2Fi

∂g,k∂e
e, j +

∂ 2Fi

∂g,k∂g
g, j
◆

�L(mv)
ji

 
∂Tjk

∂g
+

∂ 2Tjl

∂g,k∂r
r,l +

∂ 2Tjl

∂g,k∂c
c,l +

∂ 2Tjl

∂g,k∂e
e,l +

∂ 2Tjl

∂g,k∂g
g,l

!

�L(mv)
jl

✓
∂ 2Tji

∂g,k∂r
r,l +

∂ 2Tji

∂g,k∂c
c,l +

∂ 2Tji

∂g,k∂e
e,l +

∂ 2Tji

∂g,k∂g
g,l
◆�

(i,k)
,

(20)
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*
∂J(s)i
∂vm,k

+

(ik)

=

⌧
l (c) ∂Ji

∂vm,k
+l (e) ∂qi

∂vm,k
+l (g) ∂Fi

∂vm,k

�l (mv)
j

∂Ti j

∂vm,k
�L(e)

i
∂Ti j

∂vm,k
vl, j �L(g)

i
∂G

∂vm,k

+L(e)
i

✓
∂qk

∂g
+

∂ 2q j

∂vm,k∂r
r, j +

∂ 2q j

∂vm,k∂c
c, j +

∂ 2q j

∂vm,k∂e
e, j +

∂ 2q j

∂vm,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂vm,k∂r
r, j +

∂ 2qi

∂vm,k∂c
c, j +

∂ 2qi

∂vm,k∂e
e, j +

∂ 2qi

∂vm,k∂g
g, j
◆

+L(c)
i

✓
∂Jk

∂r
+

∂ 2Jj

∂vm,k∂r
r, j +

∂ 2Jj

∂vm,k∂c
c, j +

∂ 2Jj

∂vm,k∂e
e, j +

∂ 2Jj

∂e,k∂g
g, j
◆

+L(e)
j

✓
∂ 2qi

∂vm,k∂r
r, j +

∂ 2qi

∂vm,k∂c
c, j +

∂ 2qi

∂vm,k∂e
e, j +

∂ 2qi

∂vm,k∂g
g, j
◆

+L(g)
i

✓
∂Fk

∂g
+

∂ 2F j

∂vm,k∂r
r, j +

∂ 2F j

∂vm,k∂c
c, j +

∂ 2F j

∂vm,k∂e
e, j +

∂ 2F j

∂vm,k∂g
g, j
◆

+L(g)
j

✓
∂ 2Fi

∂vm,k∂r
r, j +

∂ 2Fi

∂vm,k∂c
c, j +

∂ 2Fi

∂vm,k∂e
e, j +

∂ 2Fi

∂vm,k∂g
g, j
◆

�L(mv)
ji

 
∂Tjk

∂g
+

∂ 2Tjl

∂vm,k∂r
r,l +

∂ 2Tjl

∂g2,k∂c
c,l +

∂ 2Tjl

∂vm,k∂e
e,l +

∂ 2Tjl

∂vm,k∂g
g,l

!

�L(mv)
jl

✓
∂ 2Tji

∂vm,k∂r
r,l +

∂ 2Tji

∂vm,k∂c
c,l +

∂ 2Tji

∂vm,k∂e
e,l +

∂ 2Tji

∂vm,k∂g
g,l
◆�

(i,k)
.

(21)

4. Consequences under additional constitutive assumption on the entropy density

Although the relations (13), (14) and (17) – (21) place severe restrictions on the form
of the constitutive functions, they are still too much general for practical applications;
therefore, a further simplification is necessary according to specific models. This can be
achieved by assuming first a representation of the entropy density. The principle of material
objectivity tells us that the constitutive functional for s must be an isotropic function of
its vectorial (the gradients of r , c, e and g) and tensorial (the velocity gradient, or, more
precisely, its symmetric part) arguments.

In this section we shall consider two simple cases allowing us to provide particular
solutions of the thermodynamical restrictions found in the previous section. In both cases
the non–equilibrium part of the entropy density will be assumed quadratic in the first
order gradients of field variables in such a way the principle of maximum entropy at the
equilibrium is satisfied. The first case is concerned with a mixture of perfect fluids (so we
do not include the velocity gradient in the expression of the entropy), whereas the second
case is concerned with the one–dimensional motion of a mixture of viscous fluids where the
velocity gradient enters the representation of the entropy density.

4.1. Mixture of perfect fluids. Let us assume the entropy density in such a way its non–
equilibrium part is quadratic in the gradients of the field variables r , c, e and g:

s = sE +k1r,ir,i +2k2k4r,ic,i +2k2k5r,ie,i +2k2r,ig,i +k3k2
4 c,ic,i

+2k3k4k5c,ie,i +2k3k4c,ig,i +k3k2
5 e,ie,i +2k3k5e,ig,i +k3g2

,i ,
(22)
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where sE(r,e,c,g) means the equilibrium entropy defined for homogeneous states, and
ki (i = 1, . . . ,5) are suitable functions depending on r , c, e and g only. Clearly, this
expression is not the most general representation of the entropy density as an isotropic scalar
function; nevertheless, it allows us to provide explicitly the integration of the thermodynamic
expressions (14). Moreover, the principle of maximum entropy at the equilibrium is fulfilled
provided that

k1  0, k1k3 �k2
2 � 0. (23)

In fact, conditions (23) guarantee that the non–equilibrium part of the entropy density
(22) is always negative semidefinite.

By using (22) in (13), we can explicitly compute the Lagrange multipliers, whereas the
thermodynamic restrictions (14) provide the relation

Fk +k4Jk +k5qk = Hk(r,c,e,g), (24)

linking the heat flux, the diffusion flux and the flux of internal variable, where Hk (k = 1,2,3)
are functions of r , c, e and g . Therefore, if we further assume reasonable constitutive
relations for heat flux and the density flux, say

qk = q(0)k +q(m)r,k +q(c)c,k +q(e)e,k +q(g)g,k,

Jk = j(0)k + j(m)r,k + j(c)c,k + j(e)e,k + j(g)g,k,
(25)

where q(0)k , q(m), q(c), q(e), q(g), j(0)k , j(m), j(c), j(e) and j(g) are suitable material functions
depending on r , c, e , and g , we obtain from (24) the expression for the flux F of the internal
variable g .

Finally, if we assign the constitutive relation for the stress tensor, for instance

Ti j = (t0 + t1r,kr,k + t2c,kc,k + t3e,ke,k + t4g,kg,k)di j

+ t5r,ir, j + t6c,ic, j + t7e,ie, j + t8 < r,ic, j >+t9 < r,ie, j >
+ t10 < r,ig, j >+t11 < c,ie, j >+t12 < c,ig, j >
+ t13 < e,ig, j >+t14g,ig, j,

(26)

where ti (i = 0,1, . . . ,15) are suitable functions of r , c, e and g , the thermodynamic
restrictions (17) – (21) allows us to restrict the form of the entropy flux J(s)i and of the
production term G of internal variable.

It is worth of being noticed that the constitutive relations so characterized still contain
many degrees of freedom; thus, various particular choices of the involved parameters are
possible depending on the effects we physically observe and want to model. Moreover, it
can be verified that the classical form of the entropy flux proportional to the heat flux is
compatible with these thermodynamic restrictions.

4.2. One–dimensional motion of a mixture of viscous fluids. Here we consider a one–
dimensional motion, and include in the expression of the entropy density the velocity
gradient. We provide an example of constitutive equations that completely solve all the
restrictions imposed by entropy inequality.
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Also in this case we choose the non–equilibrium part of the entropy density quadratic in
the derivatives of all the field variables with respect to x ⌘ x1, say

s = sE +k1r2
,x +2k2r,xc,x +2k3r,xv,x +2k4r,xe,x +2k5r,xg,x

+k6c2
,x +2k7c,xv,x +2k8c,xe,x +2k9c,xg,x +k10v2

,x

+2k11v,xe,x +2k12v,xg,x +k13e2
,x +2k14e,xg,x +k15g2

,x,

(27)

where sE(r,e,c,g) and ki(r,e,c,g) (i = 1, . . . ,15) are suitable functions depending on the
indicated arguments; moreover, the constitutive functions ki (i = 1, . . . ,15) must be such
that the non–equilibrium part of the entropy density is a semidefinite quadratic form in the
derivatives of all the field variables in order to satisfy the principle of maximum entropy at
equilibrium. Also, we take the following general though reasonable constitutive equations
q, J and T , for instance

q = q(0) +q(m)r,x +q(c)c,x +q(v)v,x +q(e)e,x +q(g)g,x,

J = j(0) + j(m)r,x + j(c)c,x + j(v)v,x + j(e)e,x + j(g)g,x,

F = F(0) +F(m)r,x +F(c)c,x +F(v)v,x +F(e)e,x +F(g)g,x,

T = t0 + t1v,x + t2r2
,x + t3r,xc,x + t4r,xe,x + t5r,xg,x

+ t6c2
,x + t7c,xe,x + t8c,xg,x + t9e2

,x + t10e,xg,x + t11g2
,x,

(28)

where q(0), q(m), q(c), q(v), q(e), q(g), q(0), j(m), j(c), j(v), j(e), j(g), F(0), F(m), F(c), F(v),
F(e), F(g) and ti (i = 0, . . . ,11) are suitable functions of r , c, e and g .

By imposing that all the thermodynamic restrictions are satisfied, and using the Crack
package (Wolf 2004) of Reduce Computer Algebra System (Hearn 1995) in order to find
automatically explicit solutions of overdetermined system of partial differential equations,
we obtain:

s = sE(r,e,c+ kg)+ s1(r,c+ kg)(c,x + kg,x)2,

q = q(m)r,x +q(c)c,x +q(v)v,x +q(e)e,x +q(g)g,x,
J =�kF,

F = F(0) +F(m)r,x +F(c)c,x +F(e)e,x +F(g)g,x,

T =

✓
∂ sE

∂e

◆�1✓
r2 ∂ sE

∂r
�
✓

r2 ∂ s1

∂r
+2rs1

◆
(c,x + kg,x)2

◆
+ t1v,x,

G = G(r,c,e,g),

Js =
∂ sE

∂e
q,

(29)

where k is a constant, s0 and s1 functions of the indicated arguments, whereas q(m), q(c), q(v),
q(e), q(g), j(m), j(c), j(v), j(e), j(g), F(0), F(m), F(c), F(v), F(e), F(g), t1 and G are functions
of r , c, e and g; the principle of maximum entropy at the equilibrium is fulfilled provided
that

s1  0. (30)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 94, No. 1, A2 (2016) [17 pages]



ON A MODEL OF MIXTURES WITH INTERNAL VARIABLES: . . . A2-13

Finally, all the conditions in (16), in order to satisfy the entropy inequality, require

kG∂ sE

∂c
� 0, (31)

and the 5⇥5 symmetric matrix P with entries

P11 = q(m) ∂ 2sE

∂r∂e
,

P12 =
1
2

✓
q(m) ∂ 2sE

∂c∂e
+q(c)

∂ 2sE

∂r∂e

◆
+ ks1

✓
G
r
� ∂G

∂r

◆
,

P13 =
1
2

q(v)
∂ 2sE

∂r∂e
,

P14 =
1
2

✓
q(e)

∂ 2sE

∂r∂e
+q(m) ∂ 2sE

∂e2

◆
,

P15 =
1
2

✓
q(m) ∂ 2sE

∂e∂g
+q(g)

∂ 2sE

∂r∂e

◆
+ k2s1

✓
G
r
� ∂G

∂r

◆
,

P22 = q(c)
∂ 2sE

∂c∂e
� k
✓

2s1
∂G
∂c

+G∂ s1

∂c

◆
,

P23 =
1
2

q(v)
∂ 2sE

∂c∂e
,

P24 =
1
2

✓
q(c)

∂ 2sE

∂e2 +q(e)
∂ 2sE

∂c∂e

◆
� ks1

∂G
∂e

,

P25 =
1
2

✓
q(g)

∂ 2sE

∂c∂e
+q(c)

∂ 2sE

∂e∂g

◆
� k2 ∂ (s1G)

∂c
� ks1

∂G
∂g

,

P33 = t1
∂ sE

∂e
,

P34 =
1
2

q(v)
∂ 2sE

∂e2 ,

P35 =
1
2

q(v)
∂ 2sE

∂e∂g
,

P44 = q(e)
∂ 2sE

∂e2

P45 =
1
2

✓
q(e)

∂ 2sE

∂e∂g
+q(g)

∂ 2sE

∂e2

◆
� k2s1

∂G
∂e

,

P55 = q(g)
∂ 2sE

∂e∂g
�2k2s1

∂G
∂g

� k3G∂ s1

∂c

(32)

be positive semidefinite.
In equilibrium situations, in which the gradients of the unknown functions vanish, s

reduces to sE . Moreover, in such a case, Eq. (7) yields

G(r,c,e,g) = 0, (33)
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and, under suitable hypotheses of invertibility,

g = eg(r,c,e). (34)

In such a situation we have

sE = seq(r,c,e,eg(r,c,e)), (35)

so that sE can be interpreted as a natural extension of the classical equilibrium entropy to
non-equilibrium states.

In situations close to the equilibrium, with the absolute temperature defined by the

classical thermodynamic relation
1
q
=

∂ s
∂e

, under the hypothesis of invertibility of q with

respect to e , which is guaranteed by the positivity of the specific heat c =
∂e
∂q

, e can be
expressed as function of the arguments r , c, q and g; therefore, the constitutive relations
(28) give the entropy flux in its classical form. Moreover, its worth observing that, taking

q(v) = 0, q(m) =�q(e)
∂e
∂r

,

q(c) =�q(e)
∂e
∂c

, q(g) =�q(e)
∂e
∂g

,

(36)

the constitutive equation for heat flux reduces to Fourier law. The solution so recovered
contains some degrees of freedom that can be fixed in order to model specific physical
situations.

5. Conclusions

In this paper, we considered a model of mixture with two components. Differently
from the model studied by Francaviglia, Palumbo, and Rogolino (2006), we assumed a
constitutive theory which is nonlocal in all the state variables; thus, special theories can
be recovered by restricting the nonlocality to a subset of the field variables. We derived
the thermodynamic restrictions imposed by the entropy principle by means of the extended
Liu procedure. We provided some particular solutions of the thermodynamic constraints
and showed that they are compatible with the classical form of the entropy flux as the ratio
between the heat flux and the temperature. In particular, in the one-dimensional case a
complete solution of all the conditions arising from the entropy inequality has been given.

As a final remark, we observe that the exploitation of the entropy inequality can be done
within the framework of rational thermodynamics by applying the extended Coleman–Noll
procedure (Cimmelli, Sellitto, and Triani 2010), where the terms involving time derivatives
appearing in the entropy inequality are eliminated by using the governing equations of
the unknown fields and their gradient extensions up to the order of the spatial derivatives
involved in the constitutive relations. From a methodological point of view, the extended
Coleman–Noll procedure and the extended Liu procedure are different; nevertheless, they
provide the same set of thermodynamic restrictions.
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