The spectrum of α-resolvable $\boldsymbol{\lambda}$-fold ($\left.K_{4}-e\right)$-designs

Mario Gionfriddo *
Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italia

Giovanni Lo Faro ${ }^{\dagger}$
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Messina, Italia

Salvatore Milici \ddagger
Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italia

Antoinette Tripodi ${ }^{\S}$
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Messina, Italia

Received 20 November 2015, accepted 28 December 2015, published online 1 March 2016

Abstract

A λ-fold G-design is said to be α-resolvable if its blocks can be partitioned into classes such that every class contains each vertex exactly α times. In this paper we study the α resolvability for λ-fold $\left(K_{4}-e\right)$-designs and prove that the necessary conditions for their existence are also sufficient, without any exception.

Keywords: α-resolvable G-design, α-parallel class, $\left(K_{4}-e\right)$-design.
Math. Subj. Class.: 05B05

[^0]
1 Introduction

For any graph Γ, let $V(\Gamma)$ and $\mathcal{E}(\Gamma)$ be the vertex-set and the edge-set of Γ, respectively, and $\lambda \Gamma$ be the graph Γ with each of its edges replicated λ times. Throughout the paper K_{v} will denote the complete graph on v vertices, while $K_{n} \backslash K_{h}$ will denote the graph with $V\left(K_{n}\right)$ as vertex-set and $\mathcal{E}\left(K_{n}\right) \backslash \mathcal{E}\left(K_{h}\right)$ as edge-set (this graph is sometimes referred to as a complete graph of order n with a hole of size h); finally, $K_{n_{1}, n_{2}, \ldots, n_{t}}$ will denote the complete multipartite graph with t-parts of sizes $n_{1}, n_{2}, \ldots, n_{t}$.

Let G and H be simple finite graphs. A λ-fold G-design of $H((\lambda H, G)$-design in short) is a pair (X, \mathcal{B}) where X is the vertex-set of H and \mathcal{B} is a collection of isomorphic copies (called blocks) of the graph G, whose edges partition the edges of λH. If $\lambda=1$, we drop the term " 1 -fold". If $H=K_{v}$, we refer to such a λ-fold G-design as one of order v. A $(\lambda H, G)$-design is balanced if for every vertex x of H the number of blocks containing x is a costant r.

A $(\lambda H, G)$-design is said to be α-resolvable if it is possible to partition the blocks into classes (often referred to as α-parallel classes) such that every vertex of H appears in exactly α blocks of each class. When $\alpha=1$, we simply speak of resolvable design and parallel classes. The existence problem of resolvable G-decompositions has been the subject of an extensive research (see [1, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 24]). The α-resolvability, with $\alpha>1$, has been studied for: $G=K_{3}$ by D. Jungnickel, R. C. Mullin, S. A. Vanstone [13], Y. Zhang and B. Du [25]; $G=K_{4}$ by M. J. Vasiga, S. Furino and A.C.H. Ling [22]; $G=C_{4}$ by M.X. Wen and T.Z. Hong [17].

In this paper we investigate the existence of an α-resolvable λ-fold $\left(K_{4}-e\right)$-design (where $K_{4}-e$ is the complete graph K_{4} with one edge removed). In what follows, by $(a, b, c ; d)$ we will denote the graph $K_{4}-e$ having $\{a, b, c, d\}$ as vertex-set and $\{\{a, b\}$, $\{a, c\},\{b, c\},\{a, d\},\{b, d\}\}$ as edge-set. Basing on the definitions given above, we can derive the following necessary conditions:
(1) $\lambda v(v-1) \equiv 0(\bmod 10)$;
(2) $\alpha v \equiv 0(\bmod 4)$;
(3) $2 \lambda(v-1) \equiv 0(\bmod 5 \alpha)$.

Note that, since the number of α-parallel classes of an α-resolvable λ-fold $\left(K_{4}-e\right)$ design of order v is $\frac{2 \lambda(v-1)}{5 \alpha}$ and every vertex appears exactly α times in each of them, we have the following theorem.

Theorem 1.1. Any α-resolvable λ-fold $\left(K_{4}-e\right)$-design is balanced.
From Conditions (1) - (3) we can desume minimum values for α and λ, say α_{0} and λ_{0}, respectively. Similarly to Lemmas 2.1, 2.2 in [22], we have the following lemmas.

Lemma 1.2. If an α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order v exists, then $\alpha_{0} \mid \alpha$ and $\lambda_{0} \mid \lambda$.

Lemma 1.3. If an α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order v exists, then a t α resolvable $n \lambda$-fold $\left(K_{4}-e\right)$-design of order v exists for any positive integers n and t with $t \left\lvert\, \frac{2 \lambda(v-1)}{5 \alpha}\right.$.

The above two lemmas imply the following theorem (for the proof see Theorem 2.3 in [22]).

Theorem 1.4. If an α_{0}-resolvable λ_{0}-fold $\left(K_{4}-e\right)$-design of order v exists and α and λ satisfy Conditions (1) - (3), then an α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order v exists.

Therefore, in order to show that the necessary conditions for α-resolvable designs are also sufficient, we simply need to prove the existence of an α_{0}-resolvable λ_{0}-fold $\left(K_{4}-e\right)$ design of order v, for any given v.

2 Auxiliary definitions

A $\left(\lambda K_{n_{1}, n_{2}, \ldots, n_{t}}, G\right)$-design is known as a λ-fold group divisible design, G-GDD in short, of type $\left\{n_{1}, n_{2}, \ldots, n_{t}\right\}$ (the parts are called the groups of the design). We usually use an "exponential" notation to describe group-types: the group-type $1^{i} 2^{j} 3^{k} \ldots$ denotes i occurrences of $1, j$ occurrences of 2 , etc. When $G=K_{n}$ we will call it an n-GDD.

If the blocks of a λ-fold G-GDD can be partitioned into partial α-parallel classes, each of which contains all vertices except those of one group, we refer to the decomposition as a λ-fold (α, G)-frame; when $\alpha=1$, we simply speak of λ-fold G-frame (n-frame if additionally $G=K_{n}$). In a λ-fold (α, G)-frame the number of partial α-parallel classes missing a specified group of size g is $\frac{\lambda g|V(G)|}{2 \alpha|\mathcal{E}(G)|}$.

An incomplete α-resolvable λ-fold G-design of order $v+h, h \geq 1$, with a hole of size h is a $\left(\lambda\left(K_{v+h} \backslash K_{h}\right), G\right)$-design in which there are two types of classes, $\frac{\lambda(h-1)|V(G)|}{2 \alpha|\mathcal{E}(G)|}$ partial classes which cover every vertex α times except those in the hole and $\frac{\lambda v|V(G)|}{2 \alpha|\mathcal{E}(G)|}$ full classes which cover every vertex of $K_{v+h} \alpha$ times.

$3 \quad v \equiv 0(\bmod 4)$

In $[4,5,23]$ it was showed that there exists a resolvable $\left(K_{4}-e\right)$-design of order $v \equiv 16$ $(\bmod 20)$; while, for every $v \equiv 0,4,8,12(\bmod 20)$ Gionfriddo et al. ([7]) proved that there exists a resolvable 5 -fold $\left(K_{4}-e\right)$-design of order v. Hence the necessary conditions are also sufficient.

$4 v \equiv 1(\bmod 2)$

$4.1 v \equiv 1(\bmod 10)$

If $v \equiv 1(\bmod 10)$, then $\lambda_{0}=1$ and $\alpha_{0}=4$ and so a solution is given by a cyclic ($K_{4}-e$)-design ([2]), where every base block generates a 4-parallel class. If $v=10 k+1$, $k \geq 4$, the desired design can be obtained by developing in $Z_{10 k+1}$ the base blocks listed below:

$$
\begin{aligned}
& (1+2 i, 4 k+1+i, 1 ; 2 k+2), \quad i=3,4, \ldots,\left\lfloor\frac{k}{2}\right\rfloor \\
& (2 k+3-2 i, 5 k+2-i, 1 ; 2 k+2), \quad i=1,2, \ldots,\left\lceil\frac{k}{2}\right\rceil \\
& (1,4 k+1,3 ; 6 k) \\
& (1,2 k+2,5 ; 6 k+1)
\end{aligned}
$$

where $\lfloor x\rfloor$ (or $\lceil x\rceil$) denote the greatest (or lower) integer that does not exceed (or that exceed) x. If $v=11,21,31$, the base blocks are:
$v=11: \quad(1,10,2 ; 5)$ developed in Z_{11};
$v=21: \quad(1,11,3 ; 15),(1,7,2 ; 10)$ developed in Z_{21};
$v=31: \quad(2,13,1 ; 5),(1,27,10 ; 11),(1,7,3 ; 14)$ developed in Z_{31}.

$4.2 v \equiv 3,5,7,9(\bmod 10)$

If $v \equiv 3,5,7,9(\bmod 10)$, then $\lambda_{0}=5$ and $\alpha_{0}=4$ and so a solution is given by a cyclic 5 -fold ($K_{4}-e$)-design, where every base block generates a 4-parallel class. The required design is obtained by developing in Z_{v} the following blocks:

$$
\begin{aligned}
& (1+i, v-1-i, 0 ; 1), \quad i=1,2, \ldots, \frac{v-3}{2} \\
& (0,1,2 ; v-1)
\end{aligned}
$$

$5 \quad v \equiv 2(\bmod 4)$

$5.1 v \equiv 6(\bmod 20)$

If $v \equiv 6(\bmod 20)$, then $\lambda_{0}=1$ and $\alpha_{0}=2$. In order to prove the existence of a 2resolvable $\left(K_{4}-e\right)$-design of order v for every $v \equiv 6(\bmod 20)$, preliminarly we need to construct one of order 6 .

Lemma 5.1. There exists a 2-resolvable $\left(K_{4}-e\right)$-design of order 6 .
Proof. Let $V=\{0,1,2,3,4,5\}$ be the vertex-set and $\{(0,1,2 ; 3),(2,3,4 ; 5),(4,5,0 ; 1)\}$ be the class.

For constructing a 2 -resolvable $\left(K_{4}-e\right)$-design of any order $v \equiv 6(\bmod 20)$ and for later use, note that starting from a $\left(K_{4}-e\right)$-frame of type h^{n} also a λ-fold $\left(2, K_{4}-e\right)$ frame of type h^{n} can be obtained for any $\lambda>0$, since necessarily $h \equiv 0(\bmod 5)$ and so the number of partial parallel classes missing any group is even.

Lemma 5.2. For every $v \equiv 6(\bmod 20)$, there exists a 2 -resolvable $\left(K_{4}-e\right)$-design of order v.

Proof. Let $v=20 k+6$. The case $k=0$ follows by Lemma 5.1. For $k>0$, consider $\mathrm{a}\left(2, K_{4}-e\right)$-frame of type $5^{4 k+1}$ ([5]) with groups $G_{i}, i=1,2, \ldots, 4 k+1$ and a new vertex ∞. For each $i=1,2, \ldots, 4 k+1$, let P_{i} the unique partial 2-parallel class which misses the group G_{i}. Place on $G_{i} \cup\{\infty\}$ a copy of a 2-resolvable $\left(K_{4}-e\right)$-design of order 6, which exists by Lemma 5.1, and combine its full class with the partial class P_{i} so to obtain the desired design.

$5.2 v \equiv 2,10,14,18(\bmod 20)$

To prove the existence of an α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order $v \equiv 2,10,14,18$ $(\bmod 20)$, with minimum values $\lambda_{0}=5$ and $\alpha_{0}=2$, we will construct some small examples most of which will be used as ingredients in the constructions given by the following theorems.

Theorem 5.3. Let v, g, u, and h be positive integers such that $v=g u+h$. If there exists
i) a 5 -fold $\left(2, K_{4}-e\right)$-frame of type g^{u};
ii) a 2-resolvable 5 -fold ($K_{4}-e$)-design of order g;
iii) an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $g+h$ with a hole of size h;
then there exists a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=g u+h$.

Proof. Take a 5-fold ($2, K_{4}-e$)-frame of type g^{u} with groups $G_{i}, i=1,2, \ldots, u$ and a set H of size h such taht $H \cap\left(\cup_{i=1}^{u} G_{i}\right)=\emptyset$. For $j=1,2, \ldots, g$, let $P_{i, j}$ be the j-th 2-partial class which misses the group G_{i}. Place on $H \cup G_{1}$ a copy \mathcal{D}_{1} of a 2 -resolvable 5 -fold ($K_{4}-$ $e)$-design of order $g+h$ having $g+h-1$ classes $R_{1,1}, R_{1,2}, \ldots,, R_{1, g}, H_{1,1}, H_{1,2}, \ldots$, $H_{1, h-1}$. For $i=2,3, \ldots, u$, place on $H \cup G_{i}$ a copy \mathcal{D}_{i} of an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $g+h$ with H as hole and having $h-1$ partial classes $H_{i, 1}, H_{i, 2}, \ldots, H_{i, h-1}$ and g full classes $R_{i, 1}, R_{i, 2}, \ldots,, R_{i, g}$. Combine the g partial classes $P_{1, j}$ with the full classes $R_{1,1}, R_{1,2}, \ldots,, R_{1, g}$ of \mathcal{D}_{1} and for $i=2,3, \ldots, u$ the g partial classes $P_{i, j}$ of \mathcal{D}_{i} with the full classes $R_{i, 1}, R_{i, 2}, \ldots, R_{i, g}$ so to obtain gu 2parallel classes on $H \cup\left(\cup_{i=1}^{u} G_{i}\right)$. Combine the classes $H_{1,1}, H_{1,2}, \ldots, H_{1, h-1}$ with the partial classes $H_{i, 1}, H_{i, 2}, \ldots, H_{i, h-1}$ so to obtain $h-1$ 2-parallel classes. The result is a 2-resolvable 5-fold ($K_{4}-e$)-design of order $g u+h$ with $g u+h-1$ 2-parallel classes.

The following lemma gives an input design in the construction of Theorem5.5.
Lemma 5.4. There exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-GDD of type 2^{3}.
Proof. Let $\{0,3\},\{1,4\}$ and $\{2,5\}$ be the groups and consider the following classes: $P_{1}=$ $\{(0,2,1 ; 4),(1,5,0 ; 3),(3,4,2 ; 5)\}, P_{2}=\{(3,5,1 ; 4),(1,2,0 ; 3),(0,4,2 ; 5)\}, P_{3}=\{(0$, $5,1 ; 4),(2,4,0 ; 3),(1,3,2 ; 5)\}, P_{4}=\{(2,3,1 ; 4),(4,5,0 ; 3),(0,1,2 ; 5)\}$.

Theorem 5.5. Let v, g, m, h and u be positive integers such that $v=2 g u+2 m+h$. If there exists
i) a 3-frame of type $m^{1} g^{u}$;
ii) a 2-resolvable 5-fold ($K_{4}-e$)-design of order $2 m+h$;
iii) an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $2 g+h$ with a hole of size h;
then there exists a 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order $2 g u+2 m+h$.
Proof. Let \mathcal{F} be a 3 -frame with one group G of cardinality m and u groups $G_{i}, i=$ $1,2, \ldots, u$ of cardinality g; such a frame has $\frac{m}{2}$ partial classes which miss G, each containing $\frac{g u}{3}$ triples, and, for $i=1,2, \ldots, u, \frac{g}{2}$ partial classes which miss G_{i}, each containing $\frac{g(u-1)+m}{3}$ triples. Expand each vertex 2 times and add a set H of h new vertices. Place on $H \cup(G \times\{1,2\})$ a copy \mathcal{D} of a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $2 m+h$ having $2 m+h-1$ classes $R_{1}, R_{2}, \ldots, R_{2 m}, H_{1}, H_{2}, \ldots, H_{h-1}$. For each $i=1,2, \ldots, u$ place on $H \cup\left(G_{i} \times\{1,2\}\right)$ a copy \mathcal{D}_{i} of an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $2 g+h$ with H as hole and having $h-1$ partial classes $H_{i, j}$ with $j=1,2, \ldots, h-1$ and $2 g$ full classes $R_{i, t}, t=1,2, \ldots, 2 g$. For each block $b=\{x, y, z\}$ of a given class of \mathcal{F} place on $b \times\{1,2\}$ a copy of a 2-resolvable 5 -fold ($K_{4}-e$)-GDD of type 2^{3} from Lemma 5.4, having $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$ and $\left\{z_{1}, z_{2}\right\}$ as groups. This gives $2 m$ partial classes (whose blocks are copies of $K_{4}-e$) which miss $G \times\{1,2\}$ and $2 g$ partial classes which miss $G_{i} \times\{1,2\}, i=1,2, \ldots, u$. Combine the $2 m$ partial classes which miss the group $G \times\{1,2\}$ with the classes $R_{1}, R_{2}, \ldots, R_{2 m}$ so to obtain $2 m$ classes. For $i=1,2, \ldots, u$ combine the $2 g$ partial classes which miss the group $G_{i} \times\{1,2\}$ with the full classes of \mathcal{D}_{i} so to obtain $2 g u$ classes. Finally, combine the $h-1$ classes $H_{1}, H_{2}, \ldots, H_{h-1}$ of \mathcal{D} with the partial classes of \mathcal{D}_{i} so to obtain $h-1$ classes. This gives a 2-resolvable 5 -fold ($K_{4}-e$)-design of order v and $v-1$ 2-parallel classes.

Theorem 5.6. Let v, k and h be non-negative integers. If there exists
i) an incomplete α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order $v+k+h$ with a hole of size $k+h$;
ii) an incomplete α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order $k+h$ with a hole of size h;
then there exists an incomplete α-resolvable λ-fold $\left(K_{4}-e\right)$-design of order $v+k+h$ with a hole of size h.

Lemma 5.7. There exists a resolvable $\left(K_{4}-e\right)$-GDD of type $5^{2} 10^{1}$.
Proof. Let $Z_{10} \cup\left\{\infty_{0}, \infty_{1}, \ldots, \infty_{9}\right\}$ be the vertex-set and $2 Z_{10}, 2 Z_{10}+1,\left\{\infty_{0}, \infty_{1}\right.$, $\left.\ldots, \infty_{9}\right\}$ be the groups. The desired design is obtained by adding $2(\bmod 10)$ to the following base blocks, including the subscripts of ∞ : $\left(0,1, \infty_{0} ; \infty_{1}\right),\left(2,5, \infty_{0} ; \infty_{1}\right)$, $\left(4,9, \infty_{0} ; \infty_{1}\right),\left(6,3, \infty_{0} ; \infty_{1}\right),\left(8,7, \infty_{0} ; \infty_{1}\right)$. The parallel classes are generate by every base block.

Lemma 5.8. There exists a 2-resolvable 5-fold ($\left.K_{4}-e\right)$-GDD of type 10^{3}.
Proof. Start with the 2-resolvable 5-fold $\left(K_{4}-e\right)$-GDD \mathcal{G} of type 2^{3} of Lemma 5.4 with groups $G_{i}, i=1,2,3$. For each block $b=(x, y, z ; t)$ of a given 2-parallel class of \mathcal{G} consider a copy of a resolvable ($K_{4}-e$)-GDD of type $5^{2} 10^{1}$ where $\{x\} \times Z_{5},\{y\} \times Z_{5}$, $\{z, t\} \times Z_{5}$ are the groups.

Lemma 5.9. There exists an incomplete 2-resolvable 5-fold ($\left.K_{4}-e\right)$-design of order 6 with a hole of size 2 .

Proof. On $V=Z_{4} \cup H$, where $H=\left\{\infty_{1}, \infty_{2}\right\}$ is the hole, consider the partial class $\{(1,3,0 ; 2),(0,2,1 ; 3)\}$ and the four full classes obtained by developing $\left\{\left(0,2, \infty_{1} ; \infty_{2}\right)\right.$, $\left.\left(\infty_{1}, 1,0 ; 3\right),\left(\infty_{2}, 2,3 ; 1\right)\right\}$ in Z_{4}, where $\infty_{i}+1=\infty_{i}$ for $i=1,2$.

Lemma 5.10. There exists an incomplete 2 -resolvable 5 -fold ($K_{4}-e$)-design of order 10 with a hole of size 2 .

Proof. On $V=Z_{8} \cup H$, where $H=\left\{\infty_{1}, \infty_{2}\right\}$ is the hole, consider the partial class $\{(0,4,2 ; 6),(1,5,3 ; 7),(2,6,4 ; 0),(3,7,5 ; 1)\}$ and the eight full classes obtained by developing $\left\{\left(0,1, \infty_{1} ; 3\right),\left(2,3, \infty_{2} ; 7\right),\left(\infty_{1}, 5,6 ; 2\right),\left(\infty_{2}, 6,4 ; 5\right),(4,7,1 ; 0)\right\}$ in Z_{8}, where $\infty_{i}+1=\infty_{i}$ for $i=1,2$.

Lemma 5.11. There exists an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14 with a hole of size 4.

Proof. Let $V=Z_{10} \cup H$ be the vertex-set, where $H=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ is the hole. The partial classes are obtained by adding $2(\bmod 10)$ to the base blocks $(2,6,9 ; 5)$, $(5,9,2 ; 8),(8,7,6 ; 9)$, each block generating a partial class; while, the full classes are obtained by adding $2(\bmod 10)$ to the following base blocks partitioned into two full classes, each class generating five full classes: $\left\{\left(0,8, \infty_{1} ; \infty_{2}\right),\left(1,5, \infty_{3} ; \infty_{4}\right),\left(\infty_{1}, 4\right.\right.$, $\left.0 ; 9),\left(\infty_{2}, 6,2 ; 3\right),\left(\infty_{3}, 3,7 ; 8\right),\left(\infty_{4}, 9,1 ; 4\right),(2,7,6 ; 5)\right\},\left\{\left(1,5, \infty_{1} ; \infty_{2}\right),\left(0,8, \infty_{3} ;\right.\right.$ $\left.\left.\infty_{4}\right),\left(\infty_{1}, 3,9 ; 4\right),\left(\infty_{2}, 9,7 ; 0\right),\left(\infty_{3}, 2,6 ; 1\right),\left(\infty_{4}, 6,8 ; 3\right),(4,7,2 ; 5)\right\}$, where $\infty_{i}+$ $1=\infty_{i}$ for $i=1,2,3,4$.

Lemma 5.12. There exists an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14 with a hole of size 2 .

Proof. On $V=Z_{12} \cup H$, where $H=\left\{\infty_{1}, \infty_{2}\right\}$ is the hole, consider the partial class $\{(0,6,3 ; 9),(1,7,4 ; 10),(2,8,5 ; 11),(3,9,6 ; 0),(4,10,7 ; 1),(5,11,8 ; 2)\}$ and the twelve full classes obtained by developing $\left\{\left(0,1, \infty_{1} ; 11\right),\left(2,4, \infty_{2} ; 10\right),\left(\infty_{1}, 10,6 ; 5\right),\left(\infty_{2}, 9\right.\right.$, $2 ; 0),(3,7,8 ; 1),(5,8,7 ; 9),(6,11,3 ; 4)\}$ in Z_{12}, where $\infty_{i}+1=\infty_{i}$ for $i=1,2$.

Lemma 5.13. There exists an incomplete 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order 22 with a hole of size 6.
Proof. Let $V=Z_{16} \cup H$ be the vertex-set, where $H=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{6}\right\}$ is the hole. In Z_{16} develop the full 2-parallel base class $\left\{\left(0,3, \infty_{1} ; 12\right),\left(1,5, \infty_{2} ; 2\right),\left(8,13, \infty_{3} ; 4\right),(14\right.$, $\left.15, \infty_{4} ; 11\right),\left(6,11, \infty_{5} ; \infty_{6}\right),\left(\infty_{1}, 2,1 ; 3\right),\left(\infty_{2}, 4,13 ; 8\right),\left(\infty_{3}, 7,0 ; 14\right),\left(\infty_{4}, 9,6 ; 10\right)$, $\left.\left(\infty_{5}, 10,5 ; 15\right),\left(\infty_{6}, 12,7 ; 9\right)\right\}$. Additionally, include the partial 2-parallel class $\{(0,8,2$; $10),(1,9,3 ; 11),(2,10,4 ; 12),(3,11,5 ; 13),(4,12,6 ; 14),(5,13,7 ; 15),(6,14,8 ; 0),(7$, $15,9 ; 1)\}$ repeated five times.

As consequence of Lemmas 5.9 and 5.13, by Theorem 5.6 the following lemma follows.
Lemma 5.14. There exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 with a hole of size 2 .

Lemma 5.15. There exists a 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order 10.
Proof. Let $V=Z_{9} \cup\{\infty\}$ be the vertex-set. The required design is obtained by developing the base class $\{(\infty, 0,6 ; 5),(1,5,4 ; 3),(7,8,1 ; \infty),(2,6,7 ; 8),(3,4,2 ; 0)\}$ in Z_{9}.

Lemma 5.16. There exists an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 30 with a hole of size 10.
Proof. Start from a 2-resolvable 5 -fold $\left(K_{4}-e\right.$)-GDD of type 10^{3} (which exists by Lemma 5.8) having $G_{i}, i=1,2,3$, as groups. Fill in the groups G_{2} and G_{3} with a copy of a 2resolvable 5 -fold ($K_{4}-e$)-design of order 10 , which exists by Lemma 5.15. This gives an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 30 with G_{1} as hole.

Lemma 5.17. There exists an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 38 with a hole of size 12 .

Proof. Let $V=Z_{26} \cup H$ be the vertex-set, where $H=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{12}\right\}$ is the hole. The partial classes are: $\{(i, 13+i, 2+i ; 15+i): i=0,1, \ldots, 12\}$, repaeated five times; $\{(2 i, 10+2 i, 3+2 i ; 7+2 i): i=0,1, \ldots, 12\}$ and $\{(1+2 i, 11+2 i, 4+2 i ; 8+2 i): i=$ $0,1, \ldots, 12\}$, repeated twice; $\{(2 i, 10+2 i, 1+2 i ; 9+2 i): i=0,1, \ldots, 12\} ;\{(1+2 i, 11+$ $2 i, 2+2 i ; 10+2 i): i=0,1, \ldots, 12\}$. The full classes are obtained by developing in $V=$ Z_{26} the full base class $\left\{\left(\infty_{1}, 2,1 ; 7\right),\left(\infty_{2}, 12,3 ; 24\right),\left(\infty_{3}, 16,4 ; 11\right),\left(\infty_{4}, 13,5 ; 25\right)\right.$, $\left(\infty_{5}, 15,9 ; 22\right),\left(\infty_{6}, 17,11 ; 23\right),\left(\infty_{7}, 19,18 ; 20\right),\left(\infty_{8}, 14,10 ; 18\right),\left(\infty_{9}, 4,0 ; 8\right),\left(\infty_{10}\right.$, $9,17 ; 19),\left(\infty_{11}, 7,2 ; 12\right),\left(\infty_{12}, 15,3 ; 24\right),\left(1,5, \infty_{1} ; \infty_{2}\right),\left(10,20, \infty_{3} ; \infty_{4}\right),\left(6,23, \infty_{5}\right.$; $\left.\left.\infty_{6}\right),\left(16,21, \infty_{7} ; \infty_{8}\right),\left(22,25, \infty_{9} ; \infty_{10}\right),\left(13,21, \infty_{11} ; \infty_{12}\right),(0,14,6 ; 8)\right\}$.

As consequence of the existence of a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=4,12$ (see Section 3 and Theorem 1.4) and Lemmas 5.1, 5.11, 5.13, 5.16, 5.17, 5.15, by Theorem 5.6 the following lemma follows.

Lemma 5.18. There exists a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=14,22,30,38$.
Lemma 5.19. There exists a 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order $v=42,234$.
Proof. Start with a resolvable 3-GDD of type $3^{\frac{v}{6}}$ ([20]). Expand each vertex 2 times and for each triple b of a given parallel class place on $b \times\{1,2\}$ a copy of a 2-resolvable 5-fold $\left(K_{4}-e\right)$-GDD of type 2^{3}, which exists by Lemma 5.4. Finally, fill each group of size 6 with a copy of a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 6 , which exists by Lemma 5.1.

Lemma 5.20. There exists a 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order $v=50,62$.
Proof. Start from a 3-frame of type $6^{\frac{v-2}{12}}$ ([3]) and apply Contruction 5.5 with $m=g=6$, $h=2$ and $u=\frac{v-14}{12}$ to obtain a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=50,62$ (the input designs are: a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14, which exists by Lemma 5.18; a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-GDD of type 2^{3}, which exists by Lemma 5.4; an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14 with a hole of size 2 , which exists by Lemma 5.12).

Lemma 5.21. There exists a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=34,274$.
Proof. Start from a 3-frame of type $4^{\frac{v-2}{8}}$ ([3]) and apply Theorem 5.5 with $m=g=4$, $h=2$ and $u=\frac{v-10}{8}$ to obtain a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order $v=34,274$ (the input designs are: a 2 -resolvable 5 -fold ($K_{4}-e$)-design of order 10, which exists by Lemma 5.15; a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-GDD of type 2^{3}, which exists by Lemma 5.4; an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 10 with a hole of size 2 , which exists by Lemma 5.10).

Lemma 5.22. There exists a 2-resolvable 5-fold $\left(K_{4}-e\right)$-design of order 70.
Proof. Start from a 3 -frame of type 8^{4} ([3]) and apply Theorem 5.5 with $m=g=8$, $h=6$ and $u=3$ to obtain a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 70 (the input designs are; a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 , which exists by Lemma 5.18; a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-RGDD of type 2^{3}, which exists by Lemma 5.4; an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 with a hole of size 6 , which exists by Lemma 5.13).

Lemma 5.23. For every $v \equiv 2(\bmod 20)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=20 k+2$. The case $v=22,42,62$ are covered by Lemmas 5.18, 5.19 and 5.20. For $k \geq 4$, start from a 5 -fold ($2, K_{4}-e$)-frame of type 20^{k} ([5]) and apply Theorem 5.3 with $h=2$ to obtain a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order v (the input designs are a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 , which exists by Lemma 5.18, and an incomplete 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 with a hole of size 2 , which exists by Lemma 5.14).

Lemma 5.24. For every $v \equiv 10(\bmod 20)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=20 k+10$. The case $v=10,30,50,70$ are covered by Lemmas 5.15, 5.18, 5.20 and 5.22. For $k \geq 4$, start from a 5 -fold ($2, K_{4}-e$)-frame of type 20^{k} ([5]) and apply Theorem 5.3 with $g=20$ and $h=10$ to obtain a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order v (the input designs are a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 10, which exists by Lemma 5.15, and an incomplete 2-resolvable 5 -fold ($K_{4}-e$)-design of order 30 with a hole of size 10, which exists by Lemma 5.16).

Lemma 5.25. For every $v \equiv 14(\bmod 20)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=20 k+14$. The case $v=14,34,234,274$ are covered by Lemmas 5.18, 5.19 and 5.21. For $k \geq 2, k \notin\{11,13\}$, start from a 5 -fold $\left(2, K_{4}-e\right)$-frame of type $10^{2 k+1}$ ([5]), apply Theorem 5.3 with $h=4$ and proceed as in Lemma 5.24.

Lemma 5.26. For every $v \equiv 18(\bmod 60)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=60 k+18$. Take a resolvable 3-GDD of type $3^{10 k+3}$ ([6]). Expand each vertex 2 times and for each block b of a parallel class place on $b \times\{1,2\}$ a copy of a 2-resolvable 5 -fold ($K_{4}-e$)-GDD of type 2^{3} which exists by Lemma 5.4, so to obtain a 2 -resolvable 5 -fold ($K_{4}-e$)-GDD of type $6^{10 k+3}$. Finally, fill in each group of size 6 with a copy of a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design, which exists by Lemma 5.1.

Lemma 5.27. For every $v \equiv 38(\bmod 60)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=60 k+38$. The case $v=38$ follows by Lemmas 5.18. For $k \geq 1$, start from a 3 -frame of type $6^{5 k+3}$ ([6]) and apply Theorem 5.5 with $m=g=6, h=2$ and $u=5 k+2$ to obtain a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order v (the input designs are: a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14, which exists by Lemma 5.18; a 2-resolvable 5 -fold ($K_{4}-e$)-GDD of type 2^{3}, which exists by Lemma 5.4; an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 14 with a hole of size 2 , which exists by Lemma 5.11)

Lemma 5.28. For every $v \equiv 58(\bmod 120)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=120 k+58$. Start from a 3 -frame of type $4^{15 k+7}$ ([6]) and apply Theorem 5.5 with $m=g=4, h=2$ and $u=15 k+6$ to obtain a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v (the input designs are: a 2-resolvable ($K_{4}-e$)-design of order 10 , which exists by Lemma 5.15; a 2-resolvable 5 -fold ($K_{4}-e$)-RGDD of type 2^{3}, which exists by Lemma 5.4; an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 10 with a hole of size 2 , which exists by Lemma 5.10).

Lemma 5.29. For every $v \equiv 118(\bmod 120)$, there exists a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$ design of order v.

Proof. Let $v=120 k+118$. Start from a 3 -frame of type $10^{1} 4^{15 k+12}, k \geq 0$, ([6]) and apply Theorem 5.5 with $h=2$ to obtain a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order v (the input designs are: a 2 -resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 22 , which exists by Lemma 5.18; a 2-resolvable 5 -fold $\left(K_{4}-e\right)$-RGDD of type 2^{3}, which exists by Lemma
5.4; an incomplete 2-resolvable 5 -fold $\left(K_{4}-e\right)$-design of order 10 with a hole of size 2 , which exists by Lemma 5.10).

6 Main result

The results obtained in the previous sections can be summarized into the following theorem.
Theorem 6.1. The necessary conditions (1) - (3) for the existence of α-resolvable λ-fold ($K_{4}-e$)-designs are also sufficient.

References

[1] J.-C. Bermond, K. Heinrich and M.-L. Yu, Existence of resolvable path designs, European J. Combin. 11 (1990), 205-211, doi:10.1016/S0195-6698(13)80120-5, http: / / dx.doi. org/10.1016/S0195-6698(13) 80120-5.
[2] J.-C. Bermond and J. Schönheim, G-decomposition of K_{n}, where G has four vertices or less, Discrete Math. 19 (1977), 113-120.
[3] C. J. Colbourn and J. H. Dinitz (eds.), Handbook of combinatorial designs, Discrete Mathematics and its Applications (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, 2nd edition, 2007.
[4] C. J. Colbourn, D. R. Stinson and L. Zhu, More frames with block size four, J. Combin. Math. Combin. Comput. 23 (1997), 3-19.
[5] G. Ge and A. C. H. Ling, On the existence of resolvable $K_{4}-e$ designs, J. Combin. Des. 15 (2007), 502-510, doi:10.1002/jcd.20155, http: / /dx.doi.org/10.1002/ jcd. 20155.
[6] G. Ge, R. Rees and N. Shalaby, Kirkman frames having hole type $h^{u} m^{1}$ for small h, Des. Codes Cryptogr. 45 (2007), 157-184, doi:10.1007/s10623-007-9105-2, http: / / dx.doi. org/10.1007/s10623-007-9105-2.
[7] M. Gionfriddo, G. Lo Faro, S. Milici and A. Tripodi, Resolvable ($k_{v}-e$) -designs of order v and index λ (to appear).
[8] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into paths and kites, Discrete Math. 313 (2013), 2830-2834, doi:10.1016/j.disc. 2013.08.023, http://dx.doi.org/10.1016/j.disc.2013.08.023.
[9] M. Gionfriddo and S. Milici, Uniformly resolvable \mathscr{H}-designs with $\mathscr{H}=\left\{P_{3}, P_{4}\right\}$, Australas. J. Combin. 60 (2014), 325-332.
[10] H. Hanani, On resolvable balanced incomplete block designs, J. Combinatorial Theory Ser. A 17 (1974), 275-289.
[11] H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs, Discrete Math. 3 (1972), 343-357.
[12] J. D. Horton, Resolvable path designs, J. Combin. Theory Ser. A 39 (1985), 117-131, doi: 10.1016/0097-3165(85)90033-0, http://dx.doi.org/10.1016/0097-3165(85) 90033-0.
[13] D. Jungnickel, R. C. Mullin and S. A. Vanstone, The spectrum of α-resolvable block designs with block size 3, Discrete Math. 97 (1991), 269-277, doi:10.1016/0012-365X(91)90443-6, http://dx.doi.org/10.1016/0012-365X(91)90443-6.
[14] S. Küçükçifçi, G. Lo Faro, S. Milici and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608-614, doi:10.1016/j.disc.2014.11.013, http://dx.doi.org/10.1016/ j.disc.2014.11.013.
[15] S. Küçükçifçi, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667-1673, doi:10.1016/j. disc.2014.05.016, http://dx.doi.org/10.1016/j.disc.2014.05.016.
[16] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_{v} into paths on two, three and four vertices, Discrete Math. 338 (2015), 2212-2219, doi:10.1016/j.disc. 2015. 05.030, http://dx.doi.org/10.1016/j.disc.2015.05.030.
[17] X. W. Ma and Z. H. Tian, α-resolvable cycle systems for cycle length 4, J. Math. Res. Exposition 29 (2009), 1102-1106.
[18] S. Milici, A note on uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195-200.
[19] S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_{v} into P_{3} and K_{3} graphs, Discrete Math. 331 (2014), 137-141, doi:10.1016/j.disc.2014.05.010, http: / / dx.doi.org/ 10.1016/j.disc.2014.05.010.
[20] R. Rees and D. R. Stinson, On resolvable group-divisible designs with block size 3, Ars Combin. 23 (1987), 107-120.
[21] R. Su and L. Wang, Minimum resolvable coverings of K_{v} with copies of $K_{4}-e$, Graphs Combin. 27 (2011), 883-896, doi:10.1007/s00373-010-1003-0, http://dx.doi.org/ 10.1007/s00373-010-1003-0.
[22] T. M. J. Vasiga, S. Furino and A. C. H. Ling, The spectrum of α-resolvable designs with block size four, J. Combin. Des. 9 (2001), 1-16, doi:10.1002/1520-6610(2001) 9:1〈1::AID-JCD1〉3.0.CO;2-H, http://dx.doi.org/10.1002/1520-6610 (2001) 9:1<1::AID-JCD1>3.0.CO; 2-H.
[23] L. Wang, Completing the spectrum of resolvable ($K_{4}-e$)-designs, Ars Combin. 105 (2012), 289-291.
[24] L. Wang and R. Su , On the existence of maximum resolvable ($K_{4}-e$)-packings, Discrete Math. 310 (2010), 887-896, doi:10.1016/j.disc.2009.10.007, http://dx.doi.org/10. 1016/j.disc.2009.10.007.
[25] Y. Zhang and B. Du, α-resolvable group divisible designs with block size three, J. Combin. Des. 13 (2005), 139-151, doi:10.1002/jcd.20028, http://dx.doi.org/10.1002/ jcd. 20028.

[^0]: *Supported by PRIN and I.N.D.A.M. (G.N.S.A.G.A.), Italy.
 ${ }^{\dagger}$ Supported by PRIN and I.N.D.A.M. (G.N.S.A.G.A.), Italy.
 ${ }^{\ddagger}$ Supported by MIUR and I.N.D.A.M. (G.N.S.A.G.A.), Italy.
 ${ }^{\text {§ }}$ Supported by PRIN and I.N.D.A.M. (G.N.S.A.G.A.), Italy.
 E-mail addresses: gionfriddo@dmi.unict.it (Mario Gionfriddo), lofaro@unime.it (Giovanni Lo Faro), milici@dmi.unict.it (Salvatore Milici), atripodi@unime.it (Antoinette Tripodi)

