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Abstract: In this paper, the block pulse functions (BPFs) and their operationalmatrices of integration and dif-
ferentiation are used to solve nonlinear singular initial value problems (NSIVPs) of generalized Lane-Emden
type in a large interval. In the proposed method, we present a new technique for computing nonlinear terms
in such equations. This technique is then utilized to reduce the solution of this nonlinear singular initial value
problems to a system of nonlinear algebraic equation whose solution is the coefficients of block pulse expan-
sions of the solution of NSIVPs. Numerical examples are illustrated to show the reliability and efficiency of
the proposed method.
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1 Introduction
Singular initial value problems (SIVPs) occur very frequently in several models of physics, chemistry and
mechanics [1–4]. For example, the density profile equation in hydrodynamics may be reduced to a singular
nonlinear differential equation in the following form [5]:

(p(x)u′(x))′ = p(x)f
(︀
u(x)

)︀
, u(0) = α u′(0) = β, (1)

where p and f are known functions which satisfy desired conditions of the under study problems. As another
example, theory of stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas spheres
and theory of thermionic currents are modeled by means of the Lane-Emden equation [6]:

u′′(t) + At u
′(t) + R(t)g(u) = h(t), A ≥ 0, u(0) = α, u′(0) = β, (2)

where α and β are fixed constants, g(u) is an analytical real valued function, R(t) and h(t) are continuous real
valued function in their domains. Because of the singularity behavior at the origin, the linear and nonlinear
SIVPs play important role in the physics and engineering fields, and investigating the numerical solution of
these kind of problems is very interesting.

The aim of this paper is to introduce a new method for numerical solution of the following generalized
Lane-Emden SIVP

u′′(t) + Q(t)u′(t) + R(t)g(u) = h(t), u(0) = α, u′(0) = β, (3)
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where g(u) is an analytic real valued function, R(t) and h(t) are continuous real valued functions in their
domains. In addition, we suppose that the function Q(t) can be written as Q(t) = p(t)

q(t) , where p(t) ∈ C[0,∞)
and q(t) is a known function which has some roots in a known large interval.
In recent years, the study of SIVPs has attracted the attention of many mathematicians and physicists (see
[7] and references therein) particularly Lane-Emden equation [8–13]. In this study, we propose a new simple
method to solve the generalized Lane-Emden SIVPs (3)(examples 1, 2 and 4), in a large interval by using Block
Puls Functions (BPFs).
BPFs are easy to use and this simplicity allows one to use them for solving integral equations and differential
equations [14, 15]. In this study, we will apply the BPFs to find approximate solution to the nonlinear SIVPs.
In the proposed method, both of the operational matrices of integration and differentiation of BPFs have
been usedmutually, and for the first time, to solve the nonlinear SIVPs. The method is based on reducing the
equation to a system of nonlinear algebraic equations by expanding the solution using BPFs with unknown
coefficients. The proposed method is simple to understand and easy to implement using suitable computer
softwares. Moreover, there are some important points to be noted here. Although, in recent years, BPFs have
been used to solve different nonlinear functional equations, but in almost all of these cases, nonlinear terms
that has polynomial formand for other nonlinear terms, these terms are approximated by Taylor’s expansions
and then few terms of these expansions have been used. For this reason the obtained solutions are accurate
only in a small interval. In this paper, we have proven that any analytic function g(u), can be expressed
in a closed form by BPFs without considering Taylor’s expansions (see theorem 2.3). This fact allows us to
obtain the numerical solutions of problems in a large interval. In [13], authors have employed BPFs to obtain
operational matrix for Bernstein polynomials and then this matrix was used for the numerical solution of
the Lane-Emden problem. Finally, in this paper some useful theorem about convergence of BPFs in a large
interval are proven.
The structure of this paper is as follows: In section 2 we introduce block pulse functions and their properties.
In section 3 the rate of convergence and error analysis of the BPFs expansion are presented. In section 4 we
implement the proposed method for the nonlinear SIVPs. In section 5 the error of the proposed method is
investigated. In section 6 we apply the proposed method and solve some examples to show the accuracy and
efficiency of this method. Finally, a conclusion is drawn in section 7.

2 Block pulse functions (BPFs)
BPFs have been studied by many authors and also have been applied for solving different problms [15–20].
Here, we present a brief review of BPFs and its properties:

Definition 2.1. An m-set of BPFs is defined over the interval [0, T) as:

bi(t) =
{︃
1, iT

m ≤ t <
(i+1)T
m ,

0, otherwise,
(4)

where i = 0, 1, 2, . . . , (m − 1).

The most important properties of BPFs are disjointness, orthogonality and completeness.
Disjointness: This property can be clearly obtained from the definition of BPFs:

bi(t)bj(t) =
{︃
bi(t), i = j,
0, i ≠ j,

(5)

Orthogonality: It is clear that
T∫︁

0

bi(τ)bj(τ)dτ =
T
m δij . (6)
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where δij is Kroneker delta.
Completeness: For every f ∈ L2[0, T), sequence {bi(t)}∞i=1 is complete if

∫︀ T
0 bi(t)f (t)dt = 0 result in f (t) = 0

almost everywhere. Because of completeness of {bi(t)}∞i=1, Parseval’s identity holds, i.e.wehave
∫︀ T
0 [f (t)]2dt =∑︀∞

0 f
2
i ‖bi(t)‖2, for every real bounded function f (t) ∈ L2[0, T) and:

fi =
m
T

T∫︁
0

bi(τ)f (τ)dτ =
m
T

(i+1)T
m∫︁

iT
m

f (τ)dτ. (7)

2.1 Vector forms

Consider the first m-terms of BPFs and write them concisely as m-vector:

Bm(t) = [b0(t), b1(t), . . . , bi(t), . . . , bm−1(t)]T , t ∈ [0, T). (8)

The above representation and disjointness property yield:

Bm(t)BTm(t) =

⎛⎜⎜⎜⎜⎝
b0(t) 0 . . . 0
0 b2(t) . . . 0
...

...
. . .

...
0 0 . . . bm−1(t)

⎞⎟⎟⎟⎟⎠ , (9)

BTm(t)Bm(t) = 1, (10)

Bm(t)BTm(t)V = ṼBm(t), (11)

where V is an m-vector and Ṽ = diag(V).

2.2 Function approximation

Any absolutely integrable function f (t) defined over [0, T) can be expanded in BPFs as:

f (t) =
∞∑︁
i=0

fibi(t), (12)

where fi is obtained in (7).
If the infinite series in (12) is truncated, then (12) can be written as

fm(t) ≃
m−1∑︁
i=0

fibi(t) = FTmBm(t), (13)

where Fm = [f0, f1, . . . , fm−1]T and Bm(t) is defined in (8).
Also the block pulse coefficients fi are obtained as (7), such that the mean square error between f (t) and its
block pulse expansion (13) in the interval of t ∈ [0, T) is minimal:

ϵ = 1
T

T∫︁
0

(︃
f (t) −

m−1∑︁
i=0

fibi(t)
)︃2

dt.

Lemma 2.2. Suppose fm(t) = FTmBm(t) be expansion of f (t) by BPFs, then for any integer n ≥ 2 we have:

[f (t)]n = [f n0 , f n1 , . . . , f nm−1]Bm(t). (14)
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Proof. From (5) and (9) we get:

[f (t)]2 = f (t)f (t)T = [a0, a1, . . . , am−1]Bm(t)Bm(t)T [a0, a1, . . . , am−1]T

= [a0, a1, . . . , am−1]

⎛⎜⎜⎜⎜⎝
b0(t) 0 . . . 0
0 b1(t) . . . 0
...

...
. . .

...
0 0 . . . bm−1(t)

⎞⎟⎟⎟⎟⎠ [a0, a1, . . . , am−1]T

= f 20 b0(t) + f 21 b1(t) + . . . + f 2m−1bm−1(t) = [f 20 , f 21 , . . . , f 2m−1]Bm(t), (15)

Now by induction we have:

[u(t)]n = [an0 , an1 , . . . , anm−1]Bm(t). n ≥ 2. (16)

This completes the proof.

Theorem 2.3. Suppose g(t) be an analytic function and fm(t) be expansion of f (t) by BPFs, Then we have:

g
(︀
f (t)
)︀
= [g(a0), g(a1), . . . , g(am−1)]Bm(t). (17)

Proof. Since g is an analytic function, by considering Maclaurin expansion of g, i.e. g(x) =
∑︀∞

n=0
g(n)(0)
n! xn,

we get:

g(f ) =
∞∑︁
n=0

g(n)(0)
n! f n . (18)

From Eqs. (16) and (18) yield:

g(f (t)) =
∞∑︁
n=0

g(n)(0)
n! [an0 , . . . , anm−1]Bm(t) =

[︃ ∞∑︁
n=0

g(n)(0)
n! an0 , . . . ,

∞∑︁
n=0

g(n)(0)
n! anm−1

]︃
Bm(t). (19)

Since the series in left hand side is absolutely and uniformly convergent to g(f ), therefore each series in right
hand side is also absolutely and uniformly convergent to g(ai) i.e.[︃ ∞∑︁

n=0

g(n)(0)
n! an0 , . . . ,

∞∑︁
n=0

g(n)(0)
n! anm−1

]︃
=
[︀
g(a0), . . . , g(am−1)

]︀
. (20)

Now, from (19) and (20), we have:

g(f (t)) =
[︀
g(a0), g(a1), . . . , g(am−1)

]︀
Bm(t). (21)

This completes the proof.

2.3 The operational matrices

Chen and Hsiao [21] introduced the concept of operational matrix in 1975. Kilicman and Al Zhour [22] inves-
tigated the generalized integral operational matrix and showed that the integral of the matrix Bm(t) defined
in (8), can be approximated by:

t∫︁
0

Bm(τ)dτ ≃ PBm(t), (22)
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where P is the m × m operational matrix of one-time integral of Bm(t). Moreover, we can compute the gener-
alized operational matrices Pn of n-times integration of Bm(t) as:

t∫︁
0

· · ·
t∫︁

0⏟  ⏞  
n−times

Bm(τ)(dτ)n ≃ PnBm(t). (23)

In [22] it is shown that Pn has the following form:

Pn =
(︂
T
m

)︂n 1
(n + 1)!

⎛⎜⎜⎜⎜⎜⎜⎝
1 ξ1 ξ2 . . . ξm−1
0 1 ξ1 . . . ξm−2
0 0 1 . . . ξm−3

0 0 0
. . .

...
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (24)

where ξi = (i + 1)n+1 − 2in+1 + (i − 1)n+1.
Also, the generalized BPFs operational matrices Dn for differentiation can be derived by inverting the Pn

matrices, which has the following form [22]:

Dn = (n + 1)!
(︁m
T

)︁n
⎛⎜⎜⎜⎜⎜⎜⎝
1 d1 d2 . . . dm−1
0 1 d1 . . . dm−2
0 0 1 . . . dm−3

0 0 0
. . .

...
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (25)

where di = −
∑︀i

j=1 ξjdi−j for all i = 1, 2, . . . , m − 1, and d0 = 1.

3 Description of the proposed method
In this section, the BPFs expansion together with its operational matrices of integration and differentiation
are used to obtain numerical solutions of equation (3). Let us consider theNSIVP (3). For solving this equation
we assume:

u′′(t) = KTmBm(t), (26)

where KTm is an unknown vector and Bm(t) is the vector which is defined in (7). By two-times integration of
(26) with respect to t and considering the initial conditions, we have:

u′(t) = KTmPBm(t) + β = KTmPBm(t) + [β, β, . . . , β]Bm(t), (27)

and

u(t) = KTmP2Bm(t) + [β, β, . . . , β]PBm(t) + [α, α, . . . , α]Bm(t). (28)

Equation (28) can be written as:

u(t) = KTmP2Bm(t) + [β, . . . , β]PBm(t) + [α, . . . , α]Bm(t) = [a0, a1, . . . , am−1]Bm(t). (29)

Now from theorem 2.3 we have:

g(u) =
[︀
g(a0), g(a1), . . . , g(am−1)

]︀
Bm(t). (30)

Unauthenticated
Download Date | 3/21/16 7:06 PM



12 | M. H. Heydari et al.

By substituting (26), (27) and (30) into (3) and considering (29) we have:[︁
KTm + Q(t)

(︁
[KTmP + [β, . . . , β]

)︁
+ R(t)

[︀
g(a0), g(a1), . . . , g(am−1)

]︀]︁
Bm(t) = h(t), (31)

where

KTm =
[︀
[a0, a1, . . . , am−1] − [β, . . . , β]P − [α, . . . , α]

]︀
D2.

Equation (31) is a nonlinear algebraic equation. Now, by taking collocation points ti = (2i−1)T
2m , i = 1, 2, . . . ,m,

this equation is transformed into a nonlinear system of algebraic equations with m unknowns ai(i =
0, 1, . . . ,m −1). By solving this system and determining [a0, a1, . . . , am−1], we get the numerical solution of
(3) as u(t) = [a0, a1, . . . , am−1]Bm(t).

4 Convergence and error analysis of BPFs expansion
In this section we review the rate of convergence and error analysis of the BPFs expansion of a continuous
function.

Definition 4.1. Suppose fm(t) = FTmBm(t) be expansion of f (t) by BPFs, then the corresponding error is de-
fined as follows:

em(t) = fm(t) − f (t). (32)

Theorem 4.2. Suppose that f (t) satisfies a Lipschitz condition on [0, T], that is:

∃M > 0, ∀ζ , η ∈ [o, T] : |f (ζ ) − f (η)| ≤ M|ζ − η|. (33)

Then the BPFs expansion will be convergent in the sense that em(t) approaches zero as m closes to infinity.
Moreover, the convergence order is one, that is :

‖em(t)‖ = O( 1m ). (34)

Proof. By defining the error between f (t) and its BPFs expansion over every subinterval Ii as:

ei(t) = fibi(t) − f (t), t ∈ Ii (i = 0, 1, . . . ,m − 1),

where Ii = [ iTm ,
(i+1)T
m ), we obtain:

‖ei(t)‖2 =

(i+1)T
m∫︁

iT
m

ei(t)2dt =

(i+1)T
m∫︁

iT
m

(︀
fibi(t) − f (t)

)︀2 dt = T
m
(︀
fi − f (ηi)

)︀2 , ηi ∈ Ii , (35)

where we used the mean value theorem for integral.
From (7) and the mean value theorem, we have:

fi =
m
T

(i+1)T
m∫︁

iT
m

f (t)dt = mT
T
m f (ζi) = f (ζi), ζi ∈ Ii . (36)

By substituting (36) in (35) we obtain:

‖ei(t)‖2 =
T
m
(︀
f (ζi) − f (ηi)

)︀2 ≤ TM2

m |ζi − ηi|2 ≤
T3M2

m3 . (37)
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This leads to:

‖em(t)‖2 =
T∫︁

0

em(t)2dt =
T∫︁

0

(︃m−1∑︁
i=0

ei(t)
)︃2

dt

=
T∫︁

0

(︃m−1∑︁
i=0

ei(t)2
)︃
dt + 2

∑︁
i≤j

T∫︁
0

ei(t)ej(t)dt. (38)

Since for i ≠ j, Ii ∩ Ij = , then

‖em(t)‖2 =
T∫︁

0

(︃m−1∑︁
i=0

ei(t)2
)︃
dt =

m−1∑︁
i=0

‖ei‖2. (39)

Substituting (37) into (39), we have:

‖em(t)‖2 ≤
T3M2

m2 , (40)

or, in other words, ‖em(t)‖ = O( 1m ). This completes the proof.

Corollary 4.3. Let fm(t) be the expansion of f (t) by BPFs and em(t) be the corresponding error which is de-
fined in (32), then we have:

‖em(t)‖ ≤
MT

√
T

m . (41)

Proof. It is an immediate consequence of Theorem 4.2.

Lemma 4.4. Suppose f (t) is approximated by BPFs on interval [0, T) as:

fm(t) =
m−1∑︁
i=0

fibi(t),

and moreover suppose by solving some problems we have found f̂i as an approximation of fi and put:

f̂m(t) =
m−1∑︁
i=0

f̂ibi(t),

Then for each t ∈ [0, T) we obtain:

‖f̂m(t) − fm(t)‖ ≤
√
mT‖f̂m(t) − f (t)‖∞.

Proof. We have:

‖f̂m(t) − fm(t)‖ =

⎛⎝ T∫︁
0

(︃m−1∑︁
i=0

(︁
f̂i − fi

)︁
bi(t)

)︃2

dt

⎞⎠
1
2

=
m−1∑︁
i=0

|f̂i − fi|

⎛⎜⎝
(i+1)T
m∫︁

iT
m

bi(t)2dt

⎞⎟⎠
1
2

=
m−1∑︁
i=0

|f̂i − fi|
√︂
T
m ≤

√︂
T
m

m−1∑︁
i=0

‖f̂m(t) − f (t)‖∞ =
√
mT‖f̂m(t) − f (t)‖∞.

This completes the proof.
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Figure 1: Approximate solutions of example 1, for some values of m.

Figure 2: Numerical solutions for example 1.

11

Figure 1: Approximate solutions of example 1, for some values of m.

Corollary 4.5. By solving some problems we obtain f̂m(t) as the approximation of f (t). Then we obtain:

‖f̂m(t) − f (t)‖ ≤
MT

√
T

m +
√
mT‖f̂m(t) − f (t)‖∞.

Proof. For every t ∈ [0, T) we have:

‖f̂m(t) − f (t)‖ = ‖f̂m(t) − f (t) − fm(t) + fm(t)‖ ≤ ‖fm(t) − f (t)‖ + ‖f̂m(t) − fm(t)‖.

Now from (41) and lemma 4.4 we have:

‖f̂m(t) − f (t)‖ ≤
MT

√
T

m +
√
mT‖f̂m(t) − f (t)‖∞.

This completes the proof.

5 Numerical examples
In this section we investigate some examples of NSIVP to show the reliability of the proposed method. More-
over, the obtained results are compared with the results that have been given by other numerical methods.

Example 1. In this example, we consider the NSIVP [23, 24]:

u′′(t) + sin(t)
t u′(t) + [u(t)]2 = h(t), u(0) = 0, u′(0) = 0,

where h(t) is compatible to the exact solution, u(t) = t sin(t).
This equation is now solved by the proposed method. Numerical solutions for some selected values of m are
shown in Fig. 1. A comparison between the proposed method for m = 96 with 3-th approximate solution
(u3(t)) of theMADM [23] and the exact solution are performed in Fig. 2 (left hand side). Also, to see howmuch
increasing number of terms in the MADM can improve the solution of this problem, a comparison between
the proposedmethod form = 96, with u7(t) of the MADM and the exact solution are performed in Fig. 2 (right
hand side).

From Fig. 2, it can be concluded that increasing number of terms for the MADM can not improve the
solution of this problem in a large domain. In contrast, by applying more sets of basic block pulse functions
(i.e. increasing m) a good approximate solution for this problem can be obtained in a large domain.

Example 2. Consider the NSIVP [23, 24]:

u′′(t) + (1 + 5t)
2t(t + 1)u

′(t) + u(t) ln(u(t)) = h(t), u(0) = 1, u′(0) = 0,
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Figure 1: Approximate solutions of example 1, for some values of m.

Figure 2: Numerical solutions for example 1.
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Figure 2: Numerical solutions for example 1.

Figure 3: Approximate solutions of example 2, for some values of m.

Example 2. Consider the NSIVP [23,24]:

u′′(t) +
(1 + 5t)

2t(t + 1)
u′(t) + u(t) ln(u(t)) = h(t), u(0) = 1, u′(0) = 0,

where h(t) is compatible to the exact solution, u(t) = (1 − t + t2)et.
To solve this problem by change of variable u(t) = 1 + z(t) in which z(t) is unknown, we
transform this NSIVP to the NSIVP as follows:

z′′(t)+
(1 + 5t)

2t(t + 1)
z′(t)+(1+z(t)) ln(1+z(t)) = h(t), z(0) = 0, z′(0) = 0. (42)

Therefore, z(t) as the solution of (42) can be obtained by the proposed method. Finally
u(t) as the solution of original problem is u(t) = 1 + z(t).
In order to show the efficiency of the proposed method, this problem is now solved by the
proposed method. Numerical solutions for some selected values of m are shown in Fig 3.
A comparison between the proposed method for m = 96 with u3(t) of the MADM [3] and
the exact solution are performed in Fig 4 (left hand side). Also, a comparison between
the proposed method for m = 96, with u7(t) of the MADM and the exact solution are
performed in Fig 4 (right hand side). From Fig 4, it can be seen that increasing number
of terms for the MADM can not improve the solution of this problem in a large domain.
But by applying more number of basic block pulse functions a good approximate solution
for this problem can be obtained in a large domain.

Example 3. Consider the following nonlinear Lane-Emden type equation [9, 25]:

u′′(t) +
5

t
u′(t) + 8(eu(t) + 2e

u(t)
2 ) = 0, u(0) = 0, u′(0) = 0,

which has the following analytical solution, u(t) = −2 ln(1 + t2).
This problem is now solved by the proposed method. Numerical solutions for some selected

12

Figure 3: Approximate solution of example 2, for some values of m.

where h(t) is compatible to the exact solution, u(t) = (1 − t + t2)et.
To solve this problem by changing the variable u(t) = 1 + z(t) in which z(t) is unknown, we transform this
NSIVP to the NSIVP as follows:

z′′(t) + (1 + 5t)
2t(t + 1) z

′(t) + (1 + z(t)) ln(1 + z(t)) = h(t), z(0) = 0, z′(0) = 0. (42)

Therefore, z(t) as the solution of (42) can be obtained by the proposed method. Finally u(t) as the solution of
original problem is u(t) = 1 + z(t).
In order to show the efficiency of the proposed method, this problem is now solved by the proposed method.
Numerical solutions for some selected values of m are shown in Fig. 3. A comparison between the proposed
method for m = 96 with u3(t) of the MADM [3] and the exact solution are performed in Fig. 4 (left hand side).
Also, a comparison between the proposedmethod form = 96, with u7(t) of the MADM and the exact solution
are performed in Fig 4 (right hand side). From Fig. 4, it can be seen that increasing the number of terms for
the MADM can not improve the solution of this problem in a large domain. But, when applying more sets of
basic block pulse functions, a good approximate solution for this problem can be obtained in a large domain.

Example 3. Consider the following nonlinear Lane-Emden type equation [9, 25]:

u′′(t) + 5
t u

′(t) + 8(eu(t) + 2e
u(t)
2 ) = 0, u(0) = 0, u′(0) = 0,
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Figure 4: Numerical solutions for example 2.

Figure 5: Approximate solutions of example 3, for some values of m.
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Example 4. Finally, consider the nonlinear singular initial value problem in hydrody-
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which has the following analytical solution, u(t) = −2 ln(1 + t2).
This problem is now solved by the proposed method. Numerical solutions for some selected values of m are
shown in Fig. 5. A comparison between the proposed method for m = 96 with 3-iteration approximate solu-
tion (u3(t)) of the VIM [9] and the exact solution are performed in Fig. 6 (left hand side). Also, to see howmuch
increasing number of iteration in the VIM can improve the solution of this problem, a comparison between
the proposed method for m = 96, with u5(t) of the VIM and the exact solution are performed in Fig. 6 (right
hand side). Fig. 6 shows that increasing number of iterations for the VIM can not improve the solution of
this problem in a large domain. But by applyingmore sets of basic block pulse functions, a good approximate
solution for this problem can be obtained in a large domain.

Example 4. Finally, consider the nonlinear singular initial value problem in hydrodynamic problems form:

u′′(x) + sin(x) − x
cos(x) u′(x) = arcsin

(︀
u(x)

)︀
, x ∈ [0, 2π],

with the exact solution u(x) = sin(x).
The numerical solutions of this problem for different values of m = 128 are shown in Figs. 7 and 8.
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Figure 6: Numerical solutions for example 3.

Figure 7: Approximate solutions of example 4, for some values of m.
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Figure 8: The approximate and exact solutions of example 4.

6 Conclusion

In this paper, we proposed the BPFs method for the numerical solutions of nonlinear
singular initial value problems of generalized Lane-Emden type in a large interval. In this
method we proposed a new technique for computation of nonlinear terms in such equations.
Error estimation of the proposed method for the numerical solution of such equation is
investigated. Efficient approximate solutions have been derived for NSIVPs and the results
have shown remarkable performance. Moreover, the new method is compared with the
MADM and VIM in various NSIVPs. The obtained results show that the proposed method
is very efficient and accurate in comparison with the MADM and VIM. Also the proposed
approach can provide the suitable approximate solution in a large interval by using only
a few number of BPFs.
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Figure 8: The approximate and exact solutions of example 4.
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6 Conclusion
In this paper, we proposed the BPFs method for the numerical solutions of nonlinear singular initial value
problems of generalized Lane-Emden type in a large interval. In this method, we proposed a new technique
to compute nonlinear terms in such equations. Error estimation of the proposed method for the numerical
solution of such equation is investigated. Efficient approximate solutions have been derived for NSIVPs and
the results have shown remarkable performance.Moreover, the newmethod is comparedwith theMADMand
VIM in various NSIVPs. The obtained results show that the proposed method is very efficient and accurate
in comparison with the MADM and VIM. Also, the proposed approach can provide a suitable approximate
solution in a large interval by using only a few sets of BPFs.
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