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ABSTRACT
Introduction: Second-generation antipsychotics (SGAs) are frequently co-prescribed with drug meta-
bolic inducers and inhibitors. SGA pharmacokinetic drug-drug interactions (DDIs) with inducers and
inhibitors have not received enough attention in the literature but can be studied in by using
therapeutic drug monitoring (TDM).
Areas covered: The limited information available on oral SGA pharmacokinetic DDIs is reviewed. A
systematic literature search on the available oral SGA TDM studies is completed. By integrating TDM
studies with the information on in vitro metabolism studies, case report/series and prospective studies,
a table is provided to manage average SGA patients taking inducers or inhibitors by using TDM and/or
dose SGA changes. Adding an inhibitor or discontinuing an inducer may increase plasma concentra-
tions and cause adverse drug reactions (ADRs) on clozapine or risperidone. Quetiapine and lurasidone,
which are very sensitive to decreases of plasma concentrations by induction, should not be adminis-
tered with potent inducers. Prescribing sertindole with TDM may make its use safer.
Expert opinion: Reading our article may encourage: 1) clinicians using these combinations to publish
TDM case reports/series to demonstrate whether our dose indications are correct or not, in their
patients with DDIs; and 2) pharmacokinetic researchers to study these DDIs in prospective and retro-
spective ways using large TDM databases.
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1. Introduction

Multiple drug therapy is common in current medical practice
and carries the risk of drug-drug interactions (DDIs).[1] A
clinically relevant DDI occurs when the efficacy or safety of a
drug is altered by the concomitant administration of another
pharmacological agent. The consequences of a DDI can be
either beneficial, if the interaction results in increased thera-
peutic efficacy or reduced risk of adverse drug reactions
(ADRs), or harmful, if it leads to decreased efficacy or increased
ADRs of one or more of the administered medications. Based
on their mechanisms, DDIs can be classified as either pharma-
cokinetic or pharmacodynamic. Pharmacokinetic DDIs occur at
sites of absorption, distribution, metabolism, or excretion of a
drug and/or its metabolite(s) and can be established and
quantified by the study of changes in plasma drug concentra-
tions, called therapeutic drug monitoring (TDM). The most
important pharmacokinetic DDIs are at the metabolism level;
inhibitors decrease drug metabolism and increase plasma con-
centrations while inducers increase drug metabolism and
decrease concentrations. On the other hand, pharmacody-
namic DDIs occur at the site of pharmacological action
between drugs that have either similar or opposing mechan-
isms of action. These DDIs are not associated with changes in

plasma drug concentrations and are less well-recognized and
documented than pharmacokinetic DDIs.

The potential for pharmacokinetic DDIs is an important
issue to consider for rational drug prescribing. DDIs can be
identified at different times during the development of new
drugs. Preclinical characterization of DDIs includes the use of
different in vitro methods such as enzyme-based techniques
(i.e. purified enzymes, recombinant human enzymes, and
human liver microsomes) or cell-based techniques (i.e. liver
slices, immortalized cell lines, and primary hepatocytes) and
in vivo experimental studies in animal models.[2] These
methodologies have become widely used as screening
tools to assess and predict metabolic DDIs. The Food and
Drug Administration provided recommendations on how
and when DDI studies should be conducted during drug
development.[3] DDI studies can also be performed in
healthy volunteers or patients during the clinical phase of
drug development, using a strategy based on the therapeu-
tic indices of drugs, the likelihood of their concurrent use or
when metabolic prediction and guidelines for their conduc-
tion have been performed. However, knowledge of the
pharmacokinetic DDI profile is often incomplete at the
time of drug commercialization. There are many reasons
for this incomplete knowledge. Some of the most common
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are (1) metabolic enzymes, such as the cytochrome P450
(CYP), are specific to species; therefore, animal DDI studies
are not very helpful; (2) in vitro studies using human CYPs
have a difficult time replicating the complexity of a human
organism (e.g. studying the in vitro effect of an inducer such
as carbamazepine does not take into account that in vivo
carbamazepine metabolism and metabolites may modify its
inductive actions); and (3) DDIs with single-dose control
studies in healthy volunteers may not reflect clinical practice
with long-term treatment, particularly if steady state of the
inhibitor or inducer has not been reached. Therefore, careful
postmarketing surveillance remains essential for identifying
previously unexpected DDIs in populations that often differ
from the ones considered in premarketing studies. TDM
databases may provide a unique opportunity in this
respect.[4]

Psychotropic drugs, including antipsychotic medications,
are often involved in DDIs as they are commonly prescribed
in combination with other compounds used to treat comorbid
psychiatric, neurological, or somatic disorders, for controlling
ADRs or to increase a medication response. Currently available
antipsychotic medications can be divided into traditional or
first-generation antipsychotics (FGAs) and atypical or second-
generation antipsychotics (SGAs).[5] In recent years, SGAs have
become the mainstream treatment intervention for patients
with schizophrenia, bipolar disorder, and other psychotic con-
ditions due to a lower risk for acute and chronic extrapyrami-
dal symptoms and prolactin elevation, as compared to
traditional antipsychotics. Moreover, SGAs are frequently
used for off-label indications.[5]

The purpose of the present article is to evaluate the role of
TDM as a tool to identify and assess pharmacokinetic DDIs
affecting SGAs. The different methodological approaches and
study designs used to document DDIs will be discussed. In

particular, the available retrospective studies based on routi-
nely collected TDM databases that allowed documentation of
DDIs involving SGAs will be reviewed.

Article highlights

● The SGA literature on DDIs is limited and psychiatric textbooks and
drug package inserts provide few recommendations to clinicians on
how to manage them.

● A review of the literature on oral SGA TDM studies is integrated with
the information on in vitro metabolism studies, case report/series,
and prospective studies to provide our best interpretation of what to
expect in the average SGA patient taking inducers or inhibitors by
providing suggestions of when to use TDM and/or dose SGA
corrections.

● Clozapine and risperidone are narrow therapeutic window drugs;
adding an inhibitor or discontinuing an inducer may be particularly
prone to cause ADRs in clozapine or risperidone patients.

● Quetiapine and lurasidone, which are very sensitive to decreases in
plasma concentrations by induction, should not be administered with
potent inducers.

● Amisulpride and ziprasidone, which bring about little CYP metabo-
lism, even in conditions of induction, may not need dosages changes
in the presence of potent inducers.

● Sertrindole data is limited but prescribing it under TDM control
appears a good idea due to (1) its possible narrow therapeutic
window with risk for QTc prolongation and (2) being influenced by
CYP2D6 genetic polymorphism, CYP2D6 inhibitors, CYP3A4 inhibitors,
and CYP3A4 inducers.

This box summarizes key points contained in the article.

Box 1. Second-generation antipsychotic drug-drug interactions with nonpsy-
chiatric drugs.

Potent inducers
Rifampicin is a potent inducer with a wide spectrum. To manage patients
on rifampicin and an SGA, look at the Actions to take column in Table 4,
including dose correction factors, in patients taking potent inducers
(carbamazepine, phenobarbital, and phenytoin).

Other CYP3A4 mild inducers
Some antiepileptics (clobazam, eslicarbazepine, felbamate, and rufinamide)
can be CYP3A4 mild inducers and, as such, can interact with SGAS. They
are not listed in Table 4 but described in other articles.[12,69] Look also at
Table 4 for actions suggested for high doses of oxcarbazepine (≥1400
4 mg/day) or topiramate (≥400 mg/day). They should apply to clobazam,
eslicarbazepine, felbamate, or rufinamide, particularly when co-prescribed
in high doses.
The same actions described in Table 4 should apply to SGA patients

taking other mild CYP3A4 inducers, such as St. John’s wort or some
corticosteroids (e.g. dexamethasone or prednisone).

CYP1A2 inducers
Omeprazole is clinically relevant CYP1A2 inducer and appears to increase
the metabolism of clozapine or olanzapine. Tobacco smoking is also a
CYP1A2 inducer, currently is not definitively established whether
omeprazole and smoking have additive effects or omeprazole inductive
effects are only evident in nonsmokers.

CYP1A2 inhibitors
Ciprofloxacin is a potent CYP1A2 inhibitor and should not be co-prescribed
with clozapine or olanzapine. Antibiotics from the same family that are not
CYP1A2 inhibitors and can be co-prescribed with clozapine or olanzapine
are described in a prior article.[16]
Caffeine can also inhibit the metabolism of clozapine and olanzapine.

[114]1

Oral contraceptives including estrogens are CYP1A2 inhibitors and can
inhibit clozapine metabolism.[16]
Similarly, pregnancy due to elevations in estrogens is expected to

decrease clozapine and olanzapine metabolism.[16]
CYP3A4 inhibitors
Ketoconazole, erythromycin, clarithromycin, diltiazem, and grapefruit juice
are powerful CYP3A4 inhibitors and should not be administered with SGAs
for which metabolism depends on CYP3A4 (aripiprazole, iloperidone,
lurasidone, quetiapine, risperidone, and sertindole). If they need to be co-
prescribed, SGA TDM is a requirement.

Drugs prescribed for patients infected with HIV
Many drugs prescribed for patients infected with HIV are powerful inducers
and inhibitors, or both. Prior articles described their limited available
information on DDIs with this type of drug and SGAs.[8,16] If they are co-
prescribed with SGAs, SGA TDM is a requirement unless an SGA with low
risk for DDIs is selected (e.g. amisulpride or ziprasidone).

Inflammation and severe infection
One peculiar inhibitor that is not a drug but can decrease SGA metabolism.
Inflammation and severe infection can release cytokines that can inhibit
some CYPs. It is clear that it can happen with CYP1A2 drugs such as
clozapine and olanzapine.[115] More recently, it is becoming clearer that
other CYPs, including CYP2C19 and possibly CYP3A4, may be inhibited by
inflammation.[116] Two risperidone case reports [117] and a retrospective
analysis of a TDM base [118] suggested that inflammation inhibits
risperidone metabolism. If that is correct, TDM for SGAs for which
metabolism depends on CYP3A4 (aripiprazole, iloperidone, lurasidone,
quetiapine, risperidone, and sertindole) should be recommended during
inflammations or severe infections, as it is recommended for the CYP1A2-
dependent SGAs, clozapine and olanzapine. Moreover, an unexpected and
unexplained high SGA TDM requires drawing a CRP to rule out undetected
inflammation.[119]

CRP: C-reactive protein; DDI: drug-drug interaction; SGA: second-generation
antipsychotic; TDM: therapeutic drug monitoring.

1Caffeine is a CYP1A2 substrate and appears to have the potential to be a
CYP1A2 competitive inhibitor. Typical plasma caffeine concentrations are
around 1 mg/mL which is 1000 μg/mL. As caffeine has high affinity for
CYP1A2 and is present in relatively high concentrations, it is not surprising
that it can behave as a competitive inhibitor of clozapine or olanzapine
metabolism.
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Articles for this review were obtained from a PubMed
search without a time limit. Searches were performed for
each of the SGAs. Only articles published in peer-reviewed
journals were included, while meeting abstracts were
excluded.

2. Pharmacokinetic DDIs of SGAs

SGAs are often prescribed in combination with other medica-
tions and this may result in clinically relevant DDIs. Therefore,
the use of SGAs with low DDI potential is desirable, especially
for elderly patients who are more likely to take many medica-
tions. In recent years, a number of comprehensive reviews
have been published, describing their pharmacokinetics as
well as the clinically relevant SGA pharmacokinetic DDIs.[6–
14] The basic SGA pharmacokinetic properties are summarized
in Table 1. Many pharmacokinetic SGA DDIs were identified
during investigational preclinical and clinical drug develop-
ment by employing a series of standardized in vitro and in
vivo studies with known inhibitors or inducers of drug meta-
bolism.[13] However, clinical studies conducted post-approval
allowed detection of other clinically relevant SGA DDIs.

The majority of clinically relevant pharmacokinetic DDIs
with SGAs occur as a consequence of drug-induced changes
in hepatic metabolism, through inhibition or induction of
isoenzymes of the CYP system and, to a lesser extent, the
uridine diphosphate glucuronosyltransferase (UGT) system. In
recent years, the in vitro characterization of the major drug-
metabolizing enzymes, in particular the human CYP system,
with identification of substrates, inhibitors, and inducers of
different CYP isoforms, has greatly improved the prediction
of metabolic DDIs, providing an invaluable resource in helping
to anticipate and avoid potential DDIs.[1] In principle, conco-
mitant treatment of a patient with a drug that is a substrate of
a distinct CYP enzyme (victim drug) and a known inhibitor or
inducer of that enzyme involves the risk of a DDI. The poten-
tial occurrence, magnitude, and clinical significance of a

metabolic DDI will then depend on a variety of drug-related
(i.e. potency and concentration/dose of the inhibitor/inducer,
therapeutic index of the victim drug, and its extent of meta-
bolism through the affected enzyme, presence of active meta-
bolites), patient-related (i.e. age, genetic predisposition), and
environmental factors (i.e. smoking).[8] Very rarely, clinically
relevant DDIs happen with concomitant treatment with drugs
metabolized by the same enzyme. This is called competitive
inhibition and only happens in very peculiar patient-related
circumstances with polytherapy in which the metabolism is
compromised and adding an SGA may be the straw that
breaks the camel’s back.[16] SGAs are not considered clinically
relevant inhibitors, except for asenapine, which may be a mild
CYP2D6 inhibitor.[14] In spite of that, in rare circumstances,
any SGA has the potential to cause a clinically relevant DDI
due to competitive inhibition. A few case reports of SGAs
decreasing metabolism of other drugs have been published,
such as clozapine on tricyclic antidepressants (TCAs) [17] or
quetiapine on warfarin.[18–20]

The metabolic enzymes are not only located in the liver but
they appear to be highly expressed in the gut, but the role of
these intestine enzymes on DDIs is not well-understood. There
is definitive agreement in the literature that CYP3A4 is the
most important CYP in the gut, moreover it has clinical rele-
vance in the first-past metabolism of drugs metabolized by
CYP3A4. UGTs are particularly complex since some of them are
only gastrointestinal and not located in the liver (UGT1A7,
UGT1A10, and UGT1A18) while some of the hepatic UGTs
have also substantial gastrointestinal expression (UGT1A1,
UGT1A4, UGT2B7, and UGT2B15).[21] It is not easy to study
the contribution of intestinal CYP3A4 or UGTs to DDIs and the
authors are not aware of any study relevant for intestinal DDIs
with SGAs but do not doubt that intestinal metabolism may
be clinically relevant.

Protein-binding displacement DDIs with SGAs are uncom-
mon and unlikely to be clinically significant.[13] DDIs at the
level of renal excretion are rare and can be expected to occur

Table 1. Pharmacokinetic parameters of SGAs.

Bioavailability
(%)

Protein binding
(%) Half-life (h) Metabolism Active metabolites

Therapeutic reference range in ng/mL
(calculation of index)

Amisulpride 43–48 17 12 Minimal hepatic metabolism
Renal excretion

100–320 (3.2)

Aripiprazole 87 99 48–68 CYP2D6, CYP3A4 Dehydroaripiprazole 150–500 (3.3)
Asenapine 35 95 1–2 UGT1A4, CYP1A2 2–5 (2.5)
Clozapine 12–81 95 6–33 CYP1A2 (major),

CYP2C19, CYP3A4, CYP2D6
Norclozapine1 350–600 (1.7)

Iloperidone 96 93 20–24 CYP2D6 (major), CYP3A4 P88,2 P95 5–10 (2)
Lurasidone 9–19 99 18 CYP3A4 ID-14823 40–120 (3)
Olanzapine 60–80 93 20–70 CYP1A2 (major), UGT1A4,

CYP2D6, FMO
20–80 (4)

Paliperidone 28 30 24 Minimal hepatic metabolism
Renal excretion

20–60 (3)

Quetiapine NA 83 5–8 CYP3A4 Norquetiapine3 100–500 (5)
Risperidone 68 90 3–24 CYP2D6 (major), CYP3A4 9-hydroxyrisperidone 20–60 (3)
Sertindole 75 99 85–99 CYP2D6, CYP3A4 50–100 (2)
Ziprasidone 60b 99 4–10 Aldehyde oxidase (major) CYP3A4 50–200 (4)

CYP: Cytochrome P450; UGT: uridine diphosphate glucuronosyltransferase.
1Norclozapine does not appear to have antipsychotic efficacy, but it may contribute to anticholinergic effects and hypersalivation.
2It does not cross the blood–brain barrier. It may contribute to peripheral adverse drug reactions.
3Some authors suggest that norquetiapine may contribute to quetiapine antidepressant properties, but at this time this is only a hypothesis.
Adapted from [8,14,15].
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only with SGAs such as amisulpride and paliperidone, which
are eliminated predominantly by the kidneys.[14] In recent
years, however, increasing knowledge of the role played by
drug transporters in the absorption, distribution, and excretion
of a wide variety of drugs including SGAs has suggested that
other mechanisms may occasionally be involved.[22] The best
known transporter is the P-glycoprotein (P-gp) which is
located in the gut, liver, kidney, and blood–brain barrier.
Currently, there is no agreement on which SGAs are substrates
and inhibitors of P-gp,[23] but it cannot be ruled out that in
5–10 years it may become clear that DDIs at the P-gp (or other
transporter) level may be important in SGA DDIs. To make
things more complicated, we are not sure whether or not
these pharmacokinetic DDIs at the P-gp level manifest with
changes at TDM.[23]

3. TDM as a tool for assessing and identifying DDIS

TDM may be defined as the quantification of serum or plasma
concentrations of a drug (and its metabolites), but to simplify
we will use word ‘plasma’ for the rest of the article. The goal of
TDM is to titrate the dosage per individual patient so that a
drug concentration associated with the highest possible prob-
ability of response and tolerability and a low risk of toxicity
can be obtained.[15] Therefore, TDM is a valuable tool for
tailoring the dosage of the prescribed medication(s) to the
individual characteristics of a patient. TDM is based on the
assumption that there is a relationship between plasma con-
centrations and clinical effects (efficacy and ADRs).[24] It also
assumes that there is a plasma concentration range of the
drug which is characterized by maximal effectiveness and
maximal safety, the ‘therapeutic window or index’. TDM is
primarily recommended for drugs with wide interindividual
pharmacokinetic variability and narrow therapeutic index.

3.1. SGA TDM

To promote an appropriate use of TDM of psychotropic
drugs, the interdisciplinary TDM expert group of the
Arbeitsgemeinschaft für Neuropsychopharmakologie und
Pharmakopsychiatrie (AGNP) issued guidelines for TDM in
psychiatry in 2004,[25] which were updated in 2011.[15]
Even in the absence of clearly defined therapeutic windows
for each psychotropic drug, these guidelines reported the so-
called therapeutic reference ranges, defined as ‘ranges of
medication concentrations which specify a lower limit
below which a drug induced therapeutic response is rela-
tively unlikely to occur and an upper limit above which
tolerability decreases or above which it is relatively unlikely
that therapeutic improvement may be still enhanced’.[15]

TDM has been introduced for many drugs in psychiatry
including antipsychotics. For many aspects, antipsychotic
drugs are ideal candidates for TDM: they show wide interindi-
vidual variability of plasma concentrations; they have a rela-
tively high ADR incidence; patients treated with these agents
have a relatively high discontinuation rate and adherence is
typically low; and finally, they are usually part of a chronic
treatment and polypharmacy is obviously common in
increased DDI risk.[26] In practice, SGA TDM use is limited.

On the other hand, TDM for lithium and TCAs has become an
established procedure for dose adjustment. Moreover, lithium
and TCAs tend to be considered drugs with narrow therapeu-
tic windows, which tend to be toxic since the lower limit of
concentration for efficacy and the upper limit for ADRs tend to
be close. The literature does not provide an agreed-upon
definition of narrow therapeutic window but drugs such as
lithium, phenytoin, carbamazepine, or TCAs tend to have a
narrow therapeutic window or index around 2–3 (the concen-
tration of the upper limit of the range is only 2–3 times higher
than the concentration of the lower limit). For example,
Hiemke et al. [15] describe imipramine’s therapeutic range as
100–300 ng/mL. If you divide the upper range by the lower
range, the quotient is 3 (300/100 = 3).

Typical indications for SGA TDM are described in Table 2.
SGA TDM in routine psychiatric practice is still relatively lim-
ited, in spite of its obvious advantages. The lack of interest in
TDM displayed by pharmaceutical companies has contributed
to the lack of a well-defined relationship between plasma
concentrations and clinical effects for many SGAs.[15,25,27–
30] For a number of SGAs, metabolites actively contribute to
the overall clinical effect of the parent compound. TDM must
include the quantification of active metabolites such as 9-
hydroxyripseridone (9-OH-R) for risperidone and dehydroaripi-
prazole for aripiprazole. For clozapine, the clinical relevance of
its metabolite norclozapine is not clear since it does not con-
tribute to efficacy, but it may contribute to some ADRs.
However, measuring clozapine and norclozapine provides a
better idea of the metabolism of clozapine. In the case of
risperidone, the ratio of risperidone/9-OH-R is an excellent
measure of the CYP2D6 activity (or phenotype).[31]

The AGNP-TDM Consensus Group used various levels of
recommendation for the clinical applicability of monitoring
plasma SGA concentrations: strongly recommended, recom-
mended, useful, and potentially useful.[15] Those strongly
recommended for TDM included three SGAs: clozapine, ami-
sulpride, and olanzapine. The recommended included six

Table 2. Typical indications for using TDM for guidance of antipsychotic med-
ications according to AGNP guidelines.

Dose optimization after initial prescription or after dosage change

Drugs for which TDM is mandatory for safety reasons (e.g. clozapine)
Suspected complete or partial nonadherence (noncompliance) to medication
Lack of clinical improvement under recommended doses
ADRs under recommended doses
Combination treatment with a drug known for its DDI potential or suspected
DDI

TDM in pharmacovigilance programs
Relapse prevention under maintenance treatment
Recurrence under adequate doses
Presence of a genetic particularity concerning drug metabolism (genetic
deficiency, gene multiplication)

Pregnant or breast-feeding patient
Child and adolescent patients
Elderly patient (>65 years)
Individuals with intellectual disabilities
Patients with pharmacokinetically relevant comorbidities (hepatic or renal
insufficiency, cardiovascular disease)

Forensic patients
Switching from an original preparation to a generic form (and vice versa)

ADR: Adverse drug reaction; DDI: drug-drug interaction; SGA: second-generation
antipsychotic; TDM: therapeutic drug monitoring.

Adapted from [15].
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SGAs: risperidone, paliperidone, aripiprazole, sertindole, zipra-
sidone, and quetiapine. Iloperidone TDM is considered ‘useful’
and asenapine TDM had the lowest recommendation of
‘potentially useful’. In accordance with the categorization prin-
ciples of the AGNP-TDM group, TDM may be considered ‘use-
ful’ for lurasidone.

The therapeutic reference ranges for SGAs as recommended
by the TDM group of the AGNP are given in Table 1. These
ranges are only to be used as guidelines; exceptions will occur
because of patient variables and variability in the psychiatric
illness being treated. This table contributes to the literature by
adding, for the first time, the therapeutic window index calcula-
tion. From these eight SGAs with reasonably well-established
TDM (three from the highest recommendation level and three
from the second-highest recommendation level), there are four
with an index ≤3, clozapine, paliperidone, risperidone, and
sertindole compatible with a narrow index, and five with a
wide index >3, amisulpride, aripiprazole, olanzapine, ziprasi-
done, and quetiapine.

3.2. TDM as a tool for identifying DDIs: methodological
considerations

Evaluation of potential DDIs has long been advocated as an
appropriate indication for TDM.[32] As stated in the previous
section, combination treatment with a drug known for its DDI
potential or assessment of a suspected pharmacokinetic DDI is
a strong indicator for TDM. Therefore, TDM is a valuable tool
for adjusting the SGA dosage when a drug combination con-
tains inhibitors or inducers that may modify plasma concen-
trations of SGAs.[15] In addition, TDM studies, in particular
those based on large TDM databases collected under natur-
alistic conditions, may be particularly useful for detecting DDIs
in patients in the ‘real world’. Various prerequisites have to be
fulfilled for a correct interpretation of TDM data and to pro-
vide valid information for documenting DDIs, including phar-
macokinetic factors, quality of collected data, and analytical
aspects.[4]

3.2.1. Pharmacokinetic factors
TDM is carried out under steady-state conditions. The average
steady-state concentration (Css) of a drug administered at a
fixed dose and constant dosing interval is provided by the
following equation:

Css = F x D/CL x τ,

where F is the bioavailability of the drug, D the daily dose,
CL is the clearance of the compound, and τ is dosing interval.

This formula assumes that the relationship between dose
and concentration is stable; pharmacokinetic experts call it
‘following linear kinetics’. This means that a doubling of the
D is associated with a doubling of the Css and halving of the D
is associated with halving of the Css. As a matter of fact, it
appears that all SGAs in the therapeutic range probably follow
linear kinetics.

The same concept can be simplified for clinicians by
ignoring units and normalizing the dose by the concentra-
tion at steady state. This is usually represented in the

literature as the concentration-to-dose ratio, or C/D ratio.
This C/D ratio is a simplified representation of the ability to
clear the drug from the body and estimates for inter- or
intraindividual differences in metabolism and for dosing
needs. Changes in C/D ratio by an order of magnitude of 2
(multiplying or dividing by 2) are probably clinically mean-
ingful.[16] Imagine a patient whose C/D is multiplied by 2
(doubled) due to adding an inhibitor, discontinuing an indu-
cer, or decreasing clearance during pregnancy; this would
require halving the SGA dose (a correction factor of 0.5).
Imagine a patient whose C/D is multiplied by 0.5 (or divided
by 2) due to adding an inducer, discontinuing an inhibitor, or
increasing clearance during pregnancy; this would require
doubling the SGA dose (a correction factor of 2). Smaller C/
D changes are unlikely to be detected above the ‘noise’ when
measuring TDM in the clinical environment. TDM for children
is not discussed here because the identified TDM studies
were in adults. In small children, the C/D ratio needs to be
corrected by weight since dosing is usually guided by weight.

3.2.2. Quality of collected data
The interpretation of TDM data requires a certain quality of
data which also applies to DDI studies. The TDM request form
should include the amount of information necessary for
proper data interpretation. In addition to information on gen-
der, age, bodyweight, diagnosis, renal or hepatic diseases,
smoking, and drinking habits, a rigorous documentation of
posology, dosing schedule and time interval since introduc-
tion, and dose adjustment or discontinuation for the drugs
under investigation should be reported. A full medication
history for the week preceding the start of drug use may
also be required. It has been suggested that this information
should be coupled with data on phenotype and genotype to
allow evaluation of the pharmacogenetic and other causative
factors altering drug metabolism.[33] Pharmacogenetic testing
and TDM can definitely provide complementary information.
[34] For CYP2D6 and CYP2C19 genotyping, some subjects are
poor metabolizers (PMs) and do not have active isoenzyme;
others are ultrarapid metabolizers (UMs) who have too much
of the isoenzyme due to a duplication (or more) for CYP2D6 or
a mutation that causes too much expression for CYP2C19.[35]
These subjects can be called genetic PMs and UMs, respec-
tively.[36] DDIs with inhibitors can make a normal subject look
like a PM; DDIs with inducers can make subjects look like a
UM. These can be called phenotypical PMs and UMs.[36] As a
matter of fact, in the clinical environment, these phenotypical
PMs and UMs can be frequent, as a risperidone TDM study
demonstrated.[37]

Blood samples must be taken when steady-state conditions
have been reached (i.e. after at least five half-lives have
already elapsed after the last dose titration [32]). For the
majority of oral SGAs, waiting 1 week after any dose change
is a safe estimate for reaching steady state, but aripiprazole
probably requires 2 weeks after the last dose change, due to
its long steady state. When collecting TDM data on SGA DDIs,
it is also important to collect samples that account for the
inhibitor or inducer and its effects on the SGA TDM has
reached steady-state. This review focuses only on oral SGAs,
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but long-acting SGAs require a very long time to get to steady
state. Anyway, we have found only one TDM study on a long-
acting SGA.[38]

The timing of blood samples taken with respect to the last
drug dose administered is also critical. With regard to this,
TDM deals with trough levels and blood samples are generally
withdrawn 12 h after the last intake of the drug, or in the
morning immediately before the first dose of the day is admi-
nistered. When SGAs have a long half-life such that the drug
can be administered once a day (aripiprazole, clozapine, ris-
peridone, and paliperidone), there are relatively small varia-
tions throughout the day and between trough and peak
concentrations. When SGAs have a very short half-life, as
with quetiapine and ziprasidone, there are very large varia-
tions throughout the day and between trough and peak con-
centrations. In the case of quetiapine, peak concentrations are
almost 10 times higher than in the trough,[39] making TDM
more complicated to interpret since variations in pattern of
administration (twice versus three or more times a day) and
time to last drug intake may have relevant effects on trough
concentrations.

Ideally, repeated measurements over time should be
obtained to increase the validity of results and to allow a
better assessment of the relationship between dose, duration
of exposure, and DDI magnitude.[4]

3.2.3. Analytical aspects
The logical prerequisite for any effective TDM practice is the
availability of selective and sensitive analytical methods for
the quantitative evaluation of drugs and their metabolites.
[15] This is especially important for psychoactive drugs as
their plasma concentrations are low and patients are fre-
quently co-medicated with other drugs, which may interfere
with the assay. In this respect, HPLC with fluorimetric detec-
tion, with coulometric detection, or UV detection and HPLC/
MS were applied in analysis of SGAs.[40] Methods must be
validated by demonstrating that the specific assay used for
quantitative measurement of the analytes in a given biological
matrix is reliable and reproducible for the intended use.
Fundamental parameters for validation include (1) accuracy,
(2) precision, (3) selectivity, (4) sensitivity, (5) reproducibility,
and (6) stability.

Ideally, the laboratory should not only measure the drug but
also its active metabolites (i.e. risperidone plus 9-OH-R or aripi-
prazole plus dehydroaripiprazole). For some SGAs, determina-
tion of metabolites that do not contribute to the overall clinical
effect (i.e. norclozapine) may be useful to check the adherence
of the patient, to obtain information on his/her capacity to
metabolize drugs, or to interpret DDIs when the medications
that are involved act as enzyme inhibitors or inducers.

4. TDM DDI studies with SGAs

During the past 20 years, many pharmacokinetic DDIs affect-
ing SGAs have been suspected, confirmed, and assessed by
using TDM databases. Different methodologies and study
designs have been used in TDM-based investigations, includ-
ing case reports or case series, prospective studies, and retro-
spective evaluation of TDM databases.[4]

4.1. Case reports or case series

Case reports or case series play an important role as an alert
system for suspected DDIs.[4] They are simple and cost-effec-
tive methods to generate hypotheses which in turn inform the
basis of studies on a larger scale. TDM has an important role in
the identification of suspected DDIs because of the variety of
the co-medication circumstances covered, including patients
on chronic pharmacotherapy whose plasma drug levels are
measured before, during, and after the use of a potentially
interacting drug. However, single reports of pharmacokinetic
DDIs need to be confirmed by further reports or large-scale
studies before considered to be reliable, due to a lack of
generalizability. Examples of clinically relevant DDIs involving
SGAs and identified by case reports or case series are given in
Table 3.[41–58]

4.2. Prospective studies

As outlined above, findings from single pharmacokinetic DDI
case reports require consolidation. One of the best ways to
confirm such findings or otherwise study them is through
prospective on-and-off co-medication studies.[4] Such studies
are carried out in patient cohorts observed before, during, and
after exposure to drugs potentially interacting with currently
prescribed drugs. These prospective studies are similar to the
DDI studies carried out during the drug development process
[3] in that patient selection is rigorous and drug exposure is
controlled for. A main difference between the two types of
studies is that in prospective studies outside of the drug
development context, only drug concentrations during steady
state are measured as opposed to all pharmacokinetic para-
meters. Steady-state drug levels are used for intraindividual
comparisons, with each patient acting as his/her own control.
This prospective experimental study design plays an important
role in assessing DDIs in a causal perspective.

Different SGA DDIs detected through case reports gave rise
to prospective studies to verify the initial finding and to
quantify the magnitude of inhibitory or inducing properties
of responsible drugs. Examples of DDIs that were studied
prospectively include those between fluvoxamine and cloza-
pine,[59] fluoxetine and clozapine,[60] carbamazepine and
risperidone,[61] paroxetine and risperidone,[62,63] carbamaze-
pine and aripiprazole,[64] and paroxetine and aripiprazole.[65]
Some of these studies allowed investigation of a dose–effect
relationship.[63,65]

A recent important study on carbamazepine and paliper-
idone [66] provides one of the best examples of the need for
prospective DDI studies by independent investigators in order
to improve clinical practice. The marketer considered paliper-
idone metabolism by CYP to be irrelevant for clinical purposes.
[67] When the company studied adding carbamazepine to
paliperidone, the carbamazepine treatment was subtherapeu-
tic (400 mg/day) and too short (3 weeks) to cause maximal
induction. In these circumstances, carbamazepine only
decreased by 37% the paliperidone area under the curve.[68]
For years, based on experience with risperidone, it has been
hypothesized that paliperidone may be quite similarly suscep-
tible to induction by a dramatic increase in percentage
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metabolized under induction.[67] Yasui-Furakori et al. [66]
demonstrated that 600 mg/day of carbamazepine for
2–4 weeks was associated with an average reduction in
plasma paliperidone concentrations to one-third. This will
require multiplying the paliperidone dose by 3 in these
patients. It is possible that an even higher paliperidone correc-
tion factor will be needed in patients taking higher carbama-
zepine doses or for longer periods of time.[69]

4.3. Retrospective evaluation of TDM databases

The availability of large TDM databases may allow retrospec-
tive evaluation of DDIs. This may prove useful when case
reports have documented severe ADRs by a drug combination
and, therefore, prospective studies can be ethically proble-
matic. Inter- and intraindividual comparisons of concentra-
tions obtained on monotherapy and while on co-medication
have demonstrated its value for documenting DDIs.[4] In
recent years, many studies based on retrospective analysis of
TDM databases have investigated SGA pharmacokinetic DDIs.
In general, the aim of these studies was to examine the con-
tribution of various factors such as age, gender, smoking, and
co-medication to the large interpatient variability of SGA
plasma concentrations. In the following section, for each
SGA, the part of these investigations specifically addressing
the impact of concomitant treatment will be discussed.

4.3.1. Clozapine
Clozapine is converted by CYP1A2 and CYP3A4 to norcloza-
pine, which has limited pharmacological activity, and by
CYP3A4 to clozapine-N-oxide.[10] More recently, a role for

CYP2C19 has been suggested.[70] Plasma concentrations of
clozapine may significantly increase in combination with
CYP1A2 inhibitors such as fluvoxamine and ciprofloxacin, but
may decrease following administration of broad-spectrum CYP
inducers such as carbamazepine.[8–10,13] Clozapine TDM may
be of clinical value for dose adaption when handling DDIs.[71]

Jerling et al. [72] performed the first retrospective TDM
study to detect and quantify SGA DDIs. They examined a
large routine TDM database of clozapine performed during
the period 1989–1992 and included 229 samples from 168
patients. Subjects were divided into four groups: clozapine
monotherapy, co-medication with benzodiazepines, co-medi-
cation with CYP2D6-inhibitors, and co-medication with carba-
mazepine. Patients with carbamazepine had significantly
lower C/D of clozapine than all the other groups and the
ratio was inversely correlated to the daily carbamazepine
dosage. In this respect, in eight patients clozapine was mea-
sured both in the absence and in the presence of carbamaze-
pine. All patients had a lower C/D ratio when on
carbamazepine than when off this drug. Moreover, in four
patients co-medicated with fluvoxamine, C/D ratios of cloza-
pine were 5–10 times higher than those of the monotherapy
group. This was the first documentation of the potent inhibi-
tory effect of fluvoxamine on clozapine metabolism and was
subsequently confirmed by formal DDI studies.[59,73]

Diaz et al. [74] conducted a study to evaluate the DDI effect
size on steady-state plasma concentrations of clozapine,
adjusting for potentially confounding factors known to influ-
ence clozapine metabolism such as smoking. The estimation
was performed by using a mixed model,[75] along with a
combination of unpublished data from patients under clinical

Table 3. DDIs identified by TDM in single cases.

Inhibitory or inducing
drug Victim drug Effect Suggested mechanism Reference

Caffeine Clozapine Decreased plasma clozapine concentrations after caffeine
discontinuation

Inhibition of CYP1A2 Odom-White and de
Leon, 1996 [41]

Phenobarbital Clozapine Elevated plasma clozapine concentrations after phenobarbital
discontinuation

Induction of CYP1A2
and CYP3A4

Lane et al., 1998 [42]

Fluvoxamine Clozapine Increase of plasma clozapine concentration, ADRs, improved
tolerability after dose reduction

Inhibition of CYP1A2
and CYP219

Hiemke et al., 1994 [43]
Szegedi et al., 1995
[44]

Ciprofloxacin Clozapine Increase of clozapine concentrations Inhibition of CYP1A2 Markowitz et al., 1997
[45]
Sanbhi et al., 2007 [46]
Brouwers et al., 2009
[47]

Erythromycin Clozapine Increase of clozapine concentrations associated with seizures Inhibition of CYP3A4 Funderberg et al., 1994
[48]

Rifampicin Clozapine Decrease of clozapine concentrations Induction of CYP1A2
and CYP3A4

Joos et al., 1998 [49]

Omeprazole Clozapine Decrease of plasma clozapine concentrations Induction of CYP1A2 Frick et al., 2008 [50]
Fluoxetine Risperidone Elevated plasma concentrations of risperidone active moiety with ADRs Inhibition if CYP2D6

and CYP3A4
Bork et al., 1999 [51]

Carbamazepine Risperidone Decrease of risperidone plasma concentrations associated with
exacerbation of psychotic symptoms

Induction of CYP3A4 de Leon and Bork, 1997
[52]
Spina et al., 2001 [53]

Ciprofloxacin Olanzapine Increase of plasma olanzapine concentrations Inhibition of CYP1A2 Markovitz and Devane,
1999 [54]

Carbamazepine Olanzapine Decrease of olanzapine plasma concentrations Induction of CYP1A2
and UGT

Licht et al., 2000 [55]

Atazanavir, Ritonavir Quetiapine Increase of quetiapine concentrations with associated ADRs Inhibition of CYP3A4 Pollack et al., 2009 [56]
Oxcarbazepine Quetiapine Decrease of quetiapine plasma concentrations and lack of efficacy Induction of CYP3A4 McGrane et al., 2015 [57]
Darunavir, Ritonavir Aripiprazole Increase of serum aripiprazole concentrations Inhibition of CYP2D6

and CYP3A4
Aung et al., 2010 [58]

ADRs: Adverse dug reaction; CYP: cytochrome P450.
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TDM and data from previously published studies of phenobar-
bital,[76] valproic acid,[77] fluoxetine,[60] paroxetine and ser-
traline,[78] citalopram, [79] and reboxetine.[80] The analysis
included a total of 415 steady-state trough plasma clozapine
concentrations from 255 patients. After adjusting for clozapine
dose and other potential confounding variables, total plasma
clozapine concentrations in patients taking fluoxetine, fluvox-
amine, or paroxetine were higher than those in patients on
clozapine monotherapy by 42%, 263%, and 30%, respectively.
Plasma clozapine concentrations in patients taking phenobar-
bital were 28% lower than those in patients receiving cloza-
pine alone. The effects of valproic acid on plasma clozapine
concentrations were modified by smoking. In this respect,
plasma clozapine concentrations in nonsmokers who were
taking valproic acid were 16% higher than those in nonsmo-
kers on clozapine monotherapy; in contrast, plasma clozapine
concentrations in smokers who were taking valproate were
22% lower than those in smokers who were not taking valpro-
ate. Thus, valproic acid may inhibit clozapine metabolism in
nonsmokers, whereas it may induce clozapine metabolism in
smokers. The effect sizes allowed the computation of cloza-
pine dose-correction factors for phenobarbital, 1.4 [95% con-
fidence interval, CI, (1.1, 1.7)]; paroxetine, 0.77 (0.67, 0.89);
fluoxetine, 0.70 (0.64, 0.78); fluvoxamine, 0.28 (0.22, 0.35);
and valproic acid [0.86 (0.75, 1.0) in nonsmokers, and 1.3
(0.96, 1.73) in smokers]. Sertraline, reboxetine, and citalopram
had no significant effects on plasma clozapine concentrations.

4.3.2. Risperidone
Risperidone is primarily metabolized by CYP2D6 and, to a
lesser extent, CYP3A4 to form the pharmacologically active
9-OH-R or paliperidone.[10] It is well documented that con-
comitantly administered medications that inhibit CYP2D6 or
CYP3A4 or induce CYP3A4 may affect plasma concentrations
of risperidone, 9-OH-R, and/or active moiety.[8–10,13] Based
on this, TDM of risperidone may be beneficial in managing
DDIs.[81]

C/D ratios of risperidone and 9-OH-R in 218 patients were
associated with the number of concomitantly used substrates
or inhibitors of CYP2D6.[82] The C/D ratios of risperidone in
patients with 0, 1, and >1 CYP2D6 inhibitors were 2.6, 8.5, and
17 nmol/L/mg, respectively (corresponding to 1, 3.5, and 7 ng/
mL/mg, respectively). Differences between the groups were
highly significant (p < 0.001). All patients with >1 CYP2D6
inhibitors were administered at least one potent CYP2D6 inhi-
bitor, namely fluoxetine, paroxetine, thioridazine, and/or levo-
mepromazine. The C/D ratios of the active moiety (risperidone
+ 9-OH-R) in patients with 0, 1, and >1 concomitant CYP2D6
inhibitors were 17, 24, and 30 nmol/L/mg (7, 10, and 12.5 ng/
mL/mg), respectively (p = 0.001), which was explained by
higher levels of risperidone without any change in the levels
of 9-OH-R. Concomitant use of one or several drugs recog-
nized as substrates for CYP2D6, without any proven inhibitory
effect, had no apparent influence on the levels of risperidone
or 9-OH-R, suggesting that the DDI risk between different
substrates of CYP2D6 is low when used in therapeutic doses.
These results indicated that an increase in the number of
concomitant inhibitors may be associated with lower
CYP2D6 activity. An indication for risperidone TDM should,

therefore, include concomitant medication with established
CYP inhibitors.

Risperidone TDM plus genotyping of several genes, includ-
ing CYP2D6, was studied in 277 US patients.[83] The plasma
risperidone/9-OH-R ratio and the total concentration-to-dose
ratio as the C/D ratio were studied. The normal C/D ratio was
7. Twice the C/D ratio (>14) was considered indicative of
diminished risperidone clearance, while half the C/D ratio
(<3.5) was considered indicative of increased risperidone clear-
ance. Almost all CYP2D6 PMs had an inverted risperidone/9-
OH-R ratio (>1). After controlling for confounders, taking CYP
inhibitors was strongly associated with a C/D ratio >14 (odds
ratio = 8.2; 95% confidence interval [CI] = 2.0–32.7), indicating
diminished risperidone elimination. After controlling for con-
founders, taking CYP3A inducers was significantly associated
with a C/D ratio <3.5 (OR = 41.8; CI = 12.7–138), indicating
increased risperidone elimination. In a linear regression of the
total concentration, after controlling for potential confounding
variables, patients who were taking CYP3A inducers had 59%
lower total concentrations than those in patients who were
not and patients who were taking CYP inhibitors had 27%
higher total concentrations than those in patients who were
not. Female patients had 28% higher total concentrations than
male patients.

4.3.3. Olanzapine
The major metabolic pathways of olanzapine include direct
N-glucuronidation, mediated by UGT1A4, and N-demethylation,
mediated by CYP1A2.[10] Minor routes of olanzapine biotrans-
formation include N-oxidation, catalyzed by the flavin-containing
mono-oxygenase-3 system, and 2-hydroxylation, metabolized by
CYP2D6. Concomitant administration of other compounds acting
as inhibitors or inducers of CYP or UGT enzymes involved in
olanzapine metabolism may affect olanzapine TDM with poten-
tial clinical implications.[8–10,13] Therefore, olanzapine TDM may
be useful in patients under polytherapy.[84]

Olesen and Linnet [85] described steady-state olanzapine
TDM in a relatively small sample of 56 psychiatric patients
under routine conditions. Patients were divided into four
groups: group 1 consisted of 22 patients on olanzapine mono-
therapy, group 2 included 15 patients co-medicated with
drugs not known to interfere with CYP2D6, group 3 consisted
of 14 patients treated with medications acting as inhibitors or
substrates for CYP2D6, and group 4 included 5 patients trea-
ted with carbamazepine, a well-known broad-spectrum
enzyme inducer. By pooling data from groups 2 and 3, co-
medication was found to increase the median C/D of olanza-
pine by 40% as compared to group 1 (p < 0.05). On the other
hand, patients on carbamazepine co-medication had a median
C/D of olanzapine 36% lower than those on monotherapy
(p < 0.05). In a subsequent study, the same authors [86]
measured both free and glucuronidated olanzapine in psy-
chiatric patients referred to routine TDM of olanzapine. The
median C/Ds of free and glucuronidated olanzapine in 30
psychiatric patients in monotherapy were 5.8 and 2.2 nmol/
L/mg, respectively (corresponding to 1.8 and 0.7 ng/mL/mg,
respectively). The corresponding values in 15 patients co-
medicated with carbamazepine were 3.6 and 3.1 nmol/L/mg
(1.1 and 1, ng/mL/mg, respectively). The median C/D of free
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olanzapine in the carbamazepine group was 38% lower than
that of the monotherapy group (p < 0.01, confirming that
carbamazepine may stimulate the biotransformation of olan-
zapine, presumably by inducing both CYP1A2 and UGT1A4.

Weigmann et al. [87] used olanzapine TDM data to study
the potential DDIs with fluvoxamine and sertraline. Patients
co-medicated with fluvoxamine (n = 10) had C/D ratios of
olanzapine 2.3-fold higher than those on olanzapine mono-
therapy (n = 124). No significant difference in olanzapine C/D
ratios was observed between patients receiving additional
sertraline (n = 21) and the olanzapine group. This indicated
that fluvoxamine inhibits the metabolism of olanzapine, prob-
ably due to CYP1A2 inhibition, whereas sertraline is unlikely to
interfere with the metabolism of olanzapine.

A large Swedish TDM database of olanzapine and its meta-
bolite N-desmethylolanzapine, including a final sample of 194
patients, documented that patients co-medicated with carba-
mazepine had a median C/D ratio of olanzapine 71% lower
than patients on olanzapine monotherapy.[88] Olanzapine
TDM data were also investigated by Gex-Fabry et al.[89] The
study included 250 patients, with daily doses ranging from 2.5
to 30 mg. In the whole sample, multiple regression analysis of
the C/D ratio of olanzapine revealed significant effects of co-
medication with fluvoxamine (+74%, p < 0.001), paroxetine,
fluoxetine, or sertraline (considered together, +32%, p < 0.05),
venlafaxine (+27%, p < 0.05), and inducers of CYPs (−40%,
p < 0.001).

Botts et al. [90] estimated the DDI effect size on steady-
state olanzapine TDM, adjusting for potentially confounding
factors known to influence olanzapine metabolism, such as
smoking. The evaluation was performed by using a mixed
model [75] and included data from a series of previously
published studies of lamotrigine,[91] oxcarbazepine,[92] topir-
amate,[93] mirtazapine,[94] and unpublished data from
patients under clinical TDM. The total sample included 163
patients who provided a total of 360 olanzapine concentra-
tions (1–11 measures per patient). Concomitant carbamaze-
pine or lamotrigine use was found to have significant effects
on median plasma olanzapine concentrations. The effects of
lamotrigine on plasma olanzapine concentrations were influ-
enced by smoking. Lamotrigine behaved as an olanzapine
inhibitor in smokers, increasing the C/D ratio by 35%, whereas
it caused a mild nonsignificant 11% decrease in olanzapine C/
D ratio in nonsmokers. Concomitant use of mirtazapine, val-
proic acid, topiramate, lorazepam, citalopram, or oxcarbaze-
pine did not significantly affect olanzapine concentrations.

Haslemo et al. [95] used data from a routine TDM service
to investigate the potential interaction between an ethiny-
lestradiol-containing contraceptive (ECC) and olanzapine.
The study included 149 patients of which 10 received ECC
and 10 received progestogen-based contraceptives (PBC). In
users of ECC, there were no differences in serum concentra-
tions of olanzapine, but significantly lower concentrations of
the CYP1A2-mediated metabolite N-desmethylolanzapine
compared with users of PBC (p = 0.019) and noncontracep-
tive users (p = 0.012). Haslemo et al. [96] performed a study
to investigate the impact of various antiepileptics on a large-
scale sample of olanzapine TDM material (598 serum sam-
ples from 450 patients). Concomitant administration with

valproic acid was found to significantly decrease serum
concentration of olanzapine to an extent comparable to
that of cigarette smoking. Significantly lowered C/D ratios
of olanzapine were observed in patients co-medicated with
valproic acid (n = 92, −32%, p < 0.001), valproic acid +
lamotrigine (n = 7, −31%, p < 0.01), and carbamazepine
(n = 8, −50%, p < 0.001) compared with controls (n = 205).
On the other hand, C/D ratios of olanzapine did not differ
between patients treated with lamotrigine (n = 110) and the
control group.

4.3.4. Quetiapine
Quetiapine is metabolized almost exclusively by CYP3A4 with
some additional contribution from CYP2D6.[10] Therefore, co-
administration of inhibitors or inducers of CYP3A4 may inter-
fere with its elimination, thereby resulting in potentially sig-
nificant pharmacokinetic DDIs.[8–10,13]

Hasselstrom and Linnet [97] recorded serum concentrations
of quetiapine in 62 psychiatric patients under routine condi-
tions. Patients were divided into various groups according to
concomitant treatment. Patients co-medicated with CYP3A4
inhibitors (n = 38) had a median quetiapine C/D value of
0.48 nmol/L/mg (0.18 ng/mL/mg), which was 70% higher
than the median C/D value of 0.28 nmol/L/mg (0.11 ng/mL/
mg) in the monotherapy group (n = 8) and the corresponding
value of 0.23 nmol/L/mg (0.09 ng/mL/mg) in patients receiv-
ing drugs metabolized by CYP2D6 (n = 10). The two patients
treated with the CYP3A4-inducer carbamazepine had the low-
est quetiapine C/D values, 0.02 and 0.04 nmol/L/mg (0.008
and 0.016 ng/mL/mg).

A TDM study of 96 patients investigated the effect of
various factors including co-medications on quetiapine plasma
concentrations.[98] Quetiapine C/D ratios were 77% higher
(p = 0.016 in patients co-medicated with valproate (n = 9) as
compared to those not receiving valproate. Based on this
finding, the authors suggested a CYP3A4-mediated inhibition
of quetiapine metabolism by valproate.

The effect of various co-medications on the serum concen-
trations of quetiapine was investigated by using data from a
large routine TDM service, 2001–2004, including 2111 samples
from 1179 patients.[99] Concomitant treatment with fluvoxa-
mine (n = 11) and clozapine (n = 70) significantly increased
(p < 0.001) the quetiapine C/D ratio by 159% and 82%, respec-
tively. By contrast, co-administration with carbamazepine
(n = 39) significantly decreased (p < 0.001) quetiapine C/D
ratio by 86%. Co-medication with lamotrigine (n = 147) was
also associated with a slight, but significant, 17% decrease
(p < 0.05) in quetiapine C/D ratio. In contrast to Aichhorn
et al.,[98] no relevant changes in quetiapine concentrations
were observed in patients receiving valproate (n = 237).

Data from another routine TDM service, 2006–2007, includ-
ing 138 samples from 87 psychiatric patients were used to
investigate the effect of concomitant treatment with various
antiepileptic drugs on steady-state plasma concentrations of
quetiapine.[100] C/D ratio values of quetiapine were signifi-
cantly lower, by approximately 75% (p < 0.001), in the carba-
mazepine group (n = 6) as compared to patients on
quetiapine monotherapy (n = 35). No differences in quetiapine
C/D values were found between patients co-medicated with
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valproate (N = 19), lamotrigine (N = 16), topiramate (n = 6),
oxcarbazepine (n = 5) and patients on quetiapine alone.

Andersson et al. [101] used data from a Swedish TDM
program to investigate the possible DDI between lamotrigine
and quetiapine. Patients co-medicated with lamotrigine
(n = 22) had a 58% lower quetiapine C/D ratio as compared
to 22 controls under quetiapine monotherapy. Based on
these findings, the authors proposed that lamotrigine may
reduce quetiapine concentrations, possibly by inducing
glucuronidation.

A large TDM database including 927 samples from 601
subjects was used to study the pharmacokinetic variability of
quetiapine and its active metabolite N-desalkylquetiapine in
psychiatric patients.[102] In three patients co-medicated with
potent CYP3A4 inducers such as carbamazepine (n = 2) and
phenobarbital (n = 1), the C/D ratios of quetiapine and
N-desalkylquetiapine were on average 77% and 11% lower
than the mean C/D ratio in the study population.

4.3.5. Aripiprazole
Aripiprazole is metabolized by CYP2D6 and CYP3A4 to dehy-
droaripiprazole and other metabolites.[10] Plasma concentra-
tions are significantly affected by co-medication with
inhibitors or inducers of CYP3A4.[8–10,13]

Molden et al. [103] investigated the pharmacokinetic varia-
bility of aripiprazole and its active metabolite dehydroaripipra-
zole on the basis of 155 TDM samples from 118 psychiatric
patients receiving therapeutic doses of aripiprazole (10–
30 mg/day). The mean C/D ratios of aripiprazole, dehydroar-
ipiprazole, and their sum in the three patients who were
prescribed potent CYP2D6 inhibitors (paroxetine or fluoxetine)
did not differ from the median C/D ratio in the whole
population.

The effects of co-medications on the serum concentrations
of aripiprazole were studied in a relatively small sample of 81
patients from a routine TDM service.[104] Co-medication with
the CYP3A4 inducer carbamazepine (n = 1) lowered the C/D
ratio of aripiprazole by 88%. Concomitant treatment with
CYP2D6 inhibitors (levomepromazine and fluoxetine) resulted
in a mean C/D ratio 44% higher than in the monotherapy
group. Subjects co-medicated with valproate had a 24%
lower mean C/D ratio of aripiprazole than in patients on
monotherapy, while subjects co-medicated with lamotrigine,
citalopram/escitalopram, and lithium had mean C/D ratios
51%, 39%, and 34% higher than the monotherapy group.
Dehydroaripiprazole, the active metabolite of aripiprazole,
was not measured in samples included in this study.

Waade et al. [105] evaluated the impact of various co-
medications on aripiprazole and dehydroaripiprazole in a
large TDM database including 361 samples from 223 psychia-
tric patients. Co-administration with CYP3A4 inducers (carba-
mazepine, phenobarbital, and phenytoin) resulted in
approximately 60% lower mean C/D ratios of aripiprazole,
dehydroaripiprazole, and their sum as compared with the
monotherapy group (p < 0.05, p < 0.01, and p < 0.05, respec-
tively). Co-medication with CYP2D6 inhibitors (fluoxetine and
paroxetine) was associated with a 45% higher mean C/D ratio
of aripiprazole compared with monotherapy controls
(p < 0.05), while the mean C/D ratio of dehydroaripiprazole

was unchanged. Concomitant administration of escitalopram,
olanzapine, or lamotrigine resulted in slight, but statistically
significant, changes in aripiprazole systemic exposure.
Conversely, concomitant intake of the other antidepressants
such as mirtazapine, sertraline or venlafaxine, or other anti-
psychotics including clozapine, risperidone, or quetiapine did
not affect the pharmacokinetics of aripiprazole.

4.3.6. Ziprasidone
Ziprasidone is metabolized primarily by an aldehyde oxidase and
to some extent by CYP3A4.[10] The pharmacokinetic DDI profile
of ziprasidone has been poorly investigated. The interindividual
variability of steady-state serum concentrations of ziprasidone
and its active metabolite S-methyl-dihydroziprasidone were
investigated by using routine TDM data from a cohort of 370
patients treated with ziprasidone, January 2001–December 2004.
[106] No differences in C/D ratios of ziprasidone or its active
metabolite were found between patients on ziprasidone mono-
therapy (10%) and the remaining subjects receiving concomitant
medication. Due to the small number of patients in each group,
it was not possible to evaluate the impact of inducers (n = 3) or
inhibitors (n = 3) of CYP3A4 on ziprasidone TDM.

Vogel et al. [107] performed a retrospective analysis of data
from a ziprasidone TDM database. The total sample included 463
patients treated with ziprasidone at doses ranging between 20
and 320 mg/day. Pharmacokinetic DDIs with co-medication
played a minor role. The C/D ratios of ziprasidone did not differ
significantly between patients without (n = 115) and with co-
medication (n = 348). Among the multiple drugs that were taken
as co-medication, there was a trend showing that carbamazepine
decreased ziprasidone concentration. This was in agreement
with earlier findings from a formal kinetic study in healthy sub-
jects suggesting that carbamazepine may be a mild inducer of
ziprasidone metabolism by increasing CYP3A4 metabolism.[108]

4.3.7. Amisulpride
Amisulpride is largely excreted unchanged in the urine with less
than 5% of a dose undergoing hepatic metabolism. Bowskill
et al. [109] investigated the effect of dose and other factors on
plasma amisulpride concentrations under routine conditions.
The study included 296 samples from 196 psychiatric patients.
There was no significant difference in either the mean dose or
the mean plasma amisulpride concentration between patients
co-medicated with clozapine (n = 16) and those in whom cloza-
pine co-prescription was not recorded (p > 0.1 in both cases).

4.3.8. Asenapine, iloperidone, lurasidone, paliperidone,
and sertindole
We found no TDM database studies for the new antipsycho-
tics asenapine, iloperidone, lurasidone, paliperidone, and
sertindole.

5. Conclusion

5.1. Article conclusions

This review article of SGA TDM has sought to contribute
increased knowledge of DDIs caused by inhibitors and indu-
cers of SGA metabolism. Unfortunately, psychiatric textbooks
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and, more importantly, drug package inserts (or prescribing
information) are not good sources for learning about DDI.
Drug package inserts (1) do not give easy instructions on
how to correct for DDI effects [110] and (2) frequently use
DDI single-dose studies instead of steady-state conditions to
provide suggestions.[111]

To understand the clinical relevance of DDIs on ADRs, the
concept of therapeutic window is important.[37] Based on
TDM ranges, clozapine, paliperidone, and risperidone may be
narrow therapeutic window drugs and after adding an inhibi-
tor or discontinuing an inducer, they may be particularly
prone to cause ADRs. One should expect that high clozapine
or risperidone plasma concentrations may be associated with
any of the ADRs that are dose-related. Although paliperidone
may be a narrow therapeutic drug, it appears that the effects
of CYP inhibitors on paliperidone TDM are limited; therefore,
adding a CYP inhibitor to paliperidone is not likely to cause
ADRs. On the other hand, discontinuing a powerful CYP indu-
cer, such as carbamazepine, phenobarbital, or phenytoin, is
expected to increase the risk of dose-related paliperidone
ADRs. Amisulpride, aripiprazole, olanzapine, ziprasidone, and
quetiapine are probably wider therapeutic window drugs. This
means that adding an inhibitor or discontinuing an inducer is
much less likely to cause ADRs than in the narrower window
SGAs.

To understand the clinical relevance of DDIs on lack of
efficacy after adding an inducer, the most important fact is
the size effects of the decrease on TDM under maximum
induction.[69] Two SGAs, quetiapine and lurasidone, which
are mainly metabolized by CYP3A4, are very sensitive to
induction and should not be administered with potent indu-
cers such as carbamazepine, phenytoin, or phenobarbital.
Quetiapine and lurasidone may also be rather sensitive to
induction by CYP3A4 mild inducers, such as oxcarbazepine
and topiramate.[69] Two SGAs, amisulpride and ziprasidone,
which have little CYP metabolism even in conditions of
induction, may not need dosage changes in the presence
of potent inducers. The other SGAs, aripiprazole, clozapine,
iloperidone, olanzapine, paliperidone, and risperidone, are
moderately sensitive to potent inducers (Table 4). There is
limited data on asenapine, but the authors would not be
surprised if asenapine is found to be moderately sensitive to
induction.[69]

Table 4 integrates TDM studies with the information on in
vitro metabolism studies, case report/series, and prospective
studies to provide our best interpretation of what to expect in
the average patient after adding psychotropic drugs with
inducing or inhibitory properties. This will provide some orien-
tation to clinicians with no TDM access and may also encou-
rage clinicians to further study TDM. Some of the SGAs have
almost no data regarding their metabolism during co-prescrip-
tion with inducers and inhibitors.

We need to acknowledge that the TDM studies described in
this article and our Table 4 are hampered because they focus
on the average patient. Many patients, though, are not aver-
age. For genetic, environmental, or personal reasons, some
patients may be more sensitive to inhibition or induction.
Some patients appear to be very sensitive to inducers.[23]
For example, in a male smoker valproate behaved as a

powerful inducer of clozapine metabolism, in a dose-related
way.[112] TDM results after combining carbamazepine with
risperidone and (1) a CYP2D6 PM genotype [53,113] or (2) a
potent CYP2D6 inhibitor that can cause a PM phenotype have
been described.[113] More studies combining CYP genotype
with TDM in patients taking inducers or inhibitors are impor-
tant. As an example, although it has never been studied with
risperidone TDM, CYP2D6 PMs should have little sensitivity to
inhibition by paroxetine, a relatively specific CYP2D6 inhibitor,
because CYP2D6 PMs have no CYP2D6 activity, but they may
be sensitive to fluoxetine, which is not only a powerful
CYP2D6 inhibitor but a mild/moderate CYP3A4 inhibitor.

Many DDIs with nonpsychiatric drugs have never been
systematically studied for SGAs in TDM studies and clinicians
may be lucky if they find published case reports. However, we
know, based on pharmacokinetic mechanisms, that many of
these DDIs are undoubtedly occurring in the clinical environ-
ment.[8–14,16] DDIs with nonpsychiatric drugs (and inflamma-
tion) and TDM recommendations are described in Box 1.
[8,12,16,69,114–119]

6. Expert opinion

In spite of the very limited effort of pharmaceutical companies
on SGA TDM and DDIs, the integration of TDM DDI studies
with in vitro metabolism studies, case report/series, and pro-
spective studies provides some understanding of SGA TDM
(Table 4). TDM knowledge for clozapine and olanzapine is
relatively sophisticated and TDM is strongly recommended.
[15] Those readers interested in using C/D ratios to interpret
clozapine DDIs are referred to another article.[35] Olanzapine
C/D ratios can be used to describe olanzapine DDIs with
inducers and inhibitors,[90] but more studies are needed to
establish the range of normal and abnormal values.
Olanzapine TDM studies exploring possibility that lamotrigine
effects are influenced by smoking and that is an inhibitor of
olanzapine metabolism in smokers [90] are needed.
Amisulpride appears to have little potential for DDIs, so in
that SGA, TDM may have more benefit related to issues
other than DDIs.

There are six SGAs in which TDM is recommended: sertin-
dole, risperidone, paliperidone, aripiprazole, quetiapine, and
ziprasidone.[15] Sertindole data is limited but prescribing it
under TDM control appears a good idea due to (1) its possible
narrow therapeutic window with risk for QTc prolongation and
(2) being influenced by CYP2D6 genetic polymorphism,
CYP2D6 inhibitor, CYP3A4 inhibitors, and CYP3A4 inducers.
Risperidone TDM is the best understood of them and, as it
may be a narrow-therapeutic drug, we highly recommend
(Table 4) risperidone TDM in patients taking inducers or inhi-
bitors, and those with an inflammation.[118] Those readers
interested in learning about using risperidone/9-OH-R ratio
and the total C/D ratio to interpret risperidone DDIs are
referred to another article.[35] There are no paliperidone
TDM studies exploring DDI but a recent prospective DDI
study [66] suggested that it will be particularly important to
complete them in patients taking inducers such as carbama-
zepine, which appears to be a potent inducer of CYP3A4 and
P-gp. More aripiprazole TDM studies are needed to explore the
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effect of inducers and inhibitors, including valproate, which
may be a mild inducer.[120] Quetiapine is probably the SGA
with the widest therapeutic index, so DDIs with inhibitors may
not be very relevant clinically, but the studies by the pharma-
ceutical company and TDM suggest that it is very sensitive to
potent inducers. This is why we recommend against quetia-
pine co-prescription with carbamazepine, phenobarbital, or
phenytoin (Table 4). A recent case report [57] indicates that
quetiapine TDM studies in patients taking mild CYP3A4 indu-
cers, such as oxcarbazepine, may be very important, since mild
inducers may cause clinically relevant decreases in plasma

quetiapine concentrations and lack of efficacy. Quetiapine
TDM studies exploring possibility that lamotrigine may be a
mild inducer [99] and valproate a mild inhibitor [98] are
needed paying particular attention to the variability associated
with quetiapine’s short half-life. According to our pharmaco-
logical knowledge, ziprasidone may have little risk of clinically
relevant DDIs with inhibitors and inducers, but it would be
important to have a good number of TDM studies indicating
that this is true in the clinical environment.

It is unfortunate that we have such limited available evi-
dence for iloperidone, asenapine, and lurasidone. More TDM

Table 4. Provisional SGA dose correction factors during DDIs with psychotropic drugs with inhibitory and inducing properties based on the limited available
information from TDM and other sources.

SGA Other psychotropic drugs (inducers or inhibitors) Actions to take

CYP1A2 SGA
Clozapine
Olanzapine

Potent inducers: carbamazepine, phenytoin, or Phenobarbital 1) Correction dose factor: Clozapine: 1.5–2. Olanzapine: 2–3
2) TDM is strongly recommended.
3) In some countries, carbamazepine is not recommended since it is also
associated with agranulocytosis.

High dose mild inducers: oxcarbazepine (≥1200 mg/day) or
topiramate (≥400 mg/day)

1) Not well studied. 2) TDM is strongly recommended.

Valproate: possible mild inhibitor and/or mild inducer 1) Not well studied. 2) TDM is strongly recommended.
Other SSRIs or other second-generation antidepressants no
listed below

1) No need for dose change 2) TDM can help to verify that.

Mild inhibitors: fluoxetine or paroxetine 1) Not relevant. 2) TDM if ADRs.
TCAs Risky without TDM for both (SGA and TCA).
Potent inhibitor: fluvoxamine 1) Correction dose factor: Clozapine 0.1–0.2. Olanzapine:0.3–0.5

2) Very risky without TDM.
CYP3A4
Lurasidone
Quetiapine

Potent inducers: carbamazepine, phenytoin, or Phenobarbital Do not use (Correction factor ≥5).
High dose mild inducers: oxcarbazepine (≥1200 mg/day) or
topiramate (≥400 mg/day)

Do not use unless access to TDM.

Other antidepressants no listed below No need for dose change.
Mild/moderate CYP3A4 inhibitors not well studied: fluoxetine
or fluvoxamine

1) No need for dose change. 2) Consider TDM if accessible.

CYP2D6/CYP3A
Aripiprazole
Iloperiodone
Risperidone
Sertindole
(always TDM)1

Potent inducers: carbamazepine, phenytoin, or Phenobarbital 1) Correction dose factor: 0.5. 2) Use TDM if accessible.
High dose mild inducers: oxcarbazepine (≥1200 mg/day) or
topiramate (≥400 mg/day)

1) Not well studied. 2) Use TDM if accessible.

Other2 SSRIs or other2 second-generation antidepressants No need for dose change.
Mild CYP2D6 inhibitors: fluvoxamine or high dose sertraline 1) Not well studied. 2) Use TDM if accessible.
Moderate CYP2D6 inhibitors: bupropion, duloxetine, or TCAs 1) Not well studied. 2) Use TDM if accessible.
Potent CYP2D6 inhibitor: paroxetine 1) Correction dose factor: 0.5. 2) Use TDM if accessible.
Fluoxetine (CYP2D6 and some CYP3A4 inhibition) or
CYP2D6 PM and some CYP3A4 inhibition

1) Correction dose factor: 0.25.
2) Use TDM if accessible.

Only Aripiprazole Valproate: possible inducer 1) Correction dose factor: 1.25. 2) Consider TDM.
Aldehyde oxidase
(CYP3A4)
Ziprasidone

Potent inducers: carbamazepine, phenytoin, or phenobarbital 1) No need for dose change (Very small correction factor 1.33)
2) TDM can help to verify that.

Mild/moderate CYP3A4 inhibitors not well studied: fluoxetine
or fluvoxamine

1) No need for dose change.2) TDM can help to verify that.

UGT1A4 & CYP1A2
Asenapine

Potent inducers: carbamazepine, phenytoin or Phenobarbital Not well studied. TDM is strongly recommended.
High dose mild inducers: oxcarbazepine (≥1200 mg/day) or
topiramate (≥400 mg/day)

Not well studied. Consider TDM.

Valproate: possible inhibitor Not well studied. Consider TDM.
Inhibitor: fluvoxamine Correction dose factor: 0.5–0.75.TDM is strongly recommended.
Antidepressant metabolized by CYP2D63: paroxetine, TCAs, or
venlafaxine

Do not use (consider ↓ dose or TDM for antidepressant).

Other2 antidepressants No need for dose change.
Renally excreted
Amisulpride

Potent inducers: carbamazepine, phenytoin, or Phenobarbital No need for dose change (TDM can help to verify that).
SSRIs and other CYP inhibitors No need for dose change (TDM can help to verify that).

Paliperidone Potent inducers: carbamazepine, phenytoin, or Phenobarbital Correction dose factor: 3. TDM is strongly recommended.
High dose mild inducers: oxcarbazepine (≥1200 mg/day) or
topiramate (≥400 mg/day)

Not well studied. TDM is strongly recommended.

Valproate: inhibitor Correction dose factor: 0.5. TDM is strongly recommended.
Antidepressant are not likely to be inhibitors but not well
studied.

No need for dose change. Consider TDM if ADRs.

ADRs: Adverse dug reaction; CYP: cytochrome P450; DDI: drug-drug interaction; SGA: second-generation antipsychotic; SSRI: selective serotonin reuptake inhibitor;
TDM: therapeutic drug monitoring.

1Sertindole is metabolized by CYP2D6 and CYP3A4. There is no TDM data on the effects of CYP2D6 genetic polymorphism, CYP2D6 inhibitor, CYP3A4 inhibitors, or
CYP3A4 inducers. Based on pharmacological mechanism knowledge, it appears reasonable that dose correction factors from other antipsychotics metabolized in
same way may apply to sertindole too. Due to this lack of data and its possible narrow therapeutic window with risk for QTc prolongation, it appears reasonable to
always prescribe sertindole under TDM control.

2Others refer to other antidepressants not listed in the lines above for that specific SGA.
3Asenapine is a mild CYP2D6 inhibitor.
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iloperidone studies are needed to verify that its profile for DDI
is similar to risperidone and aripiprazole, drugs also metabo-
lized by CYP2D6 and CYP3A4. Asenapine’s unusual metabo-
lism by UGT1A4 and CYP1A2 makes it difficult to make
predictions about DDIs. Table 4 is full of uncertainty about
asenapine DDIs since we do not know any other drug with a
similar metabolic profile that we can use as a model for
making predictions. Asenapine TDM studies are desperately
needed to establish the clinical relevance of DDIs with indu-
cers and inhibitors, including carbamazepine and valproate,
drugs likely to be co-prescribed in patients with bipolar dis-
order. Table 4 indicates that lurasidone DDIs may follow the
same pattern than quetiapine DDI. This is why we recommend
against the co-prescription of potent inducers such as carba-
mazepine, phenobarbital, or phenytoin with lurasidone
(Table 4). Lurasidone TDM studies with mild inducers, such
as oxcarbazepine or topiramate, are urgently needed since we
suspect they may be associated with significant decreases in
plasma lurasidone concentrations and lack of efficacy.

DDI descriptions in the package inserts (or prescribing infor-
mation) are usually not designed to provide easy helps for
clinicians in correcting pharmacokinetic DDIs. Independent
investigators have no easy access for funding to conduct pro-
spective DDI studies using clinically relevant doses of inducers
and inhibitors to orient clinicians. The main goal of Table 4 is to
provide provisional guidance for SGA dosing of average patients
who are taking clinically-relevant inducers or inhibitors

Table 4 has also a secondary goal. Clinicians frequently co-
prescribe antidepressants or antiepileptic/mood stabilizers
with SGAs. Thousands of patients all over the Western coun-
tries take these combinations. Clinicians using these combina-
tions, after reading our Table 4, may be encouraged to publish
case reports/series to demonstrate whether or not our dose
indications are correct for their patients. Pharmacokinetic
researchers with interest in SGA TDM can use Table 4 to
explore which DDIs may be important to study in prospective
and retrospective ways using large TDM databases.

Progress in the next few years, if this TDM research agenda
for SGA DDIs is followed, should also be accompanied by
better continuous medical education on DDIs and improve-
ments in psychopharmacology textbooks. Then clinicians can
begin paying more attention to DDIs with inducers and inhi-
bitors in patients taking SGAs.
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