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Abstract
The present paper is an attempt to investigate the existence of weak solutions for
perturbed impulsive problems containing a Lipschitz nonlinear term. The study bases
itself on the most recent variational approaches to the smooth functionals which are
defined on reflexive Banach spaces. The findings of the study, finally, revealed that,
under appropriate conditions, such problems possess at least three weak solutions.
According to the results, these solutions are generated by impulses when the
Lipschitz nonlinear term is zero.
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1 Introduction
This paper attempts to study the existence of three weak solutions for the perturbed im-
pulsive problem

⎧
⎪⎨

⎪⎩

ü(t) + Vu(t, u(t)) = h(u(t)), t ∈ (sk–, sk),
!u̇(sk) = λfk(u(sk)) + µgk(u(sk)),
u() – u(T) = u̇() – u̇(T) = ,

()

where sk , k = , , . . . , m, are instants in which the impulses occur and  = s < s < s · · · <
sm < sm+ = T , !u̇(sk) = u̇(sk+) – u̇(sk–) with u̇(sk±) = limt→sk± u̇(t), fk(ξ ) = gradξ Fk(ξ ),
gk(ξ ) = gradξ Gk(ξ ), h(ξ ) = gradξ H(ξ ), Fk , Gk , H ∈ C(RN , R), V ∈ C([, T] × RN , R),
Vξ (t, ξ ) = gradξ V (t, ξ ), h : RN → RN is a Lipschitz continuous function with the Lipschitz
constant L > , i.e.,

∣∣h(ξ) – h(ξ)
∣∣ ≤ L|ξ – ξ|

for every ξ, ξ ∈ RN and h() = , and λ >  and µ ≥  are two parameters.
Impulsive differential equations emerge from the real world problems and are accli-

mated to be employed as handy means for the description of the processes which are en-
dowed with abrupt discontinuous jumps. As for this, these processes are used in such
a vast array of fields as control theory, biology, impact mechanics, physics, chemistry,
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chemical engineering, population dynamics, biotechnology, economics, optimization the-
ory, and the inspection process in operations research. That is why the theory of impul-
sive differential equations is now highly appreciated as a natural theoretical basis for the
mathematical modeling of the natural phenomena of various kinds. For a comprehensive
background in the theory and the applications of the impulsive differential equations, we
hereby refer the interested reader to [–].

There is already a large body of research on the notion of impulsive differential equa-
tions in the literature. The findings of most of these studies are mainly achieved through
some such theories as fixed point theory, topological degree theory (including continu-
ation method and coincidence degree theory) and comparison method (including upper
and lower solutions method and monotone iterative method) (see, for example, [–]
and references therein). Recently, the existence and multiplicity of solutions for impul-
sive problems have been thoroughly investigated by [–] using variational methods
and the critical point theory, the whole findings of which can be considered as nothing
but generalizations of the corresponding ones for the second-order ordinary differential
equations. Put differently, the aforementioned achievements can be applied to impulsive
systems in the absence of the impulses and still give the existence of solutions in this sit-
uation. This is, somehow, to say that the nonlinear term Vu functions more significantly
as compared to the role played by the impulsive terms fk in guaranteeing the existence
of solutions in these results. In [], which is a probe into the existence of periodic and
homoclinic solutions for a class of second-order differential equations of the form () in
the case µ = , via variational methods, the results signify that such a system enjoys at
least one non-zero periodic solution as well as one non-zero homoclinic solution under
appropriate conditions, and these solutions are generated by impulses when f = . Based
on the variational methods and the critical point theory, [] has examined problem ()
in the case µ = , by means of which the authors have proved that such a problem ad-
mits at least one non-zero, two non-zeros, or an infinite number of periodic solutions as
yielded by the impulses under different assumptions, respectively. Most particularly, us-
ing a smooth version of Theorem . in [] which is a more precise version of Ricceri’s
variational principle ([], Theorem .) under some hypotheses on the behavior of the
nonlinear terms at infinity, under conditions on the potentials of fk and gk , [] has proved
that the existence of definite intervals about λ and µ, in which problem () in the case h ≡ 
admits an unbounded sequence of solutions generated by impulses. Moreover, it has been
proved that replacing the conditions at infinity of the nonlinear terms with a similar one
at zero admits the same results.

In the present paper, employing two sorts of three critical points theorems obtained
in [, ], which we will recall in the next section (Theorems . and .), we establish
the existence of at least three weak solutions for problem (). We also verify that these
solutions are generated by impulses when h ≡ ; see Theorems . and .. We say that
a solution of the problem () is called a solution generated by impulses if this solution
is nontrivial when impulsive terms fk , gk ≠  for some  ≤ k ≤ m, but it is trivial when
impulsive terms are zero. For example, if the problem () does not possess non-zero weak
solution when fk = gk ≡  for all  ≤ k ≤ m, then a non-zero weak solution for problem ()
with fk , gk ≠  for some  ≤ k ≤ m is called a weak solution generated by impulses. Along
the same lines of reasoning, these theorems (Theorems . and .) have been successfully
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employed by [–] to ensure the presence of at least three solutions for the perturbed
boundary value problems.

The curious reader is also referred to [–], which have verified the existence of mul-
tiple solutions for boundary value problems. For a thorough study of the subject, we also
refer the reader to [–].

The organization of the present paper is as follows. In Section  we recall some basic
definitions and preliminary results, while Section  is devoted to the existence of multiple
solutions for the impulsive differential problem ().

2 Preliminaries
Our fundamental tool consists of three critical point theorems. In the first one, the coer-
civity of the functional $ – λ% is essential. In the second one, a proper sign hypothesis
has been assumed.

Theorem . ([], Theorem .) Let X be a reflexive real Banach space, $ : X → R be
a coercive continuously Gâteaux differentiable and sequentially weakly lower semicontin-
uous functional whose Gâteaux derivative admits a continuous inverse on X∗, % : X → R
be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact
such that $() = %() = .

Assume that there exist r >  and v̄ ∈ X, with r < $(v̄) such that

(a) sup$(u)≤r %(u)
r < %(v̄)

$(v̄) ;
(a) for each λ ∈ &r := ] $(v̄)

%(v̄) , r
sup$(u)≤r %(u) [ the functional $ – λ% is coercive.

Then, for each λ ∈ &r the functional $ – λ% has at least three distinct critical points in X.

Theorem . ([], Theorem .) Let X be a reflexive real Banach space, $ : X → R be a
convex, coercive and continuously Gâteaux differentiable functional whose derivative ad-
mits a continuous inverse on X∗, % : X → R be a continuously Gâteaux differentiable func-
tional whose derivative is compact, such that

. infX $ = $() = %() = ;
. for every λ >  and for every u, u ∈ X which are local minima for the functional

$ – λ% and such that %(u) ≥  and %(u) ≥ , one has

inf
s∈[,]

%
(
su + ( – s)u

)
≥ .

Assume that there are two positive constants r, r and v̄ ∈ X, with r < $(v̄) < r
 , such

that

(b)
supu∈$–(]–∞,r[) %(u)

r
< 


%(v̄)
$(v̄) ;

(b)
supu∈$–(]–∞,r[) %(u)

r
< 


%(v̄)
$(v̄) .

Then, for each λ ∈ ] 


$(v̄)
%(v̄) , min{ r

supu∈$–(]–∞,r[) %(u) ,
r


supu∈$–(]–∞,r[) %(u) }[, the functional $–λ%

has at least three distinct critical points which lie in $–(] – ∞, r[).

In this paper we consider the Hilbert space

X =
{

u : [, T] → RN | u is absolutely continuous, u() = u(T), u̇ ∈ L([, T], RN)}
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with the inner product

⟨u, v⟩ =
∫ T



[(
u(t), v(t)

)
+

(
u̇(t), v̇(t)

)]
dt for all u, v ∈ X,

where (·, ·) is the inner product in RN . Obviously, the corresponding norm into the above
inner product is as follows:

∥u∥ =
(∫ T



(∣∣u̇(t)
∣∣ +

∣∣u(t)
∣∣)dt

) 


for all u ∈ X,

and X with this norm is a separable and uniformly convex Banach space.
Since the embedding X ↪→ C([, T], RN ) is compact (see []), one has

C := sup
u∈X\{}

maxt∈[,T] |u(t)|
∥u∥ < ∞. ()

We say that u ∈ X is a weak solution of the problem () if

∫ T



[(
u̇(t), v̇(t)

)
–

(
Vu

(
t, u(t)

)
, v(t)

)
+

(
h
(
u(t)

)
, v(t)

)]
dt + λ

m∑

k=

(
fk

(
u(sk)

)
, v(sk)

)

+ µ

m∑

k=

(
gk

(
u(sk)

)
, v(sk)

)
= 

for every v ∈ X.
Moreover, set

Gθ := max
|t|≤θ

[

–
m∑

k=
Gk(t)

]

for every θ >  and

Gη := inf
[,η]

[

–
m∑

k=
Gk(t)

]

for every η > . It is obvious that Gθ ≥  and Gη ≤ .
We consider the following assumptions on V :
(A) V is continuously differentiable and there exist two positive constants a, a >  so

that a|ξ | ≤ –V (t, ξ ) ≤ a|ξ | for all (t, ξ ) ∈ [, T] × RN ;
(A) –V (t, ξ ) ≤ –(Vξ (t, ξ ), ξ ) ≤ –V (t, ξ ) for all (t, ξ ) ∈ [.T] × RN ;
(A) Vξ–ξ (t, ξ – ξ) = Vξ (t, ξ) – Vξ (t, ξ) for all t ∈ [, T] and ξ, ξ ∈ RN .
We assume throughout and without further mention that the Lipschitz constant L > 

of the function h meets the condition

min
{ 

 , a

}
> TLC.

We require the proposition below in proving Theorem ..
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Proposition . Let the assumptions (A), (A), and (A) be satisfied and K : X → X∗ be
the operator defined by

K(u)v =
∫ T



[(
u̇(t), v̇(t)

)
–

(
Vu

(
t, u(t)

)
, v(t)

)
+

(
h
(
u(t)

)
, v(t)

)]
dt.

Then K admits a continuous inverse on X∗.

Proof Since |h(ξ) – h(ξ)| ≤ L|ξ – ξ| for every ξ, ξ ∈ RN , using the Cauchy-Schwarz
inequality one has –L|ξ – ξ| ≤ (h(ξ) – h(ξ), ξ – ξ) ≤ L|ξ – ξ| for every ξ, ξ ∈ RN .
So, taking () into account, bearing in mind that h() = , we have

〈
K(u), u

〉
=

∫ T



(∣∣u̇(t)
∣∣ –

(
Vu

(
t, u(t)

)
, u(t)

)
+

(
h
(
u(t)

)
, u(t)

))
dt

≥
∫ T



(∣∣u̇(t)
∣∣ + a

∣∣u(t)
∣∣)dt – L

∫ T



∣∣u(t)
∣∣ dt

≥
(
min{, a} – TLC)∥u∥,

and because min{, a} ≥ min{ 
 , a} > TLC, we have limu→∞

⟨K (u),u⟩
∥u∥ = +∞, that is, K is

coercive. For any u, v ∈ X one has

〈
K(u) – K(v), u – v

〉
=

∫ T



(
u̇(t) – v̇(t), u̇(t) – v̇(t)

)
dt

–
∫ T



(
Vu

(
t, u(t)

)
– Vv

(
t, v(t)

)
, u(t) – v(t)

)
dt

+
∫ T



(
h
(
u(t)

)
– h

(
v(t)

)
, u(t) – v(t)

)
dt

≥
∫ T



∣∣u̇(t) – v̇(t)
∣∣ dt +

∫ T


a

∣∣u(t) – v(t)
∣∣ dt

– L
∫ T



∣∣u(t) – v(t)
∣∣ dt

≥
(
min{, a} – TLC)∥u – v∥,

so K is uniformly monotone. By Theorem .A(d) in [], K– exists and is continuous
on X∗. !

3 Main results
In this section, we show our main results of the existence of at least three weak solutions
for the problem ().

To obtain our first result, we take the two positive constants θ and η in such a way that

(a + LTC)Tη

–∑m
k= Fk(η) < (a – LTC)θ

C max|t|≤θ [–∑m
k= Fk(t)]

and taking

λ ∈ & :=
] (a + LTC)Tη

–∑m
k= Fk(η) , (a – LTC)θ

C max|t|≤θ [–∑m
k= Fk(t)]

[
,
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set

δλ = min
{θ – Cλ

(a–LTC) max|t|≤θ [–∑m
k= Fk(t)]

C
(a–LTC) Gθ

,
η – λ

(a+LTC)T [–∑m
k= Fk(η)]


(a+LTC)T Gη

}
()

and

δ̄λ := min
{
δλ, 

max{, C
(a–LTC) lim sup|t|→∞

sup
∑m

k=[–Gk (t)]
|t| }

}
, ()

where we say ρ/ = +∞, so that, for example, δ̄λ = +∞ when

lim sup
|t|→∞

sup
∑m

k=[–Gk(t)]
|t| ≤ 

and Gη = Gθ = .

Theorem . Suppose that V satisfies the assumptions (A), (A), and (A). Assume that
there exist two positive constants θ and η such that θ <

√
TCη and

(A) max|t|≤θ [–∑m
k= Fk (t)]

θ < a–LTC
C(a+LTC)T

–∑m
k= Fk (η)
η , where a = min{ 

 , a};
(A) lim sup|t|→+∞

∑m
k=[–Fk (t)]

|t| ≤ .
Then, for each λ ∈ & and for each arbitrary function Gk ∈ C(RN , R) denoting gk(ξ ) =
gradξ Gk(ξ ) for each ξ ∈ RN for k = , , . . . , m, fulfilling the condition

lim sup
|t|→∞

∑m
k=[–Gk(t)]

|t| < +∞,

there exists δ̄λ >  given by () such that, for each µ ∈ [, δ̄λ[, the problem () admits at least
three distinct weak solutions in X.

Proof Fix λ, Gk for k = , , . . . , m and µ as in the conclusion. Our aim is applying Theo-
rem . for the functionals $,% : X → R, defined by

$(u) =
∫ T



[ 

∣∣u̇(t)

∣∣ – V
(
t, u(t)

)]
dt +

∫ T


H

(
u(t)

)
dt

and

%(u) = –
( m∑

k=
Fk

(
u(sk)

)
+ µ

λ

m∑

k=
Gk

(
u(sk)

)
)

.

It is easily observable that % is a Gâteaux differentiable functional and sequentially weakly
upper semicontinuous whose Gâteaux derivative at the point u ∈ X is the functional
% ′(u) ∈ X∗, given by

% ′(u)v = –
( m∑

k=

(
fk

(
u(sk)

)
, v(sk)

)
+ µ

λ

m∑

k=

(
gk

(
u(sk)

)
, v(sk)

)
)

,
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and % ′ : X → X∗ is a compact operator. Moreover, $ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ X is the functional $′(u) ∈ X∗, given by

$′(u)v =
∫ T



[(
u̇(t), v̇(t)

)
–

(
Vu

(
t, u(t)

)
, v(t)

)]
dt

+
∫ T



(
h
(
u(t)

)
, v(t)

)
dt

for every v ∈ X, while Proposition . shows that $′ admits a continuous inverse
on X∗. Furthermore, $ is sequentially weakly lower semicontinuous. Indeed, let un ∈ X
with un → u weakly in X, taking weakly lower semicontinuity of the norm, we have
lim infn→+∞ ∥un∥ ≥ ∥u∥ and un → u uniformly on [, T]. Hence, since V and H are con-
tinuous, we have

lim
n→+∞




∫ T



[∣∣u̇n(t)
∣∣ – V

(
t, un(t)

)]
dt +

∫ T


H

(
un(t)

)
dt

≥ 


∫ T



[∣∣u̇(t)
∣∣ – V

(
t, u(t)

)]
dt +

∫ T


H

(
u(t)

)
dt.

Thus lim infn→+∞ $(un) ≥ $(u), that is, $ is sequentially weakly lower semicontinuous.
Like the proof of Lemma  of [], we observe that the weak solutions of the problem () are
concisely the solutions of the equation $′(u) – λ% ′(u) = . Since –L|ξ | ≤ |h(ξ )| ≤ L|ξ | for
every ξ ∈ RN , we have |H(ξ )| ≤ L|ξ | for all ξ ∈ RN . In parallel lines with the assumption
(A),

(
a – LTC)∥u∥ ≤ $(u) ≤

(
a + LTC)∥u∥, ()

where a = min{ 
 , a}. Put r := θ(a–LTC)

C and w(t) := η for every t ∈ [, T]. Because
min{ 

 , a} > TLC, we have min{, a} > TLC, which means a – LTC > , and so r > . It
is clear that w ∈ X and

∥w∥ = Tη.

Since θ <
√

TCη, using (), we have  < r < $(w). Taking () into account, from () we
observe that

$–(]–∞, r[
)

=
{

u ∈ X;$(u) ≤ r
}

⊆
{

u ∈ X;
(
a – LTC)∥u∥ ≤ r

}

⊆
{

u ∈ X;
∣∣u(t)

∣∣ ≤ θ for each t ∈ [, T]
}

,

and it follows that

sup
u∈$–(]–∞,r])

%(u) = sup
u∈$–(]–∞,r])

[

–
m∑

k=
Fk

(
u(sk)

)
– µ

λ

m∑

k=
Gk

(
u(sk)

)
]

≤ max
|ξ |≤θ

[

–
m∑

k=
Fk(ξ )

]

+ µ

λ
Gθ .
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Moreover, we have

%(w) = –
m∑

k=
Fk

(
w(t)

)
– µ

λ

m∑

k=
Gk

(
w(t)

)

≥ –
m∑

k=
Fk(η) + µ

λ
Gη.

So, we obtain

supu∈$–(]–∞,r]) %(u)
r =

supu∈$–(]–∞,r])[–
∑m

k=[Fk(u(sk)) + µ
λ

Gk(u(sk))]]
r

≤ max|ξ |≤θ [–∑m
k= Fk(ξ )] + µ

λ
Gθ

θ(a–LTC)
C

()

and

%(w)
$(w) ≥ –∑m

k= Fk(w(t)) – µ
λ

∑m
k= Gk(w(t))

(a+LTC)η
C

≥ –∑m
k= Fk(η) + µ

λ
Gη

(a+LTC)η
C

. ()

Since µ < δλ, one has

µ <
θ – C

a–LTC λmax|ξ |≤θ [–∑m
k= Fk(ξ )]

C
(a–LTC) Gθ

,

this means

max|ξ |≤θ [–∑m
k= Fk(ξ )] + µ

λ
Gθ

θ(a–LTC)
C

< 
λ

.

Furthermore,

µ <
η – C

a–LTC λ[–∑m
k= Fk(η)]

C
a–LTC Gη

,

this means

–∑m
k= Fk(η) + µ

λ
Gη

η(a–LTC)
C

> 
λ

.

Then

max|ξ |≤θ [–∑m
k= Fk(ξ )] + µ

λ
Gθ

θ(a–LTC)
C

< 
λ

< –∑m
k= Fk(η) + µ

λ
Gη

η(a–LTC)
C

. ()
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Hereupon, from ()-() we infer that the condition (a) of Theorem . is achieved. Even-
tually, since µ < δ̄λ, we can fix l >  in such a manner that

lim sup
|ξ |→∞

∑m
k=[–Gk(ξ )]

|ξ | < l

and µl < a–LTC
C . Therefore, there exists a constant q such that

m∑

k=

[
–Gk(u)

]
≤ l|u| + q for all u ∈ RN ()

for k = , , . . . , m. Now, fix  < ε < a–LTC
Cλ

– µl
λ

. Owing to the assumption (A) there is a
constant qε such that

m∑

k=

[
–Fk(u)

]
≤ ε|u| + qε for all u ∈ RN ()

for k = , , . . . , m. Due to (), (), and () we have

$(u) – λ%(u) =
∫ T



[ 

∣∣u̇(t)

∣∣ – V
(
t, u(t)

)
+ H

(
u(t)

)]
dt

– λ

[

–
m∑

k=

[
Fk

(
u(sk)

)
+ µ

λ
G

(
u(sk)

)]
]

≥
(
a – LTC)∥u∥ – λε|u| – λqε – µl|u| – µq

≥
(
a – LTC – λCε – µCl

)
∥u∥ – λqε – µq.

This means that the functional $–λ% is coercive, and the assumption (a) of Theorem .
is verified. From () and (),

λ ∈
]

$(w)
%(w) , r

sup$(u)≤r %(u)

[

and Theorem . (with v̄ = w) ensures that the problem () possesses at least three weak
solutions in X. !

We now offer another version of Theorem . within which no asymptotic condition on
the nonlinear term is necessary; contrarily, each constituent of fk and gk for k = , , . . . , m
is considered to be negative.

Fix positive constants θ, θ, and η in such a way that




(a + LTC)Tη

[–∑m
k= F(η)]

< a – LTC

C min
{

θ


max|ξ |≤θ [–∑m
k= Fk(ξ )] , θ


 max|ξ |≤θ [–∑m

k= Fk(ξ )]

}
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and put

& :=
]


(a + LTC)Tη

[–∑m
k= F(η)] ,

a – LTC

C min
{

θ


max|ξ |≤θ [–∑m
k= Fk(ξ )] , θ


 max|ξ |≤θ [–∑m

k= Fk(ξ )]

}[
.

By the above symbolization, we obtain the following multiplicity result.

Theorem . Order the Banach space X by the positive cone X+ (see Section . of []),
and suppose that V satisfies in the assumptions (A), (A), and (A), Fk ∈ C(RN , R), each
component of fk(ξ ) = gradξ Fk(ξ ) for k = , , . . . , m is negative and there exist three positive
constants θ, θ, and η such that θ < C

√
T
 η < θ



√
a–LTC
a+LTC where a = min{ 

 , a} and

(B) max
{

max|ξ |≤θ [–∑m
k= Fk(ξ )]

θ


,  max|ξ |≤θ [–∑m
k= Fk(ξ )]

θ


}

< 


a – LTC

C(a + LTC)T
[–∑m

k= F(η)]
η .

Then, for each λ ∈ & and for every arbitrary function Gk ∈ C(RN , R) such that each com-
ponent of gk(ξ ) = gradξ Gk(ξ ) for every ξ ∈ RN is negative for k = , , . . . , m, there exists
δ∗
λ >  defined by

min
{ (a – LTC)θ

 – Cλmax|ξ |≤θ [–∑m
k= F(ξ )]

CGθ
,

(a – LTC)θ
 – Cλmax|ξ |≤θ [–∑m

k= Fk(ξ )]
CGθ

}

such that, for each µ ∈ [, δ∗
λ[, the problem () possesses at least three weak solutions u, u,

and u such that ui(t) ∈ X+ (or ui(t) ≥ ) for all t ∈ [, T] and i = , , .

Proof Fix λ, Gk for k = , , . . . , m and µ as in the conclusion and take X, $, and % as in
the proof of Theorem .. Obviously, the regularity assumptions of Theorem . on $ and
% are satisfied. Our goal is to check (b) and (b). For this purpose, put w(t) = η for every
t ∈ [, T],

r := (a – LTC)θ


C

and

r := (a – LTC)θ


C .

According to condition θ < C
√

T
 η < θ



√
a–LTC
a+LTC , and from (), we get

r < $(w) < r
 .
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Since µ < δ∗
λ and Gη = , one has

supu∈$–(]–∞,r]) %(u)
r

=
supu∈$–(]–∞,r])[–

∑m
k=[Fk(u(sk)) + µ

λ
Gk(u(sk))]]

r

≤ max|ξ |≤θ [–∑m
k= Fk(ξ )] + µ

λ
Gθ

(a–LTC)θ


C

< 
λ

< 


[–∑m
k= Fk(η)] + µ

λ
Gη

(a+LTC)Tη
C

≤ 


%(w)
$(w)

and

 supu∈$–(]–∞,r]) %(u)
r

=
 supu∈$–(]–∞,r])[–

∑m
k=[Fk(u(sk)) + µ

λ
Gk(u(sk))]]

r

≤  sup|ξ |≤θ [–∑m
k= Fk(ξ )] +  µ

λ
Gθ

(a–LTC)θ


C

< 
λ

< 


[–∑m
k= Fk(η)] + µ

λ
Gη

(a+LTC)Tη
C

≤ 


%(w)
$(w) .

Therefore, (b) and (b) of Theorem . are fulfilled. In the following, we show that $ –
λ% satisfies the assumption  of Theorem .. Let u and u be two local minima for
$ – λ% . Then u and u are critical points for $ – λ% , and, thus, they are weak solutions
for the problem (). We want to show that they are nonnegative. Let u be a nontrivial
weak solution of problem (). Arguing by a contradiction, assume that the set A = {t ∈
[, T] : u(t) < } = {t ∈ [, T] :  – u(t) ∈ X+, u(t) ≠ } is non-empty and its measure is
positive. Put

v̄(t) =
{

,  ≤ u(t),
u(t), u(t) < 

for all t ∈ [, T]. Clearly, v̄ ∈ X. Since u is a weak solution of () we have
∫ T



[(
u̇(t), ˙̄v(t)

)
–

(
Vu

(
t, u(t)

)
, v̄(t)

)
+

(
h
(
u(t), v̄(t)

))]
dt

= –λ

m∑

k=

(
fk

(
u(sk)

)
, v̄(sk)

)
– µ

m∑

k=

(
gk

(
u(sk)

)
, v̄(sk)

)
.

Thus, from our sign assumptions on the data, since –L|ξ | ≤ (h(ξ ), ξ ) ≤ L|ξ | for every
ξ ∈ RN , we have

 ≤
(
min{, a} – TLC)∥u∥

X(A) ≤
∫

A

(∣∣u̇(t)
∣∣ + a

∣∣u(t)
∣∣ – L

∣∣u(t)
∣∣)dt

≤
∫ T



[(
u̇(t), u̇(t)

)
–

(
Vu

(
t, u(t)

)
, u(t)

)
+

(
h
(
u(t)

)
, u(t)

)]
dt ≤ .
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Hence, u =  in A and this is absurd. Then we conclude u(t) ≥  and u(t) ≥  for every
t ∈ [, T]. Thus, it follows that su + ( – s)u ≥  for all s ∈ [, ], and that

–(λfk + µgk)
(
su + ( – s)u

)
≥  for k = , , . . . , m,

and consequently, %(su +(– s)u) ≥ , for every s ∈ [, ]. Hence, since all the hypotheses
of Theorem . are satisfied, it follows that, for every

λ ∈
]


$(w)
%(w) , min

{ r
supu∈$–(]–∞,r[) %(u) , r/

supu∈$–(]–∞,r[) %(u)

}[
,

the functional $ – λ% has at least three distinct critical points ui for i = , , , such that
 ≤ ui(t) < θ for all t ∈ [, T] and i = , , , which are the weak solutions of the problem
(), and the favorable result is achieved. !

In the following, we present a special case of Theorem ..

Corollary . Suppose that V satisfies the assumptions (A), (A), and (A), and

lim inf
ξ→

max|t|≤ξ [–∑m
k= Fk(t)]

ξ  = lim sup
ξ→+∞

∑m
k=[–Fk(ξ )]

ξ  = .

Then there is λ∗ >  such that for each λ > λ∗ and every arbitrary function Gk ∈ C(RN , R),
denoting gk(ξ ) = gradξ Gk(ξ ) for every ξ ∈ RN for k = , , . . . , m, satisfying the asymptotical
condition

lim sup
|t|→∞

∑m
k=[–Gk(t)]

|t| < +∞,

there exists δ∗
λ >  such that, for each µ ∈ [, δ∗

λ[, the problem () admits at least three
distinct weak solutions in X .

Proof Fix λ > λ∗ := (a+LTC)Tη
–∑m

k= Fk (η) for some η > . Recalling

lim inf
ξ→

max|t|≤ξ [–∑m
k= Fk(t)]

ξ  = ,

there exists a sequence {θn} ⊂ ], +∞[ with this feature that limn→∞ θn =  and

lim
n→∞

max|t|≤θn [–∑m
k= Fk(t)]

θ
n

= .

Hence, there exists θ̄ >  such that

max|t|≤θ̄ [–∑m
k= Fk(t)]

θ̄ < min
{ a – LTC

C(a + LTC)T
–∑m

k= Fk(η)
η ; a – LTC

λC

}

and θ̄ <
√

TCη. The conclusion follows from Theorem .. !

Now, as an example, we present the following consequence of Theorem . with m =
T = N = .
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Corollary . Suppose that V satisfies the assumptions (A), (A), and (A), f : R → R is
a negative continuous function and h : R → R is a Lipschitz continuous function with the
Lipschitz constant L >  such that h() = , min{, a} > L, and a + L < (a – L) where
a = min{ 

 , a}. Furthermore, assume that

lim
ξ→+

f(ξ )
ξ

= 

and
∫ /


f(x) dx < 


a + L
a – L

∫ 


f(x) dx.

Then, for every λ ∈ ] 


a+L
–

∫ /
 f(x) dx

, (a–L)
–

∫ 
 f(x) dx [, and for every arbitrary negative continuous

function g : R → R, there exists δ∗
λ >  such that, for each µ ∈ [, δ∗

λ[, the problem
⎧
⎪⎨

⎪⎩

u′′(t) + Vu(t, u(t)) = h(u(t)), t ≠ s,
!u′(s) = λf(u(s)) + µg(u(s)),
u() – u() = u′() – u′() = ,

()

possesses at least three weak solutions u, u, and u such that  ≤ ui(t) <  for all t ∈ [, T]
and i = , , .

Proof Our goal is to use Theorem . by choosing m = T = N = , θ =  and η = 
 . Since

c =
√

, we observe that




(a + LTC)Tη

[–∑m
k= Fk(η)] = 


a + L

–
∫ /

 f(x) dx

and

a – LTC

C
θ


 max|ξ |≤θ [–∑m

k= Fk(ξ )] = (a – L)
–

∫ 
 f(x) dx

.

Moreover, since limξ→+ f(ξ )
ξ

= , one has

lim
ξ→+

∫ ξ

 f(x) dx
ξ  = .

Then there exists a positive constant θ < 
 such that

∫ θ
 f(x) dx

θ


> 


a – L
a + L

∫ 



f(x) dx

and

θ
∫ θ

 f(x) dx
< 

∫ 
 f(x) dx

.

Finally, an easy calculation shows that all hypotheses of Theorem . are fulfilled, and the
conclusion follows. !
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Remark . From Assumptions (A), (A), and (A), we can show, by the same reasoning
as given in Theorem  of [], that the problem () when h ≡  does not possess any non-
zero weak solution in the cases where impulsive terms are zero. Consequently, the ensured
weak solutions for the problem () when h ≡  in Theorems . and . and in Corollary .
are generated by impulses when impulsive terms fk , gk ≠  for some  ≤ k ≤ m, as well as for
the problem () when h ≡  in Corollary . are generated by impulses when impulsive
terms f, g ≠ .

Remark . The methods used here can be applied studying discrete boundary value
problems as in [].

4 Concluding remarks
The theory of impulsive dynamic equations is generally thought to provide a natural
framework for mathematical modeling of many real world phenomena such as chemother-
apy, population dynamics, optimal control, ecology, industrial robotics, physics phenom-
ena, etc. The impulsive effects can be broadly found in numerous evolution processes
where their states may undergo abrupt changes at specific moments of time. As far as
the second-order dynamic equations are concerned, we often take into account the im-
pulses in terms of position and velocity. In the motion of spacecraft, on the contrary,
we are supposed to consider instantaneous impulses depending on the position leading
to jump discontinuities in velocity, but with no changes in terms of position. Impulsive
problems such as problem () are considered as highly important for the description of
quite a large number of real world phenomena including biology (biological phenomena
involving thresholds), medicine (bursting rhythm models), pharmacokinetics, mechanics,
and engineering. To this end, we have established, in this paper, the existence criteria of at
least three solutions for the perturbed impulsive problem () based on variational methods
and the critical point theory, under suitable hypotheses. The results of the study, finally,
illustrated that these solutions are generated by impulses while h ≡ .
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38. Bonanno, G, Molica Bisci, G, Rădulescu, V: Existence of three solutions for a non-homogeneous Neumann problem

through Orlicz-Sobolev spaces. Nonlinear Anal. TMA 74(14), 4785-4795 (2011)
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