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Abstract 

In this thesis, we will investigate how the notion of complexity and, 

especially, that of computational complexity, can be applied to 

philosophically rich problem in order to get a better understanding of them or 

a straight redefinition. Differently from other more comprehensive work on 

complexity like that from Bruce Edmonds (1995), here we will not propose a 

history of said notion, or an exhaustive review. Instead, our target will be that 

of sticking with a notion of complexity, namely computational complexity, 

and proceed through comparisons and applications so that the elements of 

interest can emerge. This will be done with the goal of finding a philosophical 

role for computational complexity and to verify the hypothesis that this 

particular notion of complexity is particularly well suited to evaluate the 

plausibility of all kind of theories. 

The thesis will be ideally divided in three separate sections. In the first 

we will analyse the philosophical aspects of complexity. We will see what 

kind of features does it have as a notion and why is it important for 

philosophy of mind and cognitive science. In the second section, we will look 

at three different philosophical applications of computational complexity and 

of the tractable cognition thesis. The third section will be dedicated to more 

cognitivistic application. The rationale behind this section is to look at how 

computational complexity improves the understanding of cognitive capacities 

and features of cognitive systems that have high philosophical relevance. This 

allows to both see how the role of plausibility notion is fulfilled on the part of 

computational complexity both on the upper bound and lower bound of 

cognition.  
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Introduction 

Philosophy of mind has been throughout its (not so long) history has 

been obsessed with theoretical gaps. One example for all comes from the most 

classic of philosophical debate: the mind-body problem. This problem rapidly 

gave rise to its peculiar gap and pretty famous gap, the explanatory gap 

(Levine 1983). From there on we had seen the rise of hard and easy problems, 

some reduction, a few elimination attempts and even a supervenience. 

However, despite the pretty fertile ground for good philosophy, this is not a 

thesis about gaps. This is a thesis about notions that sprout around gaps and, 

in particular, this is a theory about complexity. However, differently from 

other more comprehensive work on complexity like that from Bruce Edmonds 

(1995), here we will not propose a history of the evolution of said notion, or 

an exhaustive review of the contemporary approaches in the various 

philosophical and scientific fields. Instead of looking at all the possible 

meanings of complexity (rigorous and vague), our target will be that of 

sticking with a notion of complexity, namely computational complexity, and 

proceed through comparisons and applications. This will be more of a 

philosophical tinkering than an analysis, but it will allow us to clarify how a 

specific notion of complexity fits inside the theoretical landscape of cognitive 

science. 

The thesis will be ideally divided in three separate sections. In the first 

we will analyse the philosophical aspects of complexity. We will see what 

kind of features does it have as a notion and why is it important for 

philosophy of mind and cognitive science. This first part will ideally represent 

our theoretical yard, where the foundations of our next philosophical task 

will be set. A space in which we will present the basic components of our 
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philosophical framework and has the main scope of grounding a specific 

formal notion of complexity, namely computational complexity as a 

theoretical “ruler” for measuring the plausibility of theories, especially that of 

cognitivistic theories. In the second section, we will look at three different 

philosophical applications of computational complexity and of the tractable 

cognition thesis. Since our analysis will strongly rely on comparison, 

evaluating notions well known to philosophy may reveal a lot and provide 

with more solid elements to understand how computational complexity 

behaves as a philosophical notion and how it scales accordingly. The third 

section will be dedicated to more cognitivistic application. The rationale 

behind this section is to look at how computational complexity improves the 

understanding of cognitive capacities and features of cognitive systems that 

have high philosophical relevance. This allows to both see how the role of 

plausibility notion is fulfilled on the part of computational complexity both 

on the upper bound and lower bound of cognition.  

The first section will articulate in two chapters.  In the first we will 

explain why have we chosen complexity as the main topic. This problem will 

be tackled by proceeding incrementally. We will first argue in favour of the 

philosophical relevance of complexity and then look at why Computational 

complexity should be considered relevant not only to the scientific study of 

cognition, but also to the philosophical side of the cognitivistic program. 

The second section will comprise of the third, fourth and fifth chapters. 

In the third we will take a step into the key element of complexity by 

considering the important relationship that it entertains with simplicity. The 

choice of simplicity comes from three main reasons: the notion of simplicity 

has a strong link with that of complexity, long philosophical history and has 

found applications in cognitive science. In the fourth chapter, we will instead 

look at how two type complexities can be devised behind two well-known 

approach to the explanation of cognition: dynamicism and computationalism. 
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The aim is to see what different notions of complexity reveals about the 

theories that make use of them and, also, how computational complexity has 

improved the computationalist framework. In the fifth and last chapter of this 

section we will confront computational complexity with Tononi’s formal 

notion of complexity. A notion that has found both a cognitive and 

philosophical application. 

The third and last section will consider two more cognitively flavoured 

applications of computational complexity. First we will see how the tractable 

cognition thesis can be applied to the mindreading cognitive capacity in order 

to search for new and more cognitively plausible version of it. In the second 

part, we will instead look at a different way in which computational 

complexity can be applied to cognitive science. In particular, we will try to 

indicate a notion of “minimal complexity” that accounts for the very low level 

characteristics that a concrete computational system must possess to sustain 

cognition. 

Each chapter will open with a short introduction to the topic that they 

cover and a brief summary on how that part fits in the bigger scheme of the 

thesis. Inside every chapter, section and subsections will be titled and 

numbered, in order to ease the work of the reader.  
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Chapter 1                

Why should philosophy care about complexity 

In this chapter, we will tackle the specific issue of the relevance of 

complexity for philosophy and introduce the special case represented by 

philosophy of mind. Complexity is a term that, funnily, is complex in itself. It 

refers to a riddle of concepts and notions that, when considered separately, 

may indeed seem inconsistent. In order to avoid this discouraging fact, we 

will, in the following paragraphs, focus on evaluating complexity through its 

applications. In light of this principle this chapter will articulate in two parts. 

The first one will be focused on how complexity behaves as an informal 

notion There we will look into the various peculiarities of complexity by 

looking at a number of philosophical applications of it. The list examples 

provided will not be exhaustive, since it is not the aim of the present thesis to 

give a general account of complexity. However, by proposing a number of 

relevant cases we will assess the specific philosophical relevance of 

complexity and justify then why a better theoretical understanding of 

complexity should be pursued and what requisites should satisfy. In the 

second part of this chapter we will instead concentrate on the formal 

measures of complexity that are been proposed until now in the literature. 

Again, the list will not be exhaustive, but instead comprehensive and the 

focus will be on the applications of complexity more than on the possibility of 

providing a unified definition of it. 

In the remainder of the chapter we will draw our conclusions by adding 

up the considerations made in the single sections. In particular, we will 

suggest that the only way of fruitfully apply complexity is to accept its 
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multifaceted nature and to choose a specific application of it. Where for 

application we not only intend a field, but also a theoretical role inside that 

field. The specific philosophical relevance of complexity, we argue, stands in 

the in the process of reaching sufficiently clear and rigorous notion of 

complexity that can be fruitfully applied to a particular field, in this case 

cognitive science and philosophy of mind, so that an improvement of the 

accuracy and explanatory quality of scientific and philosophical theories can 

be obtained. 

1.1 Introducing complexity 

Complexity is often described as an ambiguous and vague notion, or at 

least a difficult one to approach systematically. The reason behind this 

judgement stands in the fact that this notion appears in wide range of 

arguments and thesis and, as Morin observes, this may also be the case why 

“the expression “it is complex” in fact expresses the difficulty of giving a definition or 

explanation”(Morin 2007, p. 2). However, the obscurity for the notion also has 

a slightly different meaning. Complexity takes not only the shape of an 

informal criterion, but is also the centre of numerous formal and rigorous 

“measures” of complexity that have found usage in a spectrum of technical 

and scientific fields. Such technical notions of complexity are often obscure in 

their own right because they are also difficult to approach and understand. 

Also, the linguistic use of the terms “complexity” and “complex”, scattered 

over a number of different applications and fields, clearly indicate the fact 

that the notion which they refer to is not unique or coherent. So, a first 

preliminary answer to the relevance question is that a philosophical analysis 

of complexity may be useful for clarifying the interplays between wildly 

different informal an informal version of the notion. This qualifies complexity 

as a genuine philosophical topic indeed, but doesn’t say much for the 
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relevancy of it in the panorama of contemporary cognitive science. The 

implicit meanings suggested in informal complexities are important for 

reaching the right balance between the constraints of formality and the 

richness of the phenomenon that we aim to explain. Also, the theoretical 

nooks and crannies, as we will see, of the “formal vs. informal” comparison 

call for theoretical expertise of philosophy. Relevancy however may come 

from the fact that clarifying complexity, while at the same time catching some 

of its less rigorous nuances, may indeed be of profit in the actual process of 

doing science. So, since complexity appears in a lot of philosophy, but also in 

a lot of science, clarifying and testing the various forms of it in order to find 

not the best one in general, but the best one given the application would be a 

nice contribution.  

In order to take into consideration these issues we will proceed as 

follows: first we will provide a short review of the various informal 

approaches to complexity that have already been proposed in the literature. 

Such an approach differentiates us from other more exhaustive reviews of the 

formal notion of complexity, such as that of Bruce Edmonds (1995), and will 

provide a number of insights that, we argue, all together constitute the 

implicit “message” of complexity. Then, our second target will be that of 

formal notions of complexity. There we will present different alternatives that 

have been proposed in the literature. We will see why they are called 

“measures” of complexity and what are the key notions that have been 

proposed as philosophical counterparts of them. Here another way in which 

we should justify the relevance of complexity emerges. Formal measures of 

complexity, like we said before, are not less obscure than the informal one, 

but their arcane nature comes from the sheer difficulty of approaching the 

technical know-how needed for handling the notions themselves. To justify 

that these solutions a turnout is needed and, as we will see, clarity and rigour 

is not always enough. 



12 
 

In the end, formal and informal notions both have a purpose, especially 

a philosophical one, and the multiform and widespread use of complexity is 

indeed a sign of that. A clear and rigorous understanding on how complexity 

fits in contemporary scientific theories needs such a fine analysis, especially if 

complexity is a notion that keeps to be used in cognitive and other sciences in 

many different ways. 

1.2 Informal complexities  

Since our main target is indeed philosophy of mind we will start our 

short review by looking at a emblematic topic that made extensive use of 

complexity. Complexity takes an unquestionable important role in some 

famous arguments against the reduction of consciousness (Dreyfus 1972; 

Chalmers 1996; Dreyfus 1992). Here complexity plays an important role and it 

is often used by the supporters of non-reductionism to underline how the 

various attempts at naturalizing consciousness fails to catch the “richness” of 

first-person experience. What we may find is an implicit and allusive use of 

the notion, but when it does emerge fully and explicitly emerge an interesting 

pattern shows up. This is the case, for example, of John Searle’s argument 

against computationalism: 

“For any sufficiently complex physical object O [. . . ] and for any 

arbitrary program P , there exists an isomorphic mapping M from some 

subset S of the physical states of O to the formal structure of P. ” (Searle 

1990) 

Here complexity is used as cornerstone for underlining the weakness of the 

computational theory of mind, but it is the use of “sufficiently” in conjunction 

with “complex” that should draw the attention. This particular style of 

arguments provides us with two additional aspects of complexity: the first 
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one is that being complex is a prerogative of an entity of some sort1, the 

second element is that such feature seems to work as a requirement for the 

theory that underlies the possibility of accepting it or not. This requirement 

can be interpreted as global propriety that an explanation, or a theory, should 

address by principle a that, at least for the moment, we can trace back to a 

loose notion of “richness”. If said explanation is not rich, or complex, enough 

it should be considered as unsatisfactory and then removed or at least 

rephrased in other, more appropriate terms. 

  A similar approach to the one above can be found in the dynamical 

hypothesis to the explanation of  cognition (Malik 2002; T van Gelder 1998; 

Horgan and Tienson 1992). In this account complexity is used to highlight the 

fact that the actual neuronal and cognitive dynamics cannot be satisfactorily 

caught by the classical computationalist approach and therefore this last 

approach doesn’t represent a theoretical acceptable framework. This 

particular aspect of the dynamical hypothesis clearly emerges from the 

following statement by van Gelder:  

“The claim is that we must understand cognitive agents as dynamical 

systems, because only in that way will our account of what cognition is be 

properly integrated with our account of how the world sustains any of 

it.”(T van Gelder 1998, p. 623) 

Since the focus is on dynamical systems that are complex in virtue of a set of 

characteristics here complexity has to be again interpreted as an inherent 

property of the actual object. However, dynanicism makes a crucial step 

forward for the sake of our analysis and by taking a closer look at complex 

systems we can see that their essential characteristics sheds some light on the 

numerous aspects of complexity that before were only loosely expressed. 

                                                
1 In case of cognitive science a cognitive system. 
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These systems are in fact so because they express a number of properties: like 

that of self-organization and emergence (Dixon et al. 2012; Gibbs and Van 

Orden 2012; Yamashita and Tani 2008; Funtowicz and Ravetz 1994), being 

concrete not idealized systems (T van Gelder 1998), being interactive and 

mostly holistic in their conception. These characteristics indeed provides us 

with several examples of what complexity may actually mean and because 

they are indeed related to the “richness” aspect that we already underlined. 

Complexity comes from interactivity, being immersed in a continuum and, 

crucially, from being actually concrete and immersed in a context. Here we 

will not go further in the analysis since the different conceptions of 

complexity that are employed in computational and the dynamical 

frameworks will be the argument of chapter three, but suffice to say that 

dynamicism addresses in a more detailed way the fears of the supporters of 

non-reductivism by injecting richness in cognitive science and, then, 

addressing the system notion itself.  

These aspects of complex systems that ground dynamicism undoubtedly 

resonate with a philosophical proposal entirely dedicated to complexity, that 

of Edgar Morin. Morin’s complexity, is informal and used as cornerstone for 

its theoretical framework. Here complexity is still opposed the reductionism 

of scientific practice, too focused on forcing the richness and variety of 

phenomena into explanations that are inherently disjointed and simplistic2. 

This comes ad evident if we consider the following quote:  

“The problem is not to create a general theory covering everything from 

atoms, molecules, and stars to cells, organisms, artifacts, and society. 

Rather, the problem is to consider atoms, stars, cells, artifacts, and 
                                                

2 Here the literature on Morin’s paradigm of complexity often refers to “simple”, here we 
preferred to use the word “simplistic” in light of the relation between the two notions of 
complexity and simplicity that we will explore in chapter 2. Furthermore, as we will see, 
simplicity itself has a deep history of philosophical development that doesn’t agree the 
negative connotation usually given in Morin. 
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society-that is to say, all aspects of reality, including, and in particular, 

our own – in richer way in the light of the complexity of systems and 

organization” (Morin 1992, pp. 382-383) 

In Morin’s framework complexity is then an intimate property of the real 

world and should then be accounted for in the scientific practice. Even more 

important is however to observe that the complexity of phenomena calls also 

for a revision of the theory. Explanations, hypothesis and other theoretical 

elements that ground the practice of building scientific knowledge are also a 

crucial part of the equation, so complexity has to become not only an 

important feature of systems, but also a critical feature of theories. That 

because building meaningful scientific knowledge is intimately grounded on 

the process of reaching the crucial balance between the constraints of science 

and the richness of phenomena. 

If preliminary conclusions can be drawn from this short list of examples 

is that the informal notions of complexity here considered all point to the 

following question: what are the necessary and sufficient properties that 

make a system complex enough to be considered a cognitive being?  

The path that we followed started with Searle and that example clearly set the 

ground for individuating the question itself. Then, by taking dynamicism into 

the equation we have seen an evolution of the concept of complexity as a 

feature of systems. There the various components of complexity were not 

implicit but could be explicated in the series of features that a system needs to 

possess in order for it to be considered complex. In the end, we added, with 

Morin’s complex thinking, a new crucial dimension to the problem. Through 

this addition becomes evident that not only the complexity of systems should 

be considered, but also that of the theories that try to explain them need to be.  

However, a common element between these two way of conceiving 

complexity exists: complexity, regardless of its type, is always a global 
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property about the fact that a system, or a theory, express a set of necessary 

features that make such system, or theory, acceptable. This particular 

property makes possible to recognize in complexity a theoretical behaviour 

that can be associated to that of a principle of plausibility. A principle that in 

relation of other topics has been defined as follow:  

“the degree of probability that a model is accurate in the existence of, and 

distinctions between, the various entities and activities it postulates” 

(Gervais and Weber 2012, p. 140) 

Even if this particular definition applies to models, the same rationale can be 

translated for systems and theories so that complexity can be effectively 

conceived as performing the role of a plausibility principle. The complexity of 

systems can be intended as a feature that, when accounted for, also improves 

the accuracy of the explanations that are tied to them. On the other hand, this 

logic also applies to theories and can be used we maximise the precision of 

predictions and, ultimately, the quality of the explanation.  

How to consider critically all these elements sure is philosophy, and this 

may actually be one of the answer to the question in the title, but we should 

not be satisfied. One of the main targets for reaching a better understanding 

of any phenomena, and cognitive ones nonetheless, would be that of reaching 

a clearer understanding of the role of complexity by making complexity itself 

a more rigorous notion in the first place. One of the way in which this can be 

done is through a transition from informal, and somewhat ambiguous, 

definitions to formal ones. That because, while we recognize that the informal 

kind has indeed the role of pointing to the requirements that theories have to 

express. If we continue to apply a vague notion of complexity, we would also 

run the risk of missing some crucial interplays between complexity and some 

philosophically rich and useful notion. Furthermore, the special case of the 

transition between exclusive philosophical speculation and interdisciplinary 
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cognitive science, definitely calls for more rigorous and coherent way of 

defining complexity. In the following paragraph, we will address therefore 

the formal notions of complexity and see how they behave in comparison to 

the informal ones that we have just seen. 

1.3 Formal complexities 

Differently from the argument of previous paragraph the topic at hand 

surely needs a different approach. Technical and formal notions of 

complexity, as already said in the opening of the chapter, are not obscure 

because they lack precision, but because they need to be approached with a 

technically keen eye. One element of our approach will not, however, change. 

We are still not interested in a full review, so in here we will again proceed by 

mentioning some relevant and see if and what are the philosophically rich 

topics to which they relate to.  A preliminary remark is however in order. The 

formality of the notions that we are going to consider is expressed though the 

metric element of these complexities. The fact that a theoretical element can be 

used as a measure of some kind of feature is indeed a big indication of its 

rigor and precision. That usually come at the expense of the generality of the 

principle, else said in the possibility of applying it to different problems and 

phenomena. However, this specialization factor is balanced by the sheer 

number of the various measures that have been proposed in history, so that 

for a given application the right measure of complexity can be used. The 

metric use of formal complexities is not only a taxonomic nuisance however. 

It indicates a general trend that we were able to observe also in informally 

defined complexities: that of using complexity to express globally some local 

properties of a target entity in order to make a comparison possible. Before 

making more claims it should be useful to look at the various measure that 
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have been proposed not only in cognitive science, but also in other sciences as 

well.  

A useful guide into the various type of measures of complexity is 

provided by Seth Lloyd of the MIT (Lloyd, n.d.). In his non-exhaustive, but 

pretty comprehensive list, he provides a synthetic view on the various 

measures of complexity available, but also a taxonomy that is indeed useful in 

framing the issue at hand. Lloyd recognizes that the measures of complexity 

can be, and has been also previously (Edmonds 1995; Löfgren 1973; Löfgren 

1977), categorized in the following way: difficulty of description, difficulty of 

creation and degree of organizations 

The first category mentioned in the list is that of difficulty of description. 

Shannon’s information (Shannon 1948) and Kolmogorov complexity 

(Solomonoff 1964; Kolmogorov 1965; Chaitin 1966) are the most important 

among the listed measures of complexity and the rationale under this 

categorization becomes evident when their nature is considered. On one side, 

we have Shannon’s measure of information, or also called Shannon’s entropy. 

This notion is a measure of the quantity of information that’s transmitted 

between a source and a receiver through a channel. The measure make use of 

statistics and probability to formally define an intuition that is well explained 

by the following quote: 

“The intuitive idea behind Shannon’s measure is that the more 

surprising a message is, the more information it conveys. If I tell you 

that the sun will rise tomorrow, this is very unsurprising. But if I say 

that it won’t, this is very surprising indeed, and in some intuitive sense 

more informative.” (Dunn 2008, p. 590)  

In SI sense information is then directly proportional of surprise and then the 

inverse of the probability that a certain event will occur. Through its 

logarithmic definition Shannon’s information realizes an encoding from the 
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inverse of the probability to strings of bits. It comes easily at this point the 

link between this measure of information and its categorization as a measure 

of descriptive complexity. The more an event is complex, the more 

information will be needed for determining its outcome and then the 

lengthier the description will be. On the other side, we have Kolmogorov 

complexity (KC), also called Kolmogorov-Chaitin complexity. This type of 

complexity is also a measure of information, but based on the length of the 

description, or an encoding, of a given object3. The fact that it is also listed a 

form of descriptive complexity should not come as a surprise However, by 

looking at some details of it we can better understand why Lloyd adds the 

element of difficulty to its way of categorising complexity in general.  

KC varies in function of “the size of the shortest program that, without 

additional data, computes the strings and terminate” (Vitanyi 1998, p. 2). This 

way of seeing information is based on the intuition that the structure of a 

finite string (often thought as a binary string) actually expresses a precise 

characteristic when such string represents an algorithm that is computed by a 

Turing machine. If a string shows systematic regularities than it also means 

that it can be restated in a shorter way without altering the effectivity of the 

computation. Such string will contain a small amount of information if the 

redundancies in it high and a large amount of information if, instead, it shows 

a less predictable structure. That happens regardless of the actual length. So, 

what KC provides is a measure of the actual structure of a string through the 

evaluation of the difficulty of making that string shorter. This is also one of 

the reasons why KC has close ties with applications in computer science like 

data compression (Li and Vitányi 2009) and, more importantly for us, also 

with topics in philosophy like simplicity (Rissanen 1978) where the notions of 

size and minimum description size (Edmonds 1995) play an important role. 

                                                
3 Usually a string of symbols, a program or an algorithm. 
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This particular relationship between KC and the epistemological notion of 

simplicity also underlies the general relation between complexity and 

simplicity. In fact, these elements resonate also in cognitive science and this is 

the reason why we will dedicate the chapter 2 to investigate them.  

The second category that Lloyd recognize is that of complexity as 

difficulty of creation. In this category, the focus shifts from the aspects of the 

length, size or structure of descriptions to the actual effort required to 

perform a certain process or task. This is also why this type of complexity 

often are measured in resources like energy, costs and computational 

resources. Among the different measures listed under this class, 

computational complexity is indeed one of the most iconic and widely 

adopted. Computational complexity (CC) is a measure of the hardness of 

computable functions, it offers a measure of the resources that are needed to 

solve a computational problem, where a computational problem is indeed 

expressed as a computable function. For this reason, the focus of CC is not on 

what is computable in principle like for computability theory, but on what 

can be computed in practice and can then be considered computationally 

tractable. The resources that are considered by this measure of complexity are 

time and space (memory in particular). If a problem, or a function, takes an 

unreasonable amount of time (or space) to be solved it is considered 

intractable, or non-computable in practice, the contrary happens if instead the 

resources needed remain under a certain threshold. Since this type of 

complexity will be the main topic of the next paragraph here we will not 

provide further technical details. However even the few elements that we 

have collected are enough for individuating the purpose of CC into the 

philosophic framework that we are exploring. The link with difficulty comes 

as particularly evident since CC is indeed a measure of computational effort. 

One advantage of CC is that it can be easily applied to cognitive science, if a 

computational explanation of it is accepted, and provide a link between the 
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specific notions of computational tractability and that of cognitive feasibility. 

Another important philosophical notion that can be linked to CC is that of 

parsimony, an aspect of simplicity. This particular application will be 

investigated in details in the second chapter, so for the moment we can go on 

and look at the third and last category, that of the degree of organization. 

Under such class we find complexities like: sophistication, conditional 

information, channel capacity and mutual information. These are only a few 

of the examples that Lloyd gives in his list and at least the abovementioned 

one are special case or further refinement of SI or KC. If we consider the case 

of channel capacity, we can clearly see on example of that. Channel capacity 

can be defined as “the maximum number of distinguishable signals for n uses 

of a communication channel” (Cover and Thomas 2006, p. 184) is then equal 

to the maximum mutual information between a source A and a receiver B. 

Where for mutual information we intend the measure of the amount of 

information of one random variable that is dependent on some other random 

variable. Mutual information measures then how much the knowledge about 

an event modifies the outcome of another event, where every event can be 

codified using SI. Now, if we move from the description of the measures 

themselves and focus on the features that they express we can see that such 

measures are indeed well suited for expressing notions like, order, disorder, 

organization articulation and integration. This makes them particularly suited 

to for the evaluation of the complexity in systems, architectures and 

structures. One application in particular, Tononi complexity, is particularly 

interesting for us, because it provides a measure of complexity that is aimed 

at the human brain and tailored toward the characterization of the necessary 

features for expressing human-level consciousness. Given that we will take a 

detailed look at it in chapter 4.  

Having considered the scenery provided by formal measures of 

complexity we can indeed draw some preliminary conclusions before we 
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wrap up the section. We started the paragraph by saying that formal 

complexities have the property of being rigorous. The rigorousness is indeed 

balanced by the fact that they are often special-purpose and tailored with a 

particular application in mind. However, as we have seen this hasn’t 

impaired the various notions to also have philosophical application. So, if you 

set aside the ambition of finding a unified notion of complexity, you only 

have to choose the right notion that applies to the particular target 

framework. In line with this predicament, in the next and final paragraph we 

will take the peculiarities of cognitive science into the equation. In order to do 

so we will first provide an answer to the question about the philosophical 

relevance of complexity and see how, by using this answer, it is possible to 

approach a notion of complexity that can apply to the particular case of 

cognitive science. 

1.4 Wrapping up 

At the beginning of the present chapter we present the hurdles posed by 

notion complexity, especially its vagueness, and introduced how it should be 

reconceived under the light of the relevance problem. We then considered the 

informal and formal types of complexities. From the analysis of the first type 

we concluded that complexity can be predicated both to systems and theories. 

Also, we have seen that this kind of distinction happens to be relevant in 

arguments revolving around the plausibility of theories. On formal side of 

complexity, we have seen how the different measures solve the original 

vagueness of informal depictions of complexity while at the same time losing 

in domain-generality. More precise measures of complexity need then also 

more refined framework for them to be applied correctly and fruitfully.  

All these elements stack up into an answer to the original question on 

why should philosophy care about complexity. Some preliminary reasons to 
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believe that complexity is indeed of philosophical significance come from the 

wide philosophical use of complexity, but also from the fragmentation of it. 

This partial proof of relevance follows from the sheer number of topics and 

fields that complexity touches, but what also indicates is huge need for 

theoretical clarification. However, the meaning of “relevance” can be 

interpreted in two ways and, while the difference between the two is subtle, 

we will propose the following way of stating it: On the one hand “relevance” 

can be intended as being able to qualify for philosophical analysis as a whole; 

On the other hand, we have instead relevance intended as opportunity of 

philosophical research. The little gap between these two versions of the same 

concept stands in the fact that even if a problem or a topic has indeed the 

characteristics of being philosophically interesting as a whole, it may also be 

the case that in the philosophical subfield (like philosophy of mind) that 

problem may be irrelevant or at least not theoretically profitable. This is of 

course not the case and again a preliminary confirmation comes from the fact 

that among the example that we have proposed the majority indeed comes 

from the scientific or philosophical study of cognition. The difference between 

informal and informal notion of complexity is another gap that indeed calls 

for a philosophical exploration. While informal complexities seem to be 

applied in argument that polemically individuate the explanatory 

requirement for complexity, the formal measures of it provide the tool to 

reach a clearer understanding of the notion to which they are applied. How to 

reconcile these two apparently different perspective has been and still is a 

philosophical endeavour. Bruce Edmonds (1995) for example adopts a general 

definition of complexity4 that ties this notion to language and, ultimately, to 

the difficulty of reaching definitions and formulations for certain phenomena. 

Differently from this type of approach we support the following alternative: 
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philosophy should address the gap between informal and informal notions of 

complexity by exploring how the latter can be fruitfully applied to known 

philosophical notions and problems. By putting complexity at work, we will 

sure have hints at how it performs as a philosophical problem in itself, as well 

as have the opportunity of having a new perspective on different problems. 

As we will see in detail in the following chapter, the philosophical research on 

complexity should be considered valuable for reaching a better 

understanding and the relationship between concept like plausibility and 

richness (Gervais and Weber 2012). Also, distinguishing between the 

complexity of systems and the complexity of theories is indeed of crucial 

importance, especially in a field like cognitive science that have systems as 

their target. Cognive science studies cognition and those systems that 

performs it. In this regard the complexity notion has to be evaluated with this 

particular application in mind. The distinction between the complexity of 

systems and that of theories is one of the possible taxonomy of complexity 

that applies pretty well to the cognitivistic framework. Accounting for the 

complexity of cognitive systems is one of the requisite that imposed to 

plausible theories of cognition by theoretical frameworks like the dynamicist 

one. In the same regard, then, the complexity of the theories that explain 

cognitive phenomena should be taken in high philosophical regard, especially 

if the possibility of a formal definition of it is possible. In the next chapter, we 

will move onwards and apply the methodology that we have just drafted. A 

specific formal notion of complexity will be chosen and its relevance will be 

evaluated. 
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Chapter 2  

Why should philosophy of mind care for computational 

complexity? 

Previously we considered how complexity, as a whole, has indeed all 

can be considered not only a genuine philosophical problem, but also a 

relevant one nonetheless. In the present chapter, we will instead unravel our 

cards and endorse a specific formal notion of complexity, viz. computational 

complexity. This permit us to evaluate in depth a single notion, present it, see 

how it has been applied in cognitive science and look at what role does it 

fulfil in it. In order to do that, we will use the article by Aaronson “Why 

philosophers should care about computational complexity” (2011) as a starting point 

for considering the special case of cognitive science and suggest an update 

that tackles the specific problems that the explanation of cognitive 

phenomena presents. This will also concede us the opportunity of presenting 

the “Tractable Cognition Thesis” 5  (van Rooij 2008; Tsotos 1990; Frixione 

2001). The goal in this chapter will be to argue that the relevance of 

computational complexity for both cognitive science and philosophy of mind 

stands in the fact that it can be used as a “plausibility” notion. A notion that, 

when applied in a sufficiently clear and rigorous form makes possible to 

improve the accuracy and explanatory quality of scientific and philosophical 

theories. It does that by accounting for the inherent limitation of cognitive 

systems, on the one hand, and introducing a threshold for discerning between 

cognitively plausible and implausible tasks, on the other hand.  

                                                
5 TCT from now on. 
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2.1 Introducing computational complexity 

We already mentioned how complexity can be obscure in at least two 

senses: one because of the eventual vagueness of its definition, the other 

one for the sheer technical difficulty of approaching the subject. but also 

from the conceptual hurdles that this complexity theory hides. That also 

explains the need felt from Aaronson (2011) to explain “Why should 

philosopher care for computational complexity”. However, even if the 

examples provided by Aaronson are indeed comprehensive, we think that 

something is amiss. What we want to argue is that computational 

complexity has found one of the most prolific field of application in 

cognitive science, especially when sided with theoretical considerations 

about the nature of computational explanation of cognition. However, 

before discussing examples that Aaronson gives and provide our own 

considerations and updates, we should provide the reader with at least an 

essential introduction to computational complexity.  

The core of computational complexity stands on the distinction between 

effective computation and efficient computation. While effective computation 

indicates those functions that can be computed in principle, falling then in the 

spectrum of computability, computational complexity applies to functions 

that are computable in practice. In terms of philosophical categories 

computability deals with the actual possibility or impossibility of a certain 

mathematical function. If the problem, and the function that models this 

problem, can be computed by a Turing Machine then it also means that it is 

computationally possible, otherwise if it’s not. Computational complexity 

instead, by dealing with those functions (or computational problem) that are 

computable in practice, is interested in the contingencies of computation and 

then in those constraints that make a certain problem computationally 

efficient.  and in the way in which what takes the name of computational 

tractability can be categorized and explored. Even if the computational 
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framework is now widely accepted in cognitive science, further clarifications 

have to be done in order to define the differences that separate standard 

computationalist solutions interested in effective computations from those 

that, taking into considerations tractability issues, are instead committed to 

efficient cognitive computation.  

First of all, what tout-court computationalism claims (in cognitive 

science) is that cognitive or mental processes are computations (Cordeschi 

and Frixione 2007; Piccinini 2009), hence that a cognitive process always 

expresses one or more computable function 6  (Massaro and Cowan 1993; 

Anderson 1990; Cummins 2000), that is, functions that are computable by the 

means of an effective procedure (an algorithm). However, even if it's well 

known that not every function is Turing-computable and that there are more 

or less precise limits to what we can call computational, that does not seem to 

pose too much of a boundary. Computability checks are, for instance, 

inherently unbounded in a number of ways, and that is because they rely on 

an idealized computational model (the Turing Machine) that, de facto, can 

possibly rely on infinite time and space resources (an infinite tape and infinite 

computational step). A function is computable in the classical sense if exists a 

finite effective procedure, hence an algorithm, that halts after a finite number 

of steps, uses a finite number amount of storage and works for arbitrarily 

large set of inputs (Enderton 1977). This kind of solution has to be somewhat 

finite, but there's no a priori indication about how much memory or time does 

it needs in order to return an output. A classic example of non-computable 

function is the halting problem (Turing 1936), a decision problem according to 

a Turing machine having as input a program should output if said program 
                                                

6  Here the received view (classic computationalism) mainly indicates Turing-computable 
functions as a reference (Marr 1982; J. Fodor 1975), but other proposals tried to suggest that 
cognitive processes (and especially those present in the human cognitive system), even if 
computational, are not to Turing-computable  and then must rely on some other, maybe more 
powerful (Wegner and Goldin 2003; Copeland 2002; Steinhart 2002), type of computation 
(Tim Van Gelder 1995a; Penrose 1999). 
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will correctly halt (and actually output something) or instead continue to run 

forever. 

Computational complexity ideally takes a step further and continue the 

analysis from where computability theory has left it. As we said earlier the 

propriety in which computational complexity is interested is not 

computability tout-court, but computational tractability. This propriety, 

tractability, is possessed by Turing-computable functions that can be 

computed using a certain amount of computational resources. The 

computational resources here considered are the following: 

 

TIME: the time in term of computational steps that a function will require in 

order to return an output; 

SPACE: the amount of memory (the length of the relative Turing machine 

tape) that a function will require in order to return an output. 

 

However, these two computational resources are not evaluated directly, like 

happens for example in information theory, but in function of the size of the input9. 

The size of the input 𝑖 	can be defined as the number of symbols on the tape 

of the Turing machine that is used to represent the computational problem 

and then the function. Another proof of the indirect nature of the 

measurement obtained through computational complexity stands in the 

asymptotic notation 𝑂(𝑓 𝑥 ), called in this case big-Oh notation10, that is used 

to classify computational problems according their rate of growth in function 

of the input size 𝑖 . The classification on which the tractability threshold is 

base can be exemplified as the following: if we assume a computable function 

𝑀	allora, if for every possible input 𝑖  𝑀  is decided in a number of steps  
                                                

9 One of the requirements that are imposed to the input is that of having a reasonable, non-
redundant enconding. For an analysis of the issues behind this assumption look Kwisthout 
(2012). 
10  
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𝑂 𝑡 𝑖 , then we can say that 𝑀 is decided in  𝑂 𝑡 𝑖  time and has a T-

complexity (time complexity) of 𝑂 𝑡 𝑖 . This type of notation has also the 

practical purpose, being it a measure of the worst case scenario (where all the 

possible input are taken into the account), to allow the overlooking of 

differences in running time coming from constants and lower degree 

polynomials (Van Rooij 2008; Frixione 2001; Arora and Barak 2009). This 

insensibility to certain negligible elements of functions running time is also 

stated by the following thesis:  

 

Invariance thesis: given a “reasonable encoding” of the input and two 

equally reasonable Turing machines 𝑀*  e 𝑀+ , the complexity of a certain 

problem 𝜓- for 𝑀* e 𝑀+ will only vary of a polynomial (Garey and Johnson 

1979). 

 

What the thesis of invariance allows, then, is to talk about the difficulty of 

problems without having to take into the equation also the performance of the 

actual computing system or model that solves them. Now that we have the 

thesis of invariance and the specific asymptotic notation we have all the tools 

needed for categorizing computational problems according to their inherent 

difficulty. Computational complexity subdivides computable functions in a 

taxonomy of complexity classes based on the two computational resources of 

TIME and SPACE. Here we will only consider time complexity. That not only 

for space reason, but also because time and space complexities are intimately 

related. Time complexity already expresses a certain measure of space 

complexity. (Garey and Johnson 1979; Van Rooij 2008). On fundamental 

distinction is that between functions that can be solved in polynomial PTIME 

(for example 𝑂(𝑡 𝑖 . ) where 𝛼 is a constant) and those that require instead 

exponential time  EXPTIME = 𝑂 𝑡 𝛼 7 .  
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Traditionally polynomial time P is considered as the reference threshold for 

efficient computation. A problem that allows for a worst-case solution in 

polynomial time is considered then computationally tractable (Garey and 

Johnson 1979). Vice-versa is classically understood as intractable a 

computable problem that does not run in polynomial time. The distinction  

between tractable problems (also called “easy to solve”) and non-tractable 

problems does not represent the entire spectrum of the taxonomy of classes 

that populate computational complexity. The kind of problems that we have 

considered those that can be decided in deterministically in PTIME. This 

means that a deterministic Turing machine (DTM) will decide their output 

without any branching, every state will determine univocally the transition to 

the following one. However, when we shift to a non-deterministic model of 

computation, like non-deterministic Turing machine (NTM), a new 

complexity class of problems appears: polynomial non-deterministic time 

NPTIME. This complexity class is also called of the problems that are hard to 

solve but easy to verify. That because under this computational model the 

transition between one state to another is no more deterministic and then 

univocally defined. Branching can occur and this allows for choices that don’t 

always lead to tractable running times. If a solution to such problems is 

available, then it will be easy to check if this is actually the case. Furthermore, 

since a DTM is a special case of NTM we can conclude that the set P of 

problems solvable in polynomial time is included in NP (𝑃 ⊆ 𝑁𝑃)17. The 

topography of complexity is however still incomplete. Two intersections 

between the P, NP and EXP classes have been individuated: that of NP-hard 

                                                
17 While this is now considered a triviality, the equivalence between these two classes of 
problems is an open question, and is in fact one of the most important contemporary 
challenges of theoretical computer science with a one million dollar price for whoever comes 
out with a solution (Cook 2003). The reason for this is easy to illustrate: If P=NP that would 
mean that a polynomial solution is available for every algorithm or problem that is now 
believed to be in NP, with heavy ripercussions for computing in general. 
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problems and that of NP-complete problems. The first of these two classes 

individuates those problems that have a difficulty that is “at least equal to 

that of every other problem in NP”18. The second in instead relative to the 

class of most difficult problems that belongs to NP, and then to those 

problems that are both NP-hard and NP. The present distinction, along with 

the ones that we have previously illustrated, allows to enhance the classifying 

capacity of computational complexity and its applications. One last remark 

has to be done: while computational complexity fits snuggly inside Marr’s 

levels of analysis (Marr 1982), since it is a theory that targets computational 

problem its applicability is almost always limited to the first level, the 

computational one.  

In the next paragraph we will consider one the possible application of 

computational complexity, and see how the taxonomy that it provides can be 

used to apply a plausibility threshold to theories and models of cognitive 

capacities. 

2.2 Going further: The tractable cognition thesis 

At the start of the previous paragraph we mentioned Scott Aaronson 

and his attempt to attract the (philosophical) attention on computational 

complexity. In his paper, he goes through various example ranging from the 

relevance of polynomial time for philosophy of computation, the applications 

of computational complexity for the Turing test and knowledge related 

issues, PAC20 learning models and so on and so forth. The vast array of 

examples proposed by Aaronson seems to focus on problems mostly 

concerning philosophy of science, language and logic. No direct reference to 

                                                
18 A NP-hard problem can then not strictly belong to the class NP, but to complexity classes 
above that, like EXPTIME. 
20 Which stands for Probably Approximatly Correct and indicates a model of human learning 
proposed by Leslie Valiant (Valiant 2013).  
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philosophy of mind and cognition is however mentioned, so this leaves a gap 

that we want to fill. Here we follow the same original approach of Aaronson, 

and suggest a case of application of computational complexity that is 

exclusively aimed at cognitive science.  

The one example that we will propose is that of tractable cognition 

(van Rooij 2008; Tsotos 1990; Frixione 2001). This framework is consistent 

with computationalism and provides a further refinement of it, using 

computational complexity in order to restrict the set of functions that can be 

considered as plausible models and explanation for cognitive capacities. 

Under the premises of computationalism a cognitive capacity will belong to 

the set of computable functions. As we have already mentioned, no 

boundaries are here taken into account, and then it is allowed to model a 

cognitive capacity into a function that has not to meet any running time 

requirement. This is of course inconsistent with both our common sense and 

scientific experience. Cognition is, even by an intuitive standpoint, a bounded 

phenomenon.  In order to behave successfully in our environment, we have to 

produce, actions that have to comply with time and space requirement.  

This is also consistent with evidence coming from the experimental 

findings about the implementation and evolution of cognitive systems. These 

findings show that there are no evidences of the human brain being a special 

piece of machinery. It doesn't manifests any unique anatomical features in 

respect of our mammals closest mammal cousins nervous systems (Roth 

2012). Furthermore, the human brain seems to be neither the biggest in 

absolute terms nor in relation to body mass (Jerison 1973; Jerison 1991). What, 

however, surely has is "a relatively thick cortex and a medium neuronal 

packing density found in hominids, humans have the highest number of 

cortical neurons found in mammals (and animals), which, however, is only 

slightly above the numbers found in cetaceans and elephants" (Roth, 2012, p. 

180).  So the specific feature that seems to emerge is the much higher cortical 
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information processing capabilities that comes from high axonal conductional 

velocity 21  and a short inter-neuronal distance (because of the human 

particularly high neuronal packing density (Ibidem)). A feature such as this 

seems however to indicate at best a performance advantage for the human 

cognitive system, not supporting the hypothesis humans and their brains 

have any kind of intrinsically special feature. So, if the human brain is a 

biological machine that's characterized by certain performance characteristics, 

it seems reasonable to ask ourselves if these performances are indeed 

somehow limited, or if, instead we should continue to the brain as some kind 

of "impossibility engine" (Cherniak 1990). The first of these options is actually 

called the "bounded brain hypothesis" (Cherniak 1990; Marois and Ivanoff 

2005) and it supports the idea that the human brain only has a limited 

reservoir of processing resources at its disposal. For these reasons the human 

brain seems to be constrained by the very characteristics of the its material 

implementation22 (Simon 1990; Cherniak 1990), but how can we translate such 

boundaries in a the computational framework? 

This calls for a refinement in the computationalist framework and such 

improvement comes from introducing a restriction on the functions that are 

considered as cognitively plausible. The threshold that works the distinction 

between “right” functions and “wrong” function for modelling cognitive 

capacities is here computational complexity. This requirement is not however 

exclusive on effectivity23  but inclusive. It implements a restriction on the 

previous one provided by effectivity. The application of this threshold to 

cognitive capacities happens through the following general thesis: 

 
                                                

21 That, on the other hand, comes from the thick myelin sheath that distinguishes the human 
nervous system (Mark A Changizi 2001; M A Changizi 2007). 
22 In particular, the relation between the total cortical sheet area and the mean cortical synapse 
density shows that neurons have at their disposal only a limited space of grey area eligible for 
connectivity. 
23 The fact that a function actually models the target cognitive capacity at all.  
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(General) Tractable cognition thesis: the set of the cognitive functions CF is 

included in that of tractable functions. 

 

This thesis, as stated above, is however actually too general to be useful. 

Without deciding on where to draw the line between tractability and 

intractability, tractable cognition poses more problem than those that it 

solves. One first solution proposed is to set the threshold for cognitive 

functions according to the classic polynomial time rule  (Frixione 2001; van 

Rooij 2008). This way the following thesis came to be: 

 

P-cognition: the set of the cognitive functions CF is included in that of 

functions that runs in polynomial time P.  

 

This improvement on the general version of the TCT fix cognitive feasibility 

with polynomial time. This mainly has the consequence of making every 

cognitive capacity that cannot be modelled into function that belongs in P 

problematic. Unfortunately, this is not rare. Computational problems that are 

believed to be at the centre of crucial human cognitive capacities like 

abductive inference (Bylander et al. 1991), bayesian inference (Chater, 

Tenenbaum, and Yuille 2006), visual search (Tsotos 1990) and so on27 have 

been shown to be NP-hard. This leaves the supporters of tractable cognition 

with two options: stick with P-cognition and rely on other way of reducing 

the running time through approximation (Valiant 2013; Chater et al. 2003; 

Thagard and Verbeurgt 1998) or heuristics (G Gigerenzer 2008; Martignon 

and Hoffrage 2002; Gerd Gigerenzer, Hertwig, and Pachur 2011), or relax the 

tractability threshold in order to accommodate more candidate functions. 

Since we are here interested in the complexity notion itself, rather than in the 

                                                
27 For a full list of computational-level theories of cognitive capacities that are believed to be 
NP-hard see van Rooij (2008, pp. 955-956) 
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approaches that try to comply with it, we will explore the second option and 

look at the proposal advanced by Iris van Rooij (van Rooij 2008; van Rooij and 

Wareham 2007). The solution the she proposes is to let the polynomial time 

requirement go and apply in its place another tractability threshold that 

comes from a refinement of computational complexity called parameterized 

complexity (R G Downey and Fellows 1999). This theory stems from the 

observation that certain NP-hard functions have a polynomial running time 

when a subset of the input is considered. This means that, if a certain number 

and type of restrictions is applied to the whole input size certain, otherwise 

intractable functions, can be considered tractable when the right conditions 

are met. The small portion of the input that has a non-polynomial running 

time is called a parameter, a function that run in polynomial time for the 

restricted input size takes the name of fixed-parameter tractable and the 

relative complexity class will be FPT. Without the need to go into further 

details, we have all the ingredients to state the following thesis: 

 

FPT-cognition: the set of the cognitive functions CF is included in that of 

functions that runs in FPT-time. 

 

This relaxation on the original P-cognition makes possible to account to a 

wider range of possible computable functions in order to explain cognitive 

capacities and phenomena that, otherwise, would call a theory revision or, 

worse, a complete theory rejection. Even if some elements of the various 

forms of tractable cognition are hinted it still not clearly stated in the 

literature what kind of theoretical role does tractable cognition play inside the 

interdisciplinary endeavour of cognitive science. We will provide with a take 

on this issue in the following paragraph.  
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2.3 Tractable cognition as a plausibility notion 

At the end of the previous chapter we indicated a number of feature that 

are commonly associate with complexity.  Here we will not make the case for 

computational complexity possessing them all of course. We will instead 

support the idea that even the possession of some of them still indicate the 

possibility of fruitfully applying the notion for genuine philosophical 

purposes. Some of these aspects are already captured by the complexity 

notion itself, and some other are instead better grasped by its application into 

cognitive science. It’s on the capacity of a certain notion of complexity of 

improving on theoretical clarity and depth that philosophical relevance 

stands. Here we will evaluate the advantages and disadvantages of both 

computational complexity and tractable cognition.  

The first feature of complexity to take into consideration is its 

association with “threshold” arguments that are particularly frequent in 

criticisms against the reduction of consciousness: the “complex enough” case. 

Computational complexity seems to be pretty well equipped from the start to 

deal with such ambiguous cases. Differently from other complexity measures, 

like Shannon information for example, computational complexity provides an 

indirect measure and not a direct one. Complexity classes are used to 

“organize” functions into broad running time (for time complexity) categories 

and then no actual direct measurement takes place. This should make 

computational complexity particularly suited to capture semantic notions of 

complexity, rather than the syntactic ones where capacity of measuring length 

and size seems to be crucial. Also, computational complexity comes already 

equipped with its own threshold. This can be applied through equivalence to 

the desired phenomenon. Tractable cognition is a clear example of this 

versatility.  
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 Since computational complexity is indeed a formal notion, it also 

improves on the clarity of the notion of philosophical complexity at which it 

can be applied. This of course happens when computational complexity is 

taken outside its original application and stretched in order to provide a 

formal index for characterizing otherwise ambiguous theoretical notions. The 

case of tractable cognition is here paramount. It allows to bridge 

computational complexity with the idea of bounded cognition and provides 

then a way of characterizing the distinction between plausible explanations 

and models of cognition and implausible one. This notion of “plausibility” 

that we just used has been already mentioned d before in the text and should 

be considered as a requirement for explanations and models. The requirement 

is relative to the actual capacity of such explanations and models to express 

only the necessary and sufficient proprieties that are needed in order to 

perform an actual explanatory role. This notion should be balanced to that of 

“richness”, being the actual amount of details that an explanation of a model 

actually implement. According to Gervais and Weber (2012) these two aspects 

should be well though and balanced in order to get an effective explanation30. 

Given the feature of computational complexity and tractable cognition that 

we have discussed above, it is possible to see how plausibility could be linked 

with them in order to get the following thesis: 

 

Plausible cognition thesis: if a candidate explanation for a cognitive capacity 

can be modelled into a tractable (P or FPT) function, then such explanation 

should be considered also cognitively plausible. 

 

Linking plausibility with computational complexity and especially tractable 

cognition provides philosophy with an addition tool to evaluate theories and 

                                                
30  The authors main target is here mechanicism, but the general considerations about 
plausibility still stand even in relation to our topic. 
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the models that are there implied. The possibility to variate the tractability 

threshold accounts also for the need of balancing between cognitive 

plausibility and richness, that here takes the form of the common-sense 

evidence about the capabilities of human cognition. All these possibilities 

definitely account for the philosophical relevance of computational 

complexity and even more for that of tractable cognition.  FPT-cognition in 

particular adds a further dimension of philosophical enquiry, due to the fact 

that the intuition for problem parameterization is often taken from theories 

and commons sense. This way a further (philosophical) plausibility 

evaluation takes place, corroborating the hypothesis that computational 

complexity can be of philosophical interest. 
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Chapter 3 

Understanding simplicity through complexity 

The goal of the previous chapter was to show how stratified and 

intricate of a notion complexity can be. In the end of it we made a choice 

among the various measures of complexity that have been proposed and 

explained why computational complexity and the cognitive theories that have 

been built onto it have indeed a philosophical value. We also proposed that 

CC, when utilized trough the TCC, takes the form of a plausibility notion that, 

when implemented, can increase the likelihood and accuracy of theories 

about cognition.  

In this chapter, we will begin testing this hypothesis by considering in 

details one of the most important relationship that complexity entertains: that 

with the notion of simplicity. While it may seem paradoxical to talk about 

simplicity in order to clarify complexity, the link between these two notions is 

indeed a strong. The fact that “complex” and “simple” are somewhat related 

is intuitively evident but this relationship has been also strongly investigated 

throughout the philosophical and scientific history (Weaver 1948; A. Baker 

2013). Minimizing complexity while at the same time maximizing simplicity 

has often been supported as one of the main good practice in science. That is 

why in philosophy of science the notion of simplicity takes the form of a 

principle for evaluating theories. This alone should explain our interest on it, 

since it seems to perform the same role that is often recognized to complexity 

and that we are attributing to computational complexity in cognitive science. 

Besides that, it happens to be that simplicity in philosophy of science is 

articulated, as we will see, in two aspects that are respectively tied to various 
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measures of complexity. This makes of simplicity also an internally 

“complex” notion in itself. Investigating this particular relationship between 

the two notions of will also open us the opportunity to take the analysis into 

applications in cognitive science. That will be done by critically considering 

the hypothesis that claims that the behaviour of cognitive agents is inherently 

driven, or determined, by the implicit use of a principle of simplicity. Such a 

proposal is indeed quite ubiquitous in cognitive science if we accept an 

intuitive link between simplicity and the notions of parsimony and economy. 

However, a more precise and technically savvy proposal have been advanced 

by Chater and Vitànyi (2003; Vitanyi 1998). There the authors defend the idea 

that the principle of simplicity that is behind the determination of the 

behaviour of cognitive agents is ultimately based upon the notion of 

Kolmogorov complexity. This has two consequences: for starters, it grounds 

simplicity on a notion of complexity that, as we have seen, has descriptive 

and syntactic purposes; furthermore, it promotes an absolute way of 

intending the simplicity principle according to which cognitive agents should 

always prefer the simplest solutions.  

By contrast we argue that such a view on simplicity, while compelling 

for some aspects, is not complete nor accurate enough to capture the 

theoretical depth suggested by the philosophical history of the notion. We 

propose then that for notion of simplicity to be used coherently and fruitfully 

in cognitive science this notion needs to be implemented so that also also a 

form of cognitive parsimony can be taken into account. To reach such a 

redefinition we have to establish how a principle of simplicity that started a 

criterion for the selection for theories can be translated in a cognitively 

effective principle about the selections of problems.  

In order to understand what are the philosophical implications at work 

will initially consider how the development the notion of simplicity had in 

philosophy of science. We will see then how simplicity has been considered in 
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philosophy of science as a virtue of every good theory (scientific, philosophic, 

mathematic and so on and so forth) and how this notion articulates in the 

form of a principle that articulates in two basic components: elegance and 

parsimony. To individuate the points in which simplicity is in need for a 

revision we will compare the conclusions taken from the philosophical 

analysis with the particular explanatory requirements that the study of 

cognition requires. This way we will see how parsimony and elegance are 

indeed still relevant components of a principle that is tailored on cognitive 

systems instead of science as a whole. 

After seeing in details how the accounts from Vitaniy and Chaitin 

unfolds, we will propose that computational complexity can provide the 

necessary theoretical tools for updating the principle of simplicity that they 

support. By doing so, we argue, it is possible to reach a more complete picture 

of the different aspects of the simplicity principle and, also, to introduce into a 

plausibility threshold into it so that it can be rephrased as follow: cognitive 

agents do not prefer the simplest solution among all the possible ones, but 

they prefer the simplest solution among the most plausible one. Where for 

plausible we intend those solutions that can be achieved in practice. 

3.1 Simplicity in philosophy of science 

In philosophy and science, the simplicity notion indeed has a long 

history and, traditionally, it simplicity take the form of a virtue that good 

theories should possess in order to be considered explanatorily sound 31 

(Gauch 2003, pp. 270-277). According to this then we can then say that not 

only simple theories, but also simple explanations, simple solutions and 

simple demonstrations should be preferred in place of more complex 

                                                
31 For example, we can find traces of it in Aristotle’s lex parsimonie (Posterior analytics), in St. 
Thomas Aquinas (Hoffmann, Minkin, and Carpenter 1997), Galileo Galilei, Immanuel Kant 
and Isaac Newton (A. Baker 2013). 
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alternatives. Simplicity as intended becomes an index that synthetically 

express the possession of those properties that are listed as reasonable hints of 

the presumed plausibility of a certain theory, or even of its truth. (Swinburne 

2001). For the purposes of our analysis we have, however, to reach a way 

more precise characterization of the notion at hand. This means overcoming 

the more intuitive aspects and make a step toward more precise accounts. It 

will be then paramount to investigate what are the specific factors that make a 

theory simpler (and by consequence less complex) than another one and how 

such factors can be investigated in a systematic way.  

 More information in this sense come if we continue in our historic 

overview. One of the most obvious, and famous, explicit reference that we can 

find of simplicity is represented by Occam’s Razor (OR) (Wright 1991, pp. 77-

104). What is important to note is that OR takes the form of a virtuous 

principle that applies as an ethical criterion for making good and valuable 

theoretical work. Abiding to this rule lead, in philosophy, for the inherent 

preference for those theories that explain a certain phenomenon with the least 

possible ontological commitment. When conceived like this OR takes the 

shape of an a priori ontological principle. For better explaining this point we 

should evaluate how OR is applied in the actual philosophical debate. Here 

we will take the two influent theories of cartesian dualism and materialist 

monism as a case study. Both these theories have the mind-body problem has 

their explanatory target, however they widely differ in the way in which they 

explain the phenomenon. While cartesian dualism commits to two different 

metaphysical substances (the res cogitans and res extensa,), materialism 

monism only commits and make use of a single material substance. Following 

OR we can then observe how dualism is indeed more ontologically 

committed and the, more complex than less burdensome than its monistic 

alternative. This comes from the fact that, in order to provide an explanation, 

dualism actually postulates a world that is more complex than the one 
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represented by monism.  A world, with all the laws that it expresses, in which 

we have to find evidence for two substance instead than one. According to 

this evaluation, that for the time being we can call of ontological parsimony, 

monism should be ceteris paribus preferred a priori because it inherently 

expresses le complexity and, then, it is more simple.  

Through this example we can clearly see how OR can be utilized and in 

what sense it takes the shape of a ontological criterion of parsimony. This 

makes less vague the nature of the “evaluation” that takes place when the 

principle of simplicity is applied. However, it also allows us to ask ourselves 

id this kind of ontological parsimony is exhaustive, or if there are instead 

some further way in which simplicity can be philosophically characterized. In 

order to clear this point, it will be useful to again rely on philosophy of 

science and look at how the philosophical debate handled this issue.  In this 

field two different aspects of the simplicity principle have been in fact 

opportunely distinguished and this makes the question about the simplicity 

of theories twofold: on the one side simplicity is inversely proportional to the 

complexity that derives from the number of hypothesis that a theory needs in 

order to provide an explanation; on the other hand simplicity is also inversely 

proportional to the complexity that derives from the number of ontological 

entities that a theory postulates (this reflects the one that we have 

encountered before). Such elements constitute key aspects of simplicity and 

have been named respectively elegance (or also syntactic simplicity) and 

parsimony (or also ontological simplicity). According to this distinction a 

theory can be elegant, or syntactically simple, is it provides an explanation 

that is concise, without making use of any superfluous element in its 

expression beside the strictly necessary ones. Instead, the parsimony, or 

ontological simplicity, of a theory is function of the types and number of 

entities that it postulates. This distinction has the consequence of improving 

the granularity of the simplicity evaluation. A theory can be elegant while at 
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the same time being not parsimonious and vice versa. Another effect of this 

distinction is that of making the principle of simplicity a global index that can 

be assessed on the base on local properties of the theory at hand. A 

characteristic this one that makes it pretty similar to the informal notions of 

complexity that we have analysed in chapter one. Acknowledging this 

refinement not only brings us some reference to the way in which have 

already treated the notion of complexity, but provides us with also a 

refinement that updates our understanding of simplicity. We can now say 

that a theory can be considered simple if it achieves the best compromise32 

between a concise expression and a parsimonious representation of the world. 

Going further we can give a look at how this distinction can suggest us 

further ways in the phenomena of simplicity can be characterized and 

analysed. First and foremost, the relationship between simplicity and 

complexity reveals that the first and the last are intimately linked also in 

relation to elegance and parsimony. If the elegance of a theory is determined 

by its syntactical simplicity, and such simplicity is inversely proportional to a 

form of complexity, it is also possible to say that a measure of elegance will 

also be measure of complexity in its own right. A measure that is grounded in 

a form of syntactic complexity that has been defined in several ways in the 

literature.  Elliott Sober (2002, p. 2), for example, proposes that such 

complexity should be based on the number of symbols in which the statement 

of a theory is expressed. In the same direction goes the Minimum Description 

Length principle of Jorma Rissanen (1978; Griinwald 2005). Such principle 

constitutes a formalization of elegance that utilizes the idea of knowledge as 

data compression (and then Kolmogorov complexity) as a cornerstone for the 

                                                
32 Here we phrase simplicity as a compromise because it may also be the case that to the most 
concise and elegant formulation doesn’t correspond the most parsimonious one. The two 
notions of elegance and parsimony may also be in contrast. It can then happen that the 
postulation or more entities may lead to a good explanation, like in the case of the discovery 
of the planet Neptune by Le Verrier and Galle. 
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measure of simplicity itself. One last measure of elegance is Nelson 

Goodman’s logical testability (Goodman 1943; Goodman 1955; Goodman 

1958; Goodman 1959), for example, measures the number of logically 

superfluous statement in a theory, where superfluity is determined through 

logical properties. 

For the above-mentioned ways of formally defining elegance the 

following observation holds: such a characterization of elegance, both in its 

informal and formal versions, closely binds this form of simplicity to the 

language in which the theory is actually stated. This has the consequence of 

making impossible, or at least difficult, the comparison of theories that are 

expresses in different languages, regardless of them being formal or informal. 

The fact that elegance cannot be relieved from this deep dependence with the 

language of the theory 33  highlights even better how important of a role 

parsimony plays.  Likely to what happened for elegance, also parsimony can, 

and should, go through some further technical refinement. Some hint from 

where to start come from our previous thoughts on OR and, especially, 

ontological parsimony. According to that preliminary depiction of parsimony 

parsimonious theories are those that take into the equation less entities in 

comparison to their more complex equivalents. Following this way of 

thinking, parsimony refers to what the theory says more than how it is 

expresses. One way to render parsimony into a measurement is to think about 

it probabilistically. If two theories can be reduced into two statements and 

these end up being equiprobable, then it can also be said that the original 

theories have indeed the same semantic complexity and posit the same type 

of simplicity (Sober 2002). However, Elliott Sober’s is not the only one 

available. Charles Peirce’s testability principle (Peirce 1931), Karl Popper’s 

falsifiability (Popper 1959)and John Kemeny’s testability (1955) can all be 

                                                
33 In fact the definition of elegance in terms of syntactical complexity makes such a relief 
impossible. 
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thought as way of characterizing how easy is a certain theory to test and 

corroborate. Parsimony may indeed follow from these types of measure 

because ontologically simpler theories will also be easier to test and 

corroborate.  

What should be clear at this stage is that if parsimony has a particular 

characteristic is that of being much more resistance to attempts of formal 

reduction. That comes from the target itself of this measure. Formally 

accounting for parsimony, like said before, means to render in a measure 

form the what the theory means and what kind of consequences this has on 

the quality of the explanation that it gives. However, even if a completely 

satisfying measure of parsimony cannot be individuated right now, we sure 

have a better picture about how elegance and parsimony mutually interact to 

form the synthetic formulation og simplicity. A theory can be considered 

simple, or simpler that another one, when it is concisely formulated 

(elegance) and it also postulate only the necessary and sufficient number of 

entities (parsimony).  

Another thing that should be considered about simplicity is that, while 

the use of this principle can be well justified in philosophy of science, that 

may not be the case for other disciplines. This kind of considerations brings 

about the topic of the globality of the simplicity principle (Crick 1990; Sober 

1990) as we have stated it. The application of the same principle outside of its 

natural environment may indeed need some tweaking. Especially because not 

every field has theories, explanations, entities and formulations as their basic 

components. However, while these components may actually vary, the 

taxonomy of simplicity, its relationship with complexity and the 

measurement factor can be translated to fit different theoretical targets. After 

this detailed explanation of simplicity, it is time to move to our original field 

and look at how this notion, with all its ancillaries, can be extended to 

cognitive science. 
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3.2 Simplicity and cognitive elegance 

Various proposals to suggested that simplicity, rather than being only a 

methodological principle, may indeed be a fundamental component principle 

that guides the behaviour of living organisms (Mach 1914). What these 

proposals suggest is that organisms, thanks to intrinsic characteristics of their 

cognitive systems, apply a simplicity principle when they execute a task 

(Chater 1997). In light of the analysis that we have done in the previous 

paragraph, it is reasonable to apply the same dual interpretation of simplicity 

also for the application of this notion in cognitive science. This way of 

thinking suggests us that this kind of “cognitive simplicity” could be 

subdivided into the two aspects of elegance and parsimony. However, before 

starting this kind of analysis, we have to set the ground and specify what are 

the scopes and peculiarities of cognitive science.  

 First of all, cognitive science is concerned with explaining cognition, 

the elements that compose it34, namely cognitive systems. A cognitive systems 

can be defined as "a dynamic order of parts and processes standing in mutual 

interaction (Bertalanffy 1968)” that possess the necessary and sufficient 

characteristics to express phenomena that can be ascribed to cognition. One of 

the most widely accepted accounts about the nature of cognitive systems is 

the information processing one (Neisser 1967). A cognitive system should 

then be interpreted as a processor that perform a cognitive task by receiving 

information (input) from the external world, process it according to several 

internal rules, and outputs a behavioural content. This functional definition 

can also be restated so that it can fit not only global interpretations like the 

one above, but also the single capacities and sub-capacity that make possible 

                                                
34  Here we assume naturalism and reductionism as a premise (Nannini 2007; Daniel C. 
Dennett 1991; Daniel C. Dennett 1995). However, this approach is of course still debated in 
philosophy (J. Fodor 1975; McGinn 1999; Dreyfus 1972), so we are not suggesting that this is 
the only option available. 
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for a system the performance of a cognitive task. This makes of course easy to 

make the transition from capacities to functions and say that every cognitive 

capacity is defined by the input that it gets and the output that it has to 

provides (Cummins 2000). This also qualifies cognitive capacities and sub-

capacities as functions, encouraging the computational explanation that 

permits to consider them as computational problems (van Rooij 2008). All of 

this has however to be summed up with some intrinsic characteristics of 

cognitive systems: they are epistemically limited by definition35, they are not 

concerned with general theories but with problems and solutions that are 

inherent in the capacities that they perform. 

These facts about cognition and cognitive science adds to the fact that is 

now possible to reinterpret simplicity in a cognitive fashion without fear of 

being too dispersive. If a living organism can be considered a cognitive 

system, and is then able to express cognition through its cognitive capacities, 

it is also possible argue that for simplicity to have a part in this scheme then it 

must have an influence on the way in which systems perform. These 

considerations provide hints on how simplicity needs to be reconsidered in 

order to fit into cognition. Cognitive systems intrinsic epistemic limitations 

we have to conclude that the simplicity notion there at work cannot have the 

be scope of the one that has been tailored for discriminating between general 

theories. A prospective “cognitive simplicity” should instead be able to 

handle problems and solutions that are tied with the relative cognitive 

capacity and are then limited in scope. Furthermore, the same notion should 

be tailored down so that its goal not the best possible theory, a but instead the 

solution that’s good enough. This because the solutions that are implement in 

and by cognitive systems are not always similar to theories. In the majority of 

case they look more like shortcuts and heuristics to which it is difficult to 

                                                
35 They possess a limited point of view on the external world and then they access only a part 
of the information present there. 
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apply an absolute criterion of preference of (Daniel C. Dennett 1995; Daniel C. 

Dennett 1991). If, then, a notion of simplicity can be translated into an 

effective cognitive principle, it should be able to account for the possibility of 

choosing (not necessarily consciously) only among the solutions that are 

really accessible to the cognitive system at hand and not among all the 

possible solutions to a given problem36. 

One attempt of satisfying even a part of these requisites has been 

proposed by Nick Chater and Paul Vitanyi (1999; and Vitányi 2003). 

According to their thesis a cognitive system naturally prefers simple 

explanation and solution whenever it performs a general cognitive task 

because of the actual way in which information is ordered and codified. It 

through this preference simplicity that cognitive systems are able to solve the 

problem of induction37, and then select only the relevant part of the available 

information. Chater and Vitanyi’s solution stands in considering simplicity as 

a fundamental property of the way in which cognitive systems interpret the 

external world into patterns. This is also why this proposal also grounds 

simplicity on a measure and, especially a measure of complexity. Without a 

measure, it would indeed have been difficult to provide an explanation on 

how the preference is awarded. The measure that the authors use as reference 

is that of the compression of data. A notion of complexity that, as we have 

seen in chapter one, is closely tied to that of Kolmogorov complexity. This 

measure provides an indication on how the data in a set can be compressed 

(Grunwald and Vitanyi 2003; Vitányi and Li 2000), and then on the possibility 

of them to be arranged in the most concise way and then easier to  

computationally retrieve. According to this way of intending simplicity a 

cognitive system will always prefer those information patters that allow the 

                                                
36 That correctly models a cognitive capacity. 
37 This problem is based on the fact that every model is always compatible to every possible 
finite set of data. This makes models always underspecified.  
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most compact encoding in respect to the data (Chater and Vitányi 2003, p. 20). 

If we take now a searching task in a perceptive field as an example, a 

cognitive system will process only the relevant information selecting through 

the perceptive spectrum and preferring those patterns that can be better 

encoded and compressed.  

However, beyond the description of the principle itself there is also 

another remark that needs to be done. Chater and Vitanyi’s account on 

simplicity is indeed a way of individuating how simplicity can be involved in 

the selection of solutions by cognitive systems. However, in the first part of 

this chapter we have also described how simplicity can be divided into two 

different, and not always symmetrical, aspects: elegance and parsimony. By 

applying this distinction here, we can see that the kind of cognitive simplicity, 

while cognitively sound, is not complete or exhaustive. On the one hand, it 

utilizes the one of the measures of complexity that has been the most 

associated with formal definitions of elegance. On the other hand, the 

formulation itself favours the way in which information is encoded and, then, 

its expression or extension. It should be concluded than that this kind of 

cognitive simplicity resembles more to elegance, rather than a complete and 

notion of complexity. What about parsimony then? Is it possible to 

individuate a version of this notion that is cognitively sound? In the next 

paragraph, we will provide an answer to this question and present our 

proposal for a cognitive parsimony. 

3.3 Towards a redefinition of parsimony 

Like we saw in the first chapter the parsimony is function of the number 

of entities that a theory needs in order to provide and explanation. It 

addresses then the semantic complexity of a theory, leaving compactness to 

elegance or syntactic complexity. Thanks to Chater and Vitanyi’s proposal it 
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has been possible to at least individuate one possible example of how 

simplicity can be applied in cognitive science. While the requisites imposed 

by the study of cognition have been partially defined, it is possible to provide 

an integration so that a more exhaustive account can be reached. Cognitive 

systems epistemic limitation is not only expressed by the fact that they have 

only a partial access to the external world, but also by the fact that they have 

to comply both to ecological and constitutive constraints. The first are 

determined by the context in which the system is immersed and the task that 

it should perform. Shooting an arrow to a target, drinking a glass of water, 

answering a phone call or opening a door are all tasks that need to be 

performed in a timely manner to be successful. Conversely, the cognitive 

system has to comply with the fact that both its architecture and its 

implementation also impose serious constraints. Shooting an arrow can be 

effectively undoable if someone does not possess the strength for drawing the 

bow, or it is too tired to do that. Their concrete realization of cognitive 

systems makes then cognitive systems intrinsically resource bounded and this 

is in itself another side of their limitation. Acknowledging this aspect 

provides us with means rectify the simplicity principle: a cognitive system 

does not only have a preference for elegant information, but that it also 

applies a parsimony evaluation. This cognitive version of parsimony would 

not be a property of information, but it would instead be based on the 

resources that a cognitive system has available and to the requisites of the 

target problem. It will measure not the intrinsic properties of how 

information appears or can be encoded, but instead will try to account for the 

difficulty of a cognitive task. Of course, to do so it is crucial to clarify the 

nature of such resources and, therefore, approach a rigorous and clear way or 

measuring them while at the same time providing a threshold for 

determining where the plausibility limit should stand. This way we should be 
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able to reach a simplicity notion that is cognitively plausible and while at the 

same time being also philosophically complete.  

 For capturing cognitive parsimony has we have just defined we will 

again entrust computational complexity theory. In chapter one we have seen 

that this theory is a measure of the computational resources that a problem 

requires to be solved in function of the size of the input. As previously 

remarked, the application of this theory to parsimony requires of course to 

accept the possibility of computationally explaining cognition. However, 

doing so permits us to have access to a possible bridge between the resources 

of a cognitive systems and the computational resources of time and space. If 

cognitive systems are computational than it is possible to equate the problem 

that they solve to computational problems. This is especially true if the TCT, 

with its equation between computational tractability and cognitive 

plausibility, is taken into the equation. Doing so computational complexity 

definitely provides a threshold for distinguishing between those problems 

that are computationally tractable, and those that instead are computationally 

intractable. How such application works becomes clear when we consider an 

example. If we take again our search task form before, a cognitive system will 

not only apply a preference for patterns of data, but it will also have to 

evaluate the actual processing weight of those data and how this influences 

the intrinsic difficulty of the search task. Since not all the computationally 

tractable cognitive functions will be accessible from the start to a cognitive 

system, the choice among the various solutions will happen among those that 

are available. Also, because computational complexity is not a direct measure, 

but asymptotic, the preference for parsimony will not be absolute, but instead 

only relative to tractability. This way a plausibility threshold will be applied 

to contingent choice that does not apply to general theories but to local 

solutions.  
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According to these results we can now try to formulate a definition of 

parsimony that makes good use of tractable cognition. Again, like happened 

with OR and cognitive elegance, we will need to translate a notion into a 

principle of preference. By doing so we obtain this: in a finite set of accessible 

solutions a cognitive system will prefer the solution that is takes less time and 

less space and, therefore, is less cognitively difficult. This version of 

parsimony is indeed similar to the philosophy of science one. The number 

and the complexity of the entities being the defining factor that guide the 

choice between alternatives. 

For concluding we can now try a synthesis between cognitive elegance 

and the cognitive parsimony that we just proposed. A cognitively plausible 

and philosophically complete notion of simplicity is defined as that notion 

that guides the following methodological principle: a cognitive system will 

prefer, select and promote simple processes/solutions because they permit to 

express information in a concise way (cognitive elegance), and also because 

through such processes/solutions the task at hand can be practically 

performed in a timely manner (cognitive parsimony). While cognitive 

elegance will account for phenomena like saliency and information selection 

in the environment, cognitive parsimony introduces pragmatic limits that 

accounts in the intrinsic limits of cognitive systems. Like for their eminently 

philosophical counterparts the efficacy of both this aspect of cognitive 

simplicity stands in the possibility of reaching the right balance and 

compromise. A compromise that is indeed possible especially if we look at 

how the two measures of complexity adopter, Kolmogorov complexity and 

computational complexity, can partially overlap on some complexity classes 

(Fortnow 2004). The fact that an overlapping exists, instead of a complete 

identity is another point that corroborates how simplicity also in its cognitive 

form can be separated into to concurrent, but not coincident, aspects.  While 

non-exhaustive, these considerations provide a clarification of how 
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computational complexity fits inside different roles and adapts to goals that 

are different from the one originally thought. We started from a structured 

philosophical notion for evaluating theories and we ended with one  that can 

be applied to single  systems. The application needed some philosophical 

fiddling, but that is exactly the drive behind this thesis and confirms how 

theoretical thinking can be useful to fit technical notion into the wider scope 

of main frameworks. In the next chapter, we will go back and talk again about 

theories and we will have the opportunity to check how frameworks can be 

evaluated from the notion of complexity that they use. 
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Chapter 4  

Confronting dynamical and computational complexities.  

In the first chapter, we introduced the Dynamic Hypothesis (DH) as one 

of the principal theoretical consumer of complexity. We have also have seen 

how DH has often been presented and characterized as one of the principal 

alternatives to the widely popular Computational Hypothesis (CH) in 

cognitive science. This is also reflected, at least intuitively, in the notion of 

complexity that this accounts expresses. What we are going to do in this 

chapter is considering in detail the type of complexity that DH shows. Then 

we will propose that while the theoretical distance that separates these two 

approaches may seem to be significant, there are good reasons, we argue, for 

reconsidering the nature of the relationship between the dynamical and 

computational ways of understanding cognition. This goal will be reached 

mainly through the claim that CH and DH, rather than being competitors, are 

complementary framework in the explanation of cognition. This, we suggest, 

becomes evident when the two different notions of complexity that these 

theories use are considered. What emerges from such analysis is that while 

these two notions of complexity can be different, they are not contradictory. 

DH, we recognize, uses a notion of complexity derived from dynamical 

systems theory that seems to points toward psychological plausibility, or 

richness. On the other hand, CH may appeal to a computational notion of 

complexity that introduces elements of cognitive plausibility in the theoretical 

framework of cognitive science, or plausibility tout court. In the following 

paragraphs, in order to test this last hypothesis, we will proceed as follows:  
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First we will consider how the debate between dynamicists and 

computationalists, started in the first place and what are the main features of 

DH and of its notion of complexity; Then we willl see how CH evolved and 

consider how complexity can be recognized inside the CH framework; 

following that we will take a look at how computational complexity applies to 

cognition by linking computational tractability with cognitive plausibility; In 

the end we will argue that if we take the two different notions of complexity 

by comparison there are elements to consider them not adversary on the same 

ground, but as complementary model of explanation. 

4.1 Dynamicism in details 

The computational theory of mind, or Computational Hypothesis (CH 

from now on), has often been regarded as the received view in cognitive 

science. That comes from the fact that it provided, through its analogy 

between the working principles of the mind/brain and that of artificial 

computers, one of the very first tangible model of cognition. Instead of 

considering the riddle of criticisms38 that it has received during history of 

cognitive science, we will concentrate on the debate between the supporters 

of CH and those philosophers and scientists that have proposed that a 

cognitive system should be intended as a Dynamical System (DH).  

The promoters of DH start from the premises that understanding natural 

cognitive system as dynamical models is radically different from considering 

them as computational systems. However it should be clarified that DH 

supporters are not interested in criticizing any version of CH, but they often 

concentrate on that hypothesis that has been called the "paradigm of the 

computer" (PoC) (Cordeschi and Frixione 2007). The PoC could be defined as 

                                                
38  In this paper we will not address the following critical points: the semantics/syntax  
distinction (Putnam 1960; Searle 1980; Searle 1992) or the computability tout-court of 
cognitive processes (Penrose 1999).  
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a pretty restrictive take on computationalism that can be synthesized by 

following statement: a natural cognitive system works following the same 

principles of digital computers. This is clearly restrictive, since it presupposes 

that computationalism always intends cognitive systems as Von 

Neumanesque general-purpose architectures. However, what we actually 

want to do is evaluate DH by considering the features of the explanatory 

model that it proposes and not in relation to how it defines its polemical 

target. So, for now we will concentrate on those elements that introduced 

genuine novelty in the cognitivistic debate.  

First it should be noted that DH is actually a twofold hypothesis (T van 

Gelder 1998) about the nature of cognitive system. The first weaker sense in 

which DH can be interpreted is called the "nature hypothesis" and claims that 

cognitive agents actually instantiate dynamical systems in those parts that are 

considered to be responsible for cognitive performances. The second takes the 

name of "knowledge hypothesis" and claims that natural cognitive systems39 

should not only be considered as dynamical systems, but they should also be 

modelled after dynamical systems. These two interpretations of the term 

dynamicism both make use of the notion of dynamical system. The notion of 

dynamical system, as often happens in cognitive science, is a borrowed one 

and it comes from mathematics and science where it has already found 

numerous uses and definitions 40 . However, for what matters cognitive 

science, is often considered enough to say that dynamical systems are state-

determined systems "with numerical states that evolve over time according to 

some rule" (Van Gelder and Port 1998, p. 5). Where for "state-determined" is 

intended that the current state (the set of variables) happens inside a state 

                                                
39 Since artificial cognitive system may well be computational, DH is a theoretical hypothesis 
only over the nature of cognitive systems that are found in nature and that have therefore 
naturally evolved.  
40 See van Gelder (1998, p.618) for a series of examples of dynamical systems in physics and 
mathematics. 
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pace41 (or phase space) and that this state determines, given an evolution rule, 

the future states in which that system may evolve in time. This means that 

natural cognitive system and the phenomena that are ascribed to them should 

be intended and modelled utilizing the same concepts used for describing the 

growth of a population of bacteria, the behaviour of an undamped pendulum 

or that of the solar system. There is no need for a sharp distinction between 

different processes, what's really important is the rate of change of the states 

of the system and the geometrical relations that develop in the state space. 

Everything cognitive has to be conceived, according to DH, as globally 

conceived and inherently relational. Systems are intended as a set of mutually 

bonded variables that evolve together in space (the environment) and time 

(they evolve simultaneously). These background features of the notion o 

dynamical systems have deep philosophical consequences and give to DH a 

set of very unique characteristics:  

Emphasis on temporal evolution: dynamical systems' processes are not 

modelled around a notion of discrete state succession, but it emphasizes the 

rate of changes of the variable of the system in the unit of time. It's not the 

order to be important, but the changing aspects of the mutually linked 

variables. At the same time this approach enables to consider cognitive 

systems not as a diachronic architecture, but as system that instantiate 

processes always working simultaneously and in real time; 

Emphasis on holism: with no distinction between central and peripheral 

processors, or between the brain and the mind, DH is a naturally embedded 

and embodied model of cognition (Thelen 1995). This means that, while there 

is no longer the need to sharply distinguish the mind from the brain and 

body, there's also no need to strongly separate cognitive systems from their 

environment. For these reason we can also consider DH as a naturally 

                                                
41 The space where we find all the possible state in which the system may be in. 
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extended theory about cognition (Clark and Chalmers 1998). Furthermore, a 

distributed, parallel and non-modular model of the mind can be easily 

conceived under DH, since there is no use for the notion of symbol and, 

therefore, for that of representation. These same features are responsible of 

strongly binding DH with a notion of complexity. In the following paragraph, 

we will go through the reason why it is so and what are the main 

characteristics of such a notion. 

4.2 Complexity in the dynamicist hypothesis 

We've already seen how DH re-imagines cognition as a continuous, 

interactive and geometrically organized phenomenon. What is achieved this 

way is a theoretical hypothesis that naturally conceives cognition as a 

complex phenomenon and cognitive systems as inherently complex systems. 

DH does so thanks to the relation between dynamic systems and dynamic 

system theory42, but also because under DH cognitive systems are considered 

as topological structures in which "the interaction among constituents of the 

system, and the interaction between the system and its environment, are of 

such a nature that the system as a whole cannot be fully understood simply 

by analysing its components" (Byrne 1998, p. viii).  

DH surely inherently presupposes a notion of complexity thanks to its 

emphasis on time evolution. In the real world, decisions have to be taken in 

split seconds and actions, as grabbing a cup and taking a sip of water, are 

needed to start and stop at just the right moment in order to succeed. All of 

that also seamlessly happens in complex continuum where a number of 

multiple processes all take place simultaneously and on different time-scale43. 

                                                
42  A branch of pure mathematics concerned with the behaviour of complex systems. 
(Alligood, Sauer, and Yorke 1997) 
43  Since there is not a discrete state subdivision different processes may well occur 
simultaneously but with different rates of change in the phase space. 
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However, DH doesn't only pose an accent over the necessity of intending 

cognitive phenomena as real-time processes, but it introduces also the 

necessity of interpreting cognitive systems as real living beings acting in a 

living real world. The same actions and decisions of before are not taken by 

idealistic systems or architectures. Furthermore, rather than showing a 

computer-like architecture, they are organized in a net-like structure of 

interdependent elements which apparently doesn't behaves like any Von 

Neumann architecture we know about. As a matter of fact, neuromorphic 

models of information processing, such as the artificial neural networks of 

connectionists, are considered by dynamicists example of dynamical systems 

44(Tim Van Gelder and Port 1998; T van Gelder 1998; Tim Van Gelder 1995b; 

Horgan and Tienson 1992). Understanding the CNS as a "single dynamical 

system with a vast number of state variables" (Tim Van Gelder and Port 1998, 

p.34) comes pretty natural under DH. 

Inside the dynamicist framework there has seen application in the 

modelling of decision processes (Townsend and Busemeyer 1995) and 

sensorimotor activity (Saltzman 1995). In linguistics DH has made feasible a 

semiophysical (Petitot 1992; Thom 1988) approach to some of the trickiest 

feature of natural language, such as linguistic meaning, compositionality, 

semio-genesis and lexical polysemy. Especially this last field of enquiry 

reveals another characteristics of the dynamical framework: qualitative and 

phenomenological aspects of cognition can be naturalistically explained 

(Petitot 1999) without the need for a reduction or an elimination. The 

flexibility of dynamical systems makes at least analogical explanations 

possible, so "even without an elaborate data time series, one can study a 

mathematical model which exhibits behaviour that is at least qualitatively 

                                                
44 However, while dynamicists are keen to acknowledge artificial neural network as genuine 
dynamical systems, they often consider connectionism itself as an unfinished attempt at 
overcoming computationalism (Tim Van Gelder and Port 1998, p.32) 
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similar to the phenomena being studied" (Tim Van Gelder and Port 1998, p. 

16). 

In conclusion, we can now safely affirm that complexity is indeed a 

fundamental element of DH. Cognitive systems qualify as complex systems 

when considered dynamically because the model is closer to the reality of 

actual cognitive agents. By doing so DH places cognitive systems in real time 

and poses it in relation with a naturally complex environment. What 

complexity does in DH helping at closing the gap between the mind and 

body. Cognitive phenomena don't have a set of (computational) restraining 

them and the same goes for the actual architecture of the cognitive systems. 

Avoiding the constraints of computationalism helps at reconsidering the way 

in which a cognitive system is said to be cognitive in the first place. A 

dynamical cognitive system qualifies as cognitive thanks to what it does and 

not because of what it is. The dynamicist model does not define cognition in 

top-down way, but instead is the model that has to adapt in order to reach a 

better understanding of the explanandum. This give to the notion of 

complexity in dynamicism a quite specific flavour. In DH complexity is 

introduced not only in order to close the gap between models and reality, but 

also because there is a clear accent toward maximizing psychological 

plausibility. The actual constraints and limitations of the cognitive system are 

somewhat overlooked in order to reach a deeper understanding of those 

cognitive facts that were previously considered as irreducible or subject to 

plain elimination. Furthermore, This way of using complexity is a clear plea 

toward richness (Gervais and Weber 2012), namely the amount of details that 

a theory has to comply for to be considered an acceptable explanation for a 

certain phenomenon. On the contrary, computationalism apparently focuses 

on finding constraints in order to keep the complexity of cognition at check, 

dynamicism exploits cognition in order to make our explanation of it closer to 

the actual experience of a mind.  
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In the following paragraph, we will instead see how complexity works 

in the computationalist side of cognitive science. In contemporary 

computationalism complexity surely plays quite an important part but with 

very precise characteristics. 

4.3 The evolution of computationalism 

We have seen how criticisms coming from DH supporters focuses on 

what we have called the PoC version of computationalism. We also said that 

PoC actually tells a very reductive story about computationalism and in this 

section, before we get to properly analyse the computational aspects of 

complexity, we'll first look at how computationalism evolved in response of 

the numerous arguments and criticisms addressed to it. From what we said 

earlier about the theoretical background of DH, it's possible to synthetize all 

the criticisms against CH in the following two criticisms: 

 

1. CH treats cognitive systems as sequential machines. While cognition 

works in real time there is no indication that computational models of 

cognition may be able of doing the same; 

2. CH treats cognitive systems as they were general-purpose artificial 

calculator. In fact, a cognitive system is a very specialized architecture 

dedicated to a number of very specialized task. Furthermore, there seem 

to be no strong relation between the parallel and net-like structure of the 

brain and the strictly hierarchical architecture of computational devices. 

 

While apparently different these arguments really point in the same direction. 

What DH accuses computationalism of is to treat cognition as a much simpler 

phenomenon that it really is. CH is then considered insufficient for effectively 

explaining the complexity of genuine cognitive phenomena (Piccinini 2010b). 
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However, since the definition of the actual notion of computation has deep 

consequences on the characteristics of the theoretical framework, some of 

attention should be dedicated at analysing this notion and its evolution. 

The first accounts of computationalism (Putnam 1967) actually traced a 

strong analogy between the state of a cognitive system and the state of a 

Turing Machine that also survived in computational-representational theory 

of cognition (J. Fodor 1975). These theories surely suffered from claiming a bit 

too much about the nature of cognition. While Turing Machine is currently 

the best model of computation that we can account for on the general level, it 

may not be the best model for describing the kind of computations that can be 

found in the brain. Connectionist models (McLaughlin 2003; Rumelhart and 

McClelland 1986; McCulloch and Pitts 1943) have been proposed in order to 

address this "distance" between the kind of digital computer that we use 

every day and the kind of distributed machinery that is actually found in real 

cognitive systems. Through connectionism a weaker notion of computation is 

surely achieved. While computations of early models heavily relied on 

symbolic-representational information processing, in artificial neural 

networks simply there's no use for the notion of symbol. Further on, ways has 

been found so that computation may survive the departure from the also 

influential notion of representation (Piccinini 2006) without having to fall into 

a contradiction. Even arguments advocating for an analogic nature of neural 

information processing didn't rule out the hypothesis that neural computation 

may well be a case of analogic computation (Trautteur 1999), or even a 

specific case of neural computation (Piccinini and Bahar 2013). Accepting the 

specificity of the neural substrate of cognition lead to accept that a 

computational system doesn't have to be computational at all level (Piccinini 

2009). It can well be the case that computational processes may actually 

emerge from architecture that are only mechanical at the implementation 

level (Piccinini 2010a) and that, therefore, may even qualify ad dynamical. 
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From what we have seen, CH doesn't anymore take specific stance on 

what may qualify as computational. By doing so CH actually eludes a big 

deal of the original counter-arguments coming from dynamicist theories. 

Contemporary computationalism doesn't need to think at cognitive system as 

digital computers anymore and CH has become in response nothing more 

than "the view that intelligent behaviour is causally explained by 

computations performed by the agent’s cognitive system (or brain)"(Piccinini 

2009, p.1). Such a broad definition actually points out a very important fact: 

computation is indeed a flexible and therefore very resilient notion. Much of 

the explanatory constraints that DH considers unacceptable are derived from 

the strength of the definition of computation that is taken as fundamental. If 

in a cognitive system we can find processes that can be modelled in the form 

of an “effective procedure”, then that is now enough to consider that 

cognitive system as computational. What really is important is not the general 

definition of computation, but the fact that the cognitively-relevant 

computation is actually found in the brain, which is cognitive per se. It's 

through this weakening of the definition of computation that complexity 

makes its way into CH. A more general notion of computation surely is able 

to accept a wider range of possible implementation while at the same time 

satisfying the need for a more faithful interpretation of cognitive and 

neurocognitive facts. However, there are also drawbacks. By accepting a 

notion of computation that kept on becoming weaker and weaker, the actual 

constraints coming from the implementation level gradually start to become 

more and more important. In order to consider computational cognitive 

system in complex way an account should be found for those constraints that 

come from the neural substrate inside the very notion of neural computation. 

At the same time, also environmental constraints have to be considered in 

order to reach a complete representation of what it means to be a real 

computational cognitive system. Complex cognitive systems, even 
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computational one, need to be considered then as intrinsically constrained by 

ecological and material boundaries. The complexity of the cognitive system 

may be a useful element of a good computational theory of the mind, but that 

doesn't mean that we must consider the fact that even if a computational 

system is complex enough to implement cognition that doesn't mean that 

cognition shouldn't be simple enough to be executed by a computational 

system. 

4.4 Understanding complexity the computational way 

At the start of the present section we have seen that contemporary 

computationalism claims that cognitive processes are computations 

(Cordeschi and Frixione 2007; Piccinini 2009), hence that a cognitive process 

always expresses one or more computable function (Massaro and Cowan 

1993; Anderson 1990; Cummins 2000). We've also considered how applying 

complexity to CH leads, similarly to what happened for DH, to considering 

the cognitive system as a complex, more realistic, and architecturally 

constrained system. In the previous paragraph, we went in search for those 

constraints and we considered the option that cognitive systems should be 

considered as bounded. However, when talking in computational terms what 

we are looking for is a shift from plain computability to a version of it that 

admits the presence of certain performance boundaries.  

Starting from computability it's well known that not every function is 

Turing-computable 45 , but surely cannot pose too much of an obstacle. 

Computability checks are, for definition, inherently unbounded in a number 

of ways, and that is because they rely on an idealized computational model 

(the Turing Machine) that relies in infinite time and space resources (an 

infinite tape and infinite computational step). A function is computable in the 

                                                
45 See, for example, the halting problem (Davis 2004; Turing 1936). 
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classical sense if exists a finite effective procedure that halts after a finite 

number of steps, uses a finite number amount of storage and works for 

arbitrarily large set of inputs (Enderton 1977). This kind of solution has to be 

somewhat finite, but there's no a priori indication about how much memory 

or time does it needs in order to return an output.  

As we have seen cognitive agents must be considered as complex 

cognitive systems and then we have to account for a number of ecological and 

material boundaries. We've already pointed out how real world decisions 

have to be taken in split seconds and actions are needed to start and stop at 

just the right moment. So, cognitive processes are bounded at one end by the 

task that is requested, but they are also limited at the other end by the 

characteristics of the computational machine (the brain) that executes the 

computations needed in order to perform that precise task. However, there 

are no precise estimates of the real computational power of the human brain, 

but as we have seen only a number of good reasons to believe in the finiteness 

of our brain capabilities. It seems then reasonable to focus on studying the 

computational resources requested by those problems that (we believe) our 

computational brain has to solve in order to express the large array of 

faculties and phenomena that we usually call mind.  

If a cognitive system is computational and it's not trivially considered, 

then it has to perform not only the right effective procedure given the 

problem at hand, but it also needs to execute it in the right amount of time 

and using the right amount of memory in order for it to be cognitively 

feasible. This is a sense in which cognitive computations don't have only to be 

effective (computable) but also efficient and that has been widely explained in 

and introduced. The efficiency of computation is given by considering its 

tractability. As we have seen for this reason, the "tractable cognition thesis"  

have been proposed. This thesis claims that the mathematical theory of NP-

completeness (Garey and Johnson 1979), and computational complexity as a 
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whole, may provide the theoretical constraints needed to account for the 

boundaries recognized by the bounded-brain hypothesis and the need for 

computationalism to account for complexity. Computational complexity is a 

theory about the hardness of problems, a theory that studies then the intrinsic 

complexity of computational task. It analyses how the computational 

resources (time and memory) required for solving a certain computational 

problem rise in function of a certain input size46  and establish if certain 

cognitive problem should be considered as computationally tractable and, 

then, cognitively feasible. Considering sound this relation between 

computational tractability and cognitive plausibility it's not a trivial, because 

while it is true that cognitive systems seems to be somehow bounded at the 

neural level, there are also cases in which the human cognitive systems 

actually seem to solve computational non-tractable problems in the blink of 

an eye (van Rooij 2008, p. 954). So, in order to save the combination of the 

bounded brain hypothesis and tractable cognition there are two way of 

proceeding:  

We can presume that the information utilized by the cognitive systems is 

way less that presumed and by doing so reduce our input size, but that may 

come at the expenses of psychological plausibility (less behavioural cues may 

imply, in theory, less propositional attitudes); Or else we can fiddle with the 

tractability threshold, usually fixed at the polynomial level, in order to admit 

complex, but also tractable, cognition in conjunction with psychological 

plausibility. Has we have introduced in chapter 2 the second alternative 

seems more promising and applies a particular account on computational 

complexity, called parameterized complexity (Rodney G Downey, Fellows, 

and Stege 1999), in order to devise a refinement of the tractable cognition 

                                                
46 The length of the string representing the input. 
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thesis, the FPT-Cognition thesis47 (Van Rooij 2008). According to this view, the 

observation that some functions are non-tractable (non-polynomial) only in 

respect of some small aspects of the input (called the input parameter) may 

suggest that a number of cognitive capacities that are considered to be 

computationally non-tractable may be otherwise tractable in respect of a 

portion of the input size. This may also support the idea that it's not only the 

quantity of the input that constraints problem tractability, but also the quality 

of the input instances and, then, the theoretical and empirical criteria that 

define the available input contained in the information considered by the 

cognitive system. 

Apart from the actual paradigm being used, what is important for us to 

note is that this notion of complexity poses a strong accent over the necessity 

of reaching a cognitively plausible explanation of cognition. Cognitive 

processes don't have to be only accurately represented in a psychologically 

plausible way, but they also have to pass a tractability check in order to be 

considered cognitively plausible. In this sense, computational complexity 

takes the shape of the “plausibility” notion individuated by Gervais and 

Weber (2012): “the probability that a model is correct in the assertions it 

makes regarding the parts and operations of the mechanism, i.e., that the 

model is correct as a description of the actual mechanism”. This type of 

application tends toward an equilibrium between our naive experiences of 

cognition ad what we can reasonably think that our cognitive system may be 

capable of. In this equilibrium, however, it's the cognitive plausibility 

criterion that surely has the upper hand.  

 

 

                                                
47 That stands for Fixed Paramenter Cognition. 
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4.5 Two theories, two complexities and one goal 

Ultimately what should be noted is that the notion of complexity 

interested both in computationalism and dynamicism shares a commune 

element. In these theories, a complex approach always involves appealing to 

model of cognition and of cognitive system that shows much more adherence 

to reality. DH realizes so by making a plea for a more adequate model of 

explanation that actually encompasses a wider range of possible cognitive 

phenomena. In dynamicism cognitive phenomena are what makes systems 

cognitive in the first place, so theories about cognition have to adapt to certain 

feature of the mind instead of constraining it. CH, on the other hand, reaches 

a complexity by focusing on a weaker definition for computation and 

computational systems. However, by doing so, computationalism also has to 

account for the rising importance of the features and characteristics of the 

actual neuronal implementation and so it has to introduce certain elements of 

complexity in its framework in order to demarcate what's relevant for 

cognition and everything else. 

What both these theoretical hypothesis share is then the starting point 

Both of them are in search for a more satisfactory model of cognition. 

However, it is when complexity steps in that DH and CH part ways. In DH 

complexity is introduced with a clear emphasis toward psychological 

plausibility. Under this assumption the best model of cognition is the model 

that consent to better represent the range of cognitive phenomena usually 

ascribed to cognitive agents. Releasing cognitive science from the constraints 

of a certain computationalism makes possible to reach an explanation of 

cognition that's better because is more psychologically plausible. On the other 

hand, CH uses complexity the other way around. Computationalism had the 

progressive necessity of weakening its core notion of computation, but 

instead of embracing the primacy of psychological plausibility it has 
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implemented a notion of complexity with the explicit aim of restricting the 

range of what we can plausibly call cognitive. Linking computational 

tractability to cognitive plausibility provides a tool for accurately pinpointing 

a line of demarcation for distinguishing what's relevant for cognition from 

what, instead, is only a burden.  

So, these two approaches at complexity are indeed very different, but it 

should be worth considering that even if the notions utilized by DH and CH 

are pointing in different directions they are indeed not contradictory in any 

sense. Psychological plausibility (or richness) and cognitive plausibility (or 

plausibility) are both good prerogative of good theories in cognitive science. 

Maximizing these two theoretical properties requires reaching a point of 

equilibrium that, on the other hand, would maximize the explanatory power 

of the particular explanation at hand. The contradiction that started the 

dispute can be considered genuine only if DH is evaluated in relation to its 

original target. However, such polemical target has gone through an 

evolution of its core notion so deep that it could be reasonable to argue that 

the eventual differences between a neural computational system and a 

cognitive dynamical system may null or negligibly small. In conclusion when 

we take into consideration the notion of complexity entailed by the dynamical 

and computational approaches what emerges is a concurrent relation between 

them that make them complementary in the journey toward a satisfactory 

theory of cognition.  
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Chapter 5 

Another way of measuring complexity 

In the latest two chapters, we have seen how complexity interacts with 

particular theoretical notions (simplicity being the case) and how it also 

influences and characterize entire frameworks (dynamicism and 

computationalism). Both the above cases make use in different degrees of 

computational complexity and then of a measure of complexity that we have 

learned to know better in chapter 2. Philosophy of mind is of course not 

devoid of other examples and that has been cleared at the beginning of the 

thesis. However, in the same occasion we have noted that different measures, 

or formal notion of complexity, are indeed interesting to look at because of 

the philosophical scope in which they find application. In this chapter, we 

will propose a slightly different take on the problem of assessing the role of 

computational complexity in cognitive science.  Here we will first introduce 

one of the principal theoretical proposal that use a notion of complexity 

rigorous enough to be actually measured, Tononi’s Conscious Complex 

Theory (CCT) (Tononi 2004b; Tononi, Edelman, and Sporns 1998; Tononi and 

Koch 2008; Tononi 2004a; Tononi 2010; Tononi 1998; Tononi 2012; Tononi 

2003). A theory that takes the name of conscious complex theory (CCT) a that 

explicitly aimed at explaining what are the key properties that a system has to 

possess in order to express a precise feature, that of consciousness. In the 

second part of the chapter we will introduce computational complexity into 

the equation and see how it fares against CCT. In the conclusion of the section 

we will see these two complexity theories differ and what kind of 

characteristics arise from the confrontation.  
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5.1 Complexity according to Tononi 

With the name of CCT we indicate the following thesis: human cerebral 

mechanisms express conscious experience because they perform a certain 

level of information integration. What is crucial of this thesis is the fact that it 

realizes a precise analogy between conscious experience and a notion of 

"information" that is not based on a special notion of content48, but on a pretty 

specific form of information that have been "integrated" by multiple cerebral 

mechanisms that are organized in what is called by Tononi a “complex”. this 

way Tononi recognizes one of the principal features of consciousneess: its  

inherently multimodal but, at the same time, unitary nature49 . However, 

beside the holistic element of consciousness just mentioned there is the 

necessity for a phenomenon, that is indeed minutely structured,  to access this 

multitude of different states in order to make integration possible. 

This is exactly the sense in which Tononi understands the relation 

between consciousness and "information". The internal distinction between 

the richness of numerous co-occurrent conscious states corresponds in a 

reduction of the uncertainty like the one that is obtained through a die roll. 

This theoreticla step leads Tononi into the adoption of Shannon’s information, 

a technical measure of information that we have already encountered in 

chapter one. As we have already said before SI performs a measure through a 

logarithminc encoding of surprise. Making an example will however be 

useful to catch the meaning of this: if we take the case of a coin toss, the event 

“obtaining head” will be determined by 𝑙𝑜𝑔+ 2 = 1  bit of information 

because only two possible outcomes are possible. The same can be applied for 

                                                
48 Like the one that may at the base of arguments like the knowledge of Mary (Jackson 1982) 
that about absent qualia (Chalmers 1996). 
49  The multimodal nature of conscious experience is confirmed by neurophysiologic 
phenomena like the refractory psychologic interval, that limits us to take only one conscious 
decision at a time in an interval of a few milliseconds (Pashler 1994), or the phenomenon of 
perceptive rivalry (Sengpiel 1997). 
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the tosing of a six faced dice, in this case we will have 𝑙𝑜𝑔+ 6 = 2,58	 bit. 

Even if taken, as it is, this way of measuring information may indeed seem a 

bit reductive when compared to the complexity of the human conscious brain, 

this notion serves as the foundation of Tononi’s thesis. However, due to the 

well known phenomenic aspect of consciiousness even an unfatomable 

amount of information would not be enough to explain consciousness. The 

solution of Tononi is to look beyond information in itself and instead go in 

search for those modalities that permit  the integration of different 

informational states into complexes. This is the reaosn why the mechanism of 

integration is at the heart of Tononi proposal of considering the capacity of 

integrating information necessary for consciousness. The evidences that 

ground this intuition come from a range of experimental findings in 

neurophisiology. The transition between automatic unconscious tasks  and 

conscious ones is accompanied by a clear change in the neuronal activation 

patterns. In the case of a new and unencountered before tasks, the neuronal 

activity show a widely distributed area of activation. The same task, once 

learned and automatized, will show not only a different pattern of activation, 

but also a different and more localized modality of it (Petersen et al. 1998). 

This phenomenon of neuronal segregation contextuale with automatic 

tasks seems to be provide and advantage in speed and execution economy, 

while paying a price in terms of context sensitivity and flexibility (Baars 1988). 

Furthemore, Tononi recognizes that all conscious tasks are also accompanied 

by activation of functional dynamical clusters that emerge in precise time 

intervals and are composed of neuronal units with a high internal coherency.  

These unit, or complexes, show a high propention at constituiting nervous 

links with other cluster as well as single neurons.  

It is such contextuality between conscious tasks and activation patterns 

that allows Tononi to suggest that such patterns, along with their functional 

characteristics, are to be considered the condition for consciousness 
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alltogether. Individuating the relevant neural correlates is a thing, explaining 

the reason why they are so is another and in Tononi ‘s theory such role is 

filled by the above mentioned information integration. Tononi’s arguments 

goes like this: if conscious experience is correlated with certain neuronal 

clusters, and if the property of such clusters can be individuated in 

information integration, then conscious experience will be strongly correlated 

with the capacity of a system to integrate information. This approach has 

indeed two main advatages: it practically allows to measure consciousness; it 

allows to evaluate the neuronal correlates and according to their presumed 

capacity of integrating information, hence their capacity of gathering 

themeselves into what Tononi calls functional cluster. In order to 

betterunderstand what are the implications behind this choice we have to take 

a deeper look into che technical notion that Tononi uses in its thesis. As we 

have previously mentioned Shannon’s information, or entropy, is a measure 

of uncertainty and can also be a measure as a measure of the states variability 

in a system. The following is the formal way of defining it:50  

 

1. Given a system X composed by a set of elements 𝑥7  so that X can 

assume 𝑚 = 1…𝑀 discrete states; 

2. Assume that any of these states is associated to a probability value 𝑝G, 

so that the sum is equal to 1; 

3. For X, entropy can be defined as follow: 

 

𝐻 𝑋 = − 𝑝G

K

GL*

	log+(𝑝G) 

 

                                                
50 See  Cover and Thomas (2006) for the full demonstration. 
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Being entropy a measure of uncertainty, its magnitude will be 

propotional to the number of equiprobable states that a system can take. The 

value of entropy will be instead equal to zero if the system X takes only one 

state with 𝑝 = 1 , that is certainty. Once that the entropy value has been 

considerates it is possible to investigate what really is a functional cluster 

according to Tononi and how to recognize it. At least intuitively it is possible 

to define a functional unit as a subsystem, a single indipendent (according to 

certain properties) part the main system. The same holds for cerebral areas: 

they are components of the brain that can be distinguished for anatomic and 

functional reasons. These functional reasons will make so that clusters and 

functional units will be statistically salient inside the main system. They will 

then realize a sort of “reduction of uncertainty” that can be captured through 

Shannon’s entropy.  This is exacly what Tononi’s suggests. By considering the 

subsets of a system, in this case the human brain, it will be possible to register 

the statistical dependedancies between the subsests themeselves and between 

each subset and the whole system. Again, this statistical dependency will be 

captured by a tool coming from information theory: mutual information (MI).  

MI “is the reduction in the uncertainty of one random variable due to the 

knowledge of the other”, (Cover and Thomas 2006, p.19). We can then 

formally define MI in the following way:Possiamo quindi rappresentare MI 

nel seguente modo: 

 

𝑀𝐼 𝑋QR; 𝑋 − 𝑋QR = 𝐻 𝑋QR + 𝐻 𝑋 − 𝑋QR − 	𝐻(𝑋) 

 

Putted in plain english: the mutual infromation between a (neuronal) 

subset and the whole systems is given by the sum of the entropies of the 

subset and the system without the substet minus the entropy of the whole 

system.  This way the actual contribution of the considered subset will be 

confronted with the original entropy of the system. It is important to note 
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that, contrary to what happens for entropy, MI is a positive and simmetric 

measure. It will assume the value 0 in case of statistical independency and 

every other positive value in case of statistical dependency.  

MI measures then the degree of relation that a subset has with its 

system. However, another component of a functional cluster to consider is 

also its internal coherency and complexity. It is reasonable to suppose that a 

“valuable enough” subset will display a high internal coherencly and then be 

also characterized by a high degree of causal dependency between the single 

elements that compose the subsystem. Following the same intuition that 

grounds the adoption of of MI, Tononi proposes again to measure such 

dependency by verifying the loss of total entropy in the subset itself.53  This 

loss of entropy is captured by Integration I(X) and is defined as the 

differences between the sum of the individual entropies of the components of 

a system and that of the entire system: 

 

𝐼 𝑋QR = 𝐻(𝑥7) − 𝐻(𝑋QR) 

 

I(X) will be zero if the component of the systems are statistically 

independent, vice versa instead if statistical dependency is present. Together 

MI and I account from one of the definitory traits of what Tononi calls a 

“complex”. Being that the capacity of taking the form of a coherent and 

cohesive functional unit that is the protagonist of a signitificant relation with 

the system in which the subset resides.  

If we translate the results above into a more cognitivistic vocabulary: A 

functional cluster can by consequence be defined as a subset of cerebral 

regions that displays a certain degree of integration I that is higher than the 

                                                
53 Here treated as a whole independent system in itself. 
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MI between the subset itself ant the rest of the brain. Both these measures find 

a synthesis into the following  Cluster Index (CI): 

 

𝐶𝐼 𝑋QR =
𝐼(𝑋QR)

𝑀𝐼(𝑋QR; 𝑋 − 𝑋QR)
 

 

From the above formula emerges that CI will rise proportionally with 

the value of I, representing the internal coherency and cohesion of the 

complex. Instead, the value of CI will be inversely proportional to MI, 

representing the fact that the relations inside the subset need to be stronger 

than those with the whole system. If CI is equal to 1 this indicates that the 

subset’s internal statistical dependence I is equal to MI. This means that the 

functional cluster is practically indistinguishable from the system that 

contains it. In this situation, no complex will arise inside the brain. CI is 

however not an assertive measure, but provides an indicative tool to 

individuate those neuronal subsets that effectively qualify as candidate 

complexes.  Once  a number of candidates are selected, it will be possible to 

further select those complexes that display the right feature to be considered 

genuine functional cluster so that their intrinsic complexity can be finally 

evaluated. It is in this final evaluation that we reach the full-fledged measure 

of complexity in which we were interested from the start. Tononi’s proposes 

that to find the right synthesis between the information expressed by a 

system54, the mutual information MI and the integration I, we have to address 

a measure of Neuronal Complexity (CN). The aim of this measure is “to 

estimate the average integration for subsets of the neural system of increasing 

size; that is, at multiple spatial scales” (Tononi, Edelman, and Sporns 1998, p. 

476).  To quantify then the difference that a cluster makes in a neuronal 

                                                
54 Here intended as a population of events all having a certain probability value. 
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system we should not consider a single subset, but all the possible 

combinations of subsets. This leads to the following formula:  

 

𝐶V 𝑋 = 	1 2 𝑀𝐼(𝑋QR; 𝑋 − 𝑋QR)
W

RL*

 

 

The measure of complexity here presented is function of the average MI 

between every subset and the rest of the system. C is high only if there are 

subsets in the system, if these qualify as functional clusters and if between 

these subsets are present enough statistical dependencies to imply the 

existence of a relevant and genuine functional relation with the system. The 

complexity C does make the case, in Tononi’s intention, for the information 

integrated by the complexes. This emerges from the following quote: 

“Complexity is mathematically equivalent to the average information 

exchanged between subsets of a neural system and the rest of the system, 

summed all over subset sizes. Thus, complexity provides a measure for the 

amount of information that is integrated within a neural system.”(Tononi 

1998) 

 Tononi’s claim can then be now rephrased as the following:  the 

human brain is conscious because it is an ensemble of dynamical and salient 

functional clusters that integrate states (information) into a unified scenario 

(consciousness). Beside indicating a measure of complexity (Tononi and 

Balduzzi 2009) also proposed and index, similar to CI, that expresses the 

value of integration that a certain functional unity can reach. The idea behind 

this further proposal is indeed linked to experimental practice and is based on 

evaluating how a subset reacts to a perturbation of some sort. The reaction 

that is obtained by consequence will provide an indication about the 

characteristics of the chosen subset. This intuition can be again translated into 
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a formal definition that characterize the integration index by generalizing the 

relative entropy (RE) on the power set S: 

 

Φ 𝑥7 = 𝐻 𝑝(𝑋Y → 𝑥*) ∥ 𝑝(𝑀Y
R → 𝜇*R)

K]∈_`ab

 

 

Again, we will provide a translation of the above formula so that its key 

elements are easier to handle. Tononi, in order to capture the sort of 

additional information that a cluster contributes to, proposes to evaluate the 

ER of the entire system in respect of the considered cluster. This cluster, 

however, does not have to a specific one. The whole system is decomposed 

into its littlest informative partition ( 𝜇G7W) . The integration value of a 

cognitive system, hence its complexity, will be as high as that of its 𝜇G7W.	 If 

such system can be partitioned into informationally insignificant and 

independent elements, then it will express low value of integration and 

complexity. Φ  can be considered as a measure of the causal relevance of 

the	𝜇G7W  , and then of the smallest functional cluster present in the system.  

If we go back to consciousness and integration again, we can suppose 

that it would be possible to track in the human brain architecture hints of this 

capacity of integrating different states. Tononi’s theory seems to be consistent 

with a certain number of theoretical conjecture and also with some 

experimental evidence. Thalamocortical regions, for example, are often been 

proposed as the seat of consciousness (Plum 1991) and this seems to be 

corroborated when such regions are considered under Tononi’s assumption. 

These regions show a value of integration that is, for example, much higher 

than that the cerebellum, which has a higher neuronal count. 
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Figure 1 Tononi (2004) An information integration theory of consciousness 

 

In the above figure we can see how the thalamocortical system, exemplified 

here through a model (Tononi 2004a),  possesses a integration value much 

higher than that of the cerebellum. In this case the correlation between the 

neuronal activity and the relative conscious states is determined by the fact 

that these regions behaves as complexes and are then able to integrate 

information accordingly. More evidence favouring Tononi’s account come 

from the consideration of cases of intense stimulation of wide cortical area 

normally associated with epileptic seizures. In these cases, even if a wide 

activation pattern is present, no functional cluster is able to emerge and then 

also no consciousness. Evidence may also come from the split-brain 

phenomenon, that may provide an example of the dynamic and flexible 

nature of functional cluster (Sperry 1976; Gazzaniga 2005). As already 

mentioned, Tononi’s framework also has various theoretical allies. The  Global 

Workspace (Baars 2005; Baars 1988) theory, together with the blackboard 

metaphor of Dennett (1991) and the Global Neural Workspace (Dehaene and 

Changeux 2011) are all accounts that support the idea of consciousness as a 

merger of states and provider of unified access to the external world.  

 Now that we have analysed Tononi’s proposal in detail we can shift 

our focus towards the way it can be collocated in the complexity landscape. 

Again, we will adopt the confrontation method and see how Tononi’s 
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complexity behaves when it is put against another formal measure of 

complexity that can be cognitively applied, computational complexity.  

5.2 Where does Tononi’s complexity stands 

In the first chapter, we have seen how complexity often takes the form of 

a synthetic measure that accounts for those features that are considered 

relevant for a system. Those features may be relevant for a particular 

cognitive capacity (mindreading) or for a more holistic property of the 

systems (being cognitive or conscious). There are also numerous formal ways 

to express complexity, however we have also seen briefly that such measures 

even though formal may not be theoretically transparent. Intuitively, they 

seem to behave more like tools and like tools are more suited towards certain 

applications. According to this idea it would be plausible to also evaluate 

Tononi complexity not only in a direct fashion, as we have done in the 

paragraph above, but also by considering the implications are behind it. Here 

we will argue that Tononi’s approach to complexity, besides being a formal 

and rigorous approach to complexity, has three characteristics that ultimately 

collocates it in a precise epistemological spot.  

The first aspect that we will consider comes from Shannon’s Information 

(SI) and then from the technical tools that Tononi employed to capture his 

idea of complexity. SI is really a notion of information, but as we have seen in 

chapter one, can be conceived as a notion that performs a measure of 

complexity. SI is influenced on the one hand by its reference unit, in this case 

the bit, and on the other hand the phenomenon that it has been designed to 

measure. These two elements make so that only statistical dependencies can 

be meaningfully and reliably treated by SI and, therefore, by all of its 

derivatives. Furthermore, the unit of measure itself if the consequence of a 

precise encoding and expresses a magnitude in function of the length of it. 
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That qualifies SI as a measure of complexity that favour notions such as 

description more than difficulty, or effort. Accordingly, Tononi’s complexity 

will plausibly share the same conceptual preference toward description. This 

appears to be consistent with the fact that this type of complexity seems 

particularly concerned with the organizational features of systems, the way in 

which systems last can be partitioned and the relations that are present in 

them. This would at least indicate that Tononi complexity could be indeed 

explicatively partial and then unbalanced toward certain problems, 

phenomena and notions. Taken in isolation this aspect would not be 

particularly problematic. However, when the particular application of 

Tononi’s account is taken into the equation it can bring to some flaws. 

This brings us to the second aspect of Tononi’s complexity that we 

consider interesting:  its link with consciousness. The complexity notion that 

he proposes is in fact openly domain-specific and tailored to the one 

phenomenon that is consciousness. This has two main consequence: the first 

is that if kind of complexity measured is unbalanced toward description it 

will remain unbalanced also in regard to the specific phenomena that it is 

addressing. The second consequence comes instead from the way in which 

complexity is employed. Tononi is not concerned with finding a definition of 

complexity per se but only in relation of complexity. He uses a measure of 

complexity as a condition for consciousness and builds on it the following 

argument: if a system express a certain value of complexity (equal or superior 

to the human one) then it will be conscious. For starters, this type of inference 

is inherently biased by the fact that the nervous system from which the 

neurobiological evidence is taken is the human one. If we add this to the 

above mentioned descriptive bias of the chosen measure of complexity, we 

have that not only the inference toward consciousness will be biased, but it 

will also provide a partial account on the nature of consciousness itself. All 

these points sum up to the fact that while in the intentions of Tononi his 
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complexity seems aimed toward individuating a sufficient condition for 

consciousness, what it really constitutes is only a necessary condition for it. 

This means that, while the architectural features individuated by this type of 

complexity are still crucial, they can be associated with other requirement that 

explain consciousness from another perspective. 

To better collocate the role that Tononi’s complexity in cognitive science 

plays we can now take into account David Marr’s widely cited level of 

analysis59 (Marr 1982) and our previous considerations about the status of 

computational complexity. Marr’s describes three levels at which an 

“information processing device” can be analysed: 

 

1. Computational level:  

Here the computational problem is stated through the definition of 

its presumed inputs and the desideride output. No indication is 

given here about how the computation is actually performed; 

 

2. Algorithmic level: 

Here a representation or algorithm of the computational problem 

stated in the first level is chosen and then defined. No indication is 

given about the actual concrete realization of such algorithm. 

 

3. Implementation level: 

Here the actual physical implementation of the algorithm that 

solves the original computational problem is defined.  

 

What we propose is a slightly different from the usual utilization of the above 

the above hierarchy. By considering the requirements of each level in isolation 

                                                
59  While Tononi’s proposal never explicitly mentions its “membership” to the 
computationalism framework, it also never rules out the validity of it.  
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we can individuate the characteristics that a hypothetical notion of 

complexity would need in order to be there applied. Such a methodology can 

then be used to extract a reference system that makes possible to hypothesize 

different explanatory roles for each of the complexity notions here considered. 

Computational complexity provides here a major hint on how to proceed. In 

chapter one we indicated that computational complexity is not a general 

notion of complexity. For starters, it is limited to the acceptance of the 

computationalist framework, and then of the possibility to have a 

computational explanation of cognitive phenomena, consciousness included. 

Furthermore, computational complexity cannot be general even in these 

computational explanation, but its application is limited to the computational 

level of Marr. That is given by the fact that computational complexity is a 

theory about the hardness of computational (computable) problems and not 

of specific algorithms or, even worse, physical computational systems. The 

taxonomy of computational complexity classes can only (or at least 

conventionally) be used at the computational level of Marr. From this follows 

of course the original need for the tractable cognition thesis to always have a 

translation of cognitive capacities into computable functions and therefore 

computational problems. If we apply now the same methodology to Tononi’s 

account we have the following: it utilizes a measure of complexity that favour 

description over execution, it is particularly concerned with the architecture 

of systems more than in their performance and it qualifies as domain-specific 

measure that is related to a single cognitive capacity or phenomenon, namely 

consciousness. The first two key aspects of Tononi’s proposal provide an 

indication of where to put its complexity inside Marr’s three levels, the 

implementation level. Some may argue that Tononi’s complexity doesn’t 

provide any information about the actual physical components of a conscious 

systems, but only of the organization requirements that a system should have 

in order to sustain consciousness. The implementation level has been indeed 
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thought as the seat for details about the implementation of computational 

systems, however we have to remember that complexities are not 

explanations. They are instead notions that are built upon explanations, 

model and theories, and then by consequence they will be an abstraction from 

the source theoretical substrate. The following diagram show how Tononi’s 

complexity notion fits inside Marr’s hierarchy: 

 

 

 

Tononi complexity is then a good tool for characterizing in a synthetical and 

practical way what are the architectural proprieties that a certain 

implementation needs to possess in order to support consciousness. 

However, there is also another last aspect to take into consideration before 

ending the chapter.  While the above characterization of Tononi’s complexity 

highlights its collocation in a cognitivistic and computational explanatory 

framework, it also accounts for its partiality and inherently biased nature. We 

have already hinted at the fact that even limiting our scope to consciousness 

this type of architectural complexity has the chance of only providing 

necessary conditions for it. This is only accentuated by the collocation inside 

the implementation level. A level of analysis that is inherently underspecified 

in respect of the original computational problem that stands at the other end 

of the hierarchy. No indication is given through Tononi’s complexity about 
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the effort that a cognitive system should take for performing conscious tasks, 

or about the resources that are needed for it and, ultimately if integration is 

actually a problem whose difficulty makes it plausible. If the complexity of 

consciousness should be evaluated completely and thoroughly these kinds of 

questions should be at least addressed. I see the application of the tractable 

cognition as a viable option here and, even if no formal model of “cognitive 

integration” in the sense of Tononi is available we can at least informally 

define the issue through the following steps: 

 

1. Integration is the base process that Tononi’s complexity captures; 

2. If the capacity of integrating multiple states is necessary for 

consciousness, then the complexity this capacity should be not only 

architecturally measured, but also translated into a computational 

problem; 

3. The definition of integration problem, once stated, should be considered 

under the tractable cognition requirements. Otherwise theory revision 

should be considered. 

 

Ways of exemplifying the process of integration that Tononi wants to explain 

and ground in complexity can be found, for examples, in technical 

applications like referential integrity utilized for merging data received from 

heterogeneous sources73, for which computational complexity results already 

exist (Chomicki and Marcinkowski 2005). The integration process is well 

defined on the anatomic and neurophysiologic part, but finding an accepted 

model of its neuronal implementation will take time. However, it is possible 

to partially find an answer though the evaluation of the various states that 

consciousness is supposed to integrate. What emerges from experiments and 

                                                
73  Systems that realize an aggregation under other unique coding of data from sources 
characterized by different originating forms of encoding (Liggins, Hall, and Llinas 2008). 
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from folk psychology seems to indicate conscious experience is indeed 

composed by numerous cognitive modalities. Among them we find of course 

phenomena like visual search, inferential reasoning, learning and also 

language production and comprehension (Dehaene and Changeux 2011). 

Various computational models proposed for the above-mentioned 

phenomena and capacities are however computationally intractable (Van 

Rooij 2008; Wareham et al. 2011) and since computational intractability travels 

from special cases to more general one, we may have good reasons to believe 

that the process proposes by Tononi may be intractable as well. For the time 

being the only cleat indication about the computational feasibility of Tononi’s 

proposal come from Maguire et al. (2014). Here the integration process is 

that’s crucial for the measure of complexity that Tononi’s uses is equated to 

“complete lossless integration” and evaluated as such. The authors conclude 

that, if the above equation holds, “complete lossless integration requires non-

computable functions“, meaning that one of the crucial premises of Tononi’s 

complexity may be computationally impossible. 

 For concluding, in this chapter we have evaluated a formal notion of 

complexity together with an application of it that is both philosophically 

relevant and cognitively relevant. The considerations that we have advanced 

and the results here considered corroborate one of the hypothesis that we 

have advanced in the first two chapters of the thesis. Complexity is indeed 

sensitive to its application and the investigation of it deeply enhanced by 

comparing different notions, in this case Tononi’s complexity and 

computational complexity, between them and in respect of more general 

explanatory framework (Marr’s three level). Applying this methodology to 

Tononi complexity made possible to assess its core aspects and characteristic, 

but crucially provided also additional hints on how computational 

complexity behaves in relation with other formal measure of complexity that 

can also be applied to cognitive phenomena and capacities. 
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Chapter 6  

Making mindreading tractable 

In this chapter, we will propose how the TCC can be applied to a 

specific cognitive capacity, namely mindreading, and see some of the 

consequences that the application of the thesis has not on the actual 

philosophical and psychological definition of it. Mindreading can be broadly 

defined as that cognitive capacity that allows an agent to understand, predict 

and explain his behaviour and that of other agents as well. This capacity also 

takes a number of other names and labels depending on the theoretical 

framework of reference. “Theory of mind” or “folk psychology” are only the 

most famous and adopted examples. Here however we will adopt 

“mindreading to refer to the range of philosophical concepts that have been 

introduced into the study of social cognition, but principally to indicate the 

actual cognitive capacity that takes external behaviours as input and outputs 

an interpretation for them. However, while a coarse functional definition of 

mindreading may be easy to state, determining how mindreading is actually 

able to perform such function is indeed tricky.  

A lot of different accounts have been proposed in the literature: ranging 

from the theory-theory account (Carruthers and Smith 1996), to the simulative 

account (Goldman 2006a) and, more recently, the enactive account (Hutto 

2015). It is important to remark that all of these different theoretical proposals 

do not differ in the actual role of mindreading and the phenomena that are 

correlated to it. The main theoretical culprit is instead the way in which 

mindreading works and that is reflected by the fact that the main controversy 

is indeed on the inferential nature of mindreading. That is on the fact that 
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mindreading is indeed based on a form of inference where external 

behaviours are premises and interpretations are the conclusions, in the 

middle stands the background (social) knowledge needed for the inferential 

step. The present solution is obviously advocated by theory-theory (TT) 

accounts of mindreading, but is also pretty popular in computational and 

bayesian modelling of social cognition capacities (C. L. Baker, Saxe, and 

Tenenbaum 2009b; C. L. Baker, Tenenbaum, and Saxe 1995; C. Baker and 

Tenenbaum 2006). Simulative (ST) and enactive accounts (a fortiori) both 

negate that and instead propose different ways in which mindreading should 

be intended: the first account propose that instead that on inference 

mindreading is based on mentalization and on the capacity of simulating 

actions and behaviour of our conspecifics; enactive accounts negate directly 

mindreading by proposing that simple action coordination, and maybe more, 

only needs automatic and non-representational behaviours. Both of the 

criticisms here presented are based on empirical evidence, but also on a 

plausibility argument. Inferential mindreading should be considered false 

principally because it is not cognitively plausible and, especially, too greedy 

on resources (Gordon 2009).  

In the previous chapters, we have seen how computational complexity is 

used by the TCC as a measure of plausibility for cognitive theories. Since the 

debate on mindreading is indeed centred around on the plausibility of it, 

seems plausible to try an application of the TCC in order to see how the 

mindreading capacity does react to various types of restrictions and how the 

philosophical claims on mindreading can be reconceived once that 

computational efficiency is taken into account. To do so we will propose the 

following applications: in the first section, we will consider the specification 

of the intentional content in the attribution of psychological states and argue 

that such a specification cannot be complete without strong indications of it 

being also computationally intractable; in the second and last part of the 
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chapter, we will see how Mindshaping, a theory that propose that the cultural 

and social context makes mindreading tractable, can be operationalized and 

pass the muster of formal computational complexity analysis. 

6.1 Mindreading, tractability and intentional content  

The following popular quote from Friedrich Nietzsche by itself may 

work as a sort of leit-motiv of the 20th century: "All that exists consists of 

interpretations"(Nietzsche 2011). Positivism instead refuses to attribute such 

an importance to subjectivism and stops at phenomena stating: “There are 

only facts and nothing more.” In opposition to this way of thinking I will 

imaginarily take the side of Nietzsche and say that facts are precisely what is 

lacking in human experience, all that exists has to consist of some sort of 

interpretations. We cannot establish any fact “in itself” and, in this time and 

place, it may even be nonsensical to aspire at the complete objectivity of facts.  

To the extent that knowledge has any sense at all, the world is knowable: but 

it may be interpreted differently, there is then not only one sense behind 

every phenomenon, but hundreds of senses. 

In the philosophical debate a number of objections have been proposed 

against this subjectivist way of reasoning. The supporters of "new realism" 

theories consider assuming that there is no direct access to the world simply a 

mistake. They refuse to accept that the data of experience exist only within 

conceptual scheme, and that in the end knowledge, much like human 

experience, may be nothing more than a bundles of opinions imbued with 

culture, language, symbolic forms, signs, and social conventions  (Ferraris 

2012; De Caro and Ferraris 2012). It is not true that the only epistemic space 

open for business is the market for different interpretations. On the contrary, 

the world is able to do a real friction towards our conceptual frameworks. It 
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draws, in fact, the field of those interpretations that are interpretations of 

something. 

There is a wide debate about hermeneutics, cultural studies, and the 

new realism. However, whatever you think about it, it is noteworthy that the 

wind of the interpretation has finally come to the field of cognitive science. In 

the late seventies and the eighties of the last century, several scholars have 

emphasized the idea that social relations are mediated by psychological 

interpretations. Among all the phenomena that seemed expecting to become 

the object of a process of interpretation, the race was finally won by the mind. 

From the objects of interpretation, such as texts and symbolic forms, the 

enthusiasm for the interpretation has come to engage directly with the 

individual who produces it, or, more precisely, his or her mind. It was 

virtually inevitable: if the interpretation refers to signs and symbolic forms, it 

does so by virtue of a mind. The signs, in fact, as Charles Sanders Peirce 

states, are always representations and these latter, in their turn, are 

representations only if they are considered to be part of the realm of the mind. 

In his words: "A sign is something which stands for another thing to a mind" 

(Peirce, 1873 - MS 380, my italics). 

Mental interpretation (or mindreading), however, is not an “all or 

nothing” phenomenon. It comes in degrees and has components. In the 

current literature, it is common to draw the distinction between two levels of 

mindreading (Goldman 2006b; Coricelli 2005). The first level is represented by 

a low-level simulation concerning the understanding of the aim of an action, 

and the other consists of a high-level simulation taking place in cognitive 

processes such as the taking of a different point of view from one’s own, and 

the so-called “counterfactual imagination”. The neurophysiological basis of 

low level of simulation mainly consists in the mirror system and in the 

cerebellum (Gallese et al. 1996; Rizzolatti and Sinigaglia 2008; Ito 2012; 

Perconti 2015).   
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High level simulation is an activity of projection which, to take place, 

must have an inner space in which to be based and from which to operate. 

Reflexive reasoning, i.e., the linguistic side of self-consciousness, is the inner 

space from which high level simulation proceeds in its attribution of 

intentions, and in its behavioural predictions (Perconti 2008). The idea that 

reflexive reasoning could work as a base for high level simulation, and as 

inner space for behavioural predictions, is also a way of making possible for 

simulationism to tackle the problem of the behavioural prediction in 

competitive situations. To explain behavioural prediction in competitive 

situations, in playing games, and in erotic stimulation, the simulationist’s 

approach must be able to distinguish between what I would do in 

counterfactual circumstances, and what, instead, I would expect that the 

individual I am simulating would do.  

Differently from the high level of simulation, the lowest one doesn't 

need any intentional attribution. Understanding the goals of the actions is an 

automatic process which relies on hard-wired mechanisms in the brain. It is 

not a conscious and voluntary activity. This means that we understand other 

people's actions, intentions, and emotions even without any conscious mental 

representation. Or, in epistemological terms, to understand an action goal and 

the others' emotions we can do without the intentional account on mental 

representation with its typical vocabulary made up of "aboutness" and 

"mental content". Moreover, in the low level of mindreading we haven't a 

"propositional content" and, then, we might do not consider the influence of 

language in its characterization. On the contrary, the high level of 

mindreading implies the whole theoretical framework of propositional 

intentionality. This means, among other things, that it is impossible to 

attribute a mental state, without attributing also a propositional content. 
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6.1.1 Specifying the intentional content 

The mischaracterization of the intentional content will be the main topic 

of the present paragraph. In order to attribute a mental state to another 

individual it is necessary to be able to specify its content. Both the theoretical 

and practical aspects surrounding this supposed specification is however a 

highly controversial matter. To appreciate the theoretical problem of how to 

characterize the intentional content in mindreading it can be useful to take 

into consideration how the attribution of representations to other animals 

works. According to Jacob Beck (2013), the state of the art on animal cognition 

depends on the conjunction of the two following theses: 

 

"Realism: Animals have causally efficacious cognitive representations 

with determinate contents. 

Indeterminacy: We are currently unable to provide precise linguistic 

characterizations of the contents of animal's cognitive representations" 

(Beck, 2013) 

 
Realism is supported by decades of empirical research in the field of 

animal psychology and cognitive ethology. After the collapse of the typical 

skepticism of 20th century on mental representation, "most animal researchers 

now accept that animal cognition involves operations over causally 

efficacious representations with intentional content - representations that 

characterize the world as being a certain way" (Beck, 2013, p. 520; my italics). The 

hard problem of realism regarding animal representations consists in this 

characterization. It is widely - but most of the times implicitly - accepted that 

it is matter of a complete specification. According to the mainstream 

perspective, to be able to specify a given mental content requires the ability to 

explicate all the properties included in that content. Without fulfilling this 
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requirement, it should be impossible to distinguish a given intentional 

content from another one. 

It is precisely because we are unable to provide complete 

characterizations of the intentional content of animal's representations 

(indeterminacy thesis) that one can suppose that other animals don't think at 

all. For example, this is the claim of Donald Davidson's in Thought and Talk 

(1975). Since we are unable to completely specify the other animals' 

intentional content, we come to the conclusion that they don’t possess have 

thoughts. The problem is with the role that language plays in the specification 

of the intentional content. This specification is, in fact, conceived as nothing 

more than the possibility of translating a certain animal signal in a 

corresponding linguistic expression. And this seems actually impossible since 

there is not thesaurus available for non-human languages. 

For this reason, Davidson (1975), as well as Daniel Dennett (1989) and 

Dale Jamieson (2009), believes that we have not to take too seriously the 

practice of attributing thoughts to animals. These attributions are useful 

explanations of animal behaviour, but they are not literally true and not 

necessarily reliable. In Beck's words (2012):  

"It is not literally true that scrub jays have beliefs about the food they 

cache, or that chimpanzees believe that bare branches facilitate termite 

fishing. Such explanations are to be taken no more seriously than 

explanations of a thermostat’s behaviour in terms of its ‘desire’ to keep the 

room at 72 degrees Fahrenheit, and its ‘belief’ that the room has deviated 

from that temperature.” 

It is a kind of interpretationism, i.e., the account on mental reality which is 

committed to the convenience of the intentional stance, but not to the 

ontology of the realm of the mind. We can attribute beliefs to other animals 

purely instrumentally, in an ontologically frugal way. However, if we take 
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seriously the ontological commitment in the animal cognition, we have to 

admit that the attribution of beliefs to other animals requires that we can 

accurately describe their intentional content. But, if this is the case, as Steven 

Stich (1979) maintains, we have to conclude that animals don't have beliefs at 

all. 

According to Beck (2013 p. 525), we should assume that "sentences have 

determinate contents, and that those contents are at least as fine grained as the 

sets of possible worlds circumscribed by their truth conditions". But, how 

should we consider the expression "at least" in the above proposition? The "at 

least" clause has more profound effects than one might expect. In any 

communication exchange the specification of the intentional content occurs in 

a partial way. In order to understand the intentions of other people it is not 

necessary a full understanding of their intentions. This may happen mainly 

due to time constraints and cognitive economy. Mindreading is a defining 

capacity of human cognition. It is believed to be always at work in our lives 

and also to be the basis of the human proficiency at social interaction and 

coordination. However, we should not fall to the temptation77 of considering 

mindreading a special and unbounded capacity that is free from limits. As we 

have seen in chapter two the human cognitive system as well as the tasks that 

it can perform both have boundaries. So, also mindreading should be thought 

as a tractable cognitive capacity, which cannot use more cognitive resources 

than those that are actually available. It is just this tendency inherent in the 

human mind that prompted the low level of mindreading to become a 

cognitive process which is largely automatic and involuntary. 

The above considerations lead us to think that we need a theory of mind 

that makes explicit the requirement of partial specification of the intentional 

                                                
77 Even the philosophical one. 



96 
 

content. In what follows we will try to show how this requirement may be 

grounded into computational tractability. 

6.1.2 From mindreading to tractable mindreading 

Having introduced cognitive tractability in chapter two we will skip the 

introduction of the tractable cognition framework and delve directly into the 

matter at hand. Mindreading as a cognitive capacity involves the ability of 

predicting and explaining other agents behaviour and the ability to 

discriminate agents in the environment and attribute mental states to them (S. 

Stich and Ravenscroft 1994). In order realize such a task a "mindreader" is 

supposed to use observable behaviour of other cognitive agents and attribute 

propositional contents in virtue of that alone. However, such a task seems to 

be utterly impossible to tackle because of the known problem of "holism" that 

mindreading has to face. According to that “any observable behaviour is 

compatible with any finite set of propositional attitudes, accurate 

propositional attitude attribution that is timely enough to make a difference 

to behavioural prediction in dynamic, quotidian contexts appears to be 

computationally non-tractable” (Zawidzki, 2013, p. 134). This version of the 

holism problem is indeed linked to various other philosophical problems that 

point toward the critical nature of many to many relation between sets and 

the capacity of making reliable inference from them. Hume’s induction 

problem states that “instances of which we have had no experience resemble 

those of which we have had experience” (Hume 2012). Also the frame 

problem (Dennett 1978) is in itself a statement about the impossibility of 

finding the right kind of restriction on a domain, so it may as well be 

considered as a reason for the supposed intractability of mindreading. Going 

back to holism, since it's logically possible for an indefinite number of 

behavioural instances to be mapped to an equally indefinite number of 

propositional contents possessed by an individual and vice versa, the search 
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space for a mindreading cognitive capacity will always be overly demanding 

and then computationally non-tractable. Furthermore, intuitively we may 

think that by adding a completeness requirement on intentional knowledge 

for propositional contents what we face is a situation in which the already 

overwhelmed mind-reader is burdened with another demanding task. 

Ironically however this may not be the case because if mindreading is 

inherently flawed by holism it also means that reaching a complete 

specification of the intentional content would be theoretically impossible and, 

a fortiori, also computationally intractable. In light of this, we will consider 

these two “flaws” of philosophical mindreading separately. 

Nevertheless, human mindreading seems to pretty solid and widely 

used in a huge number of social interaction. This is surprising especially 

considering the strict time constraints in which we usually operate such a 

task. So, if we rule out the hypothesis about the special and unbounded 

nature of mindreading and accept that cognition has boundaries fixed by 

computational tractability, we have to take into consideration ways of 

tackling the mindreading problem without assuming an unreasonably 

powerful theory of mind. The problem of mindreading has to be reconsidered 

in at least two ways: by refusing the completeness requirement on 

propositional content and then by defusing holism. 

As Zawidzki (2013, p. 161) notes, the problem of holism seems to be an 

almost exclusively philosopher's problem. Logical possibility surely opens up 

the chance for indefinite behaviours and mapping to propositional contents, 

but there are reasons to believe that “Human cognitive heterogeneity is easily 

overstated” (Zawidzki, 2013, p. 162) and that successful mindreading 

depends on the capacity of humans to overcome variability between 

individuals by relying on common social ground. In this sense the most of 

mindreading tractability is made out of social "mindshaping" processes that 

consists in a sort of sociocognitive priming over the most probable 
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propositional attitude given the social interaction at hand and the accessible 

behavioural cues. What this priming mechanism does is heavily rely on socio-

cognitive and situational constraints in order to reduce the search space of a 

hypothetical mindreader, integrating at the same time the type of 

psychological constraints advocated by the fast and frugal heuristic 

hypothesis (Carruthers 2006; Goldman 2006b). What should be noted is that 

even if this kind of evaluation surely try to reduce the possible inputs only to 

a small relevant set, even if Zawidzky is right about mind-shaping, there are 

doubts about the feasibility of fast and frugal heuristics (Van Rooij 2008; Van 

Rooij, Wright, and Wareham 2010). Moreover, there may also be concerns 

about the tractability of mind-shaping capacities themselves, since it's 

reasonable to think that they may rely on some of the cognitive capacities of 

mindreading, such as, for example, mental states attribution from behavioural 

cues.  

However, even if thanks to the proposals above holism cannot be 

considered a real threat to tractable mindreading anymore, a complete 

knowledge requirement of propositional contents it's still a problem for 

tractable mindreading.  If such a requirement has to be satisfied, even a small 

input set my not suffice since the information about the propositional content 

should already be completely available in the input set, making the inference 

from observable behaviour to propositional attitudes demanding and, more 

importantly, completely useless. Even considering a complete homogeneity 

between individuals it's quite difficult to accept the idea of a complete 

accessibility of information about propositional contents.  So, there are at least 

two way of proceeding from that: reducing further the presumed input size, 

but that may come at the expenses of psychological plausibility (less 

behavioural cues may imply less propositional attitudes, actually reducing 

the complexity of human interaction), or relaxing the already mentioned 

polynomial requirements for tractability in order to admit complex, but also 
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tractable, cognition in conjunction with psychological plausibility. The second 

alternative seems more promising and applies a particular account on 

computational complexity, called parameterized complexity (Rodney G 

Downey, Fellows, and Stege 1999), in order to devise a refinement of the 

tractable cognition thesis,  the FPT-Cognition thesis 78  (Van Rooij 2008). 

According to this view, the observation that some functions are non-tractable 

(non-polynomial) only in respect of some small aspects of the input (called 

the input parameter) may suggest that a number of cognitive capacities that 

are considered to be computationally non-tractable may be otherwise 

tractable in respect of a portion of the input size. This may also support the 

idea that it's not only the quantity of the input that constraints problem 

tractability, but also the quality of the input instances and, then, the 

theoretical and empirical criteria that define the available input contained in 

the input size. In the end, such a theory also supports the idea that in order to 

tractably compute an output not taking into consideration the complete input 

size not only doesn't constitute a problem, but it's actually may be the reason 

for tractability itself. 

Attribution of propositional contents may, in this sense, sufficiently on a 

portion of the input size (observable behaviour) and still be successful. 

Moreover, evidences such those that suggest the presence of a shared 

tendency to interpret the world in a dualist fashion may advocates for good 

candidates of mind-shaping processes for overcoming heterogeneity and also 

avoiding, performance-wisely, any completeness requirement. In the next 

section, we will take an in-depth look at how homogeneity and mindshaping 

influence the tractability mindreading and check if formal results actually 

corroborate further the hypothesis about the computational tractability of 

mindreading. 

                                                
78 Tha stands for Fixed Paramenter Cognition. 
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6.2 Does mindshaping make mindreading tractable? 

In philosophy and psychology of social cognition is often stated that the 

cultural and social context has a deep influence on mindreading (MR). 

Among the available theories the Mindshaping (MSh) hypothesis claims that 

computational tractability of MR is reached through mechanisms that make 

the social domain homogeneous. We will break down this core claim of MSh 

and investigate the possible influence of homogeneity on MR tractability. To 

do this, we take action understanding as a case-study for MR. This enables us 

to bridge the gap between informal claims and formal (in)tractability results, 

by operationalizing Mindshaping homogeneity in different ways. We aim to 

achieve three results. First, we illustrate how to ground the claimed effects of 

mindshaping in formal computational complexity analysis. Second, we show 

how this can reveal new ways of interpreting homogeneity. Third, by 

bridging the gap between informal and formal theory, we propose a way to 

formally evaluate theoretical claims about the potential effects of cultural and 

social context on MR tractability. 

6.2.1 Mindshaping, mindreading, culture ad tractability 

Mindreading (MR) is considered, together with natural language, to be 

one of the definitory capacities of human cognition. It allows agents to explain 

and predict their own behaviour as well as that of others. However, MR is 

also influenced by the cultural context. It has been proposed that it may be 

culture specific (Adams et al. 2010), culturally inherited (Heyes and Frith 

2014) and that this may also translate in better performances inside cultural 

groups (Perez-Zapata, Slaughter, and Henry 2016). Among these proposals 
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we find the Mindshaping hypothesis (Tadeusz W. Zawidzki 2008; Tadeusz 

Wieslaw Zawidzki 2013; Mameli 2001). This theory proposes that the actual 

contribution of the cultural context is to make MR possible in the first place. 

This is done by claiming that mindshaping (MSh) mechanisms complement 

MR so that the paradox of the intractability of MR can be solved. The paradox 

goes like this: while humans seem to be very good at reading other agents' 

intentions in a timely manner, theories of mindreading are computationally 

intractable (Alechina and Logan 2010; Apperly 2010; Tadeusz Wieslaw 

Zawidzki 2013) implying that cognitive capacities take unrealistic amounts of 

time to be computed (van Rooij, 2008). The intractability of MR is attributed to 

the problem of holism. This problem states that it is logically possible to 

associate any intentions to every behaviour, so that the intentions behind the 

actions of other agents will always be underspecified. However, also 

computational models of abduction corroborate MR intractability. Abduction 

is known for its computational intractability, meaning that the inferences 

postulated by these models require exponential amounts of time (Abdelbar 

and Hedetniemi 1998; Nordh and Zanuttini 2005; Bylander et al. 1991; 

Thagard 1993), unless several restrictions are introduced (van Rooij and 

Wareham 2007). The intractability of MR means that current theories cannot 

yet explain why people can do mindreading quickly. Rather than rejecting the 

theory outright, the paradox might be resolved by revising it instead. MSh 

claims to solve the issue by proposing that that behaviourally implemented 

cultural mechanisms "homogenize" the social environments and shape agents 

in order to be easily interpretable. Unfortunately, Zawidzky fails to provide 

any formal analysis in support of his informal claims, leaving a conceptual 

gap between philosophical and formal analysis unexplored. 

 In the remainder of the paper we will propose how operationalizing 

MSh core claims into possible ways in which special case of mindreading, viz. 

action understanding as modelled by Bayesian inverse planning (C. L. Baker, 
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Saxe, and Tenenbaum 2009a; C. L. Baker, Tenenbaum, and Saxe 2008) can be 

restricted. Our argument is threefold. First, we show how MSh core claims 

about the influence of mindshaping mechanisms can be reduced to 

homogeneity of MR. Second, after showing that action understanding can be 

considered as sub-capacity of MR consistent with MSh, we operationalize 

MSh core claims into parameters for action understanding (Blokpoel et al., 

2013). Finally, we show that some Msh-based restrictions on action 

understanding lead to tractability of MR, but others do not. Furthermore, by 

operationalizing homogeneity, we discover new ways of understanding the 

consequences of MSh assuming that MSh leads to tractable MR. While we do 

not claim that our operationalization provides an exhaustive picture of the 

effect of culture on MR, we aim to propose a way to reach formal clarification 

and methodology for evaluating how computational tractability can help in 

individuating aspects in need of theory revision. 

6.2.2 Reconstructing Mindshaping  

 First proposed by Mameli (2001) and later developed by Zawidzki 

(2009; 2008; 2013), MSh proposes that the success of human social cognition is 

explained by the fact that human mindreading is complemented, and not 

substituted, by a set of mindshaping mechanisms that "shape our socio-

cultural environment in ways that make coordination exponentially more 

tractable" (Tadeusz Wieslaw Zawidzki 2013, p.9). Otherwise, for the reason 

that we have seen above, MR is computationally intractable. Example of 

mindshaping mechanisms include: goal imitation, cognitive imitation, 

overimitation, the chameleon effect (Chartrand and Bargh 1999), pedagogy, 

norm following and self-constituting narratives”(T. W. Zawidzki 2013, p.144). 

What all of abovementioned phenomena share, according to MSh, is the 

characteristic of implementing social expectancy and conformity mechanisms. 
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These phenomena are at the base of the behavioural processes that 

"mindshape" the social environment interpreted through MR.  

 MSh takes a precise stance on the evolution of human social cognition, 

here instead we will focus exclusively on the consequences that MSh has over 

the efficiency of full-fledged human mindreading. Mindshaping mechanisms 

are hypothesized to positively affect the reliability of mindreading (Tadeusz 

Wieslaw Zawidzki, 2013, pp. 146-147). Reliability, however, is used by 

Zawidzki in two different (orthogonal) senses: accuracy and tractability. 

Insofar as explaining how mindreading can be tractable, the accuracy-sense of 

reliability is not relevant. It is possible that an intractable function is 

extremely inaccurate and it is also possible to have a tractable function that is 

accurate.79 

 One of the principal feature of the MSh hypothesis is the separation 

between MSh mechanisms and MR. According to MSh, the tractability of MR 

is not caused by directly modifying the workings of this capacity. MSh 

mechanisms are not components or modules (Zawidzki 2009; 2013) of an 

higher-level mindreading capacity. They are instead complementary to 

mindreading and work by modifying, or shaping, the socio-cultural 

environment that can be considered the actual input and search space of MR. 

In MSh the solution to mindreading intractability "lie(s) not within human 

mind readers, but, rather, outside of them" (Zawidzki, 2009, p.5). That is also 

reflected by the inherently relational and social nature of mindshaping, an 

aspect that can be easily linked to the fact that “a mindshaping mechanism is 

one that aims to make a target’s behavioral dispositions match, in relevant 

respects, some model” (Zawidzki, 2013, p.86). Where the model may be a real 

                                                
79 The issue of optimality is often used to associate intractability with accuracy, where it is 
claimed that intractability is caused by optimality. However, it is known that approximation 
(a relaxation of the optimality constraint) does not necessarily grant tractability. (van Rooij 
and Wareham 2012) 
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as well as virtual entity like a role-model or an abstract normative element. 

Through processes of socio-environmental pressure MSh’s mechanisms of 

conformity are selected and reinforced. Furthermore, the key elements of such 

processes will lead us to the last step in our deconstruction, the actual effects 

of MSh mechanism on MR tractability. 

 Msh implements conformity mechanisms that make the agents in the 

social environment behave accordingly to a normative model of some sort.  

Zawidzki calls this conformity homogeneity, and considers it the primary 

cause of tractability of MR (REF). However, given his informal 

characterization of MSh, it is imperative to break down the various way in 

which "homogeneity" may be intended. The first elements to assess is that 

homogeneity takes two forms in MSh: 

 

• Cognitive Homogeneity (CH): the form of homogeneity that comes 

from the common nature of the human cognitive system. This kind of 

homogeneity is considered responsible for the fact that humans share 

the majority of their propositional attitudes; 

• Mindshaping Homogeneity (MH): the form of homogeneity that comes 

from MSh mechanisms. This form of homogeneity is implemented in 

the socio-cultural environment at has the role of mitigating the 

variations that are brought by elements such like experiential history, 

motivation, attention, and memory.  

 

These two forms of homogeneity are not equally represented in the MSh 

framework, where the balance is shifted toward the second type. Here the 

claim is that MR tractability cannot be reached only with CH. MSh 

homogeneity is claimed to be a necessary condition for MR tractability. To 
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investigate this claim we have to further refine these two types of 

homogeneity and see how they can or cannot lead to tractability.  

6.2.3 Operationalising homogeneity 

As we have seen, Zawidski claims that MR is made tractable by a set of 

homogeneity implementing behavioural mechanisms. However, tractability is 

a formal propriety of functions and cannot be intuitively demonstrated. A 

way to clarify the influence of homogeneity may come from functionally 

defining MR in the following way: 

 

MR: a mapping from an observed social environment (consisting of observed 

behaviours, actions and context) and social knowledge to intentional attributions.  

 

It is known that some intractable functions can be tractable for a subset of 

their input domain (Downey & Fellows, 1999; van Rooij & Wareham, 2008). 

These subsets can be defined as restrictions on properties of the input. When 

the tractability of a function is obtained through such restrictions it is said to 

be fixed-parameter tractable for that subset of the input. Likewise, 

homogeneity’s influence on MR can be interpreted as in the following ways: 

As a restriction on the number of different occurrences; or as a limitation on 

the variability in a set. This latter sense can be linked from the start to 

cognitive homogeneity, since it seems to be concerned more with sharing 

intentions than restricting their number. The following are the ways in which, 

we propose, homogeneity can be interpreted when put in the context of MSh 

influence on MR: 

 

• Having a restriction on the number of available behaviours in a 

population; 
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• Having a restriction on the number of available intentions in a 

population; 

• Having a less ambiguities in the links between behaviours and 

intentions due to social knowledge. 

3.  

However, the exact nature of these restrictions will remain unclear until 

MR is not formally individuated. Currently cognitive science has no model 

for generic MR available. There are, however, computational models of sub-

capacities of MR. Here especially we will refer to human action 

understanding as modelled though Bayesian Inverse Planning (BIP). 

According to the BIP model, action understanding can be seen as a form of 

inverse planning, an abductive inference from actions to goals (C. L. Baker, 

Saxe, and Tenenbaum 2009a) guided by the principle of rationality 80 . The 

inferential nature of BIP is furthermore consistent with the version of MR that 

Zawidski’s MSh addresses. In his account, in fact, he refuses modularity, 

accepting by consequence the isotropy and abductive nature of MR (J. A. 

Fodor 1983; Heal 1996). Although, Zawidski acknowledges fast & frugal 

heuristics and simulation theory accounts of MR, his concerns for 

intractability of MR are based on the problem of holism and thus pertain to 

abduction-based MR.  Bayesian-inverse planning, although a sub-capacity of 

generic mindreading, makes for an acceptable first formal investigation of 

Zawidski’s claims given its abductive nature.  

 Taking BIP as our case-study we can now investigate the possible 

input-restrictions that can result from MSh for action understanding, and 

show which of these restrictions obtain tractability of this MR sub-capacity. 

The BIP model can be informally characterized as follows: 

                                                
80 “the expectation that intentional agents will tend to choose actions that achieve their desires 
most efficiently, given their beliefs about the world” (Baker et al., 2009, p. 2) 
 
 



107 
 

 

BIP: A mapping from a set of observed actions A, observed states S and 

probabilistic relations between actions, states and goals G to the most 

probable goals G given A and S. 

 

Blokpoel et al. (2013) have provided intractability results for several input-

restrictions of the BIP model. Such input restrictions take the form of 

parameters for the following elements of the BIP model:  

 

• The number of actions |A| that are observed by an interpreter; 
• The number of goals |G| that are inferred by an interpreter; 
• The number of available actions a; 
• The number of available goals g; 
• The inverse probability of the most probable goals 1-p, this is related to 

the probabilistic relations between actions, states and goals.  

 
While none of the above restrictions are by themselves sufficient for reaching 

tractability, there are combinations of them that gave the following 

intractability results. 

 

1. {|A|,a,|G|} is fixed-parameter intractable; 
2. {|A|,a,g} is fixed-parameter intractable. 

 

So, restricting |A|, |G|, g and a, by themselves cannot lead too 

tractability of action understanding. Since no results are known for 1-p by 

itself, it is safer to assume that restricting 1-p by itself also does not lead to 

tractability of action understanding. However, if the right parameters are 

restricted, then action understanding is computationally tractable. The 

following two results show that if either (1) or (2) or both conditions hold, 

then action understanding is tractable.  
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1. {|G|,g} is fixed-parameter tractable; 
2. {1-p,g} is fixed-parameter tractable. 

 
The above-mentioned parameterizations of BIP, the intractability results and 

the previously given interpretations of homogeneity makes now possible to 

operationalize homogeneity as we have previously defined it. Here we go 

beyond what is currently in the literature fleshing out more detailed effects 

that mindshaping might have, compared to given an overview of the 

mechanisms. 

 

• Restricting the number of observed actions |A|: 
 
|A| defines the number of candidate actions that an interpreter is 

actually following in order to infer the relative goal. The socio-cultural 

context can be seen as influent on the way action are performed, but 

also on the prescribed action for a given situation. This restriction can 

be seen as working in tandem with |G|, but even in combination with 

it tractability cannot be obtained. 

 

• Restricting the number of inferred goals |G|: 
 

If action understanding is to be tractable, then one option is for |G|, the 

number of possible goals that an interpreter actually pursues, to be small 

(together with g). If, within a social community, an actor would like 

his/her actions to be timely interpretable to others, then this actor might 

pursue few goals at a given time so as to make |G| small. This behaviour 

might be the result of MSh mechanisms such as habitualization, culture 

and ritualization resulting from MSh. 

 

• Restricting the ‘complexity’ of single actions a: 
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a can be seen as the maximum number of possible actions that are 

available at every point in time. This number is upper-bounded by the 

total number of possible actions that are available to a person. One way to 

interpret homogeneity is that a is limited in a certain population as a result 

of MSh.  

 

• Restricting the ‘complexity’ of single goals g: 

g can be seen as the maximum number of possible goal 
attributions available for the given inference. This number is upper-
bounded by the total number of intentions available to an agent. It is 
claimed that CH may result in a population where people’s sets of 
intentions overlap a lot (i.e., they share most of their possible 
intentions). This, however, does not necessarily restrict the size of that 
set and consequentially, it does necessarily restrict g. If anything 
restricts g, it seems there must be some not yet clearly defined MSh or 
MR process that does so. Due to the ubiquity of g in tractability results 
discovering these processes would be paramount for having a complete 
picture of the relation between homogeneity and tractability of MR. 

 

• Restricting the relations (i.e., probabilistic dependencies) between 
variables and the prior probability of variables such that the most 
probable goal attribution has a high probability, i.e., 1-p is low: 

 

The relational probabilities between variables can be seen as encoding 

the social knowledge that is brought to bear when inferring the most 

probable goal. The prior probabilities of variables can be seen as the 

disposition a person has towards particular unobserved variables (such 

as goals) at the time of the inference. This knowledge can, e.g., be 

shaped by pedagogy, norm following and imitation. 

The considerations made above show that Mindshaping homogeneity 

can be operationalised in many different ways. By themselves, the individual 
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operationalisations do not lead to tractability of mindreading. As we have 

seen multiple operationalisations need to be in effect simultaneously in order 

to render mindreading tractable, viz. g and |G| or g and 1-p. These two 

positive results, when linked with homogeneity interpretations, also reveal a 

gap in the array of otherwise consistent MSh effects. While one of the main 

claims of MSh is the importance of MH for the tractability of MR, the here 

considered tractability results show that a restriction on g is always necessary 

for MR tractability. The fact that no obvious link between the two types of 

homogeneity have been found with g indicates then a that a challenge to 

explain how a restriction on g is reached still remains. 

6.2.4 Discussion 

It is clear by now that multiple restrictions on action understanding are 

consistent with at least a part of the MSh claims. Even for a restricted case of 

mindreading such as action understanding, some of these restrictions have an 

effect on the tractability of this capacity, while others do not. This has 

important consequences for claims regarding the effect of homogeneity on the 

tractability of mindreading. For those restrictions that are consistent with 

MSh claims (viz. as |A|, |G|, a and 1-p), we now have formal proof which of 

these claims do and do not lead to tractability of a sub-capacity of MR. The 

same methodology can be applied to different computational models of MR 

capacities to further substantiate these claims. For those restrictions that are 

not (yet) consistent (viz. g) with MSh claims, these may point to yet 

undiscovered effects (and mechanisms) of mindshaping worth further 

investigation. In this way our analisys does not only provide a formal 

assessment of the claims about the effect of mindshaping on the 

(in)tractability MR but also provides a methodology that may lead to the 

discovery of new mindshaping effects and mechanisms. 



111 
 

Chapter 7  

The minimal complexity hypothesis 

In philosophy of mind and computation an age old question still stands: 

what makes a physical object sufficiently complex (Searle 1990) to implement 

computation? Having an answer is even more important now that we have a 

mechanistic proposal (Piccinini 2009) and the necessity of explaining concrete 

computation is felt as more urgent. In order to reach a satisfactory answer we 

sure need an adequate notion of computation (Fresco 2011), but it can be 

argued that is also important to possess an explanatory adequate and 

rigorous notion of complexity. 

Looking at how cognitive science came to terms with the bounded 

nature of the human cognitive systems will be of use in reconstructing this 

complexity notion. Here we take a look at proposals like "the bounded brain 

hypothesis" (Cherniak 1990) and "the tractable cognition thesis"(Van Rooij 

2008). The first grounds the bounded nature of the human cognitive system in 

quantitative neuroanatomy. The TCT employs instead both a rigorous notion 

of complexity and the computational framework. This complexity notion, 

borrowed from computational complexity theory, is utilized for demarcating 

between possible and plausible cognition. However, the complexity of a 

computational problem is usually considered insensitive to differences in 

computational models and their implementations (Van Rooij 2008). This 

complexity notion, therefore, makes the TCT clash with the intuitions that 

grounds the BBH, that is: the capacities of a cognitive systems, much like 

those of an artificial computer, must be somehow constrained also by the 

performance of the concrete computational machinery. 
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The TCT acknowledges the boundaries that the neuronal machinery 

poses on computational cognition only implicitly, but it mainly focuses on 

searching for the upper boundaries of cognitive/neural computation. 

However, in order to catch what makes a "physical object sufficiently 

complex" we need a kind of "minimal complexity" that accounts for the set of 

necessary and sufficient properties that makes the computational transition 

possible. In this case, we will look for complexity but the other way around, 

starting then from the implementation level. 

 One example may come from Tononi’s notion complexity (Tononi 

2008): a measure of the architectural properties necessary for a cognitive 

system in order to express a certain capacity. This notion of complexity 

captures a useful notion of "critical mass" for cognitive systems but only 

focuses on functional and organizational properties. A complexity evaluation 

should, however, not be limited to evaluating architectural features but 

should also consider efficiency and performance as relevant. That becomes 

evident if we look at the evolution of manmade computers, where the growth 

in performances and then efficiency played a big role.  

A notion of minimal complexity that accounts for the architectural 

articulation of systems and also for the efficiency that it reaches in expressing 

its capacities may avoid a pan-computational drift while not being too 

restrictive. Furthermore, it may help in bridging the gap between the upper 

two level of Marr's hierarchy and the implementation one. 

7.1 Setting the ground 

Most of the struggle, and the hunger for further developments, in the 

current debate on the Computational Theory of Mind (CTM) derives from the 

desire to be as much as possible inclusive in the definition of ”computation”. 

This tendency translated in two major trends inside the CTM. On the one 
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hand, we had the progressive broadening of the actual notion of computation 

adopted (Piccinini and Bahar 2013). As a matter of fact, contemporary 

computationalism has long abandoned the strong analogy between cognitive 

computation steps and state transitions of Turing Machine (Putnam 1975; J. 

Fodor 1975) and instead considers cognitive computations as “any process 

whose function is to manipulate medium-independent vehicles according to a 

rule defined over the vehicles” (Piccinini and Scarantino 2010). On the other 

hand, such an evolution calls for the definition of a criterion that makes 

possible to pinpoint the actual type of computations that cognitive systems 

have developed and the characteristics of the neuronal machinery that 

implement them. It is in order to respond to these two necessities that the 

mechanistic approach (Piccinini 2007; Fresco 2014; Piccinini 2015) introduced 

the distinction between a computational layer and a concrete functional layer. 

The latter of which takes the form of a system of functionally organized 

components (a mechanism) that possess all the relevant properties in order to 

implement computations. This has two main consequences for the CTM: it 

detaches the computational explanation from the functional ground whilst 

making possible to implement the same computation in an array of different 

concrete computing systems; it avoids an escalation toward 

pancomputationalism by considering as cognitively relevant only those 

systems that are mechanisms in the first place and that have the function of 

manipulating medium-independent vehicles83 by the means of an appropriate 

rule-set .  

However, if we set aside for a moment the considerations about what is 

possible in principle, we have to acknowledge that there are only two 

                                                
83  The requirement of medium-independency excludes an eventual mutual dependency 
between the intrinsic characteristics of the computational mechanisms and a certain 
computational model. This way the case of a single mechanism implementing only a single 
model of computation is ruled out.  
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concrete computational systems that really deserved our attention so far: 

man-made computers, and nervous systems. In reflection of that the 

sometime tacit, core of most debates, is whether brains and ordinary 

computers share similarities under the standpoint of computation or not, and 

in the first case to what extent. There have been certainly other entities for 

which, sometimes, a computational nature has been inquired like cells, 

proteins, of even piles of sand, but all these cases are derivation of speculative 

pancomputational drifts, rather than objects of genuine computational 

analysis. In this sense while it is possible to have a computational description 

for such entities they cannot be considered computational in the full sense. So, 

there is still space for asking what are the precise features that make this 

demarcation possible and if computational systems possess some intrinsic 

properties that distinguish them from non-computational mechanisms. 

However, it’s worth considering that when considering the two cases of 

computational system indicated above, a striking element of similarity, in our 

opinion, has been overlooked: the common medium offered by electricity.  

Following this intuition, we will claim that electrical elaboration should 

be considered as a fundamental ingredient of computational systems. In this 

perspective, the system, in order to make the leap from mechanical to 

computational system, has to possess the functional and structural features to 

support the much more efficient and flexible transmission of information 

through electricity. Also, we propose that the importance of electrical 

elaboration calls for an update of the criterion that separates computational 

and non-computational mechanisms. This update should be developed 

having in mind the following claim: in addition to the architectural 

requirements of a computational system we should also ac- count in the CTM 

for those crucial performance advantages that are consequence of the 

appearance of electrical elaboration.  
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In order to support this hypothesis, we will see how electrical elaborations 

appeared in both biological organism and man-made systems and what 

kind of advantages it has brought to the both of them. In the end we will 

propose that is possible to synthetically express the minimal set of feature 

necessary for a system in order for it to solve a computational problem by 

defining a form of ”minimal complexity” that accounts for the influence 

that certain performance characteristics have in relation to the capacities 

that said system can express.  

7.2 From mechanosensory to electrical elaborations in organisms  

It is not easy to mark a sharp transition from mechanical to electrical 

solutions in nature, since electricity is the key element that sets animals apart 

from all other living organisms, primary by offering them the inestimable 

advantage of motion. Even if electricity in animal kinesis is not the driven 

force, as in electrical motors, it is involved in triggering mechanical 

contractions.  

There are profound differences between electrical (and electronic) 

artifacts and animals. Man-made electrical power is mainly conveyed through 

metallic conductor. Computers, the artifacts managing electricity at a level of 

sophistication often compared to the brain, are made of semiconductors, such 

as silicon and germanium. Nature opted for the only electrical conductors 

compatible with organic materials: ions.  

The biophysical breakthrough of exploiting electric power in animals 

has been the ion channel, a sort of natural electrical device, whose details 

have been discovered only recently (Neher and Sakmann 1976). It allows the 

flow of a specific type of ion only, across a cellular membrane, and under 

certain exclusive circumstances only, typically being the difference in voltage 

between the internal and the external areas of the cell. The first ion channel to 

appear in evolution was the potassium K+ channel, which appeared about 
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three billion years ago in bacteria. It evolved into the calcium Ca++permeable 

channel in eukariotes, and finally into the sodium Na+ channel, already found 

650 million years ago in both ctenophora and early bilateria (Zakon 2012). 

From then on sodium channels became a widespread solution.  

The calcium ion appears as the electrical carrier shared between the two 

strategies of offering kinesis, by contraction, and giving control, with neurons. 

A theory has been proposed for the Ca++ ion channel, that unifies the origin 

of contraction triggering and neural signaling, as evolved responses to the 

ancient emergence reaction of cells to external calcium influx after membrane 

damage (Brunet and Arendt 2016). Intracellular calcium is highly toxic 

because it forms insoluble precipitates with phosphate, therefore all 

eukariotic cells are well prepared to detect calcium ions. The two major repair 

strategies are the contraction of an actomyosin ring around the local channel 

of calcium influx, and the exocytosis of vesicles that seal the damaged 

membrane. The first mechanisms evolved in muscle contraction, the second in 

neurochemical transmission at synapse.  

The key role of these two ions is confirmed by comparisons between 

extant species without specific Na+ Ca++ ion channels, such as fungi, and 

animals with simple nervous systems, such as ctenophora and sea anemone 

(Liebeskind, Hillis, and Zakon 2011), but many, if not most, of the details are 

still uncertain, and inextricably linked to a better understanding of the 

phylogeny of metazoans. Moroz (2009)proposed a hypothesis for the 

phylogeny of the neuron independent from the history of ion channels. One 

shared prerequisite of all neurons, from a genomic standpoint, is the capacity 

to express many more genes and gene products than other cell types. In fact, 

other cells can also exhibit massive gene expression, as a result of severe 

stress responses, and typically before death. Neurons might have evolved in 

ancestral metazoans from other types of cells, as the result of development in 
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the adaptive response to localized injury and stress, which gradually 

stabilized in cells supporting and maintaining the expression of multiple 

genes and gene products in normal conditions.  

Sodium and calcium ions dominate the scene in the brain. There is a typ- 

ical di↵erential distribution of ions inside and outside the neuron, with higher 

concentrations of K+ inside, and Na+, Ca++ and Cl concentrated more in the 

extracellular space. A characteristic of almost all neurons is an internal 

negative potential at rest, typically of -40 to -90 mV, due to an excess of 

negative charges with respect to the outside of the cell. This is due to the 

presence of organic ions, too large to leak across the membrane, and because 

potassium-permeable channels allow a continual resting efflux of K+.  

The minimal equipment for electrical control of animal kinesis is by mo- 

toneurons and sensory neurons. Motoneurons send signals to muscles that 

are transformed into mechanical actions. Acetylcholine, the most common 

neurotransmitter (Dale 1935), is released upon action potential by the 

motoneuron, and bind to nicotine acetylcholine receptors in the junctional 

folds of the muscle fibres, producing and end plate potential of the muscle 

junction. This potential, in turn, activate voltage gated Na+ channels in the 

muscle fibres, causing influx of Ca++ ions in the T-tubules, sort of folding in 

the muscle membrane. This way the circle is closed, with the contraction 

reaction to Ca++ influx, described above. For the animal to move on purpose, 

motoneurons should be activated by a minimal sensation of the environment, 

which is provided by sensory neurons, receptors that transduce a specific 

form of energy (chemical, mechanical, thermal, acoustic, light) into a change 

in membrane potential (Zigmond and Bloom 1999).  

Instead, neurons like interneurons are the basis of the electrical 

computation in the organisms, and both their dendrites and axon connect 

with other neurons, rather than muscle or receptors. The synapse is the 
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additional critical element to make a computational use of electricity. It is the 

synapse that allows neural system to be plastic, which is the secret for their 

ability to perform a huge range of computational functions (Bermúdez-

Rattoni 2007; Blumberg, Freeman, and Robinson 2010). The eminent role of 

the synapse in intelligent behaviour has roused interest on its origin and 

evolution, and motivated explorations even more challenging than those on 

ion channels and the neuron. A kind of ancestor of all synapses, the 

ursynapse, appeared in choanoflagellates about one billion years ago, 

evolving in protosynapse similar to the extant ones in cnidarian, around 700 

million years ago (Ryan and Grant 2009).  

With the growing of the computations performed between sensory 

neurons and motoneurons during natural evolution, it became more 

convenient to assemble together the computational part, with respect to the 

electrical part strictly related to mechanical control. This evolution can be 

traced in metazoans, with the ancient diffuse nerve nets of cnidarians and 

ctenophores, the bilobed ganglia in polyclade flatworms, more complex 

multiple cephalic ganglia in many gastropod molluscs, and complete brains 

in vertebrates (Roth and Dicke 2013).  

Mechanics and electricity are closely interwoven in all animals, still it is 

possible to conceptually distinguish the contribution of an electrical 

computation, in place of a mechanical approach, to a range of ordinary 

problems faced by the animal. Let take the very common and general 

problem of exploring the environment for rewarding places, for example food 

locations, for shelter, or mating. From the current position X of the animal 

there can be a set of new positions Y1, Y2, . . . , Yn potentially useful. The pure 

mechanical solution is to move from X in turn to each of the Yi unknown 

positions. Once reached, each position can be tested by the most primitive 

contact sensors, mechanical or chemical. Energy can be saved if the electrical 
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computation can screen out of the set {Yi} a smaller subset of candidate places 

for which it is worth paying a visit.  

A first way to accomplish this computation is by advanced high-

resolution vi- sion, which extends greatly the horizon of exploration beyond 

the contact space of the organism. Vision evolved from early phototaxis, the 

directional movement along a light vector towards (positive) or away from 

(negative) a light source. Marine larvae of animals with a pelagic-benthic life 

cycle use positive phototaxis to migrate upward in the water column, or 

negative phototaxis to migrate towards the benthic zone (Randel and Jekely 

2016). Advanced scanning vision, common in vertebrates, cephalopods, 

arthropods and alciopid polychaetes, involves a tremendous amount of 

computation, for depth perception, shape analysis, invariant recognition 

(Palmer 1999). The advantage stands in the possibility of selecting, in the 

exploration problem, a very narrow set of regions that are worth to explore 

mechanically.  

A further step in substituting electrical computation to mechanical 

strategies in environment exploration, is by storing previously visited places, 

and using appropriate algorithms in matching observed cues with memories 

of places. This is the innovation given by hippocampal place cells (O’keefe 

and Nadel 1978). An even more subtle cognitive computation can be applied 

by animals able to remember the episodes linked with place, in screening 

which one is worth to visit. Scrub jays make use of a form of episodic 

memory, that allows them to remember not just the places where they stored 

food, but also the time elapsed between caching and recovery (Clayton and 

Dickinson 1998). If the time is enough for food to degrade and become 

unpalatable, scrub jays use this computed information to save mechanical 

energy, avoiding the visit to caches of degraded food.  
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A different problem can be the selection of the tool appropriate for 

performing a certain action. In presence of a set {T1, T2, · · · , Tn} of tools, only 

one of which is appropriate for action X, the mechanical solution is to try in 

sequence all tools until the correct one is found. A better way is to run 

electricity in brain neurons, in mental simulations of the combination of a tool 

Ti with the action X, and decide which is correct, or at least shortlist the best 

candidates. Jane Goodall reported several cases of chimpanzees choosing 

directly sticks appropriate (in length and shape) for termite fishing, without 

overt behavioural trial and error (Goodall 2010). Julia, a chimpanzee raised in 

humanlike cultural environment, was able to determine mentally what kind 

of key was needed to open a locked box, without overt trial and error (Döhl 

1968).  

7.3 From mechanical to electrical elaborations in man-made systems  

Contrary to what happened for organisms following the transition from 

mechanical to electrical based human computing system, being a recent and 

well known history, is much more straightforward. Almost all the history of 

mathematics is scattered with inventions of mechanical devices helpful for 

some sort of operation (Goldstine 1980). Due to the influence of philosophical 

mechanicism, from 17th to 19th century a plenty of automata was built. For 

instance, Jacques de Vaucanson was popular in France for his mechanical 

creations, like the Tambourine Player, the Flute Player, and the Digesting 

Duck. The most acclaimed in history inherited their fame from the notoriety 

of their inventors, like the Pascaline, developed in 1645 by Blaise Pascal 

(Kistermann 1998). This machine was able to compute additions and 

subtractions of two numbers up to 8 digits. It did so by counting the number 

of rotations wheel, each corresponding to a digit, with a lever mechanism that 

takes care of a carry. Some thirty years later Gottfried Leibniz had the 



121 
 

conceptual idea for a machine that extended the calculations of the Pascaline, 

performing the operation of multiplication by repeated additions using a 

sliding carriage as counter and stepped-drum to store the multiplicand 

setting.  

The breakthrough from mechanical calculation of the basic arithmetic 

operations to general mechanical computations is due to Charles Babbage 

(Babbage and Babbage 2010). His first development was the Difference 

Engine, aimed at producing numerical tables of arbitrary polynomials up to 

degree six. The strategy was to use the values of the derivatives of various 

degrees at steps of integers of the polynomial variable, as in the Newton’s 

method of divided differences. This way, only the first value of the 

polynomial had to be calculated, the table of all other values can be 

constructed using additions only. Sadly, Babbage during his lifetime failed to 

actually construct any of the many machines he conceived and designed. 

Certainly, one reason was the extreme challenge of the mechanical 

construction beyond the technologies of that time. His second version of the 

Difference Engine was completed in 1991 at the Science Museum of London 

(D. D. Swade 2005). The machine consisted of 8000 mechanical parts and 

weights 5 tons. Its core is a set of 14 twin cams arranged in a vertical stack. 

Each of 14 cams has a companion cam the profile of which is a geometric 

inversion of its mate. The 28 paired cams control the lifting, turning, and 

sliding motions required to execute the repeated additions for the Newton’s 

method. This machine calculates and tabulates any seventh-order polynomial 

to 31 decimal places.  

Even if polynomials up to degree six are a powerful approximation of 

most useful mathematical functions, the Difference Engine is not yet a generic 

computer, a transition Babbage made in 1833 with the project of the 

Analytical Engine (Goldstine 1980). The design of this machine included 

programmability, by punched cards, the separation between the mill, the core 
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processing unit performing basic operations, and the store, in which the 

variables to be operated upon, and the results, are placed. All these functions, 

realized mechanically, were vastly more demanding than those for the earlier 

machine. The mechanisms for direct multiplication and division, required 

complexities well beyond those for the repeated additions in the Difference 

Engine. In 2010 Graham-Cumming launched Plan 28, a campaign to raise 

funds to build the Analytical Engine, no actual construction had been yet 

started.  

Without a physical exemplar of such machine it is di cult to discuss the 

limits of a mechanical man-made computation. From the point of view of the 

performances, Baggage achieved a capacity of 1000 numbers of 50 decimal 

digits for the store, and a speed of the mill of one multiplication per minute, 

and one addition per second. It is also problematic to assess the class of 

computational function the Analytical Engine can perform. In theory, its mill 

can form the basis for multistate logic, with logic state being physically 

manifested as a spatial configuration of the functional parts themselves, and 

state changes orchestrated by parts displacement.  

Reif and Sun (Reif and Sun 2003) conceived a mechanical system based 

on frictional contact linkages between components, instead of toothed gears, 

and sketched a mechanical system of rigid objects whose surfaces are 

composed of patches specified by rational coefficients. All objects interact by 

surface contact, and each patch can behave as either purely frictional or 

purely sliding. The system configuration is in term of all relative positions of 

the patches on the surface. The system evolves from an initial configuration to 

a final configuration. Reif and Sun went on to show that such a system can 

encode the configuration of the Universal Turing Machine. Of course, this is 

just an abstract demonstration, which can hold only if there is no error at all 

in the frictional and sliding motions. Still, it is interesting for our purposes, in 

that ideally a mechanical system may equate an electrical digital computer. 
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The important difference, as we will discuss later, is in the complexity of the 

problem that can be treated mechanically.  

Short after Baggage, electricity was beginning to being put to practical 

use, with the first large-scale electrical supply networks in the States, followed 

by radio transmission at the beginning of the 20th century. But mechanical 

computing devices were not immediately replaced by electrical devices, and 

the mechanical period for devices such as hand-held calculators, had a long 

overlap with the electrical era (D. Swade 2011). However, soon electricity 

became the principle of attention when the aim was to move toward general 

computation, as already proposed by Babbage. In several intermediate 

solutions electricity was combined with moving parts, essentially in two 

forms.  

A first form is interesting in resembling the primary use we found in 

animals of electricity for motion, rather than just computation. It is the case 

when the logic of the system is still purely mechanical, but driven by electrical 

motors. Howard Aiken’s Harvard MkI is an example of such solution. 

Electromechanical devices are those in which electricity drive directly the 

logic, even if through a moving part, like in contact-relay switches. Konrad 

Zuse in German adopted this transition, while Z1, his first computer 

completed in 1938 was purely mechanical machine, the next one, Z2, 

combined a mechanical memory with an arithmetic unit made of 200 

electromagnetic relay switches (Zuse 1982). Starting with ENIAC (Goldstine 

and Goldstine 1946), the computer built in 1943 at the Army Ordnance 

Department to quickly calculate ballistic missile trajectories in wartime, 

electricity began to sweep the board. Vacuum-tube, with no moving parts has 

a speed 1000 times that of switching relays. There is no way to compare in 

time the divergence between mechanical and electrical performances, a rough 

figure can be given for electromechanical devices, which are still in use as 

switches. A micro electromechanical relay switch nowadays is 1 million times 
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slower than a CPU gate, and consumes somewhat like 100,000 more power 

energy.  

7.4 Minimal complexity  

Recently the notions of complexity employed in cognitive science have 

followed two main approaches. One of these is Tononi’s proposal of 

employing a measure of the complexity as measure of the properties 

necessary for a cognitive system in order to express a certain capacity. As we 

have seen in chapter five such a measure is based on Shannon’s notion of 

information it increases as the system is capable of integrating enough 

information so that “the information generated by the system as a whole is 

more than the information generated by its part taken independently” 

(Tononi 2010). This notion of complexity, while capturing the key bug vague 

notion of critical mass for cognitive systems, does not have any relation with 

what the system does, what problem is it able to solve and, especially, why is 

it able to do that by a performance standpoint. It provides a useful insight on 

what kind of tool we want for measuring the overall architectural complexity. 

However, it ultimately fails to provide any insight about what problem such a 

system is able to solve and it focuses only on the capacity of expressing 

consciousness.  

On the other hand, approaches like that of computational complexity 

offer a completely different point of view on what we mean by the term 

complexity. In chapter two we have seen how computational complexity is a 

concerned with the hardness of computational problems. It analyses how the 

computational resources (time and memory) rise in function of  input size and 

classifies such problems in term of their tractability. Applying this theory to 

cognition produced “the tractable cognition thesis”. Through this thesis a new 

constraint is imposed on computational cognitive systems: cognitive 
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computations don’t have only to be effective (computable) but also efficient 

and therefore tractable. The hardness of the problem becomes in a way an 

indirect measure of the effort taken by the (cognitive) system to solve such 

problem. If a certain model of a specific cognitive capacity presupposes an 

intractable computational problem, then said model should be also 

considered explanatorily unfeasible.  

A couple of remarks should be made at this point. Introducing the 

tractability constraint inside the cognitive frameworks partially answers to 

our previous criticism against Tononi’s complexity. It provides an indirect 

way to account for the cost that the cognitive system has to pay in order to 

perform a certain function or implement a certain capacity. Cognition is by 

consequence no more considered as an unbounded phenomenon but has to 

come on terms with the limits of what can be conceived as computationally 

feasible. It should be anyway noted that while tractable cognition recognizes 

the bounded nature or cognition, it also acknowledges the invariance thesis 

and thus ignores the influence that the neuronal machinery may have on  the 

capacity of solving a certain computational problem. 

What if, instead, we would like to explore the intersection between the 

set of lower level-mechanisms (Milkowski 2013) and that of computational 

mechanisms by approaching it from the lower bound? In that case, we will 

still be looking for a complexity notion, but of a different kind from the ones 

that we have already considered and analysed. This notion of complexity 

would be one that tries to catch the very characteristics that makes the 

computational transition possible in the first place. In fact, if the two previous 

approaches to complexity share something is that they both try to pinpoint a 

way to define what does possessing a certain set of relevant features means 

for a system. However, what the appearance of electrical elaboration in 

organisms, the improvements that it brings in them and its ubiquity in the 

evolution of man-made computers seems to suggests is that accounting only 



126 
 

for the complexity of the architecture may not be enough when we look for 

this minimal set. We have to retain the insight on the bounded nature of 

cognition that tractable cognition provides adding to architectural 

requirements such as Wimsatt’s aggregativity (Wimsatt 1997) certain 

conditions on what kind of processing is actually executed and how such 

processing takes place. What the history of electrical elaboration points out is 

that the expression of a certain complexity level is not only limited to 

architectural feature but is actually pretty sensitive to the performance of the 

concrete computer too. That is indeed controversial because computation is 

often considered as medium-independent but that should not really come as a 

surprise. Architectural and performance-wise complexity are in reality deeply 

connected and that should be clear if we look at the second e third paragraph 

of the present chapter. Electrical elaboration presupposes the presence of the 

structural features needed in order to support electrical elaboration and the 

efficiency gains are a direct consequence of that, but not an epiphenomenon 

in respect to the capacity of the system. We’re not proposing to abandon 

medium-independency but we should at least allow for a weakening of it in 

order to make possible to include a bit of performance sensitivity in the CTM.  

However, in order to better define what we intend for minimal 

complexity we may find useful to borrow some elements from computational 

complexity. First and foremost, the focus on problems and what resources are 

needed in order to solve them. That is necessary because, contrary to man- 

made computers, there are no ways for estimating the computational power 

of organic systems. Minimal complexity much like computational complexity 

tout-court should then be measured indirectly. As we have already said 

computational complexity is mainly interested in lower bounds and takes a 

great deal of efforts in order to detach itself from the actual concrete 

computation. However, if we focus instead on those problems belonging to 

the complexity classes like L and P usually considered tractable, we may see 



127 
 

that the contribution of the system’s performance may become more and 

more relevant as the problem be- comes simpler. That is true especially if the 

system is in evolution and therefore susceptible to leaps and jumps in its 

computational power due to the progress of its underlying machinery. 

Phenomena of this kind can be observed also in man-made computers. Since 

the beginning, computational complexity had part of its motivation in the 

awareness of the unique progress in performances offered by electrical 

computation. Hartmanis and Stearns published the first work on algorithmic 

complexity (Hartmanis and Stearns 1965) in 1965, the same year when Moore 

formulated his famous law on the exponential increase in hardware 

performances (Moore 1965). The deeply investigated division between 

complexity classes P and NP is also important because it allows to tell 

whether a problem, currently too di cult, can be solved in the future thanks to 

the expected growth in computer performances, or not (Papadimitriou 2014). 

So, in conclusion, we consider minimal complexity as a property of problems 

and, particularly as the class of complexity of the simplest problem(s) that are 

tractably solvable by a computational system, but not by a mechanism.  

In the end, we can state that electrical elaboration suggests that 

mechanisms have to express a certain level of performance in order to be 

considered computational. The importance of that is captured by the minimal 

complexity that accounts for not only the overall architectural articulation of 

the systems but also the capacity of a system of solving certain problems for 

which certain performance characteristics are especially relevant. Including 

such elements becomes even more important if we consider that CTM is 

ultimately a theory about the nature of cognitive systems. The notion of 

minimal complexity is in fact perfectly neutral and when applied to the 

explanation of cognition, suggests that mechanisms have not only to express a 

certain level minimal complexity in order to be considered computational, but 
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also a certain level of minimal complexity in order to be considered 

computational and cognitive.  

7.5 And then what?  

Over the last decades, computationalism has been under attack by many 

critics [6] and has evolved in this regard. Connectionism, dynamicism, 

embodied embedded cognition and evolutionary robotics have been 

proposed as theoretical alternatives to classical computationalism. In CTM 

there are then two requirements to bring together: the seminal intuition, 

according to which cognition involves computations, and the risk for 

pancomputationalism, i.e., the idea that everything that’s understandable in 

computational terms is a computer. While one can be skeptical about 

computations as they are described in classical computationalism, it must also 

avoid to throw the baby out with the bathwater. The above considerations 

aimed to explore the possibility of a fundamental computationalim. A kind of 

computationalim more grounded in the reality of neurocognitive 

computation, based on two basic constraints: the role of electricity in the 

evolution of computational cognition and the “minimal complexity” of that 

the system has to express in order to be able to perform its function. Taking 

into consideration these constraints, we are finally able to at least better frame 

the possible distinction those systems that perform computations (natural or 

man-made) and other kinds of mechanisms that may be only computationally 

describable. Furthermore, the new notion of minimal complexity, even if still 

at a preliminary stage, also suggest a novel, and pretty unorthodox way, of 

utilizing computational complexity for cognitive science. 
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Conclusions 

We have started this thesis with the task of checking how complexity, 

and especially computational complexity, could improve our understanding 

of philosophically rich notions. We first looked at the philosophical and 

cognitivist relevance of complexity and of computational complexity after 

that. There we concluded that complexity is a notion in search of clarity and 

then we looked at how computational complexity could improve such 

situation by providing a rigorous but flexible way of characterizing 

plausibility. After that we moved on and shifter our focus on the applications 

that computational complexity may find in philosophy.  

In the second section, we looked at philosophical applications. The first 

application that we considered is that with simplicity. There we’ve seen how 

computational complexity may be used to characterize one of two aspects of 

simplicity, parsimony, that can be used by a cognitive system as a principle of 

choice between contingent solutions. The behaviour of complexity into 

theories has been then taken into consideration in chapter four. There we 

have concluded that different theories can be evaluated through the notion of 

complexity that they imply. The next point of our analysis has been the 

comparison between computational complexity and Tononi’s version of 

complexity. Through this comparison we’ve been able to see that different 

notions of complexity imply different theoretical approach and that the full 

cognitivistic explanatory spectrum needs more than one notion of complexity 

to be complete. Also, computational complexity has revealed to be more 

flexible than its counterpart, even if still more suite to capture notion like that 

of difficulty of execution and effort.  
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In the third section, we addressed more cognitively aimed applications. 

First we applied the tractable cognition thesis to mindreading in order to see 

how philosophical claims about this cognitive capacity can be re-evaluated 

and if they actually provide hints to ground formal analysis.  After that we 

went in search of a minimal notion of complexity and, in order to do so, we 

proposed an unorthodox way of applying computational complexity to 

cognitive science. Instead of working our way by the upper bound, like 

tractable cognition does, we went the other way around and looked at how 

computational complexity can also provide hints about the implementation 

requirement of cognitive system. 

Throughout our work we have achieved at least three goals: we assessed 

the philosophical relevance of computational complexity in cognitive science, 

we have seen how computational complexity scales and react when 

confronted with philosophical and cognitive notions. These are all relevant by 

a philosophical standpoint because they improve on our understanding of 

notions that can be applied to have an a priori evaluation of their validity. 

Furthermore, these results are relevant by a cognitivistic standpoint, since 

they provide a way of theoretically grounding technical solutions that, 

otherwise, would remain isolated in scope. 

Further work may comprise applications of tractable cognition to 

cognitive capacities different than mindreading, like consciousness for 

example, where would be useful to look at the computational complexity of 

problems that are thought to be at the basis. The same can be done for more 

exquisitely theoretical notions like relevancy, or for addressing known 

problems like the frame problem. 
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