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Abstract

Quantitative characterization of carotid atherosclerosis and classification of plaques is

crucial in the diagnosis and treatment planning. The degree of carotid stenosis is, up

to now, considered one of the most important features for determining the risk of brain

stroke. Carotid ultrasonography (US) has been shown to be a useful predictor of incident

cardiovascular events. Magnetic resonance (MR) imaging is an alternative approach

that can also be used to identify carotid plaque. Carotid MR imaging can accurately

depict plaque components, such as the lipid core, and it can be used to identify and

monitor vulnerable plaque. The aim of this study was the comparison of segmentation

techniques of US images to characterize plaque morphology and composition with the

3T MR, using US image as the gold standard. This analysis was conducted on 22

patients with pathology of the carotid arteries showed an on US examination of Sovraotic

Trunch. From each patient, a varying number of images has been taken to form the

final dataset. All patients underwent to a MR examination. The US data were obtained

as longitudinal cross-sections using a Philips iU22 ultrasound scanner with an L9-3

probe and included B-Mode (i.e. greyscale) and Colour Doppler image sequences. Then

all patients underwent to a MR examination on a 3T MR system with Sense Head

coil. The same plaque was evaluated by US and MR examination, relatively to size,

consistency of plaques, intima-media thickness. Concordance Correlation Coefficient

(CCC) was calculated on three extracted parameters to evaluate the consistency of two

methods. The subjects presented clinical and vascular risk factors. Two subjects that

have hypoechoic plaques not highlighted by MR were excluded. F-test no highlighted

significant variance differences between the two methodologies (p > 0.05). The values of

three plaque parameters obtained by automatic segmentation were highly significantly

correlated with those obtained from manual segmentation (r1 = 0.78, r2 = 0.84, r3 =

0.89, with p < 0.001). Our results showed a very high comparison between US and

MRI examinations. From the results obtained, there were no significant differences

between the two techniques. The minimal difference is, probably, related to the fact

that the US and MRI numerical data were obtained by the operator in a total manual
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modality. However, a limitation of our study is that hypoechoic plaques evaluated with

US methodical are difficult to detect by MRI. The obtained results could to argue that

MR examination is the most promising objective method.



Chapter 1

Introduction

In this chapter, after a brief description of atherosclerosis, diagnostic techniques

will be shown. In addition, we will describe the segmentation techniques to identify

a carotid plaque.

1.1 Atherosclerosis

Atherosclerosis is the major cause of carotid artery disease. It can begin in

early adulthood, but it usually takes decades to cause symptoms. Some people

have rapidly progressing atherosclerosis during their thirties, others during their

fifties or sixties. Atherosclerosis begins with damage to the inner wall of the

artery caused by high blood pressure, diabetes, smoking, and high cholesterol

specifically “bad” cholesterol or low-density lipoprotein (LDL). Other risk factors

include obesity, coronary artery disease, a family history of carotid stenosis, and

advanced age. Less commonly, carotid aneurysm and fibromuscular dysplasia can

cause carotid stenosis. People who have heart disease have an increased risk of

developing carotid stenosis. Typically, the carotid arteries become diseased a few

1



Chapter 1. Introduction 2

years later than the coronary arteries. Carotid stenosis is a progressive narrowing

of the carotid arteries in a process called atherosclerosis. Normal healthy arteries

are flexible and have smooth inner walls. As we age, hypertension and small

injuries to the blood vessel wall can allow plaque to build up. Plaque is a sticky

substance made of fat, cholesterol, calcium, and other fibrous material. Over

time, plaque deposits inside the inner wall of the artery can form a large mass

that narrows the lumen, the inside diameter of the artery. Atherosclerosis also

causes arteries to become rigid, a process often referred to as “hardening of the

arteries”.

Figure 1.1: A. Atherosclerotic plaque narrows the artery diameter, reducing
blood flow. B. The irregular surface of the artery wall can cause clot formation
that blocks the vessel or breaks off, travels downstream, and blocks a smaller

vessel.

There are three ways in which carotid stenosis increases the risk of stroke:

• Plaque deposits can grow larger and larger, severely narrowing the artery

and reducing blood flow to the brain. Plaque can eventually completely

block (occlude) the artery (fig. 1.1A);
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• Plaque deposits can roughen and deform the artery wall, causing blood clots

to form and blocking blood flow to the brain (fig. 1.1B);

• Plaque deposits can rupture and break away, traveling downstream to lodge

in a smaller artery and block blood flow to the brain.

Most people with carotid stenosis have no symptoms until the artery becomes

severely narrowed or a clot forms. Symptoms are most likely to first appear with

a mini-stroke, also known as a transient ischemic attack (TIA). TIAs result when

blood flow to the brain is temporarily interrupted and then restored. The symp-

toms typically last a couple of minutes and then resolve completely, and the person

returns to normal. TIAs should not be ignored; they are a warning that an is-

chemic stroke and permanent brain injury may be looming. Symptoms of a TIA

or an ischemic stroke can include weakness or numbness in an arm or leg, difficulty

speaking, a drooping face, vision problems, or paralysis affecting one side of the

body. Older people are more likely to be affected by carotid stenosis. Before age

75, men are more at risk than women. A person who has high cholesterol, has high

blood pressure, and smokes is eight times more likely to develop atherosclerosis

than a person without these risk factors. More than 500,000 new strokes occur in

the United States each year, and carotid stenosis is estimated to cause 20 to 30%

of them.

1.2 Diagnostic Tecniques

Diagnostic techniques to detect a carotid plaque are:

• Doppler ultrasound is a noninvasive test that uses reflected sound waves to

evaluate blood flow through a vessel. The ultrasound probe is placed on
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the neck over the carotid arteries. This test will reveal how much blood is

flowing through the artery and to what degree the artery has narrowed (i.e.,

100%, 80%, 70%, etc.).

• Computed Tomography Angiography is a noninvasive X-ray that provides

detailed images of anatomical structures within the brain. It involves inject-

ing a contrast agent into the blood stream so that arteries of the brain can

be seen. This type of test provides the best pictures of both blood vessels

(through angiography) and soft tissues (through CT). It enables doctors to

see the narrowed artery and to determine how much it has narrowed.

• Magnetic Resonance Angiography (MRA) of the neck is similar to the CT

angiogram. Contrast dye is injected through an IV to illuminate blood ves-

sels in the neck.

• Cerebral Angiogramis a minimally invasive test that uses X-rays and a con-

trast agent injected into the arteries through a catheter in the groin. This

technique allows to visualize all arteries in the brain.

1.3 Segmentation Tecnique

Segmentation of ultrasound images is essential for quantitative measurement

of plaques, by using markers such as shape, area, eccentricity and thickness [1].

Plaque-image segmentation methods allow to isolate the region of diagnostic in-

terest. Noise from the extracted plaques can be removed by using the image

despeckling methods. Texture features are subsequently computed over the seg-

mented images. Texture features are then used as inputs to provide an overall

assessment of the input plaque images [2]. In particular, in the plaque analysis,



Chapter 1. Introduction 5

the main problem is the necessity to recognize the contour and the data collection

is a crucial phase. Three types of methods may be used to obtain the contour are:

a) manual methods; b) interactive methods assisted by the computer; c) automatic

methods. Manual segmentation is laborious and increases inter-observer and intra-

observer variability [1]. Several algorithms for the segmentation of carotid arteries

have been proposed in Ultrasound (US) imaging. In the study of Loizou [3, 4],

various snake segmentation methods, with initialization based on the blood flow

image, were tested in the context of 2-D longitudinal images of carotid plaques.

The plaque was segmented in 2-D longitudinal images [5, 6, 7] by using a com-

bination of gradient-based segmentation, that is a snake segmentation method,

and a fuzzy K-means algorithm with an initialization based on pixel echogenicity.

In Golemati et al. [8], Hough transforms were used to perform the segmentation

of 2-D longitudinal and cross-sectional images of plaques. Recently, Computer

Aided Diagnosis (CAD) systems have been developed to improve the capability

of clinician to interpret medical images and to differentiate between benign and

malignant tissues [9]. The aim of this study was the evaluation of the ability of US

in characterizing plaque morphology and composition compared to the analysis of

the same plaque on 3T MR.



Chapter 2

Materials and Methods

This chapter reports the techniques used to segment the plaques carotid. We

reported the watershed algorithm used for automatic segmentation.

2.1 Study population

We studied 44 subjects, 22 with and 22 without carotid artery stenosis. All

subjects were randomly enrolled. The Watershed algorithm, implemented using

MATLAB 7.6, was tested on US images. For all the subjects, the analysis was

performed including the anamnestic risk clinical factors (diabetes, smoking, hy-

pertension, dyslipidemia). The patients (mean age 63.82± 16.66 years) presented

stenosis at common (CCA), internal (ICA) and external (ECA) carotid artery

between 20% and 60% with about 35% median and have all risk factors that gen-

erate the formation of atherosclerotic plaque. The 22 subjects without stenosis

(mean age 57.04 ± 21.04 years) presented very low risk factor levels. Detailed

6



Chapter 2. Materials and Methods 7

socio-demographic characteristics are summarized in table 2.1. The subjects were

recruited from IRCCS Centro Neurolesi ”Bonino-Pulejo” of Messina. Local Ethics

Committee approval was obtained and all subjects gave informed consent.

Table 2.1: Socio-demographic characteristics.

Patients
N. 22
Age (mean± SD) 63.8± 16.7
Smoker (%) 27.3
Ex Smoker (%) 31.8
Non Smoker (%) 40.9
Diabetes (%) 22.7
Dyslipidemia (%) 72.7
Hyperintension (%) 59.1

2.2 Ultrasonographic data acquisition

The CCA, ICA and ECA US data were obtained as longitudinal cross-sections

using a Philips iU22 ultrasound system (Philips Healthcare, Eindhoven, The Nether-

lands) with an L9-3 probe and included B-Mode (i.e. greyscale) and Colour

Doppler image sequences. The vascular carotid preset on the machine was used

(Vasc Car preset, persistence low, XRES and SONOCT on) and the gain was

optimized by the operator who is an experienced vascular sonographer. We used

44 Echo ColorDoppler images which were stored in a database to be read by the

algorithm automatically and sequentially.

2.3 MRI Protocol

The patients underwent a MRI examination with MRI scanner operating at

3.0 T (Achieva, Philips Healthcare, Best, The Netherlands), by using a 32-channel
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SENSE head coil. The MRI protocol included: T1 [TR=8ms, TE=4ms, slice

thickness/gap=1/0 mm, number of slices= 173, field of view 240 mm], T2-weighted

[TR=3.0s, TE=80ms, slice thickness/gap=3.0/0.3 mm, number of slices= 30, field

of view 230 mm], axial fluid-attenuated inversion recovery (FLAIR), as well as

magnetic resonance angiography (MRA) examinations that included an intracra-

nial 3D time of flight acquisition and an aortic arch through circle of Willis dynamic

[TR=10ms, TE=4ms, slice thickness/gap=1/0 mm, number of slices= 65, field of

view 200 mm]. The total examination time was of 21 minutes 26 seconds

2.4 Manual Method

The manual segmentation consisted of manual contour of the carotid plaque.

The manual delineations were performed by using a system implemented in Matlab

(Math Works, Natick, MA). In our study, after pre-processing phase, the plaque

profile on all longitudinal ultrasound images was delineated by a neurovascular

expert with more than 3 years of clinical experience and blinded to the presence of

plaques. The carotid plaque parameters were extracted and saved for comparison

with the automatic segmentation method.

2.5 Automatic Method

The dynamic series were retrospectively transferred as anonymized DICOM

(Digital Imaging and Communications in Medicine) files to the CAD system. The

algorithm implemented a series of processing steps. After reading the B-mode

image, to obtain a better segmentation gradient filter was applied (pre-processing
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phase). Watershed technique was used to segment the carotid plaques (process-

ing phase). The B-mode features included average signal echogenicity on plaque

region (features extraction phase), including finally, the classification phase of

plaques. The analysis of the images was automatically performed without any

user interaction.

2.6 Pre-Processing

The segmentation of Echo ColorDoppler images is difficult because of vari-

able imaging parameters, overlapping intensities, noise, gradients, motion, blurred

edges, normal anatomical variations artifacts. The ultrasound artifacts can be clas-

sified as to their sources which are physiologic (for, e.g., motion, different speeds of

sound, and acoustic impedance of tissues), equipment (dimension of the ultrasound

beam and the converter array), and technical imaging (mode B, spectral Doppler,

and color Doppler ultrasound) [10]. Therefore, before applying any approach to

carotid artery stenosis, there are generally two pre-processing steps that have to

be carried out: first, the removal of artifacts from images and second, the removal

of non-plaque features from the image. We considered 44 images, reporting the

results obtained on a single one (fig. 2.1) of a patient affected by a fibrocalcific

atherosclerotic plaque of 25-30% grade of stenosis localized in the bifurcation of the

common carotid artery. As we wanted to maximize performance of the image seg-

mentation methods, it was necessary to remove image in-homogeneities generated

by the bias field and suppress the random noise generated by digital acquisition.

This cause difficulties in applying techniques for the recovery of the contour of the

object. We have applied a filter for removal of artifacts from images. In particular,

we applied Sobel filter to detect edges of image. The Sobel operator calculates the
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gradient of the image intensity at each point, giving the direction of the largest

possible increase from light to dark and the rate of change in that direction. In

(fig. 2.2) we showed the obtained image with filter application.

Figure 2.1: US image of a 25-30% grade of stenosis localized in the bifurcation
common carotid artery.

Figure 2.2: Sobel filter image.
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2.7 Processing

To determine foreground objects in the image through Watershed technique,

we used the flooding algorithm [11]. Let the original grayscale image be I, the

gradient image λ Iis then computed. Image gradient is analogous to the hills and

hollows of a landscape, and the analogy is continued by imagining rain pouring

over the landscape, where the water falling on the landscape would flow down to

the minimum. Thus, in an immersive simulation of this landscape, water floods

from catchment basins when the altitude reaches the local maximum. A dam is

therefore built to prevent the basins from merging when two floods originating

from different catchment basins meet (fig. 2.3).

Figure 2.3: Watershed algorithm diagram.

Direct application of Watershed transformation on the gradient images produce

typically severe segmentation of the image, because of numerous minima: those are

present in real (gradient) images due to inherent noise. One possibility to get rid

of the false regions is the so-called ’marker image’ used to mark those regions that

require segmentation, although it is generally difficult to obtain relevant markers
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automatically without any interaction by the user [12]. A variety of procedures

could be applied here to find the foreground markers, which must connected blobs

of pixels inside each of the foreground objects. The markers computation was

done by using the morphological operations called opening by reconstruction and

closing by reconstruction to clean up the image from stem and dark spats and

removing the small blemishes without affecting the overall shape of the segmented

objects. We used erosion-based gray-scale reconstruction (2.1):

φ
(rec)
I (J) =

⋂
n≥1

εn(J) (2.1)

where εn(J) can be obtained by iterating n elementary geodesic erosion, which is

defined as (2.2):

ε(I)(J) = (J 	 b) ∪ I (2.2)

where b is the flat structuring element of size I and stands for pointwise maximum.

Followed by dilation-based gray-scale reconstruction (2.3):

Γ
(rec)
I (J) =

⋃
n≥1

δn(J) (2.3)

where δn(J) can be obtained by iterating an elementary geodesic dilation, which

is defined as (2.4):

δ(I)(J) = (J ⊕ b) ∩ I (2.4)

where b is the flat structuring element of size I and ∩ stands for pointwise min-

imum. These techniques are more effective at removing small blemishes without

affecting the overall shapes of the objects. The computation of the regional max-

ima of these reconstructed images is done to get smooth edge foreground objects.
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Then, we computed background markers and applied transformed Watershed for

segmentation. The obtained image after Watershed segmentation is a color im-

age in which the ROI found are colored. Finally, we superimposed this image

(pseudo-color label matrix) on top of the original image (fig. 2.4). Successively,

the algorithm applied the Cluster Analysis on some parameters extracted from the

plaques.

Figure 2.4: Image obtained with Watershed algorithm.
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2.8 Feature Extraction

To describe morphologic characteristics, 12 shape-based and texture feature pa-

rameters were calculated. The parameters extracted from each ROI are those that

are taken into account also by clinicians to describe the morphology of stenosis:

perimeter; area; distance; average signal echogenicity; centroid. For each ROI,

we considered the average signal echogenicity feature. This parameter is normally

expected to have values between 0 and 1 (non-plaque), (2.5):

0 ≤ EchogenicityMeansingleROI

EchogenicityMeanimage

≤ 1 (2.5)

If the output value exceeds 1, the system classified the region as plaques (2.6):

EchogenicityMeansingleROI

EchogenicityMeanimage

≥ 1 (2.6)

The regions that satisfy the condition (2.6) correspond to suspected regions so we

built a minimal set of three parameters: average signal echogenicity, distance of

image center and centroid. We have calculated the distances between each ROI

and the center of the image and we calculated the centroids of each ROI.

2.9 Statistical Analysis

Continuous variables were expressed as mean ± standarddeviation. A para-

metric analysis was carried out because the results of the Shapiro-Wilk normality

test indicated that most of the target variables were normally distributed. Anal-

ysis of variance, using Fisher’s exact test (F-Test) was used to assess whether a
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significant difference existed between data set obtained following different proce-

dures. The F-Test is highly useful when the aim of the study is to evaluate a

precision of a measurement technique. In fact, analysis of variance consists of

factorization of the total variance into a set of partial variances, which correspond

to different and estimated variations. For continuous data, the concordance cor-

relation coefficient (CCC) was used for assessing agreement between 3.0T and US

methods. The ICC considers the total variation in measurements across all of the

plaques and calculates proportion of the variation that can not be attributed to

method differences. The maximum ICC value is 1.00. Overall, ICC values above

0.75 indicate good reliability. Pearson correlation has been used to assess whether

there was a relationship between results obtained from automatic and manual seg-

mentation. Analyses were performed using an open source R3.0 software package

(http://www.r-project.org). A 95% of confidence level was set with a 5% alpha

error. Statistical significance was set at p < 0.05.



Chapter 3

Results

This chapter described the results obtained from manual and automatic seg-

mentation. These results show that there no statistically significant difference

between the two methodologies.

3.1 Fisher’s exact test

The F-Test was then used to verify that the data sets were comparable. For US and

MR we obtained no statistically significant difference between the two methodolo-

gies (table 3.1). Also, F-test no highlighted significant variance differences between

the two methodologies (p > 0.05). The values of three plaque parameters obtained

by automatic segmentation were highly significantly correlated with those obtained

from manual segmentation (r1 = 0.78, r2 = 0.84, r3 = 0.89, with p < 0.001).

16
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Table 3.1: Parameters obtained from manual and automatic segmentation in
US and RM image.

Parameters Manual Segmentation Automatic Segmentation
US Perimeter 66.60± 12.75 65.52± 11.42
US Area 523.91± 16.0 521.88± 16.85
US Mean Echogenicity 225.20± 15.67 226.12± 18.92

MRI Perimeter 67.89± 12.76 66.80± 12.54
MRI Area 522.91± 15.49 522.16± 16.10
MRI Mean Echogenicity 227.16± 17.14 226.80± 17.62

3.2 Concordance Correlation Coefficient

The mean perimeter, area and mean echogenicity obtained by manual seg-

mentation were showed in table 3.1, respectively, while those obtained by au-

tomatic segmentation were showed in 3.1. CCC was calculated on three ex-

tracted parameters to evaluate the consistency of two methods. The resulting

CCCs were significant for all the three parameters (mean echogenicity: CCC1 =

0.78(95%CI : 0.55–0.90); perimeter: CCC2 = 0.81(95%CI : 0.61–0.92); area:

CCC3 = 0.89(95%CI : 0.75–0.95). We analyzed also the variability of three pa-

rameters by the Bland-Altman Plot (Fig. 3.1).

Figure 3.1: Bland-Altman plots for interscan variability of three parameters.
A) Mean Echogenicity; B) Perimeter; C) Area.
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Discussion

Quantitative characterization of atherosclerotic carotid and plaque classifica-

tion are crucial in the diagnosis and treatment planning. The aim of this study

was the evaluation of the ability of US in characterizing plaque morphology and

composition compared to the analysis of the same plaque on 3T MR. The algo-

rithm allows to extract information about the descriptive morphology of the ROI:

the observation of the value of the average signal echogenicity demonstrates if this

feature is typical of the plaque presence or not. In a previous study [9], we have

developed a CAD system capable of discriminating the plaque from non-plaque

features and also to identify the location and size of each plaque in the US im-

ages. In addition, Cluster Analysis was used to solve the problem of undesidered

over-segmentation results produced by the Watershed technique and to reduce the

number of false detections. From the obtained results by ROC curve we can sup-

pose that our algorithm could be particularly helpful for an objective identification

of plaques. By the preliminary experimental results for 44 images, the proposed

method can almost find all regions that are plaques, with a diagnostic accuracy of

89%. In fact, we have seen that echogenicity significantly differs between plaques

18
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and non-plaques. To improve specificity without significantly reducing sensitivity,

morphologic features have been implemented in clinical routine as further diag-

nostic criteria in US image. Our algorithm uses the grayscale image converted

from the color image. These parameters had a translational impact related to the

segmentation of plaques with different characteristics of shape, size and contrast.

From ROC curve analysis, we have obtained that if the level of signal average

echogenicity is more than 236.8 (cut-off k = 236.8) the ROI is considered as a

plaque, with a diagnostic accuracy of 89%. CAD systems have been developed to

improve the capability of clinician interpretation of medical images and differen-

tiation between benign and malignant tissues [13, 14, 15, 16]. In this study, we

have applied the CAD images of US and MRI and compared the results obtained

by this automatic method compared to manual segmentation. The efficiency of

clinicians’ interpretation can be improved in terms of accuracy and consistency

in detection/diagnosis, while their productivity can be improved by reducing the

time required for reading the images [17]. The computer outputs are derived using

various techniques in computer vision to present some of the significant parame-

ters such as the location of suspected lesions and the likelihood of malignancy of

detected lesions. Generally, CAD systems are executable on all imaging modali-

ties and all kinds of examinations. Acharya et al. [18] recently presented a CAD

system using two different databases consisting of images that characterize the

textural differences in these symptomatic and asymptomatic classes using several

grayscale features based on a novel combination of trace transform and fuzzy tex-

ture. In this case, the accuracy in first database is higher than ours. Seabra et al.

[19] developed an ultrasound-based diagnostic measure that quantifies plaque ac-

tivity (the likelihood of the asymptomatic lesion to produce neurologic symptoms).

This information is used to build an enhanced activity index, which considers the
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conditional probabilities of each relevant feature belonging to either symptomatic

or asymptomatic groups. This measure was evaluated on a longitudinal study of

112 asymptomatic plaques and shows high diagnostic power. Also, in this case the

processing step consists of a manual segmentation.



Chapter 5

Conclusions

The automatic plaque segmentation and the developed characterization package

could be useful for clinicians to quantify the morphological and texture features

and to improve objectivity and efficiency the plaque interpreting. We demon-

strated that an automatic image segmentation system can be used to identify,

characterize and measure the atherosclerotic plaques in the carotid artery dis-

eas.The watershed algorithm is feasible and has a good agreement with the expert

neurologist. Our results showed a very high comparison between US and MRI

examinations. From the results obtained, there were no significant differences be-

tween the two techniques. The minimal difference is, probably, related to the fact

that the US and MRI numerical data were obtained by the operator in a total

manual modality.
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