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Abstract: We consider the description of open quantum systems with probability sinks (or sources)
in terms of general non-Hermitian Hamiltonians. Within such a framework, we study novel possible
definitions of the quantum linear entropy as an indicator of the flow of information during the
dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed
non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation).
Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case
of non-Hermitian dynamics in a classical bath are explicitly considered.
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1. Introduction

The study of open quantum systems is one of the fundamental problems of modern physics [1,2].
An open quantum system consists of a region of space where quantum processes take place (and which
can be studied by the experimenter) in contact with a decohering and dissipative environment that is
typically beyond the control of the experimenter. Various instances of concrete open quantum systems
can be found in different areas of physics such as, for example, quantum optics, atomic and mesoscopic
physics, biophysics or, at even shorter distances, nuclear physics. The interdisciplinary character of the
theory of open quantum systems calls for a variety of different approaches. Here, we are concerned in
particular with a formalism that adopts non-Hermitian Hamiltonian operators, a theoretical approach
that is routinely called non-Hermitian quantum mechanics [3]. The description of open quantum
systems in terms of non-Hermitian Hamiltonians [4] can be rigorously derived, in the case of a localised
quantum subsystem coupled to a continuum of scattering states, by means of the Feshbach projection
formalism [5–7]. Such an approach has been successfully employed to illustrate the complexities of
exceptional points, which do occur when resonances coalesce in a non-avoided crossing [4]. When
one uses the full non-Hermitian Hamiltonian, left and right eigenvectors [8–10] must be distinguished.
From this perspective, the occurrence of exceptional points may create problems for defining the
density matrix. On the other side, one can always use a Hermitian basis (which, for example, but
not necessarily, arises from the Hermitian part of the full non-Hermitian operators) to represent
non-Hermitian operators and the density matrix. From such a vantage point, the coalescence of the
eigenvalues of the non-Hermitian Hamiltonian appears to be a foregoer of such major problems.
It is worth mentioning that non-Hermitian Hamiltonians also appear in parity-time (PT) symmetric
generalisations of quantum mechanics [11,12]. Such theories have recently found concrete applications
in lossy optical waveguides [13,14] and photonic lattices [15,16].

However, we are interested here in open systems that can be effectively described by non-Hermitian
Hamiltonians that are not necessarily PT-symmetric (and which, for such a reason, will be called general
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in the rest of this paper). For such Hamiltonians, it has been shown how to define a proper statistical
mechanics [17] in order to study the behaviour of non equilibrium averages (e.g., the purity of quantum
states [18]) and to provide the definition of correlation functions [19].

In order to try to build possible measures of quantum information [20–22] for systems with
general non-Hermitian Hamiltonians, one can start by defining an entropy functional [23,24]. To this
end, a non-Hermitian generalisation of the von Neumann entropy has been introduced in [25].
Nevertheless, entropies of the von Neumann form cannot be used when quantum theory is formulated
by means of the Wigner function [26]. Since the (partial) Wigner representation is particularly useful
in order to derive a mixed quantum-classical description of non-Hermitian systems [27], it becomes
interesting to study the properties of the so-called linear entropy [26,28,29] and its generalisation to
the case of open quantum systems described by general non-Hermitian Hamiltonians. To this end,
we present in this paper, for the first time to our knowledge, a generalisation of the entropy for systems
with non-Hermitian Hamiltonians that must be adopted when there is an embedding of the quantum
subsystem in phase space. We associate the term “linear” to such an entropy as it arises from its first
appearance in the literature [26,28,29].

This paper is organised as follows. In Section 2, we summarise the results of the density-matrix
approach [17–19,25] to non-Hermitian dynamics that are useful for the study and generalisation of
the linear entropy [26,28,29]. In particular, we introduce the equations of motion for the density
matrices [17] and the von Neumann-like entropies studied in [25]. In Section 3, we study the linear
entropy and its non-Hermitian generalisation, along the lines followed in [25]. Analytical solutions
are given in the basic case of a constant decay operator. It is worth noting that even basic models
with constant decay operators become interesting when one adds the additional level of complexity
provided by the classical-like environment represented by means of the partially Wigner-transformed
Hermitian part of the Hamiltonian. In order to fix the ideas, one can think of a light-emitting quantum
dot coupled to an energy-absorbing optical guide in a classical environment, which introduces thermal
fluctuations or some other type of noise. It is not even difficult to imagine how models like these one can
be made more and more complex within our approach. In Section 4, we briefly recall how to formulate
the dynamics of a non-Hermitian system that is embedded in a classical bath of degrees of freedom.
In Section 5, we study the behaviour of the linear entropy and its non-Hermitian generalisation in
a quantum-classical set-up. Once again, analytical solutions are provided for the case of a constant
decay operator. Finally, our conclusions are presented in Section 6.

2. Quantum Dynamics with Non-Hermitian Hamiltonians

Let us consider a non-Hermitian Hamiltonian composed of two terms:

Ĥ = Ĥ − iΓ̂ . (1)

Both operators on the right-hand side, Ĥ and Γ̂, are Hermitian; Γ̂ is often called the decay
rate operator. The quantum states |Ψ〉 and 〈Ψ| evolve according to the Schrödinger equations

∂t|Ψ〉 = − i
h̄
Ĥ|Ψ〉 = − i

h̄
Ĥ|Ψ〉 − 1

h̄
Γ̂|Ψ〉 , (2)

∂t〈Ψ| =
i
h̄
〈Ψ|Ĥ† =

i
h̄
〈Ψ|Ĥ− 1

h̄
〈Ψ|Γ̂. (3)

On conceptual grounds, we can expect that the open quantum system dynamics produces
statistical mixtures. Indeed, we have shown that the purity is not conserved [17,18]. Defining the
non-normalised density matrix as

Ω̂ = ∑
k
Pk|Ψk〉〈Ψk| , (4)
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where (|Ψk〉, 〈Ψk|) are the eigenstates of any good Hermitian operator that can cover the Hilbert space
of the system and Pk is their probability of occurrence, the equation of motion can be written as

∂tΩ̂ = − i
h̄
[
Ĥ, Ω̂

]
− −

1
h̄
[
Γ̂, Ω̂

]
+ , (5)

with [ , ]− and [ , ]+ denoting the commutator and anticommutator, respectively. Equation (5) effectively
describes the subsystem (with Hamiltonian Ĥ) coupled to the environment (represented by Γ̂).
It is worth remarking again and explicitly that, in our approach [17,19,25,27], we use Hermitian
basis sets to represent the equations of motion. This situation is commonly found when, for example,
the non-Hermitian creation and destruction operators, â and â†, respectively, are represented in the
basis of the Hermitian number operator. It should be evident that, because of this, we do not need to
worry about the left/right eigenvectors of the full non-Hermitian Hamiltonian [30,31].

Non-Hermitian dynamics do not conserve the probability. This can be easily seen by taking the
trace of both sides of Equation (5):

∂tTr Ω̂ = −2
h̄

Tr
(
Γ̂ Ω̂
)

. (6)

However, we can define a normalised density matrix [17] as

ρ̂ =
Ω̂

Tr Ω̂
. (7)

The density matrix in Equation (7) can be used in the calculation of statistical averages:
〈χ〉t = Tr (χ̂ρ̂(t)) , where χ̂ is an arbitrary operator. The normalised density matrix ρ̂ obeys the equation [17]:

∂tρ̂ = − i
h̄
[
Ĥ, ρ̂

]
− −

1
h̄
[
Γ̂, ρ̂
]
+ +

2
h̄

ρ̂ Tr(Γ̂ρ̂) . (8)

Similarly to Equation (5), Equation (8) effectively describes the evolution of the subsystem coupled
to the environment; the role of the third term on the right-hand side is to conserve the probability
during the dynamics. Equation (8) is nonlinear. This property was also noted when considering
operator averages in [32]). Within the Feshbach–Fano projection formalism, the nonlinearity of the
non-Hermitian approach has been suggested in [33] as well. While the density operator ρ̂ is bounded
and useful in the calculation of of the statistical averages, the gain or loss of probability of open systems
are properly described by the non-normalised density operator Ω̂. Hence, it turns out that both Ω̂ and
ρ̂ are useful in the non-Hermitian formalism [19,25].

The normalised density matrix ρ̂ allows us to define [25] the von Neumann entropy of a non-Hermitian
system as

SvN ≡ −kB 〈ln ρ̂〉 = −kBTr (ρ̂ ln ρ̂) . (9)

The rate of the von Neumann entropy production is [25]:

∂tSvN =
2kB
h̄

Tr
(
Γ̂ρ̂ ln ρ̂

)
+

2
h̄

Tr
(
Γ̂ρ̂
)

SvN. (10)

However, the gain or loss of information in a non-Hermitian system are more properly represented
by introducing another entropy, given by the statistical average of the logarithm of the non-normalised
density operator [25]:

SNH ≡ −kB〈ln Ω̂〉 = −kBTr(ρ̂ ln Ω̂) = −kB
Tr(Ω̂ ln Ω̂)

Tr Ω̂
. (11)

The rate of change of SNH is [25]

∂tSNH =
2kB

h̄
Tr
(
Γ̂ρ̂ ln Ω̂

)
+

2
h̄

Tr
(
Γ̂ρ
)

SNH + 2
kB
h̄

Tr
(
Γ̂ρ̂
)

, (12)
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while the difference between the two entropies reads

SvN− SNH = kB ln
(
Tr Ω̂

)
. (13)

The fact that the SNH entropy captures the expected physical behaviour of the flow of information
out of an open system can be seen by considering the models where Ĥ is an arbitrary self-adjoint
operator while Γ̂ is proportional to the identity operator:

Γ̂ =
1
2

h̄γ0 Î , (14)

where the parameter γ0 is assumed to be real-valued. For such models, after imposing the initial
conditions Tr Ω̂(0) = 1, we obtain [25]:

Tr Ω̂(t) = exp (−γ0t) , (15)

SvN(t) = S(0)
vN = const , (16)

SNH(t) = S(0)
vN + kBγ0t . (17)

One can then see that, for positive values of γ0, the SNH entropy diverges at large times, as a good
entropy functional of an open system is expected to do. On the contrary, the von Neumann entropy
SvN is always constant.

3. Non-Hermitian Dynamics and Quantum Linear Entropy

The quantum linear entropy is
Slin = 1− Tr

[
ρ̂2(t)

]
. (18)

The entropy production is

Ṡlin = −2Tr
[

ρ̂(t)
∂ρ̂(t)

∂t

]
. (19)

Substituting Equation (8) in Equation (19) and using the following identities

Tr
[
ρ̂Ĥρ̂− ρ̂ρ̂Ĥ

]
= Tr

[
ρ̂2Ĥ− ρ̂2Ĥ

]
= 0 , (20)

Tr
[
ρ̂Γ̂ρ̂ + ρ̂ρ̂Γ̂

]
= 2Tr

[
Γ̂ρ̂2
]

, (21)

we obtain
Ṡlin =

4
h̄

Tr
[
Γ̂ρ̂2(t)

]
− 4

h̄
Tr
[
Γ̂ρ̂(t)

]
Tr
[
ρ̂2(t)

]
. (22)

Analogously with the entropy of Equation (11), we can also introduce a linear entropy involving
the non-normalised density matrix as

SNH
lin = 1− Tr

[
ρ̂(t)Ω̂(t)

]
. (23)

The rate of production of SNH
lin is

ṠNH
lin = − 2

Tr
[
Ω̂(t)

]Tr
[
Ω̂(t)∂tΩ̂(t)

]
−

2Tr
(
Ω̂2(t)

)
h̄
[
Tr
(
Ω̂(t)

)]2 Tr
(
Γ̂Ω̂(t)

)
. (24)

Using Equation (5), together with the identity

Tr
[
Ω̂[Γ̂, Ω̂]+

]
= 2Tr

[
Γ̂Ω̂2

]
, (25)
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in Equation (24), we obtain

ṠNH
lin =

4Tr
[
Γ̂Ω̂2(t)

]
h̄Tr
[
Ω̂(t)

] − 2Tr
(
Ω̂2(t)

)
Tr
(
Γ̂Ω̂(t)

)
h̄
[
Tr
(
Ω̂(t)

)]2 . (26)

Linear Entropy Production and Constant Decay Operator

Let us consider Equations (22) and (26) in the case of a decay operator defined by Equation (14).
In such a case, the temporal dependence of Tr(Ω̂(t)) is given, when choosing TrΩ̂(0) = 1, by Equation (15).
Using Equation (5), we easily obtain

∂tTrΩ̂2(t) = −2γ0TrΩ̂2(t), (27)

TrΩ̂2(t) = TrΩ̂2(0) exp[−2γ0t] . (28)

Hence, the calculation of
∂tTrρ̂2(t) = 2Tr [ρ̂(t)∂tρ̂(t)] (29)

can proceed upon considering the identities

−2
h̄

Tr
{

ρ̂(t)
[
Γ̂, ρ̂(t)

]
+

}
= −2γ0Tr

[
ρ̂2(t)

]
, (30)

4
h̄

Tr
{

ρ̂2(t)Tr
[
Γ̂ρ̂(t)

]}
= 2γ0Tr

[
ρ̂2(t)

]
. (31)

Therefore, Equation (29) is found to give

∂tTrρ̂2(t) = −2γ0Tr
[
ρ̂2(t)

]
+ 2γ0Tr

[
ρ̂2(t)

]
= 0 . (32)

Given the above result, we can choose

Trρ̂2(t) = const. = Trρ̂2(0) . (33)

Finally, Equation (22) becomes

Ṡlin = 2γ0Tr[ρ̂2(0)]− 2γ0Tr[ρ̂2(t)] = 0 . (34)

Equation (34) shows that Slin is identically constant and is thus not suitable to describe the
information flow or the evolution of the entanglement in systems with non-Hermitian Hamiltonians.

Let us now consider Equation (26): it becomes

ṠNH
lin = 2γ0

TrΩ̂2(t)
TrΩ̂(t)

− γ0
TrΩ̂2(t)
TrΩ̂(t)

= γ0

[
TrΩ̂2(0)

]
e−γt . (35)

Integrating between 0 and t, we obtain

SNH
lin =

[
1− e−γ0t]TrΩ̂2(0) . (36)

Equation (36) describes the increase of the linear entropy SNH
lin from the value of 0 at t = 0 to

the plateau value of TrΩ̂2(0) at t = ∞. Because of the choice of the initial condition TrΩ̂(0) = 1,
the quantity TrΩ̂2(0) is the purity of the non-Hermitian system. Hence, Equation (36) monitors the
loss of the initial purity of the system.
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4. Non-Hermitian Dynamics in a Classical Environment

One particular class of open quantum systems is obtained when a quantum subsystem is embedded
in a classical environment. In [27], an equation of motion for a quantum subsystem embedded
in a classical bath, described in terms of its phase space coordinates, has been derived. To this end,
we consider a total Hamiltonian

Ĥ(r̂, p̂, R̂, P̂) = Ĥ(r̂, p̂, R̂, P̂)− iΓ̂(r̂, p̂) , (37)

where (r̂, p̂) are n light degrees of freedom with mass m, and (R̂, P̂) are N heavy degrees of freedom
of mass M. The small expansion parameter µ =

√
m/M << 1 can be used to obtain the classical

limit for the (R̂, P̂) degrees of freedom, after taking a partial Wigner transform over the 2N heavy
coordinates. Using a multidimensional notation and denoting the phase space point (R, P) with X,
the partial Wigner transform of the density matrix is defined as

Ω̂W(X, t) =
1

(2πh̄)N

∫
dZeP·Z/h̄〈R− Z/2|Ω̂(t)|R + Z/2〉 , (38)

while the partial Wigner transform of an arbitrary operator χ̂ is defined as

χ̂W(X) =
∫

dZeP·Z/h̄〈R− Z/2|χ̂|R + Z/2〉 . (39)

In [27], it was shown that, upon taking the partial Wigner transform of Equation (5), with the Ĥ
and Γ̂ of Equation (37), and performing a linear expansion in µ, one obtains the equation of motion

∂

∂t
Ω̂W(X, t) = − i

h̄
[
ĤW, Ω̂W(X, t)

]
− +

1
2
Bab

(
∂aĤW

) (
∂bΩ̂W(X, t)

)
− 1

2
Bab

(
∂aΩ̂W(X, t)

) (
∂bĤW

)
− 1

h̄
[
Γ̂, Ω̂W(X, t)

]
+ , (40)

where Bab = −BT
ba is the symplectic matrix [34] and ∂a = (∂/∂Xa) is the gradient operator in phase

space. The Einstein convention of summing over repeated indices is used throughout this paper.
One can note that Bab(∂aĤW)(∂bΩ̂W) is the Poisson bracket between ĤW and Ω̂W.

Equation (40) describes the evolution of the non-normalised density matrix, Ω̂W(X, t), when
a quantum subsystem with probability sinks or sources (represented by the decay operator Γ̂) is
embedded in a classical environment (with phase space coordinates X). The classical bath produces
both statistical noise and decoherence in addition to those eventually represented by the decay operator.
As a consequence of Equation (40), the trace of Ω̂W(X, t) is not a conserved quantity:

d
dt

Tr′
∫

dXΩ̂W(X, t) =
d
dt

T̃r
[
Ω̂W(X, t)

]
= T̃r

[
∂

∂t
Ω̂W(X, t)

]
6= 0 , (41)

where we have denoted with the symbol Tr′ a partial trace over the quantal degrees of freedom,
with the symbol

∫
dX the phase space integral, and with the symbol T̃r both the partial trace and the

phase space integral.
Using the cyclic invariance of the trace, we can easily see that

T̃r
{[

ĤW, Ω̂W
]
−

}
= T̃r

{
ĤWΩ̂W − ĤWΩ̂W

}
= 0 , (42)

T̃r
{

ĤW
←−∇ aBab

−→∇ bΩ̂W − Ω̂W
←−∇ aBab

−→∇ bĤW

}
= 0 , (43)
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where, in the last identity, we have also performed an integration by parts and exploited the fact that
Bab are constants. If we also use the identity

T̃r
{[

Γ̂, Ω̂W
]
+

}
= 2Tr′

[
Γ̂Ω̂S

]
, (44)

where Ω̂S =
∫

dXΩ̂W(X), we can then find

d
dt

T̃r
[
Ω̂W(X, t)

]
= −2

h̄
Tr′
[
Γ̂Ω̂S(t)

]
. (45)

Equation (45) is analogous to Equation (6) and shows that the probability is not conserved for the
quantum-classical system because of the action of the decay operator. We can introduce a normalised
density matrix as

ρ̂W(X, t) =
Ω̂W(X, t)

T̃r
[
Ω̂W(X, t)

] , (46)

and, using Equations (40) and (45), find its equation of motion:

∂
∂t ρ̂W(X, t) = − i

h̄
[
ĤW, ρ̂W(X, t)

]
− + 1

2 ĤW
←−∇ ·B · −→∇ ρ̂W(X, t)

− 1
2 ρ̂W(X, t)

←−∇ ·B · −→∇ ĤW

− 1
h̄
[
Γ̂, ρ̂W(X, t)

]
+ + 2

h̄ ρ̂W(X, t)T̃r
[
Γ̂ρ̂W(X, t)

]
.

(47)

At variance with Equation (40), Equation (47) is nonlinear and allows one to define averages of
the dynamical variables of the quantum-classical system with a non-Hermitian Hamiltonian that has a
probabilistic meaning.

5. Entropy Production and Quantum-Classical Non-Hermitian Hamiltonians

As noted in [26], when considering the definition of the entropy for a quantum system in terms of
the Wigner function, the typical choice in terms of the von Neumann definition, found in Equation (9)
when the Wigner function fW(x, X, t) replaces the density matrix ρ̂, cannot work: fW(x, X, t) can be
negative in general. What one can do [26] is start from the linear entropy [28,29], Slin = 1− Tr(ρ̂2),
and perform the Wigner transform in order to obtain:

Slin = 1− (2πh̄)n+N
∫

dxdX f 2
W(x, X, t) , (48)

where fW(x, X, t) is the Wigner function, obtained by transforming ρ̂ over all the coordinates.
In a mixed quantum-classical framework, the natural extension of Equation (48) is given by

Slin,W = 1− (2πh̄)NTr′
∫

dXρ̂2
W(X, t) = 1− (2πh̄)NT̃r

[
ρ̂2

W(X, t)
]

. (49)

When considering the non-Hermitian dynamics of the quantum subsystem embedded in the
classical environment, given by Equation (47), we obtain the linear entropy production

Ṡlin,W = −2(2πh̄)NT̃r
[

ρ̂W
∂ρ̂W

∂t

]
. (50)

We have obtained Equation (50) by using the identities

T̃r
{

ρ̂W
[
ĤW, ρ̂W

]
−

}
= 0 , (51)

T̃r
{

ρ̂W
[
Bab(∇aĤW)(∇bρ̂W)−Bab(∇aρ̂W)(∇bĤW)

]}
= 0 , (52)
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together with Bab(∇2
abρ̂W)ρ̂WĤW = 0 and Babρ̂W(∇2

abρ̂W)ĤW = 0, which follow from taking the trace
of an antisymmetric matrix, Bab, and a symmetric one, ∇2

abρ̂W. Noting that we also have

T̃r
{

ρ̂W
[
Γ̂, ρ̂W

]
+

}
= 2T̃r

{
Γ̂ρ̂2

W

}
, (53)

we finally obtain the entropy production

Ṡlin,W =
4
h̄
(2πh̄)N

{
Tr′
[
Γ̂ρ̂2

S(t)
]
− Tr′

[
Γ̂ρ̂S(t)

]
Tr′
[
ρ̂2

S(t)
]}

. (54)

Within the quantum-classical framework, we can also introduce a non-Hermitian linear entropy as

SNH
lin,W = 1− (2πh̄)NT̃r

[
ρ̂W(X, t)Ω̂W(X, t)

]
. (55)

The entropy production is given by

ṠNH
lin,W = −2

(2πh̄)N

ZW
T̃r

[
Ω̂W

∂Ω̂W

∂t

]
− 2(2πh̄)N

h̄
T̃r
[
Γ̂Ω̂W

]
T̃r
[
ρ̂2

W

]
, (56)

where we have defined

ZW = T̃r
[
Ω̂W(X, t)

]
. (57)

In the following, we will use

ŻW = −2
h̄

T̃r
[
Γ̂Ω̂W(X, t)

]
. (58)

In order to calculate T̃r[Ω̂W∂Ω̂W/∂t], we are led to consider the following identities:

T̃r
[
BabΩ̂W(∇a ĤW)(∇bρ̂W) − BabΩ̂W(∇aρ̂W)(∇bĤW)

]
= 0 , (59)

T̃r
{

Ω̂W
[
Γ̂, Ω̂W

]
+

}
= 2T̃r′

[
Γ̂Ω̂2

S

]
. (60)

Finally, we obtain

ṠNH
lin,W =

4(2πh̄)N

h̄
Tr′
[
Γ̂ρ̂SΩ̂S

]
− 2(2πh̄)N

h̄
Tr′
[
Γ̂Ω̂S

]
Tr′
[
ρ̂2

S

]
. (61)

Quantum-Classical Linear Entropy Production and Constant Decay Operator

When the decay operator Γ̂ is given by Equation (14), Equation (40) becomes

∂

∂t
Ω̂W(X, t) = − i

h̄
[
ĤW, Ω̂W(X, t)

]
− +

1
2

ĤW
←−∇ ·B · −→∇ Ω̂W(X, t)

− 1
2

Ω̂W(X, t)
←−∇ ·B · −→∇ ĤW − γ0Ω̂W(X, t) , (62)

and Equation (45) becomes

d
dt

T̃r
[
Ω̂W(X, t)

]
= −γ0T̃r

[
Ω̂W(X, t)

]
. (63)

Upon choosing the initial condition T̃r
[
Ω̂W(X, 0)

]
= 1, Equation (63) has the solution

T̃r
[
Ω̂W(X, t)

]
= exp [−γ0t] , (64)
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which is analogous to Equation (15). Equation (47) becomes

∂
∂t ρ̂W(X, t) = − i

h̄
[
ĤW, ρ̂W(X, t)

]
− + 1

2 ĤW
←−∇ ·B · −→∇ ρ̂W(X, t)

− 1
2 ρ̂W(X, t)

←−∇ ·B · −→∇ ĤW . (65)

Equation (65) shows that, in the case considered, the normalised density matrix ρ̂W(X, t) is not
influenced by Γ̂, so this evolves according to the unitary quantum-classical dynamics that were first
derived in [35].

We also have that Equations (54) and (61) become

Ṡlin,W = 2γ0(2πh̄)N
{

T̃r′
[
ρ̂2

W(X, t)
]
− T̃r

[
ρ̂2

W(X, t)
]}

= 0 , (66)

ṠNH
lin,W =

4(2πh̄)N

h̄
T̃r
[
Γ̂ρ̂W(X, t)Ω̂W(X, t)

]
− 2(2πh̄)N

h̄
T̃r
[
Γ̂Ω̂W(X, t)

]
T̃r
[
ρ̂2

W(X, t)
]

= (2πh̄)Nγ0eγ0tT̃r
[
Ω̂2

W(X, t)
]

. (67)

In order to evaluate Equation (67), we need to calculate T̃r[Ω̂2
W(X, t)]. From Equation (62), we get

∂

∂t
T̃r
[
Ω̂2

W(X, t)
]

= −2γ0T̃r
[
Ω̂2

W(X, t)
]

, (68)

T̃r
[
Ω̂2

W(X, t)
]

= T̃r
[
Ω̂2

W(X, 0)
]

exp [−2γ0t] . (69)

Upon substituting Equation (69) into Equation (67) and integrating, we finally obtain

SNH
lin,W = (2πh̄)NT̃r

[
Ω̂2

W(X, 0)
] (

1− e−γ0t) . (70)

Analogously to the pure quantum case, the rate of production of the quantum-classical entropy
in Equation (70) monitors the flow of information associated with the decay of the purity of the
quantum-classical non-Hermitian system (for positive γ0).

6. Conclusions

In this paper, we have shown that it is possible to define meaningful entropy functionals for
open quantum systems described by non-Hermitian Hamiltonians. In particular, a non-Hermitian
generalisation of the von Neumann entropy, which is able to signal the loss of information of the
quantum subsystem, requires both the normalised and the non-normalised density matrix: this entropy
can be defined as the normalised average of the logarithm of the non-normalised density matrix [25].

Motivated by the Wigner representation of quantum mechanics, we have also introduced the
non-Hermitian generalisation of the linear entropy, defined as one minus the normalised average of
the square of the non-normalised density matrix. Through the analytical solution of the basic case of
a constant decay operator, we have shown that the non-Hermitian linear entropy is able to describe
the loss of purity of the quantum subsystem. This is true both for pure non-Hermitian subsystems
as well as for non-Hermitian subsystems embedded in a classical environment. It is worth repeating
that even basic models with constant decay operators are interesting when one adds the additional
level of complexity provided by the classical-like environment represented by means of the partially
Wigner-transformed Hermitian part of the Hamiltonian, as in the case of a light-emitting quantum dot
coupled to an energy-absorbing optical guide in a classical environment.

The results obtained so far [17–19,25] show that the correct description of the dynamics and of
the information flow of systems described by non-Hermitian Hamiltonians needs the use of both
the normalised and non-normalised density matrix. In this way, reasonable entropy functionals
can be introduced. On conceptual grounds, one might have expected that the foundation of the
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non-Hermitian theory on the normalised density matrix alone would hide the interesting effects arising
from the coupling to the probability sinks or sources. As a matter of fact, the density matrix ρ̂ is
constrained to be normalised in order to be able to define correctly (normalised) statistical averages.
However, such a procedure inevitably masks the flow of information: it is as if one would like to study
the motion of a body by choosing the frame of reference that moves together with the body itself.
On the contrary, the flow of information in systems modelled with non-Hermitian Hamiltonians can
be solely captured through the use of the non-normalised density matrix.

We hope that the results discussed in this paper may be a first step toward a rigorous analysis
of the quantum information flow in systems with non-Hermitian Hamiltonians, after removing the
constraints of PT-symmetry [36].
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