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Introduction 

 

Multilevel converters are becoming more and more popular, overcoming some key limitations of conventional 

two-level structures in handling medium voltages and high voltage gradients. Today they provide the ground 

for the realization of high efficiency energy conversion systems for medium voltage applications, such as 

pumps, compressors, extruders, fans, grinding mills, rolling mills, conveyors, crushers, blast furnace blowers, 

gas turbine starters, mixers, mine hoists, reactive power compensation, marine propulsion, wind energy 

conversion, and railway traction.  A detailed overview of multilevel converters is provided in Chapter 1, while, 

the state of the art of Open-end Winding Systems is described in Chapter 2.  The last systems can be considered 

as special multilevel inverter structures, tailored around an electrical machine fed from both the ends of the 

stator, or primary, winding.  Overvoltage phenomena generated in industrial motor drives at motor terminals 

by long feeding cables are investigated in Chapter 3 and an Open-end Winding configuration approach is 

presented to actively mitigate them.  Moreover, an adaptive algorithm is described to make independent the 

active overvoltage mitigation from system parameters.  The main contribution of this work is the development 

of a new multilevel inverter topology, the Asymmetrical Hybrid Multilevel Inverter (AHMLI), which is 

introduced in Chapter 4.  According to the AHMLI structure, an open end winding machine (motor, generator 

or transformer) is supplied on one end by a main multilevel converter, fully managing the active power stream, 

and, on the other end by an auxiliary two level inverter.  This acts as an active power filter, suitably shaping 

the electrical machine phase current.  A mathematical analysis of the proposed structure is first provided, 

followed by an exhaustive comparison between AHMLI and conventional multilevel structures, emphasizing 

advantages in terms of efficiency and output current THD.  Voltage and current control systems, optimally 

coping with key characteristics of the AHMLI structure are carried out and an original input capacitors voltage 

equalization technique is also presented.  The application of the AHMLI concept to industrial induction motor 

drives is then evaluated by simulation and experimental test.  A possible exploitation of the AHMLI approach 

in the realization of photovoltaic and wind plants, as well as STATCOM devices is also assessed.  Moreover, 

a high efficiency three phase rectifier for high speed generation systems exploiting the AHMLI configuration 

is carried out.  Finally, the application of the AHMLI approach to Multiple Motor Drive systems is proposed 

in Chapter 5.  Two new topologies are presented, namely: Open-end Winding Multi Motor Single Converter 

(MMSC) and Open-end Winding Multi Motor Multi Converter (MMMC).  Both configurations exploit the 
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AHMLI structure but the MMMC exploits a five-leg two level inverter to independently control the stator 

currents of two induction motors. 
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1 Chapter: State of the Art of Multilevel 

Converters 

     Multilevel converters are today successfully exploited in many industrial applications such as pumps, 

compressors, extruders, fans, grinding mills, rolling mills, conveyors, crushers, blast furnace blowers, gas 

turbine starters, mixers, mine hoists, reactive power compensation, marine propulsion, high-voltage direct-

current (HVDC) transmission, hydro pumped storage, wind energy conversion, and railway traction [1]-[10].  

However, such a technology is still under development, and many new contributions and new circuital 

topologies have been proposed in the last few years.  Many publications of tutorial nature have recently 

addressed the multilevel converter technology, emphasizing the growing importance of multilevel converters 

for high-power applications [4]-[9]. These works cover in depth traditional and well-established multilevel 

converter topologies, such as the neutral point clamped (NPC), cascaded H-bridge (CHB), and flying capacitor 

(FC), as well as specific modulation strategies.  The most attractive features of multilevel inverters, over 

conventional two-level inverters, are: 

 MLIs can generate output voltages with low distortion in term of Total Harmonic Distortion THDv; 

  MLIs draw input current with very low distortion in term of THDi; 

 MLIs generate output voltages with lower dv/dt, thus reducing the voltage stress across power devices 

and at the same time mitigating overvoltages at the load terminals; 

 MLIs generate smaller common-mode voltage CMVs, thus reducing the bearing currents. Additional 

modulation methods can be adopted in order to eliminate the CMVs; 

 MLIs can operate with a lower switching frequency. 

In this chapter an overview of classic multilevel topologies is presented, together with the latest developments 

of multilevel modulation strategies. A particular attention is also played to multilevel converter control and 

operational issues, such as harmonic elimination and DC Bus capacitors voltage balancing. 

 

1.1 Standard Multilevel inverter topologies 
 

     The development of the multilevel converter technology was started in the late 1960s with the introduction 

of a series-connected H-bridge converter with a multilevel stepped waveform voltage modulation, which 

became the H-Bridge converter (CHB) topology [11]. This was closely followed by low-power development 

of a Flying Capacitor (FC) converter topology [12]. In the late 1970s, the Diode-Clamped Converter (DCC) 
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[13] has been first introduced, that is today known as Neutral Point Clamped (NPC) inverter. This last has been 

proposed in [14], [15] and it can be considered as the first real multilevel power converter for medium-voltage 

applications. In the late 1980s [16], the CHB has been reintroduced although it reached more industrial 

relevance in the mid-1990s [17]. In the same way, in the early 1990s, the original low power FC converter 

evolved to the medium-voltage multilevel converter topology we know today [18]. Through the years, the FC 

has also been reported as the imbricated-cell and multi-cell converter. CHB, NPC and FC multilevel converters 

are considered now as the classic or traditional multilevel topologies and their development turned out in 

industrial products during the last two decades, Fig. 1. 1.  These converters are today produced by several firms 

[19]–[34], offering different power ratings, front-end configurations, cooling systems, semiconductor devices, 

and control schemes. The most relevant parameters and ratings for each classic topology are listed in Table 

1.1.  

  NPC Inverter
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



A
VDC

VDC/2

VDC/2

  FC Inverter 









A
VDC

VDC/2

VDC/2

n

VDC

VDC

Vo

VA VA

CHB Inverter 

n

 

Fig. 1. 1 Standard Multilevel inverter topologies: Three-level NPC inverter 3L-NPC (left). Three-level Flying Capacitor 

inverter 3L-FC (middle).  Five-level CHB inverter (right) 

Some major differences among NPC, CHB and FC inverters come apparent from Table 1.1:   

 The NPC features medium-/high-voltage devices (integrated gate-commutated thyristor (IGCT) and 

medium/high-voltage insulated-gate bipolar transistors (IGBTs)), whereas the CHB exclusively uses 

low-voltage IGBTs (LV-IGBTs).   

 The CHB reaches higher voltage and higher power levels. The NPC is also definitely more suitable 

for back-to-back regenerative applications.  

 The CHB needs a substantially higher number of devices to achieve a regenerative option (a three-

phase two-level voltage source inverter (VSI) per cell).  
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 The CHB needs a phase-shifting transformer, usually conforming a 36-pulse rectifier system. This is 

more expensive but improves the input power quality. The NPC has a simpler circuit structure, leading 

to a smaller footprint. 

 Although the three topologies generate the same amount of voltage levels when using the same 

number of power switches, commercially available CHBs shows more output voltage levels (up to 

17, compared with three for the NPC). Hence, lower average device switching frequencies are possible 

for the same output voltage waveform quality. Therefore, air cooling and higher fundamental output 

frequency can be achieved without efficiency derating and without using of an output filter. 

Table 1.1 Classic multilevel topology commercial ratings and specifications 

Parameters 

Multilevel Topologies 

3L-NPC CHB 4L-FC 

Max Power 

27MW(1), 31.5MVA(2), 40MVA(3), 

44MW(4) 

33.6MW(5), 3.7MW(6,9), 27MVA(8), 

10MW(14) 

120MW(2), 15MW(3), 40MVA(7) 

10MVA(10), 11.1MVA(11), 6MVA(12), 

6.2MW(13) 

2.2MW(15), 

Output Voltage 

[kV] 

2.3/3.3/4/4.16(1,2), 2.3/3.3/4.16(4,6,8,9,14) 

3.3/6.6(5) 

2.3-13.8(2), 3.3/6.6(3,12), 2.3/4.16/6/11(5) 

3/6/10(10), 3/4/6/10(11), 3/3.3/4.16/6.6/10(13) 

2.3/3.3/4.16(15) 

 

Max Output Freq. 

[Hz] 

82.5(1), 250(2), 90(3), 140(4,14), 300(5) ), 

120(6) 

330(2), 120(3,7,11-13), 50(10)  120(15) 

Diode front-end 12/24(1-5,8), 24(6), 12/18(9), 12/24/36(14) 18/36(2,3,12), 30(7), 36(11), 24/30/42/48(13) 18/24(15) 

Active front-end 

option 

3L-NPC in back to back(1-5,8,14) 3-phase VSI per cell(10) 4L back to back(15) 

Power 

semiconductor 

IGCT(1,2,4,8), MV/HV IGBT(2,5,8,9,14) 

IEGT(3,8), 
LV IGBT(2,3,7,10-13) MV-IGBT(15) 

Cooling system Air/water(1,2,4,8,14), water(3,5), air(9) Air/water(2,13), air(3,7,11,12) air(15) 

Modulation method PWM(2-6,14), SHE(3,9), SVM(8,9) PS-PWM(2,3,7,10-13) PS-PWM(15) 

Control method 
DTC(1), v/f and FOC(2-4,14), FOC(5,6,8) 

v/f(9), DPC(4), VOC(2-5,8,14) 

v/f and FOC(2,3,7,11,12), FOC(10,13) 

 
v/f and FOC(15) 

Voltage levels 3 9/13(2), 7/13(3,12), 11(7), 7/11/13/19(10) 4(15) 

Power cells - 4/6(2), 3/6(3,12), 5(7), 3/5/6/9(10) 3(15) 

(1)[11], (2)[12], (3)[13], (4)[14], (5)[15], (6)[16], (7)[17], (8)[18],(9)[19], (10)[20], (11)[21], (12)[22], (13)[23], (14)[24], (15)[25] 
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A classification of multilevel converter topologies is shown in Fig. 1. 2.  Generally, the medium-voltage sector 

ranges from 2.3 to 6.6kV and high power sector ranges from 1 to 50MW.  The classification also includes 

direct AC-AC converters and current source converters as cycloconverter and load commutated inverters 

(LCIs) for very high power, high torque, low speed applications and pulsewidh-modulated current source 

inverter for high power variable speed drives.  The three standard topologies are compared in [35]–[37] in 

terms of losses and output voltage quality. The 3L-NPC has become quite popular because of a simple 

transformer rectifier power circuit structure, with a lower device count when considering both the inverter and 

rectifier, and less capacitors. Although the NPC concept can be extended to structures with higher number of 

levels, these are less attractive because of higher losses and uneven distribution of losses in the outer and inner 

devices [5]. In particular, DC-link capacitor voltage balance becomes unattainable in higher level topologies 

with a passive front end when using conventional modulation strategies [38]–[40]. In this case, the classic 

multilevel stepped waveform cannot be retained, and higher dv/dts (more-than one-level transitions) is 

necessary to balance the capacitors for certain modulation indexes. 

High Power 

Converters

Direct Conversion

AC-AC

Indirect Conversion

AC-DC-AC

Current SourceVoltage SourceCycloconvertersMatrix Converters

PWM Current 

Source Inverter

Load Commutated 

Inverter

High Power 2-level

VSI

Multilevel 

Converters

NPC Cascaded Topologies Hybrid Topologies
MLI Matrix 

Converters
Flying Capacitor

NPC+Cascaded H-

Bridge

FC+Cascaded H-

Bridge

COC+5L-ANPC

Other

MMC

(Cascaded H-Bridge)

CHB

(Cascaded H-Bridge)

Equal DC Sources

Unequal DC 

Sources

H-NPC

Cascaded NPCs

(Open Winding loads)

Transistor Clamped

TCC or NPP

3L-ANPC

5L-ANPC

Stacked FC

Thyristor-Based

IGCT-Based

IGBT-Based

IGBT-Bidirectional

 

Fig. 1. 2 Multilevel Converter classification   

On the other hand, the CHB is well suited for high-power applications because of the modular structure that 

enables higher voltage operation with classic low-voltage semiconductors. The phase shifting of the carrier 
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signals moves the harmonics to the higher frequency range, and this, together with the high number of levels, 

enables the reduction of the average device switching frequency (≤ 500 Hz), allowing air cooling and lower 

losses. However, it requires a large number of isolated DC sources, which have to be fed from phase-shifting 

isolation transformers, which are more expensive and bulky, compared with the standard transformer used for 

the NPC. 

Although the FC is modular in structure, like the CHB, it has found less favor, compared to the NPC and CHB, 

mainly because higher switching frequencies are necessary to keep capacitor voltages properly balanced, 

whether a self-balancing or a control-assisted balancing modulation method is used (e.g., greater than 1200 

Hz) [5]. So high switching frequencies are not feasible in high-power applications, where power switch 

limitations usually restrict the frequency range on 500–700 Hz. This topology also requires a proper 

initialization of the FC voltages. 

 

1.1.1 Neutral Point Clamped Inverter 
 

     The conventional 3L-NPC inverter is shown in Fig. 1. 3. The DC-Bus voltage VDC is split into three levels 

by two series-connected bulk capacitors C1 and C2. The middle point of the two capacitors n is defined as the 

neutral point. In order to show the switching states, a single phase 3L-NPC inverter and its associated output 

voltage waveform VAn are considered in Fig. 1. 4. The output voltage VAn assumes three voltage levels: VDC/2, 

- VDC /2 and 0, as depicted in Tab. 1.2.  For voltage level VDC /2, switches Sa1 and Sa2 need to be turned on; for 

voltage level -VDC /2, switches Sa3 and Sa4 need to be turned on and for the 0-voltage level, switches Sa2 and Sa3 

need to be turned on.  The key components that distinguish this topology from a conventional two-level inverter 

are the clamped diode Da1 and Da2. 

These two diodes clamp the switch voltage to half of the DC-Bus voltage. When both Sa1 and Sa2 turn on, the 

voltage across A and 0 is VDC, i.e., VAO=VDC. In this case, Da2 balances out the voltage sharing between Sa3 and 

Sa4 with Sa3 blocking the voltage across C1 and Sa4 blocking the voltage across C2. The difference between VAn 

and VAO is the voltage across C2, which is VDC /2.  

Fig. 1. 5 shows a 5L-NPC inverter and their switching states.  In this case, the DC-Bus consists of four 

capacitors C1, C2, C3 and C4.  Assuming a VDC DC-Bus voltage, the voltage across each capacitor is VDC /4, and 

the voltage stress on each device will be limited to VDC /4 through clamping diodes. Fig. 1. 6 shows the output 

voltage waveform which consists of four voltage levels: VDC /2, VDC /4, 0, - VDC /4 and - VDC /2.  In order to 

obtain the VDC /2 voltage level, switches Sa1, Sa2, Sa3 and Sa4 need to be turned on, while, VDC /4, is generated by 
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turning on switches Sa2, Sa3, Sa4 and Sa5. Voltage levels 0 and -VDC /4 are respectively obtained by turning on 

switches Sa3, Sa4, Sa5, Sa6 and Sa4, Sa5, Sa6, Sa7. Finally, by turning on Sa5, Sa6, Sa7 and Sa8 a -VDC /2 voltage is 

produced. 









VDC

VDC/2

VDC/2

n

A B C

N
ia ib ic

Sa1

Sa2

Sa3
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Da1
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Dc1

Dc2

C1

C2

 

Fig. 1. 3 Conventional three-phase 3L-NPC inverter   
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Fig. 1. 4 Conventional single-phase 3L-NPC inverter and associated waveform   

Table 1.2 Switching states for a 3L-NPC inverter 

Sa1 Sa2 Sa3 Sa4 VAn Component conduction 

1 1 0 0 VDC /2 If ia>0   Sa1, Sa2 

If ia<0   D1, D2 

0 1 1 0 0 If ia>0   Da1, Sa2 

If ia<0   Da2, Sa3 

0 0 1 1 -VDC /2 If ia>0   D4, D3 

If ia<0   Sa3, Sa4 

 

A p-phase n-level NPC inverter is equipped with 2p(n-1) switching devices, p(n-1)(n-2) clamping diodes and 

(n-1) capacitors.  Although each active device is only required to block a VDC /(n-1) voltage, the clamping 

diodes must have different voltage ratings to cope with reverse voltage blocking. For example, when lower 
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devices Sa5, Sa6, Sa7 and Sa8 are turned on, Da2 needs to block three capacitor voltage, or 3VDC /4.  Notice that 

when the number of voltage levels n is sufficiently high, the number of switching devices and diodes will make 

the system impractical to implement.  

 

Sa1 Sa2 Sa3 Sa4 Sa1 Sa2 Sa3 Sa4 VAO 

1 1 1 1 0 0 0 0 VDC  

0 1 1 1 1 0 0 0 3VDC /4 

0 0 1 1 1 1 0 0 VDC /2 

0 0 0 1 1 1 1 0 VDC /4 

0 0 0 0 1 1 1 1 0 
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Fig. 1. 5 Switching States for a conventional three-phase 5L-NPC inverter   
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Fig. 1. 6 Output voltage waveform for a 5L-NPC inverter   

 

1.1.2 Flying Capacitor Inverter 
 

     Fig. 1. 7 depicts the fundamental building block of a three-phase three-level flying capacitor inverter. A 

major advantage of this topology is that it eliminates the clamping diode issues typical of the NPC topology. 

Additionally, this topology naturally limits the dv/dt stress across the devices and introduces additional 
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switching states that can be used to maintain the charge balance in the capacitors.  Unlike the NPC, the FC 

topology has enough switching states to control the charge balance on each leg, even if the phase current is 

unidirectional. The voltage change between two adjoining capacitor legs gives the size of the voltage steps in 

the output waveform. 


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VDC/2
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C1 C1 C1

Sc2

 
Fig. 1. 7  Conventional three-phase 3L-FC inverter   

The output voltage inverter VAn in Fig. 1. 8 assumes three voltage levels: VDC /2, - VDC /2 and 0. In order to 

obtain VDC /2, switches Sa1 and Sa2 need to be turned on, while -VDC /2, is produced by turning on switches Sa3 

and Sa4  and a 0-voltage level is obtained by turning on  Sa1-Sa3 or Sa2-Sa4. Clamping capacitor C1 is charged 

when Sa1 and Sa3 are turned on, and is discharged when Sa2 and Sa4 are turned on. The charge of C1 can be 

balanced by proper selection of the 0-level switch combination.  Major advantages of the FC-MLI topology 

consist in making unnecessary the filter and the control of active and reactive power flows through phase 

redundancies. 

However, troubles related to the capacitors voltage balance, as well as, to the initial capacitors charge 

procedure, in addition to a larger number of capacitors, disadvantage this topology. Moreover, on a FC inverter, 

capacitor voltages must be maintained within suitable limits. Thus, the capacitance of flying capacitors 

increases almost inversely with the switching frequency, making the FC topology impractical at low and 

medium switching frequencies (≥ 1500-1800 Hz). 

The voltage synthesis in a 5L-FC converter has more flexibility than a NPC converter. Fig. 1. 9 shows a 5L-

FC topology and the switching states. As an example, using the last diagram, the voltage of a five-level phase-

leg A output referred to the neutral point n, VAn, can be synthesized by the following switch combinations.  

1. Voltage level VDC /2: all upper switches Sa1-Sa4 are turned on.  
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2. Voltage level VDC /4:  three possible combinations exist: a) Sa1, Sa2, Sa3, Sa5 are turned on and VAn=VDC 

/2 of upper C1’s -VDC /4 of C1. b) Sa2, Sa3, Sa4, Sa8 are turned on and VAn= 3VDC /4 of C3’s, VDC /2 of 

lower C4’s. c) Sa1, Sa3, Sa4, Sa7 are turned on and VAn= VDC /2 of upper C4’s, -3VDC /4 of lower C3’s+ VDC 

/2 of C2’s. 

3. 0-voltage level: six combinations exist: a) Sa1, Sa2, Sa5, Sa6 are turned on and VAn= VDC /2 of upper C4’s 

-VDC /2 of C2’s. b) Sa3, Sa4, Sa7, Sa8 are turned on and VAn= VDC /2 of C2 -VDC /2 of lower C4. c) Sa1, Sa3, 

Sa5, Sa7 are turned on and VAn= VDC /2 of upper C4’s -3VDC /4 of C3’s+ VDC /2 of C2’s-VDC /4 of C1. d) 

Sa1, Sa4, Sa6, Sa7 are turned on and VAn= VDC /2 of upper C4’s -3VDC /4 of C3’s+VDC /4 of C1. e) Sa2, Sa4, 

Sa6, Sa8 are turned on and VAn= 3VDC /4 of upper C3’s -3VDC /4 - VDC /4 of C2’s+VDC /4 of C1-VDC /2 of 

lower C4’s. f) Sa2, Sa3, Sa5, Sa8 are turned on and VAn= 3VDC /4 of C3’s -VDC /4 of C1, VDC/2 of lower 

C4’s. 

4. Voltage level -VDC /4:  three possible combinations exist: a) Sa1, Sa5, Sa6, Sa7 are turned on and VAn=VDC 

/2 of upper C4’s -3VDC /4 of C3’s. b) Sa4, Sa6, Sa7, Sa8 are turned on and VAn= VDC /4 of C1, -VDC /2 of 

lower C4’s. c) Sa3, Sa5, Sa7, Sa8 are turned on and VAn= VDC /2 of C2’s, -VDC /4 of C1-VDC /2 of lower C4’s. 

5. Voltage level -VDC /2: all lower switches Sa5-Sa8 are turned on.  

 

Sa1 Sa2 Sa3 Sa4 VAn 

1 1 0 0 VDC /2 

1 0 1 0 0 

0 1 0 1 0 

 0 0 1 1 -VDC /2 
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VDC/2

-VDC/2

 

Fig. 1. 8   Switching states for a 3L-FC inverter   

By proper selection of capacitor combinations, it is possible to balance the capacitor charge. Similarly, to 

the NPC inverter, the FC requires a large number of bulk capacitors to clamp the voltage. In an n-level 

structure, the FC inverter requires (n-1) DC-link capacitors and (n-1) (n-2)/2 auxiliary capacitors per phase 

compared to NPC-MLI topology. The auxiliary capacitors are pre-charged to the voltage levels of VDC /4, 

VDC /2, 3 VDC /4 respectively. 
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Fig. 1. 9  A conventional 5L-FC inverter with Switching states  

 

1.1.3 Cascaded H-Bridge Inverters 
 

     As earlier mentioned, the cascaded H-bridge inverter (CHB) has been the first multilevel converter, 

developed in the late 1960s [11]. This topology is based on the series connection of single-phase inverters with 

separate DC sources [17].   Fig. 1. 10 shows a 5-level CHB inverter composed by two isolated H-bridge 

inverters.  

 The resulting phase voltage is synthesized by combination of the voltages generated by the cells. Each single-

phase full-bridge inverter generates three output voltages levels: VDC, -VDC, and 0. This is made possible by 

connecting the capacitors sequentially to the AC side via the four power switches. The resulting output AC 

voltage swings from -2VDC to 2VDC with 5 steps.  The obtained staircase waveform is nearly sinusoidal, even 

without filtering.  The switch power and the stored energy are reduced to about 80%, if compared to an NPC 

inverter.  

However, a complex grid transformer, a large number of isolated power supplies, increased DC-link 

capacitances and a large number of semiconductor devices are major drawbacks of the CHB-MLI [41]-[42].  

This topology has been used for active filter and reactive power compensation, electric vehicles, PV power 

conversion [42], Uninterruptible Power Supplies (UPSs), and magnetic resonance imaging etc. CHB-MLIs 

have been previously designed for static VAR compensators.   

Main features of Neutral Point Clamped, Flying Capacitor and Cascaded H-Bridge are compared in Tab.1.3. 
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Fig. 1. 10  Cascaded 5L-CHB inverter 

Table 1.3 Main features of MLIs 

Topology NPC FC CHB 

Switching Devices 2(n-1) 2(n-1) 2(n-1) 

Clamping diodes per phase (n-1) (n-2) 0 0 

DC.Bus Capacitors (n-1) (n-1) Depends on type of supply 

Balancing Capacitor per phase 0 (n-1) - 

Voltage unbalancing Average High Very small 

Applications Motor drive 

systems 

STATCOM 

Motor drive systems 

STATCOM 

Motor drive system, PV, fuel cells, 

battery system  

 

1.1.4 Recent advances in MLI topologies 
 

     Advanced multilevel converters have been proposed in literature [41]. Among them, the following have 

found practical application: 

 five-level H-bridge NPC (5L-HNPC) 

 three-level active NPC (3L-ANPC) 

 five level active NPC (5L-ANPC) 

 modular multilevel converter (MMC) 

 cascaded matrix converter (CMC) 

 transistor-clamped converter (TCC) 

 CHB fed with unequal dc sources or asymmetric CHB 
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 cascaded NPC feeding open-end loads 

 hybrid NPC-CHB and hybrid FCCHB topologies 

 stacked FC or stacked multi-cell 

These topologies are variations of the three classic topologies discussed in the previous section, as shown in 

Fig. 1. 2. Technical specifications are available in [11]-[25].  The 5L-HNPC converter is composed of the H-

bridge connection of two classic 3L-NPC phase legs, as shown in Fig. 1. 11, forming a 5L-HNPC converter.  

This converter is found in practice with a 36-pulse rectifier system featuring IGCT devices, for the 2–7-MW 

(air cooled) or 5–22-MW (water cooled) power range. Several 5L-HNPC configurations have been developed 

with 24- or 36-pulse diode rectifier front ends, with medium-voltage IGBTs (MV-IGBTs), IEGTs, or GCTs, 

up to 7.8-kV output voltage, 120-Hz output frequency and 120 MVA output power [13].  Fig. 1. 12a shows a 

3L-NPC inverter equipped with IGCTs, rating 20–200 MVA.  One of the drawbacks of the 3L-NPC topology 

is the unequal share of losses between the inner and outer switching devices in each converter leg.  Recently, 

a variation of the ANPC concept has been proposed, i.e., a five-level hybrid multilevel converter that combines 

a 3L-ANPC leg with a three-level FC power cell connected between the internal ANPC switching devices, as 

shown in Fig. 1. 12b. Although it is a hybrid topology, it has been called 5L-ANPC [48]–[50], [53]. Note that, 

instead of IGCTs, series-connected IGBTs are used in the NPC part of the converter, probably to keep all 

semiconductors of the same type.  A commercial version of this topology has recently been introduced [11], 

[50], aimed to medium voltage, low-medium power applications.  A variation of the hybrid 5L-ANPC has been 

proposed by adding a common cross converter (CCC) stage [55] to the 5L-ANPC, resulting in a nine-level 

hybrid converter [51], as shown in Fig. 1. 12c.  Although this additional stage increases the number of levels, 

greatly improving the power quality, this comes at the expense of a quite complex structure and the need to 

balance both the CCC and FC capacitor voltages.  Another multilevel converter that has recently found 

industrial applications, particularly for HVDC systems, is the MMC (also known as M2C) [56], [57]. Basically, 

the MMC is composed of series connected single-phase two-level voltage source converter (2L-VSC) legs, as 

illustrated in Fig. 1. 13(left).  This topology found practical application on 200 power-cell/phase structures 

reaching 400 MW [55] and 1 GW [56].  The Transistor-Clamped Converter TCC concept is very similar to 

that of the DCC, however, bidirectional switches are used instead of diodes to clamp the connection points 

between switches and capacitors, Fig. 1. 13 (right). This gives a controllable path for the currents through the 

clamping devices, like the ANPC.  This topology has been exploited [15], [58] in medium voltage (3.3, 6.6, 

and 9.9 kV) and high power (up to 48 MW) industrial applications. Power losses are shared among the devices, 
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enabling higher switching frequencies, thus increasing the maximum output frequency and making this 

converter suitable for variable high-speed drives, in railway traction applications.   
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Fig. 1. 11  Three-phase 5L-HNPC inverter [43]-[45] 
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Fig. 1. 12  Active NPC. a) 3L-ANPC featuring IGCTs [46]-[47]. b) 5L-ANPC featuring IGBTs [48]-[50]. c) CCC 

stage plus 5L-ANPC hybrid nine-level inverter [51] 
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Fig. 1. 13  Modular Multilevel converter MMC (left), Three phase three-level TCC(right) 

The combination of different multilevel converter topologies gives rise to hybrid multilevel converters.  Two 

main hybrid multilevel converter are present in the literature, the NPC-CHB converter [59]-[65], depicted in 

Fig. 1. 14(left) and the Hybrid Multilevel Converters feeding Open-End Winding machine [66]-[81], Fig. 1. 

14 (right).  

 The NPC-CHB, combines a 3L-NPC and single-phase H-bridge cells. On the H-bridge DC side a floating 

capacitor is present without a voltage supply. Hence, the addition of H-bridge stages only introduces more 

voltage levels but does not effectively increase the active power rating of the overall converter. The number of 

series connected H-bridge usually varies between one and two. 
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Fig. 1. 14 Multilevel NPC-CHB hybrid converter(left)[52]-[54], Cascaded NPC inverter connected in series 

through an open-end winding stator machine(right) 

The concept of cascading two 3L-NPC converters, with one at each side of an open-end stator winding of an 

induction motor, was first introduced in [66].  Later, two separately excited two-level voltage source inverters 

(2L-VSIs) with different voltage ratios generating a four-level converter were introduced [69].  This concept 

evolved in a structure encompassing a MLI and a TLI. The first (the main inverter) supplies only active power 

to the load, while the second (the auxiliary inverter) acts as a series active filter [67]-[70].  In this way, high 

voltage power devices are adopted for the main inverter and low voltage fast power devices can be used on the 

auxiliary one. 
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1.1.5 Control and Modulation Strategy for MLIs 
 

     Modulation strategies for multilevel inverters  can be divided into two main groups, namely: space vector 

and time domain, Fig. 1. 15.  Furthermore, they can be classified according to switching frequency, as shown 

in Fig. 1. 16 [82], [83]. A very popular modulation strategy, largely used in industrial applications, is the classic 

carrier-based sinusoidal PWM (Sine-PWM) that uses the phase-shifting technique to reduce output voltage 

harmonics [17], [84], [85]. An interesting alternative is the Space Vector Modulation SVM strategy [82]. 

Strategies which work at low switching frequencies, generating a staircase output voltage waveform are the 

multilevel selective harmonic elimination [86], [87] and the space-vector control (SVC) [88].  Generally, a 

low-switching frequency features low switching losses while high-switching frequency features high switching 

losses. 

 

Fig. 1. 15 Classification of Multilevel modulation methods based on the domain in which they operate 
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Fig. 1. 16 Classification of Multilevel modulation methods based on switching frequency   
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1.1.5.1 Sine-PWM Modulation 
 

     The most popular control technique for traditional inverters is the sinusoidal or “subharmonic” Pulse Width 

Modulation (SPWM). Its popularity is due to the easy implementation and the robustness [89].  When a single 

triangular carrier signal is used on a conventional three-phase two-level inverter, n-1 carriers will be needed 

on a n-level inverter in order to synthetize the pseudo-sinusoidal output voltage. In the last case, the carriers 

have the same frequency fc, the same peak-to-peak amplitude Ac, and are deployed on contiguous bands.  The 

phase displacement between two contiguous triangular carriers is free.  Three configurations can be used, Fig. 

1. 17: 

 All the carriers are in opposition with the following one (APOD disposition, see Fig. 1. 17(left)) 

 All the carriers above the zero value reference are in phase among them, but in opposition with those 

located below the zero level (POD disposition, see Fig. 1. 17(middle)) 

 All the carriers are in phase among them (PH disposition, see Fig. 1. 17(right)). 
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Fig. 1. 17 Carriers and reference waveforms for 5-level inverter. Left) APOD. Middle) POD. Right) PHD.  

The amplitude modulation index ma and the frequency ratio mf are defined as: 

being Am and fm respectively the peak-to-peak amplitude of the fundamental voltage and the fundamental 

frequency. The harmonic content of the output voltage varies according to the selected configuration. In the 

APO and PO cases, the harmonics at the carrier frequency and multiples do not exist at all. For the PHD, no 

harmonics exist at even multiples of the carrier frequency. When the frequency ratio mf is high, there are no 

substantial differences among the three configurations, because all the harmonics are moved to the high 

frequency range so they are easily filtered. The scenario changes when mf is not sufficiently high. In this case 

the PH configuration seems the least interesting, due to large (greater than the fundamental) harmonic at fc, 

Acn

Am
ma

)1( 
      (1.1) 

f
c

f
m

m f   (1.2) 
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generated at low ma values.  However, dealing with three-phase inverters and using a single-phase modulation, 

that harmonic is of common mode nature, so it will not be present in the harmonic content of the phase current 

of a wye connected load. In this case the PH configuration becomes the most interesting one, due to the very 

little amplitude of the other harmonics.  On a multilevel SPWM the apparent switching frequency of the output 

voltage is a multiple of the switching frequency of each cell. Such an advantageous feature allows a reduction 

of the effective switching frequency, thus reducing the switching losses. 

 

1.1.5.2 Space Vector Modulation 
 

     According to the space vector modulation, the reference voltage Vs is synthetized by forcing the inverter to 

assume a suitable sequence of states (or voltage vectors) [90], [91].  Fig. 1. 18 shows the allowable states for a 

three-level inverter.  A common characteristic to all SVM-based schemes is that the modulation algorithm is 

divided into three stages.  In the first, a set of voltage vectors are selected, usually, the three closest to the 

reference voltage vector.  On the second stage duty cycles are computed (or On and Off times) for each vector 

in order to achieve the desired reference voltage as average over a single switching time (the inverse of the 

switching frequency). In the final stage the vector sequence is generated. 
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Fig. 1. 18 Space vector for a 3LI inverter. 

The desired voltage vector can be synthesized by computing the duty cycles (Tj, Tj+1 and Tj+2) of the three 

inverter voltage vectors. 
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SVPWM methods generally feature good utilization of DC-link voltage, low current ripple, and an easy 

hardware implementation by a digital signal processor (DSP). These features make it suitable for high voltage, 

high-power applications. As the number of levels increases, redundant switching states and the complexity of 

selection of switching states increase dramatically. 

 

1.1.5.3 Selective Harmonic Elimination 
 

     The selective harmonic elimination is considered as a low-frequency modulation [86], [87].  Fig. 1. 19 

shows a generalized quarter-wave symmetric stepped-voltage waveform synthesized by a n-level inverter, 

being m the number of switching angles.  By applying the Fourier series analysis, the amplitude of any odd 

harmonic of the stepped waveform can be expressed as: 
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Fig. 1. 19 Generalized output stepped-voltage waveform for a n-level inverter 

where Vk is the kth level of DC voltage, n is the harmonic order and k is the kth switching angle. The amplitude 

of the staircase output phase voltage VMLI is controlled by acting on m=(n-1)/2 switching angles 1,2,...,m 

(0≤1<2<m)/2≤ π/2).  More specifically, switching angles are selected in order to obtain the required 

fundamental voltage reference V1, while eliminating from the harmonic content of the output voltage, n-1 of 

the lowest odd, non-triple harmonics.  Therefore, 1, 2,..., m, are computed by solving the following set of (n-

1)/2 non-linear transcendental equations: 
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where: k is the order of the highest harmonic that has to be eliminated and ma is the modulation index defined 

as: 

DC
V

V
ma

*

4


  (1.6) 

In general, the most significant low-frequency harmonics are selected for elimination, as high-frequency 

harmonic components can be readily removed by using additional filters. 

 

1.1.5.4 Space Vector Control and Direct Torque Control 
 

     A conceptually different control method for multilevel inverters, based on the space-vector theory, is 

introduced in [83]. This control strategy, called Space Vector Control SVC, works with low switching 

frequencies.  It is adopted for inverters with a large number of voltage levels, where voltage vectors are very 

close, as depicted in Fig. 1. 20.  
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Fig. 1. 20 Space Vector locations for high number of level 
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The basic principle of SVC is to generate a voltage vector that minimizes the space error, or distance to the 

reference vector Vs. The high density of vectors produced by the n-level inverter (n>11) will generate only 

small space errors, a traditional PWM modulation strategy it is, therefore, unnecessary. The hexagon of Fig. 1. 

20 shows the boundary of highest proximity, which allows to select the inverter voltage vector that is closest 

to the reference voltage vector. As the amount of inverter voltage levels drops, the SVC method becomes 

ineffective, as the space error raises, thus increasing the load current ripple. Finally, the DTC technique has 

been developed for low-voltage two-level inverters as an alternative to the field oriented method to effectively 

control torque and flux in ac drives [92]. DTC and hysteresis current control techniques have also been applied 

in multilevel inverters [93]. At least one major manufacturer has been selling medium-voltage three-level diode 

clamped inverters controlled with DTC [94]. 

 

1.1.5.5 Capacitor Balancing Techniques for MLIs 
 

     A typical issue of a MLI is the fluctuation of the neutral point of the DC-Bus, causing the distortion of the 

output voltage.  This phenomenon is clearly discussed in [95]. The paper demonstrated that a diode-clamped 

multilevel inverter delivering only real power to the load cannot establish balanced voltages without admitting 

output voltage distortion. On the contrary, a voltage balancing method is not needed if a suitable reactive power 

is delivered to the load. Many techniques can be adopted in order to solve the problem of the fluctuation of the 

neutral point. In [96] the problem is solved by using a back to-back rectifier/inverter system and proper voltage 

balancing control. Other papers [97]–[99] suggested the use of additional voltage balancing circuits, such DC 

chopper, etc. The capacitor-clamped structure was originally proposed for high-voltage DC/DC conversions 

[100]. It is easy to balance the capacitor voltages in these applications because the load current is DC. Voltage 

balancing in a capacitor-clamped multilevel inverter, is a quite complex task [60], [101]. It has been shown 

theoretically that the capacitor-clamped inverter cannot self-balance the capacitor voltage when no real power 

is delivered to the load, such as in reactive power compensation.  Moreover, voltage balancing become 

troublesome because each phase leg has its own floating capacitor. The cascaded multilevel inverter was first 

introduced for motor drive applications, exploiting an isolated and independent DC voltage source for each H-

bridge [17]. However, a paper presented the idea of using cascade multilevel inverter for reactive and harmonic 

compensation, omitting isolated DC sources [96]. Additional works further demonstrated that the cascaded 

multilevel inverter is suitable for universal power conditioning in medium-voltage power systems [102], [103].  

Such a configuration, in fact, provides lower costs, higher performance, less electromagnetic interference 
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(EMI), and higher efficiency than the traditional PWM inverter for power line conditioning applications. 

Although the cascaded inverter has an inherent self-balancing characteristic, because of power losses and 

limited controller resolution, a slight voltage imbalance can occur. A simple control scheme, which ensures a 

DC voltage balance, has been proposed for reactive and harmonic compensation [96]. Fig. 1. 21 shows its 

control block diagram. It contains a proportional–integral (PI) regulator to adjust the trigger angle and to ensure 

zero steady state error between the reference DC voltage and the DC-bus voltage.  Multilevel rectifiers have 

been also proposed to eliminate phase shift transformers. For those applications not requiring regenerative 

capabilities, simplified (or reduced) multilevel rectifiers have been proposed in [104]. This specific rectifier, 

named the Vienna rectifier, has been used for telecommunication power supplies. Fig. 1. 22 shows the per-

phase leg structure for a three-level Vienna rectifier.  
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Fig. 1. 21 Control diagram for DC-Bus voltage control in a MLI 
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Fig. 1. 22 Vienna rectifier phase leg structure 
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2 Chapter: Open-end Winding Systems 

     As discussed in chapter 1, alternative multilevel converter topologies have been proposed in the last two 

decades. Among them, a multilevel inverter structure obtained by feeding an open-end winding machine 

through two two-level inverters has gained a large interest. In this chapter, a review of Open-end Winding 

Systems (OWS) is given.  In particular, benefits in terms of output voltage waveform, DC-Bus utilization and 

efficiency are highlighted.  The chapter ends with a discussion of common-mode voltage and zero-sequence 

current issues. 

 

2.1 Definition and features of an Open-end Winding 

System 
 

     Reliability and availability have become increasingly a priority for electrical drives in application fields as 

railway, ship propulsion, electrical vehicles etc.  These systems are primarily based on induction machines 

powered by conventional 2-Level Inverters (TLI), although this association has some disadvantages.  

Specifically, several research efforts have been oriented to overcome limitations of conventional (TLI) in 

handling high voltages, high dv⁄dt levels, high switching frequency and Total Harmonic Distortion (THD) 

issues.  Some of these solutions rely in the modification of the electric machine by adopting multi-phase (more 

than three) or multi-star windings.  While, on the side of the power converter, new topologies and new 

modulation techniques have been developed.  Among them, Multi-Level inverters are able to reduce the dv⁄dt 

stress on power devices as well as to improve the voltage and current harmonic content. In fact, a MLI, by 

increasing allowable output voltage levels, generates a lower load current THD for a given switching 

frequency, thus improving the efficiency. Main MLI topologies have been discussed earlier with their features. 

However, a special MLI can be obtained exploiting an Open-end Winding System (OWS) [1]-[30].  Basically, 

the term OWS derives from how the windings of an electrical machine (motor or transformer) are connected 

to the power supply.  Two standard configurations are known: the wye-connected AC machine, where the 

neutral point of the windings is accessible and the delta-connected machine, as depicted in Fig. 2. 1.  The basic 

OWS configuration is obtained by splitting the neutral connection of an AC machine and connecting each end-

phase of the winding to an independent TLI, Fig. 2. 2. 
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Fig. 2. 1 Standard configurations: wye-connected with neutral point ‘o’ and delta connected AC machine 
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Fig. 2. 2 Standard scheme of an Open-end Winding System 

A combination of two TLIs with three phase open-end winding AC machine results in 64 switching state 

vectors rather than 8, as for a conventional two-level three phase inverter, as depicted in Fig. 2. 3 [4]. For a 

given load current THD, such a large number of switching state vectors allows to reduce the inverter switching 

frequency [1], [5]-[7], [9], [11], [16], [18], [19].  In Fig. 2. 2, VA’O’, VB’O’, VC’O’ are the pole voltages of inverter 

1, while, VA’’O’’, VB’’O’’, VC’’O’’ are the pole voltages of inverter 2.  Allowable space vectors for each inverter are 

shown in Fig. 2. 3 (up), while the space phasors of the OWS system are shown in Fig. 2. 3 (down).  Voltage 

vectors combinations are also summarized in Table 2.1, where a ‘1’ means top switch in the inverter is ‘on’, a 

‘0’ means bottom switch in the inverter is ‘on’. In all 64 space phasor combinations are possible exploiting 

both the inverters.  For example, a combination 6’-1’’ implies that the switching state for INV 1 is (101) and 

that for INV 2 is (100).  The motor phase voltage can be computed from pole voltages of the two inverters.  

The 64 voltage space phasors define the vertices of 24 equilateral triangles, or sectors, Fig. 2. 3 (down). Six 

adjacent sectors form a hexagon. Thus, six hexagons can be identified, with their centers at A, B, C, D, E and 

F respectively.  The externals vertices are identified as G, H, I, J, K, L, M, N, P, Q, R, S. The center of the 

composition of the six hexagons is located in O.  The length of the vectors OA and AG is equal to VDC
’ and 
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VDC
’’ respectively, while the length of the vector OG is VDC

’+VDC
’’.  Assuming Vs as the reference voltage 

vector: 

                     *2**
V CaaV BV AV s   (2.1) 

where VA
*, VB

* and VC
* are the reference voltages and: 
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If Vs
’ is the output voltage vector of the inverter 1 and Vs

’’ is the output voltage vector of the inverter 2: 
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the combined output voltage synthetized by the dual inverter system is obtained as: 
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Fig. 2. 3 Space vectors OWS. 



36 
 

The dual two-level inverter-fed open-end winding machine system features some advantages such as 

redundancy of space-vector combinations and the absence of neutral point fluctuations [19]. This configuration 

provides also a mean to optimally exploit different types of semiconductor switches [3], [19] and [24]. 

Many PWM control strategies have been developed in order to synthetize the reference voltage Vs, by 

computing the right vectors Vs
’ and Vs

’’. In particular, the phase-shifted carrier-based PWM, that is used for 

multilevel output voltage generation in [8]. Moreover, conventional voltage space-vector modulation strategies 

have been applied to cascaded converter configurations, consisting of two standard two-level voltage source 

inverters [19], [23], [24], [25].  Classical space-vector PWM, based on the asynchronous principle are burdened 

by generation of sub-harmonics of the output voltage fundamental component, that are very undesirable in 

medium/high power applications [26]-[27].   

A method based on the principle of the synchronized modulation has been developed to control a dual inverter-

fed open-end winding motor drives with a single DC voltage source [28] and with two separate DC sources 

(without power balancing between sources) [29]. A continuous control of the power sharing between two 

separate DC sources has been also proposed [11].  A new Space-Vector Pulse Width Modulation (SVPWM) 

scheme for an induction motor with open-end windings has been presented in [5]. Such a scheme requires two 

isolated power supplies and uses instantaneous phase reference voltages. The proposed PWM scheme employs 

two inverters which alternate their clamping and switching duties along each cycle. An improved PWM 

switching scheme is proposed in [6] aimed to reduce the number of switchings in a dual inverter system. A 

relevant 50% reduction is achieved. In [9] pulse width modulation for the two inverters is implemented through 

a simple but effective time placement, thus, eliminating the need of sector identification procedures and lookup 

tables. In order to avoid synchronism of conventional space-vector modulation, a synchronized PWM strategy 

has been used to control each inverter in a dual inverter-fed traction drive [22], [23].  In [30] a dual two-level 

inverter is exploited to extend the field weakening speed range of Surface Permanent Motor (SPM).  The 

proposed method can increase the maximum speed of a SPM motor up to about 4 times the base speed without 

using a demagnetizing current. 

Main features of dual two-level systems (D2LS) are: 

• The load real power demand is equally shared between the two inverters; 

• Each converter is rated at half of the load power; 

• Independent control of the three stator currents; 

• The apparent switching frequency is twice that of the two inverters;  
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• Readily extendible to systems with a greater number of phases; 

• Machine losses are the same (or somewhat less) than in a conventional system with a wye connection; 

• A 70% higher voltage is available across each phase winding for a given inverter voltage rating, resulting 

in an extended speed range. 

Table. 2.1.  Space Vector combinations. 

States Vector INV 1 Vector INV 2 

000 8’ 8’’ 

111 7’ 7’’ 

100 1’ 1’’ 

110 2’ 2’’ 

010 3’ 3’’ 

011 4’ 4’’ 

001 5’ 5’’ 

101 6’ 6’’ 

 

A noticeable improvement of the voltage and current harmonic content is obtained by adopting an open-end 

winding configuration since the amount of output voltage levels is increased. Three dual-two level inverter 

topologies can be considered, namely: D2LS with symmetrical Isolated DC power supply (Fig. 2. 4), D2LS 

with symmetrical Single DC power supply (Fig. 2. 5) and D2LS with asymmetrical isolated DC power supply 

(Fig. 2. 6).  If VDC
’=VDC

’’ a symmetrical dual-two level inverter is obtained making 18 space vector voltage 

states available, as depicted in Fig. 2. 3. If VDC
’≠VDC

’’ an asymmetrical dual-two level inverter is obtained and 

37 space vector voltage states are available, Fig. 2. 7.  It will be shown in the following that the dual-two level 

inverter with an asymmetrical DC-Links works as a four-level inverter and a dual-two level inverter with 

symmetrical DC-Links works as a three-level inverter [3].   
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Fig. 2. 4.  Dual-Two-Level Inverter circuit feeding Open-

End Winding Machine with Symmetric Isolated DC-Links 

Fig. 2. 5.  Dual-Two-Level Inverter circuit feeding 

Open-End Winding Machine with a single DC-Link 
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Fig. 2. 6. Dual-Two-Level Inverter circuit feeding Open-End Winding Machine with asymmetrical isolated DC-Links 
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Fig. 2. 7 Space vectors for a Dual-Two-Level Inverter with asymmetric isolated DC-Links  

 

2.1.1 Symmetrical Dual Two-level Inverter with single 

DC-Bus 
 

     A symmetrical dual-two level inverter is composed of two two-level three phase inverters of the same type 

and size [8], [12]-[14], [24].  These inverters are rated at 0.5 pu power with a DC Bus voltage 

VDC
’=VDC

’’=VDC/2, being VDC the DC Bus voltage of an equivalent conventional three-phase configuration 

(with the machine windings wye or triangle connected). The DC power supply is common to the two inverters, 

resulting in a single DC-Bus voltage, Fig. 2. 8. 
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Fig. 2. 8.  Dual-Two-Level Inverter circuit feeding Open-End Winding Machine with Symmetric and Single DC-Link 
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The inverter-1 a’ leg output voltage, referred to the mid-point O of the DC-Bus is given by: 

It may assume two non-zero voltage levels, namely; +VDC/4 and -VDC/4.  The same applies for inverter-2: 

The voltage Vm applied to a-phase winding of the OW machine is given by: 

Thus, the phase voltage Vm may assume the zero voltage level and two non-zero voltage levels, namely; 0, 

+VDC/2 and - VDC/2.  Hence, the symmetrical dual two-level inverter works as a three-level inverter.  Usually, 

the output voltage of the inverter-2 is shifted by 180° from the output voltage of the inverter-1, Fig. 2. 9.  As an 

example, the maximum phase voltage at the machine winding Vm
* is achieved by activating the state 1’(100) on 

inverter-1 and the state 4’’(011) on inverter-2. 
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Fig. 2. 9 180° phase shifted PWM 

Fig. 2. 10 shows the output phase voltage referred to the mid-point O of a conventional two-level inverter with 

VDC=600 V, fundamental frequency f1=50Hz and switching frequency fsw=1kHz.  Fig. 2. 11 depicts the phase 

voltage Vm for a symmetrical open-end winding system with single VDC=600 V, fundamental frequency f1=50Hz 

and switching frequency fsw=1kHz.  Further, Fig. 2. 12 and Fig. 2. 13 respectively show the harmonic spectra 

produced by a conventional two-level inverter and a symmetrical dual two-level inverter with single DC-Bus.  

Thanks to the three voltage levels modulation, the dual two-level inverter features an improved THD and a 
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doubled switching frequency if compared to the conventional system.  Therefore, in order to obtain the same 

total switching frequency, each inverter of the dual-inverter system must be operated at half the switching 

frequency of the single inverter of the conventional system, resulting in lower voltage stresses, lower dv/dt and 

lower switching losses. 

The main advantage of the symmetrical dual two-level inverter is that only a single power supply is required. 

However, zero-sequence currents may flow through the common DC-Bus voltage structure. In order to avoid 

the circulation of zero sequence currents in [32] the voltage reference is synthetized by using only the voltage 

space phasors H, J, L, N, Q, S, although at the cost of a reduction of the available maximum phase voltage.   
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Fig. 2. 10.  Phase voltage Vm with single three-phase 

inverter, VDC=600 V, m=1, fsw=1kHz, f1=50Hz 

Fig. 2. 11.  Phase voltage Vm with symmetrical dual two-

level three-phase inverter, VDC= VDC/2=300 V, m=1, 

fsw=1kHz, f1=50Hz 
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Fig. 2. 12.  Harmonic spectrum of Vm with single three-

phase inverter, VDC=600 V, m=1, fsw=1kHz, f1=50Hz 

Fig. 2. 13.  Harmonic spectrum of Vm with symmetrical 

dual two-level three-phase inverter, VDC= VDC/2=300 V, 

m=1, fsw=1kHz, f1=50Hz 

 

2.1.2 Symmetrical Dual Two-Level Inverter with two 

isolated DC-Buses 
 

     As shown in Fig. 2. 14, this configuration encompasses two independent DC-Buses, which are isolated 

between them by mean of two transformers [1], [3], [5], [6], [8]-[13], [16]-[21], [24].  DC Bus isolation prevents 
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the circulation of third harmonic currents.  As in the symmetrical dual two-level inverter with single power 

supply:  VDC
’=VDC

’’=VDC/2. 
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Fig. 2. 14.  Dual-Two-Level Inverter circuit feeding Open-End Winding Machine with Symmetric and Isolated DC-

Links(left). Electrical equivalent circuit(right) 

According to Fig. 2. 14, the inverter-1 a’ leg output voltage, referred to the mid-point O’ of the DC-Bus of the 

inverter-1 is given by: 

This voltage assumes two non-zero voltage levels, namely; +VDC/4 and -VDC/4.  The inverter-2 a’’ leg output 

voltage, referred to the mid-point O’’ of the DC-Bus of the inverter-2 is given by: 

Thus, the voltage Vm applied to a phase winding of the OW machine is given by: 

being VO’O’’ the voltage between the mid-points O’ and O’’ of the DC-Buses of the two inverters. It is constant 

if the two DC-Buses are electrically connected, as for single power supply configuration, or variable if the two 

DC-Buses are isolated.  In this case, VO’O’’ is given by: 

where VCMV1 and VCMV2 are the common-mode voltages of the inverter-1 and inverter-2, respectively.  This 

quantity is known as differential-mode voltage for an open-end winding system and depends on the switching 

states of the two inverters [32].  Based on switching state combinations, the differential-mode voltage can 

assume up to three voltage levels, 0, +VDC/6 and -VDC/6.  The voltage VO’O’’ must not be confused with common-

mode voltage VCMV, which is given by the sum of the common-mode voltages of the two inverters: 
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The common-mode voltage is responsible of the circulation of common-mode and bearing currents in AC motor 

drives.  Table 2.2 summarizes the output voltage levels obtainable with a symmetrical dual-two level inverter 

with isolated DC-Buses.   Fig. 2. 15 shows the phase voltage Vm of a symmetrical open-end winding system with 

VDC=600 V, f1=50Hz and fsw=1kHz. Fig. 2. 16 shows the differential mode voltage VO’O’’ which assumes three 

voltage levels.  Fig. 2. 17 and Fig. 2. 18 show the harmonic spectra of the phase voltage Vm and differential 

voltage VO’O’’, respectively. The phase voltage Vm assumes the zero and 8 non-zero levels, resulting in a reduction 

of the THD from 0.39 to 0.26, if compared with a dual two-level inverter with single DC-Bus.  The differential-

mode voltage VO’O’’ encompasses a zero-sequence component, which would cause a zero sequence current on a 

single DC-Bus system.  

Table. 2.2.  Space Vector combinations from Symmetrical dual two-level inverter with isolated DC-Buses 

VA’O’ VA’’O’’ VA’O’- VA’’O’’ VO’O’’ Vm=VA’O’- VA’’O’’+ VO’O’’ 

2-levels 

1/4VDC, 

-1/4VDC 

2-levels 

1/4VDC, 

-1/4VDC 

3-levels 

1/2VDC, 0 

-1/2VDC 

3-levels 

1/6VDC, 0 

-1/6VDC 

 

9-levels 

1/6VDC, -1/6VDC,1/3VDC,0, 

2/3VDC,1/2VDC,-1/12VDC, 

-5/12VDC,-1/4VDC 
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Fig. 2. 15.  Phase voltage Vm with two isolated three-phase 

inverters, VDC=600 V, m=1, fsw=1kHz, f1=50Hz 

Fig. 2. 16. Voltage VO’O’’, VDC=600 V, m=1, fsw=1kHz, 

f1=50Hz 
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Fig. 2. 17.  Harmonic spectrum of Vm with isolated three-

phase inverters, VDC=600 V, m=1, fsw=1kHz, f1=50Hz 

Fig. 2. 18. Harmonic spectrum of VO’O’’ with isolated three-      

phase inverters, VDC=600 V, m=1, fsw=1kHz, f1=50Hz 
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The symmetrical dual two-level inverter is disadvantaged by the need of two isolated power supplies.  However, 

a floating capacitor, Fig. 2. 19, can be used to replace the DC-Bus of one inverter, also preventing the circulation 

of zero-sequence currents.   A suitable floating capacitor voltage control is required, as those proposed in [1] 

and [33].  The inverter with the floating DC-link capacitor is tasked either to provide reactive power to the 

system, either to boost the voltage at motor terminals.  
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Fig. 2. 19.  Dual-Two-Level Inverter circuit feeding Open-End Winding Machine with floating capacitor 

 

2.1.3 Asymmetrical Dual Two-level Inverter with two 

isolated DC-Buses 
 

     A combination of two two-level inverters with 2/3VDC and 1/3VDC DC-Link voltage gives 64 voltage space 

phasor combinations in 37 space phasor locations rather than 18 as for a symmetrical dual two-level inverters, 

as depicted in Fig. 2. 7. According to eqs. (9) - (13), the phase voltage Vm assumes a different waveform 

compared with a single power supply. It assumes 13 non-zero voltage levels and one zero level, as shown in Fig. 

2. 20.  The increment of the amount of non-zero voltage levels is due to the larger number of  levels of the 

differential-mode voltage VO’O’’, Fig. 2. 21. All voltage levels are calculated and summarized in Table 2.3.  A 

reduction of the THD from 0.26 to 0.23 is obtained, as shown in Fig. 2. 22.  Differently from what happens on 

a symmetrical dual two-level inverter, the differential-mode voltage VO’O’’ shows an harmonic component at the 

switching frequency, Fig. 2. 23.  
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Fig. 2. 20.  Phase voltage Vm with two isolated and 

asymmetrical three-phase inverters, VDC=600 V, m=1, 

Fig. 2. 21.  Voltage VO’O’’ with two isolated and 

asymmetrical three-phase inverters, VDC=600 V, m=1, 
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fsw=1kHz, f1=50Hz fsw=1kHz, f1=50Hz 
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Fig. 2. 22.  Harmonic spectrum of Vm with two isolated and 

asymmetrical three-phase inverters, VDC=600 V, m=1, 

fsw=1kHz, f1=50Hz 

Fig. 2. 23.  Harmonic spectrum of VO’O’’ with two isolated 

and asymmetrical three-phase inverters, VDC=600 V, 

m=1, fsw=1kHz, f1=50Hz 

Table. 2.3.  Space Vector combinations from Asymmetrical dual two-level inverter   

VA’O’ VA’’O’’ VA’O’- VA’’O’’ VO’O’’ Vm=VA’O’- VA’’O’’+ VO’O’’ 

2-levels 

1/3VDC, 

-1/3VDC 

2-levels 

1/3VDC, 

-1/3VDC 

4-levels 

1/6VDC, 1/2VDC 

-1/6VDC, -1/2VDC 

6-levels 

1/4VDC, -1/4VDC 

-1/6VDC, 1/6VDC 

-1/12VDC, 1/12VDC 

14-levels 

5/12VDC,-1/12VDC,1/3VDC,0, 

1/4VDC,1/12VDC,3/4VDC,2/3VDC,7/12VDC,3/4VDC 

-1/4VDC,-1/3VDC, -2/3VDC,-5/12VDC 

 

 

2.1.4 Review on Common-Mode Voltage and Zero 

Sequence Current in a Dual Two-Level inverter fed 

an Open-end Winding machine 
 

     Common-mode voltages (CMV) generated by PWM in AC drives are the cause of shaft voltage buildup, 

electromagnetic interference issues, bearing and ground currents [34]-[36].  The CMV is the voltage existing 

between the system and a common reference point, usually the negative rail of the DC-Bus, or the earth.   

In a conventional two-level inverter, the CMV features the switching frequency and can be expressed as: 

being VAO, VBO, VCO the inverter output voltages, referred to the mid-point O.  In a conventional configuration 

the CMV coincides with the zero sequence voltage ZSV, which causes the flowing of zero sequence currents 

when suitable paths are provided.  Two major common mode coupling paths exist in an electric motor: the stray 

capacitance between the stator core and the stator winding Cws and the stray capacitance existing between the 

3
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V CM
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stator windings and the rotor iron Cwr. Moreover, if the stator and rotor cores are electrically insulated, an air-

gap capacitance Cg also exists, that is parallel connected to the bearing impedance.   Several solutions have been 

proposed to reduce common mode voltages, among them, passive and active common-mode filters [37]-[40]. 

However, the introduction of these devices causes additional costs and major power losses. Thus, PWM methods 

are preferred for two-level inverters, although they cannot fully eliminate CMV [41]-[42]. In [41], a method is 

proposed exploiting only odd or even space vector combinations to reduce the CMV from ±VDC/2 to ±VDC/6, 

without zero vector states, in a conventional two-level inverter. Modulation-based strategies eliminating 

common-mode voltages by employing only a subset of output voltage space vectors are described in [43] and 

[44]. However, these techniques are burdened by a reduction of maximum phase voltage available, leading to a 

poor exploitation of the DC-Bus voltage. Multilevel inverters can provide excellent solutions in reducing the 

CMV thanks to the high number of space vector combinations available.  The CMV per phase equivalent circuit 

of a Dual-Two-Level Inverter feeding an Open-End Winding Induction Motor is depicted in Fig. 2. 24. VO’ and 

VO’’ are the common mode voltages generated by the two inverters. 
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Fig. 2. 24. Common Mode Voltage per phase equivalent circuit for a Dual-Two-Level Inverter circuit feeding Open-End 

Winding Induction Motor 

As mentioned in [45], in a Dual-Two-Level Inverter the equivalent CMV causes the circulation of bearing 

currents and is given by the sum of the common mode voltages of the two inverters VCM1 and VCM2. 

 

being: VA’O’, VB’O’, VC’O’ the inverter-1 output voltage, referred to the mid-point O’ and VA’’O’’, VB’’O’’, VC’’O’’ the 

inverter-2 output voltage, referred to the mid-point O’’. 

Differently, the ZSV, causing the circulation of the zero-sequence current is given by the difference between the 

common mode voltages of the two inverters. 
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Three dual-two level inverter topologies exist, namely: Symmetrical Isolated DC power supplies, Symmetrical 

Single DC power supply and Asymmetrical Isolated DC power supplies.  According to tables 2.4, 2.5, and 2.6, 

these topologies generate different CMV and ZSV.  

Table. 2.4, Voltage space vector combinations producing zero common-mode voltage in the motor phase windings with 

symmetrical DC-Buses 

Vector Space phasor 

combinations 

VCM1 VCM2 CMV across machine phase 

VCM1- VCM2 

OS 13’ VDC/6 VDC /6 0 

64’ VDC /3 VDC /3 0 

OH 15’ Vdc/6 Vdc/6 0 

24’ VDC /3 VDC /3 0 

OJ 35’ VDC /6 VDC /6 0 

26’ VDC /3 VDC /3 0 

OL 31’ VDC /6 VDC /6 0 

46’ VDC /3 VDC /3 0 

ON 51’ VDC /6 VDC /6 0 

42’ VDC /3 VDC /3 0 

OQ 53’ VDC /6 VDC /6 0 

62’ VDC /3 VDC /3 0 

Zero 

vector 

at 

origin 

11’, 33’, 55’ VDC /6 VDC /6 0 

22’, 44’, 66’ VDC /3 VDC /3 0 

77’ VDC /2 VDC /2 0 

88’ 0 0 0 

 

Table. 2.5, CMV values for dual-two level inverter with symmetrical DC-Buses 

Switching 

states 

V’1(100) V’2(110) V’3(010) V’4(011) V’5(001) V’6(101) V’7(111) V’8(000) 

V’’1(100) - VDC /6 0 - VDC /6 0 - VDC /6 0 VDC /6 - VDC /3 

V’’2(110) 0 VDC /6 0 VDC /6 0 VDC /6 VDC /3 - VDC /6 

V’’3(010) - VDC /6 0 - VDC /6 0 - VDC /6 0 VDC /6 - VDC /3 

V’’4(011) 0 VDC /6 0 VDC /6 0 VDC /6 VDC /3 - VDC /6 

V’’5(001) - VDC /6 0 - VDC /6 0 - VDC /6 0 VDC /6 - VDC /3 

V’’6(101) 0 VDC /6 0 VDC /6 0 VDC /6 VDC /3 - VDC /6 

V’’7(111) VDC /6 VDC /3 VDC /6 VDC /3 VDC /6 VDC /3 VDC /2 0 

V’’8(000) - VDC /3 - VDC /6 - VDC /3 - VDC /6 - VDC /3 - VDC /6 0 - VDC /2 

 

            V CMV CMV ZSW 21   (2.17) 
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Table. 2.6, Voltage space vector combinations producing CMV in the motor phase windings in a dual-two level inverter 

with asymmetrical DC-Buses 

Switching states V’1(100) V’2(110) V’3(010) V’4(011) V’5(001) V’6(101) V’7(111) V’8(000) 

V’’1(100) - VDC /18 - VDC /6 - VDC /18 - VDC /6 - VDC /18 - VDC /6 VDC /6 - 5VDC /18 

V’’2(110) VDC /6 VDC /18 VDC /6 VDC /18 VDC /6 VDC /18 5VDC /18 - VDC /6 

V’’3(010) - VDC /18 - VDC /6 - VDC /18 - VDC /6 - VDC /18 - VDC /6 VDC /6 - 5VDC /18 

V’’4(011) VDC /6 VDC /18 VDC /6 VDC /18 VDC /6 VDC /18 5VDC /18 - VDC /6 

V’’5(001) - VDC /18 - VDC /6 - VDC /18 - VDC /6 - VDC /18 - VDC /6 VDC /6 - 5VDC /18 

V’’6(101) VDC /6 VDC /18 VDC /6 VDC /18 VDC /6 VDC /18 VDC /18 - VDC /6 

V’’7(111) - 5VDC /18 -7VDC /18 - 5VDC /18 -7VDC /18 - 5VDC /18 -7VDC /18 -VDC /6 - VDC /2 

V’’8(000) 7VDC /18 5VDC /18 7VDC /18 5VDC /18 7VDC /18 5VDC /18 VDC /2 VDC /6 

 

As early mentioned Zero-sequence currents may flow through motor windings when a single DC-Bus is 

used.  In this case, CMV and ZSV can be attenuated using suitable PWM techniques. Differently, zero sequence 

currents cannot exist on a dual two-level inverter fed by two isolated DC-Buses. However, such a configuration 

requires two isolated transformers, although a floating DC bus capacitor can be used on one of the two inverters, 

as shown in Fig. 2. 19.  The PWM strategy for a dual-two level inverter with symmetrical and isolated DC-Buses 

proposed in [8] is based on the Sine-PWM modulation, but the phase voltage provided by inverter-2 is shifted 

of 180°.  Fig. 2. 25 shows the ZSV VO’O’’, while Fig. 2. 26 shows the phase stator currents, which do not contain 

a zero-sequence current.  Although the zero-sequence current is blocked, the CMV is present and it assumes 7 

voltage levels namely: ±VDC/2, ±VDC/3, ±VDC/6 and 0, as depicted in Fig. 2. 27. Fig. 2. 28 shows the a-phase 

voltage and the a-phase current obtained with a conventional sine-PWM.  A space vector PWM for a dual two-

level inverter using two isolated power supplies is shown in [48]. It exploits the PWM technique proposed in 

[49], which relies on the concept of ‘effective voltage’.  

-300

-200

-100

0

100

200

300

 

 

t[s]

[V]

0.405 0.41 0.415 0.42 0.425 0.43 0.435 0.440.4

 

0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435 0.44-10

-8

-6

-4

-2

0

2

4

6

8

10

t[s]

NO zero sequence current 
THD=1.03%[A]

 

Fig. 2. 25.  ZSV VO’O’’ for Isolated Symmetrical Dual-Two 

Level Inverter in [8] with Sine-PWM modulation 

Fig. 2. 26.  Phase Currents for Isolated Symmetrical 

Dual-Two Level Inverter in [8] with Sine-PWM 

modulation 
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Fig. 2. 27.  CMV for a Symmetrical Dual-Two Level 

Inverter in [8] with Sine-PWM modulation 

Fig. 2. 28.  Phase voltage Vm and phase current im for a 

Symmetrical Dual-Two Level Inverter in [8] with Sine-

PWM modulation 

Inverter switching times are computed directly from the instantaneous reference voltage, without sector 

identification, resulting in a 25% reduction of the execution time if compared with traditional Space Vector 

PWM (SVM) algorithms.  Specifically, the entire hexagon is divided into six sub-hexagons with centers in A, 

B, C, D, E and F and one inner hexagon with center in O, Fig. 2. 29. The voltage reference OVs is synthetized 

as the composition of the vector OA (inverter-1 output voltage Vs’) and the vector AVs (inverter-2 output voltage 

Vs’’). Sector identification is accomplished by hysteresis level comparators. Two main benefits are obtained: no 

zero sequence currents can occur, owing to the isolated power supplies structure, all space vector combinations 

are exploited, thus covering the entire available speed range. The maximum amplitude of the fundamental 

component of the voltage in linear modulation mode is 
2

3

√3

2
VDC=0.57 VDC.  However, bearing currents may 

circulate, because the CMV assumes the waveform depicted in Fig. 2. 27.  
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Fig. 2. 29 Space vectors for a dual two-level inverter 

In [32] some hybrid PWM methods are proposed in order to reduce the CVM in a symmetrical dual two-

level inverter with isolated power supplies. This paper explains that the shaft voltage which causes the bearing 
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currents is a replica of CMV.  As shown in Fig. 2. 27 using a Sine-PWM, the CMV assumes 7 voltage levels.   
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Fig. 2. 30. CMV levels in a Dual-two level Inverter proposed in [32]. a) Sine-PWM. b) PWM2. c) PWM7. d) PWM9. 

e) PWM15 and f) PWM25 
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Fig. 2. 31. Phase voltage and phase current in a Dual-two level Inverter proposed in [32]. a) Sine-PWM. b) PWM2. c) 

PWM7. d) PWM9. e) PWM15 and f) PWM25 

Some PWM strategies (PWM2, PWM7, PWM9, PWM15 and PWM25) are proposed in [32].  Fig. 2. 30 and 

Fig. 2. 31 show CMV, phase voltage and phase current waveforms, obtained using the aforementioned 

techniques. Output voltages obtained using PWM7 and PWM15 are similar to those generated by SVPWM, but 

they are preferable because the CMV can assume only three levels, namely: +/-VDC/6 and 0.  PWM9 gives 

lower CMV and shaft voltages, but at the cost of increasing the power losses and THD.    
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The main drawback of a dual two-level inverter with a with single power supply relies in the circulation of a 

zero-sequence current in the motor windings that cause a worsening of the THD and additional power losses.   

In [24], the ZSV is eliminated by exploiting the technique proposed in [41], [42], as shown  in Fig. 2. 32, Fig. 2. 

33 and Tab. 2.4.     
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Fig. 2. 32. Sequence Odd or Sequence Even Space Vector Combination with no CMV in Dual-two level inverter in [24] 
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Fig. 2. 33. Only Odd or Only Even Space Vector Combination in [41], [42] in a conventional two level inverter 

However, the DC-Bus exploitation is not optimal, as the maximum amplitude of the fundamental voltage 

component is: 

This is same value obtained with a conventional two-level inverter with Sine-PWM. Hence, it is 15% lower than 

that obtainable by using all the 64 available space vector combinations, as discussed in [46], [32], [48] and [50]. 

In order to increase the output voltage range, the addition of a boost converter in the DC-link is suggested in 

[50].  

         V DCV DCV sV pkm 5.0
4

3

3

2

3

2


 (2.18) 
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Fig. 2. 34a and Fig. 2. 34b depict the pole voltage for inverter-1 and inverter-2, respectively. Fig. 2. 34c and Fig. 

2. 34d show the phase voltage Vm and the phase current, respectively.  The ZSV is made null by using sequences 

of only odd or only even inverter states, as depicted in Fig. 2. 34e and Fig. 2. 34f.  The CMV defined as in [45], 

is kept constant to –VDC/6, avoiding bearing currents.  According to this method a single DC-link voltage is 

used, while, the CMVs for each inverter is held to ±VDC/6 (based on odd or even sequence) using space vector 

combinations proposed in [41] and [42].  A space vector based PWM switching scheme is proposed in [51] 

which achieves three-level voltages using all space vector locations with a single DC-Bus voltage. In order to 

improve the DC-Bus exploitation the authors propose a modification of the reference vector if its tip is located 

outside the boundary of hexagon HJLNQS, as shown in  Fig. 2. 35.  Such a scheme [51] reduces the zero-

sequence current by dynamically balancing the ZSVs, exploiting a time relocation algorithm. 
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Fig. 2. 34 Simulation results in [24], m=0.2, fsw=4.8KHZ. a) Output voltage of inverter-1. b) Output voltage of 

inverter-2. c) Phase voltage. d) Phase currents. e) CMV and ZSV with only odd-sequence. f) CMV and ZSV with only 

even-sequence. 
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Fig. 2. 35. Principle of alternate sub hexagonal centre proposed in [51] 

The basic switching algorithm described in [49] and [54] for a conventional two-level inverter is extended to the 

dual-two level inverter by suitably computing the switching times. The two inverters operate alternatively, when 

the inverter-1 is switching, the inverter-2 is clamped and vice versa. Inverter operations are shown in Tab. 2.7. 

Table. 2.7, Inverter roles for realizing the reference vector in [51] 

NSHC A B C D E F 

INV1 100 Switching 

mode 

010 Switching 

mode 

001 Switching 

mode 

INV2 Switching 

mode 

001 Switching 

mode 

100 Switching 

mode 

010 

 

The reference vector OV can be split into two components namely OA, which is generated by inverter-1, and 

AV, which is generated by inverter-2. Hence, this method refers to six hexagons, namely OBHGSF, OCJIHA, 

ODLKJD, OENMLC, OFQPND and OASRQE, having respectively centers in A, B, C, D, E and F and called 

sub-hexagonal centers (SHCs). The SHC, which is situated in the closest proximity to the tip of the reference 

voltage space vector is called Nearest sub-hexagonal center (NSHC). This is found from the reference voltages 

as explained in [55]. In contrast with the algorithm proposed in [24], the zero vector time T0 is dynamically 

changed without changing the total switching time. Thus, T0 is redistributed into two unequal time periods, 

(1-x)T0 and xT0 ,such that the average of  the zero sequence voltage along each switching time is forced to be 

zero. The largest circle inscribed into the hexagon HJLNQS defines the boundary of linear modulation mode 

and it is same of space vector schemes proposed in [24], [52] and [53], where, however, the DC-link is 

underutilized. If ZSV is forced to zero, a non-centre-spaced PWM results in a higher current ripple and 

consequently a higher THD, as shown in Fig. 2. 36a.  

Fig. 2. 36b shows the phase voltage and phase current of an isolated dual-two level inverter when all space 
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vector combinations are exploited, suppressing the zero-sequence, while Fig. 2. 36c shows the phase voltage 

and phase current with the method proposed in [55] with a single DC-link.  

A PWM switching strategy aimed at the suppression of zero sequence currents is proposed in [56] and [57] using 

auxiliary bidirectional switching devices, as depicted in Fig. 2. 37.  This configuration permits to improve the 

DC-Bus utilization compared to the dual two-level inverter with a single power supply, which exploits only 

space vectors with zero ZSV.  However, four additional bidirectional power devices are required to isolate both 

inverters. A suitable trade off must be then found between power losses caused by the additional devices and 

power losses caused by zero sequence currents. 
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Fig. 2. 36. Phase voltage and phase current. a) Single DC-Bus voltage [51]. b) Isolated DC-Buses. c) Single DC-Bus voltage  
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Fig. 2. 37.  Dual-Two-Level Inverter circuit feeding Open-End Winding Induction Motor with auxiliary power devices 
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When space vector combinations S, H, J, L, N, and Q are exploited, the auxiliary switch may be turned on 

preventing the circulation of the zero-sequence current. When G, I, K, M, P and R combinations are instead 

used, the zero-sequence current needs to be suppressed.  This is done by an auxiliary switch, regaining a 15% 

DC Bus voltage utilization lost according to methods presented in [24] and [51]. This method requires a sector 

identification for all 24 sectors as in [51] and the switching algorithm used is the same of that proposed in [49] 

and [52] for inner sectors and [55] for the outer sectors. Applying the Kirchhoff’s voltage law around the loop 

consisting of the DC power supply, Sw1, C1 and Sw3, it is obtained that: 

where Sw1 and Sw3 are the auxiliary switches of inverter-1. Hence, when a given pair of auxiliary switches is 

turned off, the voltages across these switches have the same amplitude but are of opposite sign (i.e. these voltage 

waveforms are in anti-phase with respect to each other). Thus, the sum of the instantaneous voltages across that 

pair of auxiliary switches is always zero. This means that, when a given pair of auxiliary switches is turned off, 

the waveform of the voltage across one of these switches contains the triple harmonics of the CMV.  Fig. 2. 38a 

shows the CMV,  Fig. 2. 38b shows the voltage across Sw1 and Sw3. Since the space vector combinations which 

give a non-zero CMV are exploited, the last is present in the diagram of Fig. 2. 27. This represents a further 

disadvantage of the method, in addition to extra switching losses and auxiliary power devices. 
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Fig. 2. 38. a) CMV in  [56], m=0.4, fsw=4.8KHZ. b) Voltage across auxiliary switches in [56], m=0.4, 

fsw=4.8KHZ 

A new decoupled space-vector-based PWM is proposed in [57] to eliminate zero-sequence currents. This 

technique exploits the dependence of the zero-sequence voltage on the placement of the zero-vector of individual 

inverters. It is shown, in fact, that the zero-sequence voltage of the dual-inverter system is suppressed by forcing 

the average zero-sequence voltage of the individual inverters to zero, in each sampling-time interval. Switching 

times are computed by the algorithm adopted in [12]. This strategy, therefore, achieves a dynamic balancing of 

the zero-sequence current, it is very easy to implement and doesn’t require a sector identification with look up 

table.  The main disadvantage relies in a poor exploitation the of the DC-Bus voltage.  Thus, the authors propose 

V swV sw 31   (2.19) 
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the introduction of an additional boost converter as in [24]. Such a drawback is outweighed by the advantage of 

operating with a single DC power supply. 
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3 Chapter: Overvoltage Phenomena in AC 

Motor Drives 

     This chapter deals with several issues associated with Overvoltage Phenomena on AC Motor Drives.  First, 

overvoltage generation on AC Motor is discussed, and suitable mathematical models are presented. The second 

part deals with overvoltage mitigation techniques proposed in the past and their effectiveness.  Finally, an 

overvoltage suppression method is proposed exploiting an Open-end-Winding AC Motor Drives.  

Experimental tests are shown in order to verify the consistence of the proposed method. 

 

3.1 Study and presentation of the problem 
 

     The development of new power electronic technologies, in particular, has powered a constant increment of 

the switching frequency in the Variable Frequency Drives (VFD) sector.  The first power electronic component 

has been designed in 1952 by R.N. Hall. It was composed by germanium and had a reverse voltage blocking 

capability of 200 V, current rating of 35 A and low switching frequency.  This power semiconductor was 

uncontrollable from external signals.   

The first semi-controlled power device developed was the thyristor which is able to work with very high voltage 

level (7kV), high current rating (2kA) but low switching frequency (<100 Hz).  Moreover, the thyristor can be 

controlled only to turn-on while the turn-off depends on the external circuit. The thyristor has been replaced 

by Gate Turn-Off Thyristors (GTO), which have higher switching frequency(<1kHz) and can be turned off by 

a suitable gate signal.  Very high switching frequencies have been achieved with the Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET), which is able to switch from 100 kHz to 1MHz but at the 

cost of a lower reverse voltage blocking capability (<1kV) and lower current rating (<100 A) if compared with 

GTOs.   

The most diffused power device in electric motor drives applications is today the Insulated-Gate Bipolar 

Transistor (IGBTs).  It has completely replaced the bipolar transistor thank to a high breakdown voltage (3kV), 

high current rating (1kA) and high switching frequency (1kHz to 100kHz).  Basically, the IGBT combines the 

advantages of the GTO, in terms of high breakdown voltage, and of the MOSFET, in terms of high switching 

frequency.  Fig. 3. 1 shows the typical operating ranges of most common power electronic devices and their 

applications.  

https://en.wikipedia.org/wiki/Volts
https://en.wikipedia.org/wiki/Current_rating
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Fig. 3. 1 Power devices and applications 

Standard AC Electric Motors are today operated with Pulse Width Modulation (PWM) voltage source inverters 

from 0.1 to 800 kW using IGBTs. These are the preferred semiconductor devices due to their short rise time, 

ranging from 50 to 400 ns, and the voltage gate control, resulting in simpler and faster driver circuits. PWM 

operated converters for motor drives applications have become very popular due to: 

 High Efficiency (97% to 98%) 

 High switching frequency 

 Low output current THD 

 Low sensitivity to line transients 

 Constant high input power factor 

 Multi-motor application capability 

 Low and zero-speed operations 

 Minimum power line notching 

 Small size 

 Ride-through capability 

 Open circuit protection 

 Common Bus regeneration 

 Wide speed range 

 Excellent speed regulation 
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Furthermore, IGBT inverters feature smaller heat sinks, if compared with GTO inverters, and the higher 

switching frequency reduce motor noise in the audible range.  However, if on one side, the high switching 

frequency of IGBT based inverters improves the efficiency of the entire system, on the other side, the fast 

variation of the voltage may produce unintended consequences. Specifically, overvoltages may occur at the 

stator winding terminals if the machine and the inverter are connected through a long power cable. These 

overvoltages may produce destructive stresses on the motor insulation [1].  Such a phenomenon is known as’’ 

Transmission Line Effect’’, ‘’Reflected Wave’’ or ‘’Standing Wave’’[2]-[6].  

 

3.1.1 Transmission Line Theory and Factors affecting the 

Overvoltage 
 

     According to the transmission line theory, a mismatch between the impedance of the motor and the 

impedance of the cable is able to reflect back inverter generated voltage pulses, when they reach the motor 

terminals. A graphical analysis is shown in [2] and [7] to describe how the waves are reflected. 

Another method called ‘‘Bounce Diagram’’ is often exploited to describe the voltage wave propagation through 

the cable, adopting the Laplace transformation of each wave [8].  Fig. 3. 2 shows a model of a drive system 

[8], [9] in which the motor cable is modeled as a long transmission line with distributed parameters and length 

l.  Its Characteristic Impedance is 𝑍0 = √𝐿/𝐶, where L is the cable inductance per unit length and C is the 

cable capacitance per unit length. The motor stator winding is also modelized as a long transmission line with 

a High-Frequency Characteristic Impedance Zm.  

PWM Inverter Cable Motor stator winding

V+ i+

Motor Terminal

V-i-

ZmZ0

Direct wave Reflected wave

t0 t=τ 

l

VDC
Transport

Delay τ 
v(0,t) v(l,t)

 

Fig. 3. 2 Model of a drive system with long cable 
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Fig. 3. 3 Bounce Diagram 

Fig. 3. 3 shows a bounce diagram in which the progression of the leading edges of the incident and reflected 

voltage waves are displayed as a function of both time t and position x. Let’s assume that the length of the 

cable is l and the inverter and motor are located at x=0 and x=l, respectively. The PWM voltage generated 

from the inverter is u(t) and its Laplace transformation is U(s).  When a voltage pulse V1(0,0)+ of magnitude 

equal to u(t)=VDC, generated at time t0, is applied to the cable, a current i(0,0)+will circulate: 

                                                                                      

0

)0,0(
)0,0(

Z

V
i






                                                                (3.1) 

The amplitude of the voltage pulse at a distance x from the inverter is v1(x,t)+. Since u(t) is assumed to be 

delayed by (x/l)τ, where τ is the Cable Propagation Time or Transport Delay Time and depends on cable 

parameters τ = 𝑙√𝐿𝐶, the Laplace Transformation of forward voltage v1(x,t)+ is given by: 

                                                                           )/()(),(1 e
slxsUsxV



                                                        (3.2) 

Once that v1(x,t)+ reaches the motor terminal x=l at time t=τ, part of it is reflected back toward the inverter, 

producing a reflected voltage pulse v1(x,t)- and a reflected current i(x,t)- : 

                                                                                      

0

),(
),(

Z

lV
li









                                                                (3.3) 

The reflected voltage at the motor terminal is due to a mismatch between motor impedance and surge 

impedance of the cable. To understand the impedance mismatch condition, let’s consider the high-frequency 

characteristic impedance Zm expressed as: 
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Assuming with Γm the reflection coefficient at the motor terminal as: 

                                                                                        

),(

),(

tlV

tlV

m




                                                                     (3.5) 

and taking into account eq. (3.1), (3.3), (3.4) and (3.5), the reflection coefficient Γm can be written as a function 

of motor impedance Zm and surge impedance of the cable Z0: 
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Thus, the reflected voltage at the motor terminal x=l is v1(l,t)- and its Laplace transformation is given by: 
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The reflected voltage at a distance x from the inverter is: 
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This voltage v1(x,t)- reoccurs at the inverter side.  The reflection coefficient ΓG at the inverter terminal is given 

by: 
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being ZG the inverter impedance. Another reflected voltage at the inverter output v2(0,t)+ travels to the motor 

and it is given by: 

                                                              2)(),0(1),0(2 e
ssUmG

sVG
sV








                                 (3.10) 

Thus, at position x, eq. (10) becomes: 
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Note that when Zm is much larger than Z0, Γm is close to one and when ZG is much smaller than Zm, the reflection 

coefficient ΓG=-1.  Γm=1 implies that the wave is fully reflected at the motor terminal without the phase change, 

while ΓG=-1 means that the wave is fully reflected at the inverter output with a 180° phase change.  This 

bouncing process occurs infinitely as shown in Fig. 3. 3.  According to the Bounce Diagram, the voltage on 
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the cable is given by the sum of infinite reflected waves.  For simplicity, V(x,t)+ is the sum of forward-traveling 

voltages and V(x,t)- is the sum of backward-traveling voltages: 
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Thus, the Laplace Transformation of the voltage at any point x on the cable is given by: 
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where 0<|Γm| and |ΓG|<1.  

 Replacing x=l into eq. (3.14), the motor terminal voltage is given as a sum of odd transport delayed signals 

from the inverter to the motor feeding cable:  
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The result of these reflected voltage at the motor terminal, which travel on the cable from inverter to motor and 

vice versa, is displayed in Fig. 3. 4. 
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Fig. 3. 4 Motor voltage Waveform as a function of the time, calculated at distance x=l on motor terminals 

The pulse travels at the Wave Propagation Velocity ν and pulse shape is propagated without distortion down 

to the line. The wave propagation velocity is a function of cable inductance L per unit length and cable 
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capacitance C per unit length, but it may also be defined using permeability μ, permittivity ε of the dielectric 

material between conductors and Speed of Light c (3.0 × 108 m/s): 

                                                                               
1

 
1




r

c

LC
                                                         (3.16) 

The +/- sign means that both forward V(x,t)+ and reverse V(x,t)- waves travel at the same velocity.  If the 

conductors used are separated, the permittivity εr=1 and the wave propagation velocity ν=c.   

Another parameter that can be introduced to study the overvoltage phenomenon is the Cable Oscillation Time 

Tcycle.  It is calculated taking into account that the wave must travel four times along the cable to accomplish a 

full oscillation cycle: 

                                                                          LC 4
4

4 l
l

Tcycle 


                                                           (3.17) 

Thus, Cable Oscillation Frequency f0 is inversely proportional to cable length: 

                                                                                  
LC 4

11

0
lT cycle

f                                                                   (3.18) 

From eq. (3.18) it is deduced that high oscillation frequencies occur at short cable lengths and vice versa.  

Taking into account eq. (3.15), the maximum value of overvoltage at the motor terminal can be expresses as: 

                                                                            )1( V DCmV pkm                                                            (3.19) 

where VDC is the DC-Bus voltage of the inverter as well as the magnitude of voltage V(x,t)+. 

Hence, the amplitude of the voltage pulse V(x,t)- reflected back toward the inverter, causing overvoltages at the 

motor terminals, depends on Γm.  Thus, no reflected voltage occurs if Γm =0 and Zm=Z0. This is known as 

Matched Condition and is an ideal condition, because normally the value of Zm is several orders of magnitude 

greater than Z0, especially in low-power motors. With Zm> Z0, the motor and the cable are operated in a 

Mismatched Condition. For motors less than 5HP, Zm ranges from 500 to 4000 Ω, while Z0 with a typically 

ranges from 30 to 200 Ω.  Hence, in a heavy mismatching condition Zm>> Z0, the magnitude of reflected voltage 

pulse V(x,t)- 
 is about equal to the magnitude of voltage pulse V(x,t)+. This generates at the motor terminals a 

first voltage oscillation whose amplitude can reach twice that of the inverter output voltage, as shown in eq. 

(15) and eq. (18). Following oscillations have smaller amplitudes due either to cable resistance damping, or 

reflection coefficient mismatch occurring at both drive and motor ends.   

Factors affecting overvoltage phenomena at the motor terminals are:  

1. Cable length  
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2. Motor load  

3. Spacing of the pulses  

4. Magnitude of the pulses 

5. Rise/fall time of the pulse 

According to eq. (3.15) and eq. (3.18), the impedance mismatch between Zm and Z0 determinates the 

overvoltage magnitude, while, the voltage rise/fall time determinates the Critical Cable Length lc. Using PWM 

inverters with high carrier frequency, the reflected voltage may not fully decay before the generation of the 

following pulse.  In this case, charge trapped on the cable can generate at the motor terminals a voltage greater 

than twice the inverter output one. In this situation, the system works in the Pulse-Dropping Region [10] and 

the Cable Oscillation frequency f0 plays a fundamental rule. 

According to the above discussion, two overvoltage conditions may exists: 

1. Motor Overvoltage < 2 DC Bus voltage. 

2. Motor Overvoltage > 2 DC Bus voltage. 

These two particular cases will be discussed in the next sections. 

 

3.1.2Motor overvoltages < 2 DC Bus voltage  
 

     An overvoltage at motor terminals lower than twice the DC Bus voltage occurs when the reflected voltage 

have fully decayed before the generation of the following pulse, as depicted in Fig. 3. 5.  As mentioned earlier, 

factors contributing to motor over-voltage are cable length and impedance mismatched between cable 

impedance Zm and Z0, but in this case, inverter output voltage amplitude and rise/fall time are predominant 

factors [11], while carrier frequency has a little effect.  

Fig. 3. 5 shows a worst case analysis considering a 150 m of #12 AVG PVC cable, VDC=650 V and IGBT rise 

time of 50ns.  The cable is initially uncharged and a full cable to motor surge impedance mismatch, Γm=1is 

considered. The critical cable length lc is defined as the cable length producing a 2 pu overvoltage,  as depicted 

in Fig. 3. 6.    Fig. 3. 7 shows the overvoltage amplitude as function of voltage rise time, taking into account a 

150m long cable. 
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Fig. 3. 5 Motor Overvoltage <2 PU. 150m #12 AWG PVC, VDC=650 V, IGBT rise time 50ns 
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Fig. 3. 6 Critical cable length lc: Motor Overvoltage <2 PU V.s. Cable length #12 AWG PVC and to varying rise time, 

VDC=650 V. 
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Fig. 3. 7 Motor Overvoltage V.s. Rise time: Cable 150m #12 AWG PVC, VDC=650 V. 

3.1.3 Motor overvoltages > 2 DC Bus voltage 
 

     When the reflected voltage is not fully decayed before the generation of the following pulse, the overvoltage 

can reach 2 or 3 times the DC-Bus voltage VDC [10].  This happens because a residual trapped cable charge 

exists at the beginning of the voltage transient, Fig. 3. 8. 



68 
 

An overvoltage >2 pu has detrimental effects on expected lifetime of the motor isolation system [12].  Carrier 

switching frequency, modulation technique and cable oscillation frequency have a predominant effect on motor 

over-voltage in this case due to modulation pulses spacing.  Moreover, the cable damping resistance determines 

how much residual charge is trapped on the cable before the next inverter pulse.  According to eq. (3.18), the 

cable frequency f0 is inversely proportional to cable length, as depicted in Fig. 3. 9 and Fig. 3. 10.  
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Fig. 3. 8 Motor Overvoltage >2 PU: Effects of Double Pulsing, 150m #12 AWG PVC, VDC=650 V, IGBT rise/fall time 
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Fig. 3. 9 Motor Overvoltage VS Cable length. Cable #12 AWG, trise=50ns IGBTs, VDC=650 V. 
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Fig. 3. 10 Cable Oscillation Frequency VS Cable length for different dielectric material. Cable #12 AWG, trise=50ns 

IGBTs, VDC=650 V. 
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The matching between Tcycle and td is related with the damping time τd of reflected waves, that depends by the 

cable resistance, which in is in turn affected by skin (Kskin(f0)) and proximity (Kp) effects.  The initial output 

inverter pulse V0 is exponentially reduced to its final value V, as depicted in Fig. 3. 5, and depends only on 

cable parameters rs, Z0, Kskin(f0), Kp and cable distance x travelled: 

                                         
            /02/  02/

0
e dt

e ZxrdcK skinK Pe Zxrs
V

V                         (3.20) 

being τd = 2L0/rs. The exponential trend of motor voltage oscillation for 150m cable length is depicted in Fig. 

3. 11, varying intentionally the cable resistance rs:  
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Fig. 3. 11 Damping time effect: cable 150 m #12 AWG PVC, VDC=650 V, IGBT rise time 50ns, rs=5.4 mΩ/m and Z0=84Ω 

Fig. 3. 12 shows typical 3τd damping times.  According to these diagrams skin effect has a large influence on 

damping the reflected wave.  Furthermore, the shorter is the cable, the higher is the fo and the faster is the 

damping effect caused by the cable resistance.  If td >3τd, the motor terminal voltage decay before the arrival 

of the following voltage pulse, avoiding the double pulse effect. This prevents trapped line charge from causing 

a possible 3 pu overvoltage.  Low power drives have a reflection coefficient close to one Γm=1 and small wire 

gauge, so that the predominant voltage decay mechanism is the cable resistance increment due to the skin 

effect.  On the other hand, high power drives needs large cable diameters so they feature a reduced cable to 

motor reflection coefficient at Γm<0.9, while skin effect contribution to voltage decay is minimal, as shown in 

Fig. 3. 12.  The breakpoint between the two different decay modes is somewhere around motor drives using #8 

AVG wire.  

Another phenomenon is known as Polarity Reversal [13].  This mode exposes a motor to tremendous 

overvoltage, similarly to the Double pulsing.  Several factors contribute to the complex interaction of 

modulators and cables producing a polarity reversal.  Major roles are played by carrier frequency, DC-Bus 
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voltage and modulation technique.  Fig. 3. 13 shows a polarity reversal where the overvoltage reaches 2100 V, 

about 3 times VDC.  Polarity reversal occur when the modulating signals are transitioning into and out over-

modulation or at the point of intersection of the two modulating waveforms [14], [15]. 
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Fig. 3. 12 Damping of reflected wave for PVC bundled conductor cables 
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Fig. 3. 13 Motor Overvoltage >2 PU: Effects of Polarity reversal, 150m #12 AWG PVC, VDC=650 V, IGBT rise/fall time 

50ns 

3.1.4  Overvoltage Mitigation Techniques based on 

additional passive networks 
 

     Effects of overvoltage phenomena can be reduced by acting on the rise/fall time of the voltage pulse, on the 

mismatch impedance and on the DC-Bus voltage value.  Technical solutions able to reduce over-voltages at 

motor terminals have been widely investigated in prior art and a comprehensive research has been conducted 

on the modeling and analysis of these phenomena [13]-[21].  In particular, two type of overvoltage mitigation 

techniques are available: Additional Passive RLC networks and Active Methods which act on the switching 

modulation. Main passive filter topologies are depicted in Fig. 3. 14.  Essentially, they act in two different 
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ways; the networks placed at the motor terminal act on the impedance matching between motor impedance and 

cable impedance, while the networks connected at the inverter output act on the rise time of the inverter output 

voltage.  The aim of the first topologies is to obtain a reflection coefficient equal to zero while the goal of the 

second topologies is to increase the rise time of the inverter output voltage pulse. 

 

Fig. 3. 14.  Passive filter topologies. 

 

3.1.4.1 dv/dt Inverter Output Filters 
 

     In order to reduce the value of dv/dt at the inverter output, passive RLC filters have been proposed in [7], 

[22]-[29].  These filters are connected at one end at the inverter terminal and, at the other end, at the power 

cabl, Fig. 3. 14c. In [26] the authors propose an RL passive filter connected between the inverter output and a 

seven conductors symmetric cable in order to increase the rise/fall time of the inverter output voltage.  Filter 

design requires a reasonable compromise between overvoltage mitigation and filter cost/volume.  Fig. 3. 15 

shows the RL network developed in [26] and Fig. 3. 16 shows the overvoltage mitigated.  The passive filter 

acts on the dv/dt of the inverter output voltage, increasing the rise time which involves a reduction of peak 

overvoltage.  Fig. 3. 17 shows the maximum overvoltage occurring at the motor terminals as a function of 

passive RL parameters.  Furthermore, additional power losses have been measured resulting in 0.34-0.69% 

depending from cable length and filter parameters, Table 3.1. 

Table. 3.1.  Measured Power Losses with carrier frequency 7kHz  

RD 33Ω 47Ω 

100 m (LD= 30μH) 0.34% 0.38% 

100 m (LD = 70μH) 0.59% 0.69% 
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Fig. 3. 15.  dv/dt RL series Passive filter proposed in [26] 
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Fig. 3. 16.  RL Passive filter on inverter output: Overvoltage occurs at the motor terminal where a 200 m of seven 

conductors symmetric cable is adopted (left). Overvoltage mitigated thank to RL filter, RD=33Ω, LD=150μH (right) 
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Fig. 3. 17.  Max overvoltage with RL Passive filter as a function of filter parameters RD and LD and rise time equal to 

0.18 μs: 100 m of cable(left), 200 m of cable(right). 

In [22] a passive filter to mitigate dv/dt effects on motor overvoltage is presented.  The passive filter consists 

of three inductors connected in series between the inverter output and the cable and two RC networks connected 

through two diodes, as depicted in Fig. 3. 18.  It reduces both common-mode and differential-mode 

components.  Lower power losses are measured (0.28%), compared with [26], however, the additional RLC 

networks lead for extra passive components which mean a higher cost. 

Another filter has been proposed in [25].  It consists of a LC network, with the capacitor star point clamped to 

the DC link by mean of two diodes, Fig. 3. 19.  When due to an overshoot the voltage between the star point 

of the capacitors and one of the DC bus rails becomes bigger than ±VDC/2 one of the two diodes turns 
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Fig. 3. 18.  dv/dt RLC Passive filter proposed in [22] 

on, clamping the voltage.  The LC filter with differential mode inductors, depicted in Fig. 3. 20, is a widely 

used output filter topology, where the star point of the capacitors is left floating.  This topology, adopted in 

many commercially available filters, is very simple and relatively cheap. However, some motor over voltages 

may still occur.  The circuit shown in Fig. 3. 21 is aimed to reduce the common-mode voltage. It has two 

disadvantages; first, it needs a connection to the midpoint of the DC link capacitors, which is not always 

accessible on commercial inverters, secondly, power losses are about 0.8%.   
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Fig. 3. 19.  dv/dt RLC Passive filter proposed in [25] 
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Fig. 3. 20.  dv/dt LC Passive filter with star point of the capacitor left floating [25] 
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Fig. 3. 21.  dv/dt LC Passive filter with star point of the capacitor connect to the middle of the Bus DC voltage [25] 

A new dv/dt filter is proposed in [28], Fig. 3. 22 to be used on low-power AC drives.  This topology is a 

modified version of RL network proposed in [22] but it is able to mitigate both common and differential mode 

components. 
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Fig. 3. 22.  dv/dt RL differential and common-mode filter proposed in [28] 

A further passive LC filter able to limit the rate of rise/fall time of the inverter output voltage is proposed in 

[23] and depicted in Fig. 3. 23.  In typical application where dv/dt is limited to 100-500 V/μs, the resonant 

frequency of the filter is above the switching frequency. A diode bridge must therefore be used to clamp the 

resonant voltage.  Resistors are used to dissipate the energy stored in the resonant circuit. Additional filter 

losses are around 0.6% of the rated power. 
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Fig. 3. 23.  dv/dt RLC Passive filter proposed in [23] 
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3.1.4.2 Passive Filters at the Motor terminals 
 

     RLC networks placed at the motor terminals in order to mitigate the motor voltage overshoots are known 

as Line Terminator Networks (LTN). Differently from dv/dt networks, these passive filters act on the 

impedance mismatch between the motor impedance and the surge impedance of the cable.   

The main goal is that to mitigate the reflected voltage at the motor terminals, modifying the motor impedance 

Zm seen from the cable side, in order to obtain unitary reflection coefficient Γm.  Operating principles of LTN 

networks are explained in [7].  Three surge impedance terminators and their losses are discussed.  The simplest 

LTN consists of set of shunt resistors placed in parallel at the motor terminals, Fig. 3. 24.  The shunt resistance 

Rf is selected as: 

                                                                                   Z0

L
Rf 

C
                                                                   (3.21) 

being L and C the inductance per unit length and the capacitance per unit length of the cable, respectively.  
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Fig. 3. 24.  LTN Parallel resistor terminator proposed in [7] 
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Fig. 3. 25.  Parallel Resistor Terminator Passive filter: Overvoltage occurs at the motor terminal where a 200 m of seven 

conductors symmetric cable is adopted (left). Overvoltage mitigated thank to parallel R filter, Rf=85Ω= Z0 (right) 

Although effective in suppressing the motor overvoltage as shown in Fig. 3. 25, this method is rarely used due 

to excessive power losses. 
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A second approach exploits a first-order RC filter to match the surge impedance of the cable and provide the 

proper level of overvoltage damping, Fig. 3. 26. Each capacitor Cf appears as a short circuit during the rising 

of the voltage pulse and as an open circuit when it is charged.   
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Fig. 3. 26.  LTN first-order filter proposed in [7] 

The equivalent impedance Zeq of the first-order filter closely matches the cable surge impedance Z0: 
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Thus, the resistance Rf is selected in order to realize an overdamped circuit as: 

                                                                                     
4

Rf
C f

L
                                                                         (3.23) 

The use of a nonlinear capacitor may further optimize the losses.   

A third kind of LTN terminator consists of a second-order filter as depicted in Fig. 3. 27.  

 

The equivalent impedance Zeq of the filter is given by: 
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Also in this case, the resistor Rf is designed to result in an overdamped circuit: 
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77 
 

 

IMNetwork

3-Phase

Main InverterRectifier Bridge

2

VDC





CBUS

Cable IM

Cf

Rf





Lf

 

Fig. 3. 27.  LTN second-order filter proposed in [7] 

The resonant frequency of the filter should be at least five times larger than the switching frequency of the 

inverter. In order to minimize the voltage overshoot the filter operating frequency must as close as possible to 

the resonant frequency of the filter. Filter components are generally selected in order to minimize the filter 

losses. 

Table 3.2 shows the power losses of the three considered LTN in the same operating conditions. According to 

these results it is apparent that LTN are less efficient than dv/dt inverter output filters. 

Table. 3.2.   Power Losses with carrier frequency 7kHz, 100 m of 14 AWG cable  

Filter Components Parallel 

Resistor 

First-order 

RC 

Second-order 

RLC 

R 190Ω 30Ω 32Ω 

L  33nF 33nF 

C   3.2mH 

Tot. Losses 29% 3.9% 4.2% 

 

A delta connected LTN is proposed in [30] and depicted in Fig. 3. 28. Unlike [7] Rf is set to Z0, while Cf is 

selected on the basis of inverter pulse rise time, pulse spacing, allowable motor voltage and power losses.  

Initially, the inverter output voltage is zero and the capacitor is discharged.  When a traveling wave arrives at 

the motor terminals, the RC network charges at VDC.  

A design goal is to make the voltage across Cf lower than 10% VDC at the end of trise.  The capacitor voltage Vcf 

is: 

                                                            /(1VDCVDC1.0Vcf e C fR ft rise                                     (3.26) 
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Fig. 3. 28.  Delta connection LTN first-order filter proposed in [30] 

Hence Cf is given by: 

                                                                        

 
       

9.0ln

Cf
t rise

R f
                                                                  (3.27) 

Another constraint on Cf is to obtain 3τd = 3Rf Cf shorter than the inverter dwell time td, to fully discharge the 

capacitor before the generation of the following pulse. Power losses on a system featuring a 100 m #14 AWG 

cable and Cf =10nF, are around 0.15% of the rated power, rising to 0.68% for a 200 m of #14 AWG cable and 

a 47nF Cf.  An active low-loss motor terminal filter for overvoltage mitigation and common-mode current 

reduction is proposed in [9].  A LTN design is generally dependent from length and parameters of the cable 

connecting the inverter with the motor, while, according to the proposed approach, the rise time of the voltage 

pulses at the motor terminal is reduced for any cable length. It consists of three RLC filters connected between 

the cable and the motor, and of an additional parallel connected RC active network, Fig. 3. 29.  The active filter 

features eight operating modes, Fig. 3. 30.    

IMNetwork

3-Phase

Main InverterRectifier Bridge

2

VDC




Cable IM

2/3Rf





3/2Cf

3/2CL

RL

2/3Lf

C0

Va

Vb

Vc

 



79 
 

Fig. 3. 29 Active low-loss LTN 
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Fig. 3. 30 Circuit operation of Active low-loss LTN: Mode 1[t0-t1], Mode 2[t1-t2], Mode 4[t3-t4], Mode 5[t4-t5], Mode 

6[t5-t6], Mode 8[t7-t8], Mode 3[t2-t3], Mode 7[t6-t7] 

Fig. 3. 31 shows the power losses versus the motor terminal voltage for three different filters. With the same 

voltage overshoot, the power losses of the proposed filters are the lowest among the three filters. The proposed 

filter is very efficient, moreover, Lf is independent from the cable length, but the large amount of extra 

components, lead to additional cost and weight.  
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Fig. 3. 31 Filter losses versus motor voltage mitigated for various filter netwiorks:3/2Cf=7nF, 2/3Lf=25μH and 

3/2CL=15nF, 100 m of cable length and 10kHz switching frequency.    
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3.1.4.3 Comparison between LTN and Inverter output 

filters 
 

     RLC networks at the motor terminals, RC networks at the motor terminals and RLC networks at the inverter 

output are discussed and compared in [27],[32].  RLC filter placed at the inverter output shows the best 

combination among overvoltage amplitude, power losses, common-mode current amplitude and voltage 

distribution in the machine stator winding.  The first step in designing an RLC filter at the motor terminals is 

to determine the filter resistance, [7] in order to match the surge impedance of the cable and the motor 

impedance. Effects of the capacitor selection in terms of motor voltage and power losses are shown in Fig. 3. 

32(left). In order to achieve the best results it is very important to properly pair the inductance with the 

capacitance [31], exploiting the diagrams shown in Fig. 3. 32(right). RLC filter power losses and motor voltage 

are shown in Fig. 3. 33(left).  The filter resistance is set in order to match the cable characteristic impedance, 

while optimal pairs of Lf and Cf  can be deducted from Fig. 3. 33(left). 

The inductance of an RLC filter at inverter output is remarkably lower than the inductance of a RLC filter at 

the motor terminals.   

The selection of the filter type is accomplished on the basis of an analysis of, power losses, common-mode 

currents circulating in the drive and the voltage distribution along the machine winding.  Fig. 3. 34 shows the 

power losses as a function of the filter capacitance for the three considered filter topologies.   A proper choice 

of the inverter switching frequency may reduce the filter losses. Fig. 3. 35 shows the motor voltage waveform 

obtained with the considered filters.  The best response, in terms of overvoltage reduction, is obtained with the 

RC filter, but the common-mode current amplitude is higher than that obtained with the RLC inverter output 

filter. 
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Fig. 3. 32.  RLC filter at motor terminals in star connection, 3hp motor: Minimum peak motor voltage Vs Power losses 

for various number of filter capacitance (left), Suggested pairs for filter inductance Lf and capacitance Cf for various 

length of cable(right).  
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Fig. 3. 33.  RLC filter at the inverter output in star connection, 3hp motor: Minimum peak motor voltage Vs Power losses 

for various number of filter capacitance (left), Suggested pairs for filter inductance Lf and capacitance Cf for various 

length of cable(right).  
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Fig. 3. 34.  Filter losses versus filter capacitance, 3hp motor for discussed filter topologies 
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Fig. 3. 35.  Motor overvoltage for RLC filter at inverter output and RC filter at the motor terminals, 3hp motor, 70 m of 

#14 AWG cable. 

In conclusion, operating at the highest inverter switching frequency the RLC filters have lower power losses 

in comparison to the RC filters.  The switching frequency is determined by the process requirements and the 

inverter constraints.  From Fig. 3. 34, comes that the RLC filter at the inverter output features the lowest power  

losses.  The RC filter at the motor terminals shows the best waveforms, but it is not able to reduce the high 
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dv/dt, hence, it is not able to prevent the internal reflections and features higher common-mode currents.  The 

RLC filter decreases the dv/dt voltage pulse rate, which may reduce the amplitude of the associated common-

mode currents.  Therefore, the RLC network at the inverter output is indeed the most interesting solution to 

mitigate the motor overvoltage adjustable-speed drives with long power cables. 

 

3.1.5 Active Overvoltage Mitigation Techniques 

     An active overvoltage mitigation approach is described in [8], where a new inverter topology is proposed 

featuring six additional power devices, Fig. 3. 36.   
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Fig. 3. 36. Inverter structure proposed in [8]. 

According to the proposed approach the inverter output voltage is clamped at VDC/2 during each voltage 

transition for a time β. Reflected voltages at the motor terminals are cancelled by controlling β.  Optimal 

cancellation is achieved if β is made equal to twice the transport delay τ of the cable, as depicted in Fig. 3. 37.   

-200

0

200

400

600

800

1000

1200

1400

Pulse Inverter

Motor Voltage

 [V]

t [μs]
0 5 10 15 20 25 30 35 40 45 50

τ 

  

-200

0

200

400

600

800

1000

1200

1400

Pulse Inverter

Motor Voltage

 [V]

t [μs]
0 5 10 15 20 25 30 35 40 45 50

β =2τ  

 

Fig. 3. 37 Overvoltage mitigation method in [8]: Motor voltage without mitigation method(left). Motor voltage with 

active overvoltage mitigation method(right). 100 m of #14 AWG cable 

According to the Laplace transformation, the a-phase output voltage of the inverter Va (at position x=0) can be 

written as a sum of two voltage signals of equal magnitude VDC/2 and delayed by β: 
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where U(l,s)=VDC/2.  Fig. 3. 38 shows the two voltage components delayed by β. 
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Fig. 3. 38 Voltage decomposition of the inverter output voltages(left) and their resulting voltages at the motor 

terminals(right) 

Exploiting eq. (3.14) and eq. (15) shown in section 3.1.1, the a-phase voltage at the motor terminals Vam is 

given by: 
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From eq. (3.29), comes that in order to eliminate the reflected voltages, the duration β of VDC/2 must be set as 

twice the transport delay τ of the cable.  Thus, replacing β=2 τ into eq. (3.29), the a-phase voltage at the motor 

terminals Vam becomes: 
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Taking into account that ΓG≈-1 and, Γm≈1, the second term in eq. (29) becomes: 

                                                                              0
21

3)1(








e
s

Gm

e
s

Gm




                                                                     (3.31) 

This means that if β is chosen to be 2τ, almost no voltage overshoot takes place.  Hence, the motor terminal 

voltage is given by: 
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According to eq. (32), no reflected voltages take place. The overvoltage mitigation can be estimated as: 
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Fig. 3. 39  Percentage overshoot voltage level at the motor terminals for various reflection coefficient Γm and ΓG with 

β=2τ. 

Fig. 3. 39 demonstrates that the voltage overshoot at the motor terminals can be attenuated below 15% in most 

cases. 

The method uses additional IGBT devices leading to extra power losses, which, however, are lower than those 

generated by RLC filters. Moreover, it needs an estimation of the cable transport delay time τ. This can be 

accomplished on the basis of the length and the characteristic impedance of the cable. Hence, it may be difficult 

to obtain an accurate transport delay time estimation in many practical cases.  Alternatively, it is possible to 

experimentally adjust the pulse duration of the auxiliary switches until the overvoltage is minimized.  These 

issues are overcome in [33] where the author exploits the same inverter topology adopted in [8], Fig. 3. 36.  In 

addition, an adaptive parameter identification system is developed.  This adaptive algorithm determines 

unknown parameters such as Γm and ΓG in order to perfectly suppress the overvoltage at the motor terminals.  

Analytically, the transfer function of eq. (2.29) is given by: 
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By introducing a new input voltage V(s)(1+e-2τs) in H(s), the motor voltage becomes: 
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The percent overvoltage mitigation is given by: 
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Compared to the conventional system described in [8] the corrective term introduced in eq. (34) effectively 

reduces the overshoot at the motor terminals, as depicted in Fig. 3. 40.   
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Fig. 3. 40   Percentage overshoot voltage level at the motor terminals for various reflection coefficient Γm with 

suppression scheme proposed in [33]. 

The control algorithm automatically compares the reference output voltage of the PWM controller V(t)* with 

the voltage detected at the motor terminals Vm(t) and generates an output corrective voltage term Vcorr(t). This 

is multiplied for the power devices driving signals, in order to calculate the reflection coefficients of the system, 

Fig. 3. 41. 

The adaptive parameter identification is effective only if reflection coefficients are real numbers.  Thus, a full 

oscillation cancellation may not be achieved if reflection coefficients are complex numbers. However, the 

voltage overshoot at the motor terminals is anyway reduced [8].   
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Fig. 3. 41 Adaptive parameter identifier block diagram 
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A further active method to adjust the PWM pulse pattern in the pulse dropping region is proposed in [10].  It 

has been shown that if the reflected voltage is not fully decayed before the generation of the following pulse, 

the magnitude of over-voltage can reach 2 or 3 pu.  In this case, the system is working in pulse dropping region. 

Furthermore, when the modulating signals are transitioning into and out over-modulation or at the point of 

intersection of the two modulating waveforms [14], [15], a polarity reversal occurs.  Fig. 3. 42(left) shows a 

PWM voltage pulse pattern with pulse dropping and polarity reversal.  The resultant motor overvoltage is shown 

in Fig. 3. 43.  To prevent this phenomenon, commonly referred to as double pulsing, the inverter PWM pulse 

pattern is adjusted to include a certain minimum dwell time td and polarity reverse time tpi between switching 

transitions as shown in Fig. 3. 42(right).  The minimum td is chosen to limit the motor overvoltage well below 

the winding insulation voltage rating, up to a certain maximum cable length.  The minimum polarity reversal 

time tpi is set to be equal to the minimum dwell time.   
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Polarity reversal time
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td 

td 
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Fig. 3. 42  PWM voltage pulse pattern with pulse dropping region td and polarity reversal time tpi  
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Fig. 3. 43  Motor voltage in dropping region td and polarity reversal time tpi  

Enforcement of minimum td and polarity reversal tpi generates a distortion of the voltage waveforms, especially 

at high PWM carrier frequencies.  To avoid DC offsets and volt-second imbalance, the error in duty cycles must 

be compensated in the following PWM periods.  The method practically limits minimum and maximum values 

of power switch duty cycle in the linear PWM region, as shown in Fig. 3. 44.  When the duty cycle exceeds 

these limits, pulse dropping occurs.  Such a pulse pattern adjustment distorts the motor voltage, hence, a suitable 

compensation is required to ensure volt-second balance and to prevent DC offsets. 
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Fig. 3. 44  Method to enforce minimum dwell time and polarity reversal time in the PWM pulse pattern by limiting the 

minimum and the maximum duty cycles 

It has already said in section 3.1.3, that the period of oscillation Tosc of the motor voltage is a function of the cable 

length.  To prevent double pulsing the minimum dwell time must be chosen to be 2-3 times greater than the oscillation 

period. 

Denoting the minimum dwell time Tdwell and the PWM period as TPWM, maximum and minimum values of the duty 

cycle must be set as follows: 
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When the instantaneous duty cycle falls outside of these limits, it is clamped to 0 or 1. The resulting error in the duty 

cycle is accumulated and compensated in the following PWM periods.  From Fig. 3. 45(left), comes that if  1.5 Tosc 

=0.5Tdwell or 2.5 Tosc=0.5 Tdwell,, then the peak motor voltage exceeds 2 VDC. .  Moreover, Fig. 3. 45(right) shows that 

a voltage in excess of 2 VDC can occur if Tosc =0.5Tdwell or 2 Tosc=0.5 Tdwell,.  Fig. 3. 46  shows the effectiveness of the 

proposed method in mitigating the motor overvoltage. 
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Fig. 3. 45  Reduction in dwell time in the motor voltage during transition to/from the pulse dropping mode(left), Reduction 

in polarity reversal time during transition to/from the pulse dropping mode(right) 
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Fig. 3. 46 Motor voltage with proposed modification of dropping region td and polarity reversal time tpi  

 

3.2  Proposed overvoltage mitigation on Open-end 

Winding AC Motor Drive 
 

     An overvoltage mitigation approach is presented for an Open-end Winding Electrical Drive (OWED) with long 

feeders [35].  The conventional Open-end Winding structure is depicted in Fig. 3. 47. The two inverters are 

electrically isolated in order to avoid the circulation of zero sequence currents. 
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Fig. 3. 47 Conventional Open-end Winding AC motor Drives with two isolated inverters  

The configuration system adopted in the proposed overvoltage mitigation technique is shown in Fig. 3. 48.  A 

main three phase two-level inverter feeds the motor through a long electric cable from one side, while, on the 

other side, a two-level inverter is located close to the motor. The last inverter is equipped with a floating capacitor 

in order to have a single DC power source. A conventional sine-PWM modulation is adopted in order to 

eliminate any zero-sequence current.  Moreover, in order to hold the voltage Vc across the capacitance of the 

floating inverter, equal to the DC Bus voltage VDC, the negative DC bus rail of each inverter is connected to the 

ground. A bipolar, double edge, pulse width modulation strategy is implemented in each motor phase and it is 

explained in Fig. 3. 49.   
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Fig. 3. 48 Proposed Open-end Winding AC motor Drives with two non-isolated inverters and floating capacitor  
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Fig. 3. 49 Single phase representation of Fig. 48 

Power devices TA
+ and TB

- are driven by the same gate signal, that is inverted to drive TA
- and TB

+.  Thus, when 

TA
+ is turned on, also TB

- is turned on while TA
- and TB

+ are turned off and vice versa.  This is equivalent to shift 

the output voltage of the floating inverter by 180° from the output voltage of the main inverter. 

During normal operation, with a bipolar double edge PWM, the phase voltage measured at the motor terminals 

can double the DC link voltage VDC as depicted in Fig. 3. 50.   
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Fig. 3. 50 Motor Voltage wave in an Open-end Winding AC motor 

The proposed overvoltage mitigation approach acts on the switching patterns of the power devices and it is very 

simple in principle.  More precisely, a dwell time Tdw is introduced either between switching times of devices 
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TB
+ and TA

-, either between switching times of TA
+ and TB

-.  This principle is the same to that proposed in [8], 

where six additional power devices are introduced in a conventional wye-connected AC motor.  Fig. 3. 51 shows 

the motor voltage waveform when the proposed approach is adopted.  Along Tdw, TA
+ and TB

+ are turned on and 

the voltage VAB across the load is equal to zero, as explained in eq. (3.31).  Therefore, the voltage variation is 

equal to VDC rather than 2 VDC and the over-voltage is reduced consequently. 
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Fig. 3. 51 Motor Voltage Wave in an Open Winding AC motor drive with Dwell Time Tdw. 

The proposed overvoltage mitigation technique has been evaluated through simulations exploiting high 

frequency mathematical models of the power cable and the AC motor.  Main parameters of the considered 

system are listed in Table 3.3 and Table 3.4.  Lumped parameters equivalent circuits of the cable and motor are 

respectively shown in Fig. 3. 52 and Fig. 3. 53.  A 3Hp-50Hz-380V induction machine and a one hundred nodes 

high-frequency model of a100 meters long 12 AWG PVC cable are considered.  Moreover, the main inverter 

input voltage and switching frequency are respectively 570V and 10kHz. Finally, a 3kV/μs voltage gradient is 

assumed.  Time diagrams shown in Fig. 3. 54 deal with the phase voltage at the motor terminals obtained with 

different values of the dwell time Tdw.  As shown in Fig. 3. 54b the minimum peak over-voltage is obtained when 

the dwell time is made equal to one fourth of the voltage oscillation period Tcycle which is to say Tdw=2τ, being τ 

the transport delay of the transmission line.  Moreover, the worst condition occurs when Tdw =0.75 Tcycle in this 

case the sum of the two voltage components, directed and reflected wave, does not result equal to 0, as given by 

Fig. 3. 38.   It is easy to observe that the optimal value of Tdw depends on the natural frequency f0 of the cable, 

and it is strictly related to its length as well as to R, L and C values. Fig. 3. 55 shows the results of simulations 

taking into account 14 AWG PVC 2.5 mm2 cables of different lengths.  As it is possible to observe, when 

increasing the cable length, it is necessary to increase the dwell time to obtain even the same peak voltage (695V 

with a 570V DC bus voltage).  This is in agreement with the transmission line theory, as the natural frequency 

of voltage oscillation fo at the motor terminals is inversely proportional to the cable length eq. (3.18). Therefore, 
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increasing the cable length, the natural oscillation frequency of the voltage decreases, while the period increases, 

leading to a longer Tdw to obtain the maximum over-voltage attenuation.   Fig. 3. 56 shows the voltage at the 

motor terminals Vm when 14 AWG wires with different lengths are considered. A constant 0.78μs dwell time is 

applied, giving a maximum overvoltage attenuation when a 25m long cable is considered.  Keeping constant the 

dwell time, a progressively smaller reduction of the overvoltage is obtained when the cable length is increased.  

Diagrams of  Fig. 3. 57 and Fig. 3. 58 deal with the variation of the optimal Tdw as a function of the cable length 

for different wire sizes (# 8, # 10, # 12 and # 14 AWG) and for different values of voltage attenuation. From eq. 

(3.18), comes that the frequency f0 is also inversely proportional to cable inductance L and capacitance C per 

unit length.  When considering different types of cables, the product LC varies, leading to different values of f0. 

Higher f0 require lower Tdw for a given over-voltage attenuation. Diagrams move down if the attenuation of the 

desired voltage decreases and vice versa.  

Table. 3.3. Parameters of the HF motor model. 

Ratings 

[Hp] 

Cg 

[pF] 

Rg 

[Ω] 

Ld 

[mH] 

Re 

[kΩ] 

Ct 

[pF] 

Lt 

[mH] 

Rt 

[kΩ] 

3 314 35.5 4.0 5.6 31.4 2.7 1.15 

 

Table. 3.4. Parameters of the HF cable model. 

Cable 

Gauge 

Rs 

[mΩ] 

Ls 

[µH] 

Rp1 

[MΩ] 

Rp2 

[kΩ] 

Cp1 

[pF] 

Cp2 

[pF] 

8 6.0 0.20 262.1 21.2 119.7 15.3 

10 7.0 0.28 221.7 18.9 125.4 17.7 

12 7.5 0.26 218.8 22.8 104.7 16.8 

14 16.0 0.29 265.7 25.4 93.9 16.8 

Node i Node i+1

Neutral

RS LS

RP1

RP2

CP 2

CP1

 

dynamic 

dq model

Neutral

Phase

Re R t

C t

L t
R g

Cg

R g

 

Fig. 3. 52. Per-phase high-frequency model of the power 

cable per-unit length. 

Fig. 3. 53. Per-phase high-frequency model of the motor 

per-unit length 
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Fig. 3. 54. Voltage at motor terminals with different dwell time: Cable 12 AVG PVC, 3Hp Motor, trise=0.4μs, 10kHz 
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Fig. 3. 55. Phase motor voltage:Optimal dwell times 

for14 AWG cables of different lengths, 3Hp motor. 

Fig. 3. 56. Voltage at motor terminals with Tdw =0.78 μs 

and cables of different lengths. 
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Fig. 3. 57. Dwell times required to obtain a 70-80 % 

overvoltage attenuation. 

Fig. 3. 58. Dwell times required to obtain a 50-60 % 

overvoltage attenuation. 

A dead time is normally introduced in PWM voltage source inverters to prevent transient short circuits through 

devices of the same legs. It varies from 500ns up to a few microseconds, depending on technical features of 

inverter power devices. Differently, the value of the dwell time Tdw is only related to cable characteristics, cable 

length and desired level of attenuation.  According to the obtained results, the dwell time Tdw is comparable and 

even smaller than the dead time normally introduced on inverters of the tested drives.  

 

3.2.1 Dwell Time impact on Inverter output voltage  
 

     The introduction of the dwell time does not impact the RMS value of the fundamental voltage component.  

In fact, as shown in Fig. 3. 59a, in a switching period Ts, the area D is equally subtracted on the positive and 

negative half wave of Vm.   

 

(a) 

 

(b) 

Fig. 3. 59. Effects of Tdw on the average voltage (a) null average voltage (b) 
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Thus the average voltage Vaverage is unchanged, as the RMS value. However, the introduction of the dwell time 

Tdw has effects on the harmonic spectrum of the motor phase voltage.  As shown in Fig. 3. 59b, the introduction 

of Tdw generates an additional zero voltage level, thus a three levels voltage modulation is accomplished, rather 

than a two levels one.   The high frequency harmonic content of the motor phase voltage can be characterized 

through the coefficients of the decomposition in Fourier series of the waveform eq. (3.38) and eq. (3.39), where 

Ts =1/ fs.  The Fourier series coefficients are function of the dead time Td and of the dwell time Tdw:  
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The rms value of the h harmonic is given by: 

                                                                               
bhahCh

22                                                                               (3.39) 

Fig. 3. 60, shows the trend of the amplitude of the main odd harmonics as a function of Tdw, for a 0.5 duty cycle.  

Moreover, a dwell time of 1μs is considered and a dead time lower than Tdw.  Fig. 3. 61 shows the amplitude of 

main even harmonics. These are computed taking into account one period Ts of the high-frequency voltage 

waveform and are independent from drive operative conditions. The amplitude C1 of the fundamental voltage 

V1m, at the switching frequency remains almost constant, while the amplitude of all other harmonics decreases 

when Tdw increases from 0 to 4 μs.  

  

Fig. 3. 60 Odd harmonics amplitude vs. Tdw. Fig. 3. 61 Even harmonics amplitude vs. Tdw. 
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3.2.2 Dwell Time Adaptation 
 

     In order to properly establish the optimal dwell time, an adaptive algorithm has been developed.  It starts 

from a measurement of the motor peak phase voltage through the circuit shown in Fig. 3. 62. It encompasses 

two small resistances R1, R2 and a capacitor C.  Moreover, two switches are present, alternatively driven at a low 

frequency (<1Hz).  

 

Fig. 3. 62 Circuit used to detect the peak phase voltage. 

When I1 is turned on and I2 is turned off, R1 is exploited to charge the capacitor C to the maximum phase voltage 

Vpk.  The voltage is acquired and stored in the control unit.  After that I1 is turned off and I2 is turned on, then the 

capacitor C is discharged through the resistor R2.  By comparing two consecutive samples the peak voltage 

gradient is detected and the dwell time is accordingly modified.  Hence, if Vn is the voltage across the capacitance 

at time tn and Vn-1 is the voltage across the capacitance at time tn-1, the dwell time is increased whenever Vn < Vn-

1 while if Vn > Vn-1the dwell time is decreased, Fig. 3. 63.  The voltage VCAP is the input of the tracking algorithm 

developed through the Matlab/Simulink software, Fig. 3. 64.  Such an algorithm stores the amplitude of VCAP in 

tn-1 VCAP(n-1) and compares this value with the actual value VCAP(n), the dwell time is then increased or decreased. 

Fig. 3. 65 shows the operation of the tracking minimizing the peak phase voltage of the motor.  Even the dwell 

time is updated at a low frequency, the peak overvoltage is quickly reduced to half of the initial value. Moreover, 

exploiting the developed dwell time adaptation algorithm the proposed method is made independent from cable, 

converter and motor parameters.  

VCAP(n)<VCAP(n-1)

True

False

Tdw(n)=Tdw(n-1)+ΔTdw 

Tdw(n)=Tdw(n-1)-ΔTdw 

ΔTdw 

Dwell Time Increment

 

Fig. 3. 63 Logic scheme of tracking of Tdw. 
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Fig. 3. 64 Matlab/Simulink blocks of tracking of Tdw. 

 

Fig. 3. 65 Adaptation of Tdw 

3.2.3 Experimental Validation  
 

     Experimental tests have been carried out in order to verify the ability of the proposed method in mitigating 

motor overvoltages.  The test bench consists of a 1.2kW, 380V, 50Hz open-end winding AC motor drive, a 50m 

power cable featuring a 2mm2 cross sectional area.  The parameters of the cable have been measured through a 

RLC power analyzer, as recommended in [30] giving: Co=314 pF and Lo=0.8 mH. The DC-Bus voltage of the 

floating inverter is rated at 400V, while a 3.3mF, DC-Bus capacitor is used.  A bipolar PWM is implemented on 

the two inverters, featuring a 10kHz switching frequency. Fig. 3. 66 shows the a-phase inverter output voltage 
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without dwell time, while Fig. 3. 67 depicts the same inverter output voltage with correct Tdw=1.1μs.  The 

resulting motor voltage waveforms for different value of dwell time is shown in Fig. 3. 68.  The corrected 

Tdw=1.1μ gives rise a peak value of overvoltage equal to 210 V.  As mentioned earlier, the percent motor voltage 

attenuation A is strictly related with the value of dwell time, as depicted in Fig. 3. 69.  In particular, the trend of 

the voltage attenuation A follows the trend of the motor voltage oscillation. 

Fig. 3. 70a shows Vm, VCAP, im and the ground current iG without dwell time, Fig. 3. 70b shows the same 

signals with a different time scale, in order to highlight that the ground current iG consists only of high frequency 

components.  Fig. 3. 71a shows how the introduction of a proper Tdw reduces the peak overvoltage from 2VDC to 

zero.  In Fig. 3. 71b a different time scale is used to highlight the absence of low order ground current harmonics. 

50 V

4μs
 

Tdw

50 V

4μs
 

Fig. 3. 66 Inverter Output Voltage Waveform without 

dwell time 

Fig. 3. 67 Inverter Output Voltage Waveform with dwell 

time 
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Fig. 3. 68 Overvoltage for different Dwell time Fig. 3. 69 Peak voltage (%Vpkmax) vs.Tdw 
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Fig. 3. 70 Motor Voltage without Dwell Time 
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(a) 

 

(b) 

Fig. 3. 71 Motor Voltage with correct Dwell Time 

 

3.2.4 Proposed RC Passive Filter on Open-end Winding 

AC Motor Drive 
 

     Two LTNs RC passive filters are proposed exploiting an Open-end Winding system. First, a RC network is 

connected in parallel to each phase winding connected in open-end configuration, as depicted in Fig. 3. 72. 

Secondly, a delta connected RC filter is installed at the motor terminals, Fig. 3. 73.  

 

Fig. 3. 72.  Open-end Winding System with parallel passive RC filter. 
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Fig. 3. 73.  Open-end Winding System with delta connection passive RC filter. 
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In this case the two inverters are not connected to the ground and a suitable control strategy is implemented to 

control the voltage of the DC-Bus of the floating inverter [34].  Moreover, a standard unipolar PWM modulation 

has been used instead of the bipolar one.  Parameters Rx and Cx are determined as in [30], by supposing the 

voltage across the filter capacitor Cx lower than 10%VDC at the end of the voltage rise time (trise=500ns). Finally, 

the resistance of the filter Rx is made equal to the cable natural frequency Z0=61Ω. 

                                                e C xR xt riseVVV DCDCCAPx
 11.0                                                (3.40) 

The natural impedance Z0 of the cable is identified as in [30] using an LRC analyzer.  Cable and filter parameters 

are respectively shown in Table 3.5 and Table 3.6. 

Table. 3.5. Cable parameters. 

L0[μH] C0[pF] Z0[Ω] 

0.8 314 61 

 

Table. 3.6. Filter parameters. 

Rx[Ω] Cx[pF] 

61 80 

 

The voltage at the motor terminals without passive filter is shown in Fig. 3. 74.  Fig. 3. 75 shows the effect of a 

parallel passive RC filter, with Cx=80nF and Rx=Z0=61Ω where VCAP is the voltage across the capacitance of the 

floating inverter, VM is the motor voltage and IF is the current of the RC filter, while Fig. 3. 76 depicts the motor 

voltage with a delta connected RC filter.   In both cases, the value of the capacitor Cx is obtained by eq. (3.40).  

Furthermore, with the delta connection, each RC network is fed by line to line voltage and so a larger capacitance 

Cx=400nF should be adopted if compared with the parallel RC filter Cx=80nF.  Thus, the parallel RC filter is 

more effective than the delta-configuration, moreover, the RC network is subjected to the phase voltage, while 

in the delta-configuration network is subjected to the line to line voltage, resulting in extra power losses. 

 

Fig. 3. 74.  Motor Voltage without any passive RC filter 
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Fig. 3. 75. Parallel passive filter RC (Cx=80 nF) Fig. 3. 76. Delta passive filter RC (Cx=22 nF) 

    As shown in Table 3.7 the proposed approach performs better than the two passive filters in mitigating the 

over-voltage at motor terminals.  In the considered operating conditions, the dwell time approach scores an 85% 

peak voltage attenuation, versus a 53% and a 34% respectively obtained with the parallel and the delta connected 

RC filter.  Moreover, no additional losses are generated, while Joule power losses are caused in the damping 

resistance and inductance parasitic resistance of the passive filters, do not mentioning inductance core losses.  

Under this point of view, the parallel RC filter is advantaged over the delta connected one by a lower peak 

current. 

Table. 3.7. Cable parameters 

Method A [%] IFpk [A] Losses[%] 

Proposed Tdw 85 0 0 

Parallel RC Filter 53 3.8 0.31 

Delta RC Filter 34 7.5 0.6 

 

Furthermore, the proposed parallel RC filter is more efficiency of RC networks in [7] and [30] depicted in Table 

3.1 installed on a conventional wye-connected and delta-connected AC motor. 
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4 Chapter: Asymmetrical Hybrid Multi-

Level Inverter (AHMLI) 

     An Asymmetrical Hybrid Multilevel Inverter (AHMLI) has been developed for applications in AC motor 

drives, generation systems, STATCOM systems, Photovoltaic and Wind generators [21].  The idea is that to 

exploit either the benefits of a Multi-level inverter, either those of an Open-end Winding system (OWS).  As 

shown in  

 Fig. 4. 1, the standard OWS scheme is obtained by splitting the neutral connection of an AC machine and 

connecting each end-phase of the winding to a two three phase two-level inverters. Based on the ratio between 

the two DC-Bus voltages, this configuration may feature a three-level or a four-level voltage modulation while 

achieving several other benefits as redundancy of the space-vector combinations, absence of neutral point 

fluctuations, reduction of the phase current ripple and increment of the maximum allowable stator voltage 

amplitude. 

 

 Fig. 4. 1 Standard Multilevel inverter  

According to the basic OWS configuration the active power demanded by the AC machine is shared between 

the two inverters, consequently they are generally of the same, or similar, size and are supplied by two separated 

power sources [17]-[19].  Differently, according to the proposed AHMLI approach, a main MLI supplies the 

whole active power, while a smaller auxiliary TLI acts as an active filter.  Providing a zero-average active power, 

the latter can be supplied through a floating capacitor, not requiring an additional independent power source.  A 

staircase voltage modulation technique is adopted in MLI in order to minimize switching losses, while the TLI 

exploits a high frequency PWM strategy in order to accurately shape the output current.  In order to obtain 

sinusoidal motor phase currents, the output voltage of the auxiliary inverter must be equal to the difference 

between the sinusoidal reference signal and the staircase waveform generated by the MLI.  If compared with a 

conventional drive encompassing a low frequency switching MLI the proposed solution produces a minimal 
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current distortion, thus preventing the occurrence of the torque ripple in AC Motor Drive applications.  On the 

other hand, if compared with PWM operated MLI, the proposed solution generates lower conversion power 

losses.  A key feature of the proposed approach consists in the possibility to use different kinds of power devices 

to optimally cope with the specific requirements of the two inverters.  More precisely, as the MLI switches at 

low frequency it allows the utilization of power devices featuring very low conduction losses as, for example, 

GTOs or high current IGBTs.  Differently, the TLI operating at low voltage levels and high switching frequency 

needs low voltage, low switching losses power devices such as fast IGBTs or even Power MOSFETs. 

 

 

4.1 Proposed AHMLI configuration 
 

The proposed asymmetrical hybrid multilevel inverter configuration is shown in Fig. 4. 2 Asymmetrical 

Hybrid Multilevel Inverter (AHMLI) It includes a MLI as main power unit and an auxiliary TLI acting as an 

active power filter (MLI+TLI).  A neutral point clamped NPC or a flying converter FC can be adopted as 

multilevel inverter topology.   

As discussed in chapter 3, an increment of the amount of inverter voltage levels is advantageous in terms of load 

current THD.  It is here obtained by using two inverters with isolated DC-Buses, which permits also to prevent 

the occurrence of zero sequence currents.   Normally, an OWS with two isolated DC-Buses needs of two isolated 

power supplies.  On the contrary, as the TLI ideally supplies the OW machine with zero average active power, 

it can be fed by a floating capacitor making a second independent power source redundant. 
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Fig. 4. 2 Asymmetrical Hybrid Multilevel Inverter (AHMLI) 
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4.1.1 Space vector combinations of AHMLI 
 

The motor phase voltage must be considered in order to compare the performance of the proposed solution 

with conventional ones, because on an OWS the MLI line-to-line voltage does not univocally define the motor 

phase voltage.  In a generic n-level MLI, the DC-Bus is composed of n-1 series connected capacitors. In order 

to investigate the AHMLI output voltage waveform, Fig. 4. 3 and Fig. 4. 4 are considered.  

VMLIa

VMLIb

VMLIc

VTLIa

VTLIb

VTLIc

n’ n’’

Vam

Vbm

Vcm

a’

b’

c’

a’’

b’’

c’’  

Fig. 4. 3 Equivalent circuit of a AHMLI configuration 

The inverter “a” leg output voltage VMLIa, referred to the mid-point n´ of the DC-Bus, is: 

being VDC
’ the MLI DC-Bus voltage. Assuming, as shown in  Fig. 4. 4 that the inverter supplies a wye connected 

induction machine, the motor “a” phase voltage VaMLIO, i.e. the voltage between the inverter “a” phase terminal 

and the stator winding neutral point O is:  

VMLIa

VMLIb

VMLIc

n’ O

VaMLIO

VbMLIO

VcMLIO

a’

b’

c’  

Fig. 4. 4 Equivalent circuit of wye-connected machine  
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where VO is given by: 

The latest quantity is known as Common-Mode Voltage (CMV), as discussed in chapter 2.  

Taking into account eq. (4.1) and eq. (4.3), being n an odd number, a motor phase voltage can assume 4(n-1) 

different non-zero voltage levels and the zero one.  The amount of the power switches required by an n-level 

NPC or FC MLI is:      

being p the number of inverter legs. 

The same calculation can be performed for a standard three-phase two-level inverter TLI. The a-leg phase output 

voltage referred to the mid-point n´´ of the TLI DC-Bus VDC
’’ is:   

Assuming that the TLI inverter supplies a wye connected induction machine, the motor phase voltage VmTLIa is:  

where, VO it is given by eq. (4.3).  Therefore, the motor phase voltage can assume one of four possible non-zero 

voltage levels, namely: 2VDC
’’/3, VDC

’’/3, -VDC
’’/3 and -2VDC

’’/3, or the zero level.  The amount of power switches 

in a TLI is:  

As mentioned in chapter 2, the concept of CMV in an OWS with two isolated DC-Buses differs from the concept 

of CMV of a standard converter configuration. Specifically,  the voltage Vn’n’’, is considered in an OW 

configuration, as depicted in Fig. 4. 3: 

This is constant if the two DC-Buses are electrically connected, or variable, as in the present case, if the DC-

Bus capacitor of the TLI is floating. 

According to the proposed AHMLI configuration, assuming that two independent DC voltage sources VDC
’
 and 

VDC
’’ supply the two inverters, the voltage Vam applied to a-phase winding of the OW machine is:  

               MLIcMLIbMLIaO VVVV 
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           npsMLI = 2p(n-1) (4.4) 
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The amount of required power switches nps is: 

Eq. (4.9) is an important result for understanding that the AHMLI output voltage waveform depends on the 

values of DC-Buses voltage VDC’ and VDC’’.  The space vector combinations and the output voltage levels, in 

fact, are as a function of the voltage ratio VDC’/VDC’’.  Fig. 4. 5 shows the voltage vector plots for an AHMLI 

encompassing a three-level inverter, for two different DC voltage ratio.  When the voltage ratio is set to 

VDC
’’=VDC

’/4, the space phasors appears as that of a six-level inverter, while if VDC
’’ =VDC

’/2, the vector plots 

are that of a four-level inverter.  These last results are calculated in Tab. 4.1, where the term Vn’n’’ is not 

considered.  In general, if VDC
’’ =VDC

’/[2(n-1)], the space vector combinations are that of a 2n-levels inverter, 

while if VDC
’’ = VDC

’/[(n-1)], the AHMLI works with lower space vector combinations.  The AHMLI works as 

a 2n-levels inverter also for VDC
’’ <VDC

’/[2(n-1)], but how it will be demonstrated in the following, the harmonic 

suppression method is less effective.  

α 

β 

VDC’/VDC’’=1/4
                

α 

β 

VDC’/VDC’’=1/2
 

Fig. 4. 5 AHMLI Vector plots 

 

Tab. 4.1 AHMLI output voltage levels when Vn’n’’ is not considered 

Voltage ratio 

VDC’/VDC’’ 

3LI Output voltage levels 

VMLI 

TLI Output voltage levels 

VTLI 

AHMLI Output voltage levels  

Vm= VMLI-VTLI 

1/4 VDC’, VDC’/2, 0 VDC’/4, 0 3VDC’/4, VDC’, VDC’/4, VDC’/2, -VDC’/4, 0  

1/2 VDC’, VDC’/2, 0 VDC’/2, 0 VDC’/2, VDC’, 0, -VDC’/2 

1/[2(n-1)] eq. 4.1 eq. 4.5 2n 

1/[(n-1)] eq. 4.1 eq. 4.5 3(n-1)/2 
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In terms of phase voltage levels, taking into account Vn’n’’, the proposed AHMLI configuration is equivalent to 

a conventional NPC or FC multilevel inverter with a larger amount of power devices.  This is summarized in 

in Tab. 4.2, where it is assumed that VDC
’’ =VDC

’/[2(n-1)]. Therefore, a lower phase voltage THD is obtained 

with the same number of switches. As an example, a system adopting the proposed configuration and a three-

level inverter, features a 17 levels phase voltage, as a standard five-level inverter (5LI), but requiring 18 power 

devices, instead of 24.   

Tab. 4.2 Comparison between standard MLI and the MLI+2LI configuration. 

 

 

 

MLI 

Standard MLI 

(NPC or FC) 

MLI+2LI 

VDC
’’ = VDC

’/[2(n-1)] 

Power Switches 

Phase voltage 

levels 

Power Switches 

Phase voltage levels 

MLI 2LI MLI+2LI 

3-L 12 9 12 6 18 17 

5-L 24 17 24 6 30 25 

7-L 36 25 36 6 42 33 

9-L 48 33 48 6 54 41 

n-L 2p(n-1) 4(n-1)+1 2p(n-1) 2p 2p(n-1)+6 4(n+1)+1 

 

 

4.1.2 Low-frequency modulation in MLI  
 

     The main feature of the AHMLI is that the MLI exploits a conventional quarter-wave symmetric step 

modulation strategy, or low-frequency modulation, in order to minimize switching power losses. Differently, 

the TLI is PWM modulated.   

As discussed in section 1.1.5, the amplitude of the staircase output phase voltage VMLI is controlled by acting on 

(n-1)/2 switching angles 1, 2,..., (n-1)/2 (0≤1<2<(n-1)/2 ≤ π/2) [20], [21]-[22], as shown in Fig. 4. 6.   
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Fig. 4. 6 MLI staircase output phase voltage 

By applying the Fourier series analysis, the amplitude of an odd harmonic of the stepped waveform can be 

expressed as: 

where Vk is the kth level of DC voltage, n is the (odd) harmonic order and k is the kth switching angle.  More 

specifically, switching angles are selected in order to obtain the required fundamental voltage reference V1, by 

eliminating from the harmonic content of the output voltage, n-1 of the lowest odd, non-triple harmonics.  

Therefore, 1, 2,..., m, are computed by solving the following set of (n-1)/2 non-linear transcendental 

equations: 

where k is the order of the highest harmonic that has to be eliminated and m is the modulation index defined 

as: 

           
'
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  (4.13) 

As an example, since a system adopting a three-level inverter exploits only one switching angle, this last is 

able to control the required fundamental voltage reference V1, while suppressing a single undesired low order 

harmonic component.  Eq. (4.12) becomes: 
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If the 5th harmonic component has to be eliminated, the switching angle should be set to 1=/10.  Replacing 

this value into eq. (4.14), a 0.95 modulation index is obtained.  Fig. 4. 7 shows the output phase voltage VMLI 

for m= 0.95 and its harmonic spectrum, when the 5th-harmonic component is eliminated, while Fig. 4. 8 shows 

the same content for m=0.86, when the 3th-harmonic component is compensated.  Fig. 4. 9 shows the switching 

angles as a function of the modulation index, for a 3LI and a 5LI.  A minimum value of switching angles is 

chosen slightly greater than 0, in order to prevent the occurrence of overvoltage at the motor terminals.  
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Fig. 4. 7 MLI staircase output phase voltage VMLI(left). Harmonic spectrum of VMLI, with 5th-harmonic component 

suppressed 1=/10, m=0.95 

 [V]

t [s]

f=50Hz

3th=0

θ1=π/6

0 0.004 0.008 0.012 0.016 0.02-800

-600

-400

-200

0

200

400

600

800
 [V]

f [Hz]

f=50Hz

3th=0

0 100 200 300 400 500 600 700 800 900 10000

200

400

600

800

1000

 

Fig. 4. 8 MLI staircase output phase voltage VMLI(left). Harmonic spectrum of VMLI, with 3th-harmonic component 

suppressed 1=/6, m=0.86 
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Fig. 4. 9  Switching angles vs. modulation index for a 3LI (left) and a 5LI (right). 

 

        m1cos  (4.14) 



111 
 

4.1.3 Active harmonic elimination method 
 

The MLI staircase output phase voltage VMLI consists of the desired fundamental harmonic V* and some odd, 

non-triple, harmonics Vj, as given by:  

                   k triple)-non  (odd, j             
*

 
j

VVVMLI  (4.15) 

Stator phase voltage harmonics are responsible of torque ripple and of additional (stray) power losses in the 

electrical machine and in the static converter. According to the proposed AHMLI configuration, the harmonic 

content of the machine phase voltage Vm is improved by exploiting the auxiliary PWM TLI. The resultant 

phase voltage Vm, in fact, is equal to the difference between the MLI staircase output phase voltage VMLI and 

the phase output voltage VTLI of the TLI. 

In order to eliminate low-order voltage harmonics Vj, i.e. to obtain Vm≈V*, the reference voltage VTLI
* of the two-

level inverter must be set to:   

            k triple)-non   (odd, j     
*

 /
*

 VMLIVvkjVTLIV  
(4.16) 

being kv the TLI voltage gain.  Actual values of staircase phase voltage VMLI are computed according to eq. (4.1) 

as: 
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(4.17) 

Fig. 4. 10 shows the voltage control strategy developed to manage the two inverters. Since the auxiliary TLI 

works as an active power filter, it exchanges a zero-average power with the machine, thus, the DC-Bus supply can 

be realized by a floating capacitor.  Hence, the voltage VDC
’’ is ideally constant.  However, inverter power losses 

cause a progressive discharge of the TLI DC-bus capacitor.  Since the latter is floating, it can be charged only by 

establishing a controlled active power stream between the two inverters.  Thus, an additional corrective term Vcap is 

then introduced into VTLI*, being the output of a closed loop VDC
’’ regulator, as shown in Fig. 4. 10.  Further insights 

on the VDC
’’ control algorithm will be discussed in the following. 
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A generic n-level VMLI waveform and the associated TLI reference voltage VTLI* are shown in Fig. 4. 11. 

According to Fig. 4. 12, the auxiliary inverter needs a DC-Bus voltage VDC
’’ =VDC

’/[2(n-1)], to generate the 

required VTLI
* waveform in the entire operating range of the drive; therefore, it can be equipped with power 

devices with half the rated voltage of those of the MLI.  Moreover, by increasing the number of MLI voltage 

levels the required minimum value of VDC
’’ is reduced.   
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Fig. 4. 10 AHMLI voltage control scheme 
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Fig. 4. 11  VMLI, Vm and VTLI* waveforms. 
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Fig. 4. 12 Fig. 7. Minimum VDC’’ amplitude vs. V1 in case of 5LI+TLI and 3LI+TLI. 
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4.1.4 Simulation results of the harmonic suppression 

method: THD and Power Losses 
 

     In order to investigate the effectiveness of the method in improving the THD, the TLI DC-Bus voltage is 

initially considered as supplied by an ideal voltage generator. The TLI synthetizes the reference voltage VTLI
* by 

exploiting an Adjacent State Space Vector Modulation strategy.  As an example, an AHMLI composed of a 3LI 

and a PWM two-level inverter (3LI+TLI) switching at 5 kHz has been considered.  According to Tab. 4.2 it 

includes in total 18 switches. The optima DC-Bus voltage of the TLI is set to VDC
’’ =VDC

’/4.   
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Fig. 4. 13. 3LI+TLI with VDC
’’ =VDC

’/4: VMLI (a), VTLI (b), differential-mode voltage Vn’n’’ (c), motor phase voltage Vm (d). 
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Fig. 4. 14.  Motor phase voltage Vm: three-level PWM inverter (left), five-level PWM inverter (right). 

Fig. 4. 13 shows 3LI and TLI output phase voltages, as well as the motor phase voltage Vm and the voltage across 

the midpoints of the two DC-buses Vn’n’’, obtained for m=0.8.  For the sake of comparison, motor phase voltages 
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generated by a five-level-24 switches inverter and a three-level-12 switches inverter, both PWM operated at 5 

kHz, are shown in Fig. 4. 14.   

Simulations of the three aforementioned topologies applied to an Open-end Winding AC Motor drive (OWMD), 

operating at 70% of the rated power with different values of the modulation index, have been accomplished. The 

voltage THD, up to the 90th harmonic, is given by: 

1

90

2

2

V

i
i

V

THD




  
(4.18) 

where Vi   represents the low-order voltage harmonics and V1 is the fundamental phase voltage.  Inverter power 

losses have been also estimated where the MLI is equipped with high-voltage IGBTs and the TLI exploits low-

voltage high-frequency MOSFETs. Main technical specifications of the induction motor and switches are 

respectively summarized in Tab. 4.3, Tab. 4.4 and Tab. 4.5.  The inverter power losses are calculated as the sum 

of the switching losses and conduction losses. The switching losses Psw depend mainly on switching frequency 

fsw and can be calculated as follow: 

 OFFONSWmCESW ttfivP 
2

1
 (4.19) 

being ton, toff and vce switch parameters depicted in Tab. 4.3, Tab. 4.4, for IGBTs and MOSFETs respectively.  In 

the contrary, the conduction losses are differently evaluated for IGBTs and MOSFETs.  The IGBTs conduction 

losses are given by: 

ONONIGBTC ivP _
 (4.20) 

where Von and ion are the voltage across the switches during the on-state and the current that is passing thought 

it, respectively, while  is the duty cycle.  Unlike IGBTs, the MOSFETs conduction losses depend on the Drain-

Source On-State Resistance RDS(on): 

2

_ ONDSMOSFC iRP   (4.21) 

Hence, the total inverter power losses are given by: 

CSWINV PPP   (4.22) 

The voltage THD and the estimated inverter power losses, are shown in Fig. 4. 15.  The 3LI+TLI configuration 

features a THD fairly equivalent to that of a conventional 5-level NPC inverter operating at the same switching 

frequency (5 kHz), and requires only 75% of the power devices.  Moreover, cumulative power losses of the 
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3LI+TLI configuration are remarkably lower than those of a 5-level PWM inverter and only slightly higher than 

those of a 3-level PWM inverter.  Advantages in exploiting the proposed approach are also clear in Fig. 4. 16, 

dealing with a comparison in terms of THD and power losses among a 5LI+TLI configuration, a step operated 

five-level NPC inverter, a five level PWM NPC inverter and a seven-level PWM NPC inverter. 
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Fig. 4. 15 3MLI: THDv to the 90th harmonic (left) and estimated inverter power losses (right) at 70% of the rated power. 

Tab. 4.3 Induction Machine data. 

Pn   [kW] In  [A] Rs  [Ω] Rr  [Ω] Lls  [H] Llr  [H] Lm  [H] n  [g/min] 

2 5 9.2 7.24 0.025 0.025 0.535 1500 

 

Tab. 4.4 F3L150R07W2E3 IGBT data. 

Tj  [C°] vceo  [V] rce  [mΩ] vfeo  [mΩ] rfe  [mΩ] tont  [ns] toffT  [ns] toffD  [ns] 

150 0.75 6.3 0.9 3.8 60 131 53 

 

Tab. 4.5 TH40J60U MOSFET data. 

RDS  [Ω] VDS    [V] toffT  [ns] toffD  [ns] 

0.065 3 180 173 
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Fig. 4. 16 5MLI: THDv to the 90th harmonic (left) and estimated inverter power losses (right) at 70% of the rated power. 
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Fig. 4. 17 THD vs. m for 3LI+TLI (left) and 5LI+TLI (right), when reducing VDC
’’. 
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Fig. 4. 18 Average power losses at 70% of the rated power vs. m for 3LI+TLI (up) and 5LI+TLI (down), when reducing 

VDC
’’. 

According to the proposed configuration, the auxiliary TLI theoretically requires a VDC
’’ =VDC

’/[2(n-1)] DC input 

voltage to generate the VTLI* waveform.  However, VDC
’’ can be further reduced in an effort to achieve an optimal 

trade-off between the TLI switches voltage ratings and switching power losses on one hand and the motor phase 

voltage THD on the other hand.  As shown in Fig. 4. 17 and Fig. 4. 18, a progressive worsening of the THD and 

power losses is observed when VDC
’’ is reduced. Obtained results can be improved by equipping the TLI with 

fast switching IGBTs, or by exploiting optimized PWM techniques.  Fig. 4. 19 depicts the effectiveness of the 

proposed method on the current harmonic content, when VDC
’’ is set to optimal value VDC

’/[2(n-1)], for a 

3LI+MLI feeding an induction motor with open loop V/f control algorithm.   
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Fig. 4. 19 AHMLI phase voltage Vabcm for 3LI+TLI (left) and phase currents iabcm (right), when reducing VDC
’’ from 

VDC
’/4 to VDC

’/8 
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Fig. 4. 20 shows the same results using a 5LI+MLI.  To highlight the effectiveness of the proposed method in 

term of improving of current harmonic content, when VDC
’’ is set to optimal value VDC

’/[2(n-1)]. The 

improvement is obtained thank to the higher number of voltage levels, as discussed in section 4.1.1.  The 

3LI+TLI, in fact, works as a six-level inverter when VDC
’’ =VDC

’/[2(n-1)] featuring 17 output phase voltage 

levels. The 5LI+TLI, instead, works as a ten-level inverter featuring 25 output phase voltage levels.  
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Fig. 4. 20 AHMLI phase voltage Vabcm for 5LI+TLI (left) and phase currents iabcm (right), when reducing VDC
’’ from 

VDC
’/8 to VDC

’/12 

 

4.1.4.1 TLI DC-Bus voltage control algorithm 
 

     As mentioned earlier, since the TLI works as active power filter, it provides zero average active power to the 

machine.  Thus, it can be supplied by a floating capacitor. However, while VDC’’ is ideally constant, in practice  

inverter power losses PL cause a progressive discharge of the TLI DC-bus capacitor, as depicted in Fig. 4. 21.   
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C

 

Fig. 4. 21  Contribution of the Inverter power losses PL in discharging the TLI DC-bus capacitor 

 

Since the capacitor is floating, it can be charged only by establishing a controlled active power stream between 

the two inverters.  Two main capacitor voltage control techniques are available in the literature. The first uses a PI 

DC-Bus capacitor voltage control, as shown in Fig. 4. 22.  The output signal K of the PI controller represents the 

amount of active power required by the capacitor C in in order to keep the DC-Bus voltage constant at VDC
’’*.  The 
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term K is multiplied for the MLI reference three-phase voltages VMLIa, VMLIb, VMLIc in order to obtain the synchronized 

additional corrective terms Va-cap, Vb-cap and Vc-cap.  Fig. 4. 23 shows the DC-Bus voltage VDC
’’

 when exploiting the 

algorithm of Fig. 4. 22.   
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Fig. 4. 22 TLI DC-Bus voltage control algorithm 
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Fig. 4. 23 DC-Bus voltage VDC’’  

The second approach exploits a qd0 transformation.  Fig. 4. 24 shows the VDC’’ qd0 control scheme, where e is the 

transformation angle and iq and id are the qd components of the phase current of the machine.  Hence, also in this 

case, additional corrective terms Va-cap, Vb-cap and Vc-cap, are introduced into the generic TLI reference voltage to hold 

the TLI DC-Bus voltage at a specified level. The reactive power is forced to zero by setting: 

  qcddcq ViViQ 
2

3
 (4.23) 

From eq. (4.22), the d-axis voltage component Vdc is obtained: 

 
qc

q

d
dc V

i

i
V   (4.24) 

The active power component P is determined as the output of a DC-Bus capacitor voltage controller, resulting in a 

q-axis voltage component Vqc.  Fig. 4. 25 shows the DC-Bus voltage VDC’’ variation.  Note, that the qd0 control 

approach is dynamically faster than first technique.  
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Fig. 4. 24 qd0 DC-Bus voltage VDC’’ control loop         Fig. 4. 25 DC-Bus voltage VDC’’ controlled with qd0 

approach 

The reference voltage VTLI
* of the TLI, then becomes: 

              CAPMLITLI VVVV 
**

    j(odd, non-triple)>K (4.25) 

 

4.1.4.2 MLI DC-Bus Capacitor Voltage Balance 

techniques 
 

A key issue of any NPC MLI topology relies in DC-link capacitors voltage balance. In order to overcome such a 

drawback, different solutions can be adopted.  PWM switching patterns can be superimposed to the staircase 

modulation in order to exploit redundant power converter states [23].  This solution however causes additional power 

losses.  A further solution exploits a transformer with multiple outputs.  Each output is cascade connected to a three-

phase a rectifier in order to obtain n isolated DC-power sources [24].  A voltage balance among MLI input capacitors 

can be required also for other reasons.  On photovoltaic generators, in fact, MLIs are supplied by n isolated DC-

Buses obtained by suitably partitioning PV strings split, a similar situation occurs also on hybrid/electric vehicles, 

where MLIs are supplied by series connected storage units [24].  The proposed AHMLI topology allows to balance 

the DC-link capacitors by acting on the active power transferred to the floating capacitor of the TLI, as depicted in 

Fig. 4. 26.  In particular, on a three-level inverter, the two averaged DC-link capacitor voltages Vc1 and Vc2 are kept 

constant by increasing the output active power of an additional term ΔP whenever Vc1 > Vc2, while setting ΔP =0 

if Vc1 < Vc2.   
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Fig. 4. 26 AHMLI with 3LI+TLI: MLI capacitor voltage balancing approach 



120 
 

In this way, additional corrective terms Va-c1, Vb-c1 and Vc-c1, are introduced into the TLI reference voltage: 

k triple)-non   (odd, j 1    
*

 
*

 cVcapVVMLIVTLIV
 

(4.26) 

Hence, the AHMLI voltage control scheme of Fig. 4. 10 becomes that of Fig. 4. 27.  Fig. 4. 28 MLI DC Bus voltage 

balance: a) DC-Bus voltage VDC’’. b) capacitor voltages Vc1 and Vc2. c) phase voltages Vabcm. d) phase 

currents iabcm. The balancing algorithm is active for t<1s, where the voltage Vc1 and Vc2 are kept constant, and is 

unactive for t>1s, where C1 is charging and C2 is discharging.  As depicted in Fig. 4. 29, the modulation of VDC’’ 

causes the circulation of a zero-average current on each capacitor. 
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Fig. 4. 27 AHMLI voltage control scheme with DC-Bus voltage balancing method of the MLI 
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Fig. 4. 28 MLI DC Bus voltage balance: a) DC-Bus voltage VDC’’. b) capacitor voltages Vc1 and Vc2. c) phase 

voltages Vabcm. d) phase currents iabcm 
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Fig. 4. 29  MLI DC Bus voltage balance: up) DC-Bus voltage VDC’’. middle) capacitor voltages Vc1 and Vc2. 

down) capacitor currents ic1 and ic2 

 

 

4.1.5 Experimental results on AHMLI AC Motor Drives: 

V/f control 

     An experimental validation of the application of the AHMLI concept in constant V/f induction motor drive 

applications has been accomplished.  The aim is that to verify the effectiveness of the proposed harmonic 

compensation method in terms of THD reduction and efficiency improvement. Fig. 4. 30 depicts the experimental 

setup. The prototype has been tailored around a standard 3.7 kW, three-phase, 4 poles IM featuring: Vn=400V, 

fn=50Hz and in=8.6A.  Another 4 poles, 5.5 kW three-phase IM, rated at: Vn=400V, fn=50Hz and in =12.5A provided 

the load torque, ranging from 30% to 100% of the rated value. The MLI DC-Bus voltage is set to 500V. Technical 

specifications of motor and power switches are shown in Table. 4.3, Table 4.4 and Table 4.5. The AHMLI AC Motor 
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Drive prototype has been tested using either a three-level inverter (3LI), either a five-level inverter (5LI) NPC as 

main unit.  The switching frequency of the active power filter is set to 10kHz with a dead time of 1µs.  Both the main 

and auxiliary inverters are controlled through a dSpace 1103 development control board, while the voltage across 

each MLI DC-Bus capacitor is kept constant by a suitable actively controlled power supply system. Furthermore, a 

FPGA control board has been exploited to implement the PWM at 10kHz. 
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Fig. 4. 30 Experimental setup for AHMLI AC Motor Drive 

The behavior of the motor with a classical wye connection and supplied by conventional 3LI and 5LI using a 

step voltage modulation technique was initially evaluated.  In particular,  Fig. 4. 31a shows the phase current ia, the 

phase voltage Vm and the voltage Vn’o (see Fig. 4. 4) between the motor neutral point and the mid-point of the DC-

Bus, at 50% of the rated load torque when a 3LI is adopted.  Voltage and current frequency spectra are displayed in 

Fig. 4. 31b and Fig. 4. 31c.  At half load, with modulation index ma=1, the obtained voltage THD is 29% using a 

3LI, while the current THD is 12%. At the same way, Fig. 4. 32a shows the phase current ia, the phase voltage Vm 

and the voltage Vn’o, when a 5LI is adopted.  Voltage and current frequency spectra are displayed in Fig. 4. 32b and 

Fig. 4. 32c.  In the two cases the voltage THD is 29% and 11%, while the current THD is 12% and 9.2%.  The two 

MLIs have been also PWM operated at fs=10 kHz, under the same conditions, giving the results shown in  Fig. 4. 

33 and Fig. 4. 34.  The voltage and current THD are better when compared with those obtained with voltage step 

modulation, because in the last case, only few low-order harmonics are cancelled. The proposed AHMLI 

configuration has been finally adopted, exploiting the 3LI+TLI and the 5LI+TLI configurations, giving the results 

shown in Fig. 4. 35 and Fig. 4. 36, respectively.  According to the AHMLI approach, the value of VDC
’’ is set to 
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VDC
’/[2(n-1)], VDC

’/4 and VDC
’/8 for a 3LI+TLI and 5LI+TLI configurations, respectively.  As it is possible to 

observe, the voltage THD decreases up to 4.4% with the first configuration and up  
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Fig. 4. 31 3LI with Step modulation at 50% of rated load: (a) ia, Vm and Vn’o;(b) Vm. harmonic spectrum; (c) ia harmonic 

spectrum 
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Fig. 4. 32 5LI with Step modulation at 50% of rated load: (a) ia, Vm and Vn’o;(b) Vm. harmonic spectrum; (c) ia harmonic 

spectrum 
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Fig. 4. 33 3LI with PWM (fs=10kHz) at 50% of rated load: (a) ia, Vm;(b) Vm harmonic spectrum; (c) ia harmonic 

spectrum 
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Fig. 4. 34 5LI with PWM (fs=10kHz) at 50% of rated load: (a) ia, Vm;(b) Vm harmonic spectrum; (c) ia harmonic 

spectrum 
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Fig. 4. 35 3LI+TLI with TLI PWM modulated (fs=10kHz) at 50% of rated load: (a) ia, Vm and VTLI*;(b) Vm harmonic 

spectrum; (c) ia harmonic spectrum. 

200 V

5 A

5ms

Vam

iam

VTLIa 100 V

VTLIa
*

100 V

 

(a) 

    f[Hz]
50 150 250 350 450 550 650 750

Vam1

50 Hz

230 V
50 V

THD=2.1%
ma=11° 

VDC
’’=VDC

’/8

     f[Hz]
50 150 250 350 450 550 650 750

5° 

ma=1

iam1

50 Hz

8.3 A

2A

THD=1.7%
1° 

VDC
’’=VDC

’/8

 
                                             (b)                                                                                 (c) 

Fig. 4. 36 5LI+TLI with TLI PWM modulated (fs=10kHz) at 50% of rated load: (a) ia, Vm and VTLI*;(b) Vm harmonic 

spectrum; (c) ia harmonic spectrum. 
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Fig. 4. 37 Vm and Vn’n’’ at 50% of rated load: (left) 3LI+TLI; (right) 5LI+TLI. 
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Fig. 4. 38 3LI+2LI, Capacity Voltage Control VDC
’’. VDC

’’ from 0V to 80V and phase current im (a). VDC
’’ from 80V to 

50V and phase current im (b)... 

to 2.1% with the second, while the current THD is 4% in the first case and 1.7% in the second one.  The voltage 

between the mid-points of the two DC Buses (see Fig. 4. 3) on 3LI+TLI and 5LI+TLI systems are also displayed in 

Fig. 4. 37.   Fig. 4. 38 shows the effect of a DC-Bus voltage VDC
’’ variation on the motor phase currents exploiting 

the capacitor voltage control discussed in the section 4.1.4.1.  It is worth noting that, when the drive is operated with 

a VDC
’’ lower than VDC

’/[2(n-1)] a distortion is present in the motor current waveform. The voltage and current THD 

have been measured by exploiting a power analyzer in order to compare the experimental results with simulation 

results shown in  Fig. 4. 15, Fig. 4. 16, Fig. 4. 17 and Fig. 4. 18.  Fig. 4. 39 and Fig. 4. 40 refer to the phase voltage 

THD up to the 90th harmonic as measured on 3LI and 5LI as function of the modulation index, in case of wye-

connected stator windings.  
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Fig. 4. 39  Phase voltage THD for 3LI and 5LI with Step 

Modulation. 

Fig. 4. 40 Phase voltage THD for 3LI and 5LI with sine 

PWM (fs=10kHz). 
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Both Staircase Vector Modulation and sine PWM techniques are considered for comparison.  Results obtained with 

the 3LI+TLI and 5LI+TLI configurations with different values of VDC’’ are shown in Fig. 4. 41 and Fig. 4. 42. As 

predicted by simulations, a remarkable THD improvement is obtained in any operating condition. 
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Fig. 4. 41 3LI+TLI (fs=10kHz): (a) phase voltage THD, 

(b) phase current THD. 

Fig. 4. 42 5LI+TLI (fs=10kHz): (a) phase voltage THD, 

(b) phase current THD. 

 

4.1.6 AHMLI Motor Drive Efficiency  
 

The total system efficiency ηtot, the motor efficiency ηmot and the power conversion efficiency ηconv have been 

experimentally measured for various load torque levels TL, taking into account the six of the above-considered 

configurations, namely: 

 3LI Step Modulated  5LI PWM Modulated 

 5LI Step Modulated  3LI+TLI Hybrid 

 3LI PWM Modulated  5LI+TLI Hybrid 

Fig. 4. 43 shows the conceptual block scheme for measuring ηtot, ηmot and ηconv. 
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Fig. 4. 43 Experimental setup for measuring system efficiency 

The total drive efficiency ηtot, is evaluated as the ratio between the motor output mechanical power Pm, measured 

with a torque sensor situated between the mechanical load and the OW motor, and the system input electrical power 

Pin, measured with a power analyzer.  The motor efficiency ηmot, is given by the ratio between the output mechanical 

power Pm and the motor input electrical power Pinm, obtained by the sum of motor input powers measured on each 

phase winding Pam, Pbm and Pcm.  TLI switching losses are included with switching losses measured at the system 

input.  Hence, the converter efficiency ηconv is given by the ratio between the motor input electric power Pinm and the 

system input electric power Pin.  Errore. L'origine riferimento non è stata trovata. and Fig. 4. 45 shows the power 

converter efficiency, motor efficiency and total efficiency for the six considered configurations.   
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Fig. 4. 44 3LI: Power converter efficiency ηconv.(left); motor efficiency ηmot (mid); total system efficiency ηtot (right).. 
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Fig. 4. 45 5LI: Power converter efficiency ηconv.(left); motor efficiency ηmot (mid); total system efficiency ηtot (right) 

Note that the best power converter efficiency is given by step modulated MLI configurations. On the other hands, 

they also feature the worst motor efficiency, due to low-order current harmonic components.   It is clear that, the 
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effect of the motor efficiency on the total efficiency is greaten that the effect of the converter efficiency.  The AHMLI 

features a converter efficiency slightly lower than that of a step modulated MLI, but higher than of a PWM MLI.  It 

however shows the higher motor efficiency, thanks to the absence of low-order current harmonic components. As a 

result, the AHMLI scores the higher total efficiency. 

4.2 Field Oriented Control on AHMLI AC Motor Drives 
 

A current controlled AHMLI has been developed suitable for vector control applications in fields as, motor drives, 

STATCOM, photovoltaic and wind generators Fig. 4. 46.  Multilevel inverters are today common equipment for 

variable speed AC drives used in laminators, pumps, conveyors, compressors, fans, blowers and mills, as well as, in 

railway and naval propulsion plants.  In these systems phase current distortion is the cause of torque oscillation and 

additional power losses.   
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  Fig. 4. 46 AHMLI applications: AC motor drives (a); Photovoltaic (b); Wind generators (c), STATCOM (d). 
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The developed AHMLI current control system for field oriented induction motor drives is shown in Fig. 4. 47.  It 

encompasses two different subsystems, respectively driving the MLI and the TLI and belongs to the class of 

synchronous current regulators acting on rotating d,q axes components of the current. According to the proposed 

AHMLI configuration, the MLI manages the main active power stream, thus its current control subsystem is mainly 

tasked to regulate the fundamental component of the phase current, while also decoupling the q,d axes regulation.  It 

is of the predictive type, in fact, motor back-EMF components Ed* and Eq*, are estimated and then used to determine 

q,d axes MLI voltage references. 
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Fig. 4. 47 AHMLI current control system for field oriented induction motor drives. 

The qd0 voltage equations in a rotor flux reference frame of an induction motor are expressed as: 
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(4.27) 

where Eds and Eqs are the back-EMF components, Rs and Rr are the stator and rotor resistances and re is the rotor 

flux angular speed. The stator and rotor fluxes are given by: 
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being Ls, Lr and Lm the stator, rotor and magnetizing inductances, respectively.  Since that qr=0 in Field Oriented 

Control condition, the q-axes stator current iqs can be written as a function of q-axes rotor current iqr: 

qsi
rL

mL

qri

qsimLqrirL
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0

 
(4.29) 

Furthermore, since Vdr=0 the d-axes stator current ids can be written as a function of d-axes rotor current idr: 
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(4.30) 

Since the flux is kept constant at the rating value by holding ids= irated, comes from eq. (4.29) that idr=0. 

Thus, the d-axes stator and rotor flux can be written as: 
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(4.31) 

The q-axis back-EMF Eqs is given by: 

dsisLrdsrqsE    (4.32) 

while the d-axis back-EMF Eds is given by: 
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replacing eq. (4.28) into eq. (4.32): 
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These quantities are the estimated q,d axes MLI reference voltages and are synthetized through a high efficiency 

step-modulation.  The composition of the voltage across the stator resistance Rsis and the inductive voltage term ps, 

which represents the difference between the reference voltage and the back-EMF, are instead obtained by the PWM 

TLI.  The TLI current control subsystem acts as the main closed loop regulator, taking advantage from the 

dynamic and precision of PWM techniques. It exploits two PI regulators to generate the TLI q,d axes voltage 

references VTLIqd, as depicted in Fig. 4. 47.  According to the AHMLI approach, the TLI is also tasked to act as an 

active power filter.  Thus some additional components are added to a,b,c voltage references, namely: 

 *-

 *-

 *-

cVMLIcV

bVMLIbV

aVMLIaV

 
(4.37) 

These terms predictively compensate low order phase voltage harmonics generated by MLI, as shown in Fig. 4. 11. 

As discussed in section 4.1.4.1, the TLI is floating, thus, it can be charged only by establishing a controlled 

active power stream between the two inverters, through the DC-Bus voltage VDC
’’ control of Fig. 4. 24. Thus, a 

further corrective term Vabc-c, is introduced into the TLI reference voltage.  Finally, additional terms Vabc-DC are 

also added to balance the voltages across the DC-Bus capacitors of the MLI.  The TLI voltage references VTLIabc
*, 

thus, consists of four terms: 

DCabcVcapabcVabcV
MLIabcVTLIabcrVTLIabcV

    )
*

( 
*

 (4.38) 

where VTLIabcr is the generic output of the TLI current control system, (VMLIabc -Vabc
*) is the harmonic compensation 

term, Vabc-c is the DC-Bus voltage VDC
’’ control term and Vabc-DC is the MLI DC-Buses capacitors term.  

 

4.2.1 Simulation and Experimental results on AHMLI 

AC Motor Drives 

     Simulation tests and experimental validations have been carried out in order to evaluate the effectiveness of 

the AHMLI current control system.  The considered test bench is that of Fig. 4. 30 with VDC’=575V and VDC’’=50V.  

The d-axes motor current is set to 2.5 A in order to obtain the rated flux.  A -40rad/s to 40rad/s speed transient 

response is shown in Fig. 4. 48, giving a quite satisfactory performance. A comparison between the simulation and 

experimental results is also depicted.  Fig. 4. 49 shows the motor phase currents ia, ib and ic when a reversal speed 

transient is applied.  According to the AHMLI current control algorithm, the qd components of motor Back-EMF 
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are estimated, transformed to the abc reference frame and generated by the MLI, Fig. 4. 50.  Fig. 4. 51 shows the 

TLI reference voltage, which consists of the harmonic compensation term, the TLI DC-Bus voltage control term and 

the output current control term.  The TLI DC-Bus voltage VDC’’, MLI staircase output voltage VMLIa and the motor 

phase voltage Vma are also depicted.  The 5LI qdo Back-EMF voltage angular re and the a-phase current ia are shown 

in Fig. 4. 52.  Experimental results of Fig. 4. 53 confirm the validity of the simulation tests in terms of voltage and 

current THD improvement and current control response. 
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Fig. 4. 48  5MLI+TLI AHMLI: Speed step response from -40rad/s to 40 rad/s: ωr,, iq and id. Simulation results(up), 

Experimental results(down) 
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Fig. 4. 49 5MLI+TLI AHMLI: Speed step response from -40rad/s to 40 rad/s: ωr, phase currents ia, ib and ic 
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Fig. 4. 50 5LI+TLI AHMLI steadt state simulations: 5LI qdo Back-EMF voltage references Eq
*
 and Ed

*(left). 5LI phase 

voltage references Vabc*(right) 
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Fig. 4. 51 5LI+TLI AHMLI steadt state simulations: TLI a-phase voltage references VTLIa
*
, TLI DC-Bus voltage 

VDC
’’(left). 5LI starcase a-phase voltage VMLIa and motor a-phase voltage Vma (right) 
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Fig. 4. 52 5LI+TLI AHMLI steadt state simulations: 5LI qdo Back-EMF voltage angular e and a-phase current ia 

   

Fig. 4. 53 5MLI+TLI AHMLI steadt state Experimental tests: a-Motor phase voltage Vma,, 5LI starcase output voltage 

VMLIa, TLI phase voltage reference VTLIacontr, TLI DC Bus voltage VDC’’,(left). Back-EMF |E|, stator current ia and 5LI 

voltage angle θre. 

 

4.3 AHMLI approach for STATCOM and Generators 
 

     The AHMLI approach has been also applied for STATCOM and renewable energy applications [25]. In this case, 

as shown in Fig. 4. 54, an Open-end Winding Transformer (OWTR) interfaces the main MLI, acting as a grid-side 

inverter, and the utility grid.  The primary windings of the transformer are connected to a MLI from one side, and on 

the other side to a TLI inverter.  The secondary windings of the transformer are instead connected to the grid.  

According to the AHMLI approach, the MLI is step modulated while the TLI works as active power filter, in order 
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to compensate undesired low-order voltage harmonics generated by MLI.  Since the phase voltages Vap, Vbp and Vcp 

of the primary windings are filtered by TLI, the phase voltages Vas, Vbs and Vcs of the secondary windings are 

sinusoidal.  Thus, it is possible to realize a grid-side inverter without large additional passive filters. 
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Fig. 4. 54 Asymmetrical Hybrid Multilevel Inverter applied to STATCOM and generators 

The transformer voltage equations are given by: 
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(4.39) 

being t the transformation ratio of the transformer, iabcp and iabcs the phase currents of the primary and secondary 

windings respectively, abcp and abcs the total fluxes of the primary and secondary windings, respectively.  Fig. 4. 55 

shows the equivalent circuit of a AHMLI exploiting an open-end winding transformer.    The phase currents of the 

primary windings depend on: the MLI phase output voltages VMLIabc, the TLI phase output voltages VTLIabc, the 

differential-mode voltage Vn’n’’, the primary resistance Rp and inductance and Lp. The grid currents instead can be 

written as a function of the secondary phase voltages Vabcs, the phase grid voltage eabcg, the resistance Rp and 

inductance of the grid Lp. These current equations are given by: 
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Fig. 4. 55 Equivalent circuit of a AHMLI configuration for STATCOM and generators 

The grid current can be controlled by acting on the MLI reference voltages or on the TLI reference voltages.  As will 

be demonstrated in the following, the grid voltages will be synthetized by MLI (considering the transformation ratio 

t) while the control current acts on the TLI reference voltages VTLI.  Thus, the MLI provides the entire active power 

required by the system while the TLI works as active power filter and, at the same time, regulates the grid current.   

According to the voltage control scheme of Fig. 4. 56, MLI output voltage is synchronized with the grid voltage 

through a Phase Looked Loop (PLL) system, which detects the phase and the amplitude of the grid voltages eabcg. 

[26] Fig. 4. 57.  A 50Hz, 400/230 V, 10kVA three-phase open-end winding transformer is tested.  Fig. 4. 58 shows 

the transformer phase voltages with the grid disconnected from the secondary windings. The grid voltage frequency 

is f=50Hz, the TLI switching frequency is fsw=5kHz and VDC’’=VDC’/2(n-1).  In particular, Fig. 4. 58(left) depicts 

the primary phase voltages Vabcp while Fig. 4. 58(right) shows the secondary phase voltages Vabcs.  The phase grid 

voltages eabcg are shown in Fig. 4. 59(left), while Fig. 4. 59(right) shows the electric angular frequency of eag, as 

detected by the PLL.  When the OWT is disconnected from the grid, the phase magnetization currents circulate 

through the primary windings, as in Fig. 4. 60(left).  Once the secondary phase voltages Vabcs are synchronized with 

the phase grid voltage eabcg (the same in amplitude, frequency and phase), the secondary windings of the transformer 
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can be physically connected to the network.  Active and reactive power control can be performed by acting on the 

amplitude and phase of the MLI phase voltages VMLIabc and on the TLI phase voltages VTLIabc, as shown in Fig. 4. 60 

(right). 
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Fig. 4. 56 Voltage control scheme of an AHMLI system for STATCOM and generators 
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Fig. 4. 57 Phase Looked Loop (PLL) 
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Fig. 4. 58 Phase voltage of the transformer with voltage control and no-grid connected, f=50Hz, fsw=5kHz and 

VDC’’=VDC’/2(n-1): Primary voltages Vabcp (left), secondary voltages Vabcs (right) 



138 
 

t[s]

[V] eabcg

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04-800

-600

-400

-200

0

200

400

600

800

t[s]

[rad/s] θre

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

2

4

6

8

10

 

Fig. 4. 59 Phase grid voltages with voltage control and no-grid connected, f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-1): 

Grid voltages eabcg (left), electrical angular of the phase voltage re (right) 
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Fig. 4. 60 Phase magnetization currents of the transformer with voltage control, f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-

1): no grid connected(left), grid connected(right) 

 

4.3.1 AHMLI current control system for STATCOM and 

Generators 
 

     In order to control the active and reactive power flow in STATCOM and Generator applications, a suitable current 

controlled AHMLI has been developed, exploiting an OWT.  Fig. 4. 61 shows the block scheme of the proposed 

system.  It consists of a step modulated MLI, managing the main active power stream, and a current controlled TLI, 

which acts as the main closed loop regulator, controlling the grid current.  A suitable TLI DC-Bus voltage control is 

also included to regulate V DC
’’.  Hence, as in the previous case, the TLI compensates low order harmonics generated 

by MLI step modulation, while also controlling the grid phase currents.  Thus, the reference voltages of the MLI are 

eag
*, ebg

* and ecg
*: 

t

abcge
abcge  

*
 

(4.41) 

while the reference voltages of the TLI are given by: 

capabcVabcgeMLIabcVTLIabcrVTLIabcV
  )

*
( 

*
 

(4.42) 

being Vabc-c the output voltage control of the TLI DC-Bus VDC
′′. 
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Fig. 4. 61 AHMLI current control system for STATCOM and generators. 
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Fig. 4. 62 AHMLI simulation results for generators with f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-1): q-axis grid 

current transient iq from 0 to 12 A and null reactive power id=0, grid currents iabcg (left), a-phase grid current iag and 

a-phase grid voltage eag(right) 
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Fig. 4. 63 AHMLI simulation results for generators with f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-1): q-axis grid 

current transient iq from 6 to 12 A and null reactive power id=0, grid currents iabcg (left), a-phase grid current iag and 

a-phase grid voltage eag(right) 
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Fig. 4. 64 AHMLI simulation results for STATCOM with f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-1): q-axis grid 

current transient iq from 6 to 12 A and reactive power id=4 A, grid currents iabcg (left), a-phase grid current iag and a-

phase grid voltage eag(right) 
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Fig. 4. 65 AHMLI simulation results for STATCOM with f=50Hz, fsw=5kHz and VDC’’=VDC’/2(n-1): d-axis grid 

current transient iq from 6 to 12 A and null active power iq=0 A(left), a-phase grid current iag and a-phase grid 

voltage eag(right) 
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Fig. 4. 66 AHMLI simulation results, impact of the variation of TLI DC Bus voltage VDC’’ from VDC’/2(n-1) to 

VDC’/2n(left) on the waveforms with f=50Hz, fsw=5kHz. a-phase grid voltage and a-phase grid current (left), a-phase 

primary voltage Vap (right) 

The performance of the AHMLI approach depends on the value of VDC
′′. In Fig. 4. 62, after grid connection, the 

AHMLI is tasked to provide active power to the grid by acting on the q-axis current components, while holding null 

the reactive power delivered to the main AC grid.  In Fig. 4. 62(right), the a-phase grid voltage eag is in phase with 

the a-phase grid current iag.  Fig. 4. 63 depicts a q-axis current transition from 6 A to 12 A, with a null reactive power. 

In Fig. 4. 64, a reactive power is also generated with id=4A. Simulation tests about STATCOM applications are 

depicted in Fig. 4. 65 where a null active power is transferred to the grid, iq=0. In a second test the performance of 

the system is evaluated for two different VDC′′ values. As shown in Fig. 4. 66, if VDC′′=VDC′/8 the TLI is able to 

perfectly compensate the low-order current harmonic components giving a grid current iag THD lower than 2%.  A 

distortion of the grid currents is observed when reducing VDC′′ to VDC′/12. 

Experimental tests have been carried out in order to verify the effectiveness of the AHMLI output current control 

algorithm in STATCOM and generator applications.  The test bench is composed by an open-end winding 5kVA 

- 230V/400V three phase transformer, a five-level NPC inverter with a 600 V DC-Bus voltage and a two-level 

inverter operating at 10kHz, Fig. 4. 67. Power switches technical specifications are shown in Table 4.4 and Table 

4.5 of the previous section.  
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The secondary winding of the transformer is initially disconnected from the grid, in such a way to synchronize the 

output voltages Vabcs with the grid voltage eabcg with the help of a PLL.  At the same time, the TLI compensates  

undesired low order harmonic components generated by MLI step modulation, as depicted in Fig. 4. 68. In this 

condition, magnetization currents iabcp flow in the primary winding of the transformer.  Once that the secondary 

winding can be connected to the grid the power flow can be controlled by acting on the current control algorithm.       

An active power step response is depicted in Fig. 4. 69.  The picture shows the q-axis grid current transient from 

0 to 13 A, the a-phase grid current waveform and the TLI DC-Bus voltage VDC’’, set to VDC’/2(n-1)=75 V.  Fig. 

4. 70 demonstrates what seen in simulation tests.  The best current harmonic content is achieved by setting VDC’’ 

to 75V, as depicted in Fig. 4. 71.  
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Fig. 4. 67 AHMLI test bench exploiting an open-end winding transformer for STATCOM and Generators 
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Fig. 4. 68 AHMLI Grid voltage synchronization: Secondary a-phase voltage of the transformer Vas, a-phase grid voltage 

eag, a-phase magnetization current iap 
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Fig. 4. 69 5MLI+TLI AHMLI active power step response. 

     

0.04 s

Vap

eag

ias

100 V

5 A
THDi=1.6%

VDC
’’ 100 V

    

0.04 s

Vap

eag

ias

100 V

5 A
THDi=8.2%

VDC
’’

   

Fig. 4. 70 Grid connected 5MLI+TLI AHMLI: Transformer primary voltage Vap, grid voltage eag, transformer secondary 

current iag and TLI DC Bus voltage VDC’’(VDC’’= VDC’ /8 (left), VDC’’= VDC ‘/12 (right)). 
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Fig. 4. 71 Grid connected 5MLI+TLI AHMLI: harmonic spectra of Transformer primary voltage Vap (VDC’’= VDC’ /8 

(left), VDC’’= VDC ‘/12 (right)). 

 

4.3.2  AHMLI current control system with grid current 

harmonic compensation 
 

The TLI of an AHMLI can be exploited to improve the grid phase current harmonic content.  The grid voltage, 

in fact, generally encompasses a 5th and a 7th harmonic, generating correspondent harmonic components of the 

grid current.  A suitable detector has been developed to measure the phase and the amplitude of each undesired 
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current harmonic.  The last are then eliminated through specific additional current control loops driving the TLI.  

The control system is depicted in Fig. 4. 72.  Grid currents are given by: 
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(4.43) 
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Fig. 4. 72 Equivalent circuit of a AHMLI configuration for STATCOM and generators with distorted grid voltage, 5th and 

7th harmonic component  

The transformer secondary phase voltage Vabcs consists of the fundamental harmonic and of 5th and 7th harmonic 

components in phase opposition with the 5th and 7th harmonics present on the grid voltage.   

According to the eq. (4.42) the TLI reference voltage is given by: 
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75)
*

1( 
*

abcgeabcgeabcgeMLIabcVTLIabcV   
(4.44) 

Simulation tests have been performed only considering the 5th harmonic component of the grid voltage.  The 

amplitude of the fundamental phase grid voltage eg1 is set to 565 V and frequency f=50Hz, while the 5th harmonic 

component eg5 is set to 50 V and in phase with eg1. The MLI DC-Bus voltage is 575V.  Fig. 4. 73(left) shows the 

grid voltage, which consists of the fundamental and undesired 5th harmonic.  Fig. 4. 73(right) shows the 

transformer primary voltage, with VDC’’=VDC’/2(n-1)=70V  and fsw=5kHz.  At t=0.2 s the 5th harmonic 

compensation is activated, improving the grid current harmonic content, as depicted in Fig. 4. 74.  Harmonic 

spectra of the grid current and the transformer primary voltage are shown in Fig. 4. 75 and Fig. 4. 76 respectively.  
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Fig. 4. 73 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th harmonic 

component. At t=0.2s the 5th harmonic compensation is active: grid voltages eabcg (left), primary voltages Vabcp(right) 
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Fig. 4. 74 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th harmonic 

component. At t=0.2s the 5th harmonic compensation is active: grid currents iabcg 
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Fig. 4. 75 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th harmonic 

component. Current iag harmonic spectrum without 5th harmonic compensation(left), Current iag harmonic spectrum 

with 5th harmonic compensation. 
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Fig. 4. 76 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th harmonic 

component. Primary voltage Vap harmonic spectrum without 5th harmonic compensation(left), Primary voltage Vap 

harmonic spectrum with 5th harmonic compensation. 

The same tests are also performed considering the presence of  undesired 5th and 7th harmonic components of 

the grid voltage as depicted in Fig. 4. 77Fig. 4. 78Fig. 4. 79Fig. 4. 80.  The 5th harmonic component is set to 50 

V and in phase with eag1 while the 7th harmonic component is set to 20 V and in phase with eag1. 
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Fig. 4. 77 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th and 7th harmonic 

components. At t=0.2s the 5th and 7th harmonic compensation is active: primary voltages Vabcp(left), grid voltages eabcg  
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Fig. 4. 78 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th and 7th harmonic 

component. At t=0.2s the 5th and 7th harmonic compensation is active: grid currents iabcg 
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Fig. 4. 79 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th and 7th harmonic 

component. Current iag harmonic spectrum without 5th and 7th harmonic compensation(left), Current iag harmonic 

spectrum with 5th and 7th harmonic compensation. 
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Fig. 4. 80 AHMLI simulation results for STATCOM and generators with distorted grid voltage, 5th and 7th harmonic 

component. Primary voltage Vap harmonic spectrum without 5th and 7th harmonic compensation(left), Primary voltage 

Vap harmonic spectrum with 5th and 7th harmonic compensation. 

The output current control block diagram is shown in Fig. 4. 81.   
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Fig. 4. 81 AHMLI current control system for STATCOM and generators with grid current harmonic elimination. 

The PLL system detecting 5th and 7th harmonic components of the grid voltage has been modified as shown in 

Fig. 4. 83 , by including the two discrete low pass filters sketched in Fig. 4. 83.  .  
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Fig. 4. 82 Phase Looked Loop (PLL) with harmonics detection. 
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Fig. 4. 83 5th and 7th filter of the Phase Looked Loop (PLL) harmonics detection. 

The amplitude of 5th and 7th harmonic components are given by: 
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while the phase angles are: 
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Hence, the generic TLI voltage reference VTLIcontr becomes: 

capabcVabcgeMLIabcVTLIabchVTLIabcrVTLIabcV
  )

*
( 

*
 

(4.47) 

being VTLIabch an additional component of the TLI voltage reference to compensate the grid harmonic 

components.  Simulation tests have been carried out in order to verify the effectiveness of the output current 

control.  The dynamic response of the qd-axes and grid currents are shown in Fig. 4. 84, highlighting that 

undesired grid currents harmonics are wiped out, Fig. 4. 85.   
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Fig. 4. 84 AHMLI Output current control with 5th and 7th harmonic compensation.  qd-axes grid currents(left), abc 

grid currents (right). 
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Effects of current harmonic compensation are observable in Fig. 4. 87,.  Fig. 4. 87 and Fig. 4. 88. The 

harmonic spectrum of the transformer primary voltage encompasses 5th and the 7th harmonic components, in 

phase opposition with the correspondent components of the grid voltage. 
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Fig. 4. 85 AHMLI Output current control with 5th and 7th harmonic compensation. 5th harmonic qd-axes grid 

currents(left), 7th harmonic qd-axes grid currents (right). 
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Fig. 4. 86 AHMLI Output current control with 5th and 7th harmonic compensation. grid voltages with 5th and 7th 

harmonic(left), primary voltage of the transformer with 5th and 7th harmonic compensation (right). 
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Fig. 4. 87 AHMLI Output current control with 5th and 7th harmonic compensation. TLI reference output voltage 

VTLIabc5(left), TLI reference output voltage VTLIabc7 (right). 
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Fig. 4. 88 AHMLI Output current control with 5th and 7th harmonic compensation. Harmonic spectrum of iabcg(left), 

Harmonic spectrum of VTR1 (right). 
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Experimental tests confirmed the accuracy of the simulation results.  The test bench is that of Fig. 4. 67. As 

mentioned earlier, once that the output voltage Vabcs is synchronized with the grid voltage eabcg, the new output 

current control algorithm is activated.  In Fig. 4. 89, the 5th harmonic component eabcg5 is equal to 50V while the 

7th harmonic component eabcg7 is equal to 20V.  The TLI DC-Bus voltage is 50 V.  Fig. 4. 90 deals with an 

evaluation of the effectiveness of the AHMLI in compensating 5th and 7th harmonic components of the grid 

current.  After activating the power filter, the grid current iag becomes almost perfectly sinusoidal.  Starting from 

time t*, two additional TLI current control loops generate 5th and 7th output current components in phase 

opposition with grid harmonics.   According to Fig. 4. 91, the THD of the grid current and transformer primary 

voltage without harmonics compensation are respectively 10.9% and 5.2%.  Having activated the power filter 

their values become 2.9% and 11.9% respectively. The last result is caused by the intentional introduction of 

additional harmonic components on the transformer secondary voltage to compensate the grid current distortion. 
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Fig. 4. 89 AHMLI Grid voltage synchronization with distorted grid voltage: Primary a-phase voltage of the transformer 

Vap, a-phase grid voltage eag, a-phase magnetization current iap and TLI DC-Bus voltage VDC’’ 
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Fig. 4. 90 AHMLI System connected to the distorted grid: Primary a-phase voltage of the transformer Vap, a-phase grid 

voltage eag with 5th and 7th harmonic components, a-phase grid current iag 



150 
 

frequency (Hz)
50 150 250 350 450 550 650 750

5° 
7° 

THDi%=10.9%

THDi%=2.9%
No compensation

5th and 7th compensated

2A

1° 

   frequency (Hz)
50 150 250 350 450 550 650 750

3° 5° 7° 

THDv%=5.2%

THDv%=11.9%

No compensation

5th and 7th compensated

50 V

1° 

 

Fig. 4. 91 AHMLI Spectrum of grid current (left) and primary voltage Vap (right) with and without additional control 

loop on 5th and 7th grid harmonic components. 

 

 

4.3.3 AHMLI Conversion Efficiency for STATCOM and 

Generators  
 

The total system efficiency ηtot, exploiting an open-end winding transformer has been experimentally measured for 

various output power levels, taking into account the 5MLI+TLI system configuration.  It has been evaluated as the 

ratio between the output power Pabcg delivered to the grid and the MLI input power Pin.   

Pin

PcgPbgPag

tot


  

(4.48) 

The block scheme of the system is shown in Fig. 4. 92.   
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Fig. 4. 92 Experimental setup for measuring system efficiency on AHMLI for STATCOM and Generators 
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The total system efficiency ηtot., including the transformer efficiency, is plotted vs. the load ratio  ig/in  in Fig. 4. 93 

for two different values of VDC’’.  The trend of the total efficiency is the same of the efficiency of a common 

transformer.  Furthermore, lower is the TLI DC-Bus voltage VDC’’ lower is the efficiency, because the TLI doesn’t 

fully compensate the undesired low order harmonic components.   
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Fig. 4. 93 Conversion efficiency of the AHMLI system for STATCOM and Generators.  

 

 

4.4 AHMLI for High-Speed Gen-Set Applications  
 

Multilevel topologies have been recently proposed for use in power generating units, especially when power filter 

size, current and voltage THD are critical.  This is the case of micro-turbine powered gen-set units, exploiting high 

speed permanent-magnet synchronous generators (HSPMSG) for more electric aircraft (MEA), distributed electric 

generation (DEG) and automotive applications [27], [28], [29], [30]. An application of the AHMLI concept is 

considered to realize a three-phase six-level Asymmetrical Hybrid Unidirectional T-Type Boost Rectifier 

(AHUTTBR) to be connected to a HSPMSG. Main design goals are efficiency, size, reliability, and cost. Several 

advanced rectifier topologies have been presented in literature, among them, the Vienna, Swiss, and T-type [31], 

[32]. An Asymmetrical Hybrid Unidirectional T-Type Boost Rectifier (AHUTTBR) is considered exploiting an 

Open-end Winding configuration, Fig. 4. 94, including a DC bus capacitors voltage equalization system. The PMSG 

generator is connected on one side to a three-level Unidirectional T-Type rectifier (3L-T RECT) working at a low 

switching frequency and on the other side, to a three phase two-level inverter (TLI) operating at high switching 

frequency. For cost reasons, the conventional Three-Level-T-Type inverter is modified by replacing the upper and 

lower switches with diodes, thus obtaining a unidirectional converter. The 3L-T RECT accomplishes a high 

efficiency step or staircase voltage modulation. The TLI is PWM modulated and shapes the AC generator current in 

order to obtain sinusoidal waveforms, to prevent additional power losses and torque ripple. The TLI is supplied 

through a floating capacitor Cf making a second independent power source redundant.  In the scheme of Fig. 4.96, 
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Eag, Ebg and Ecg are the back-EMFs of the PMSM generator, Ls is the inductance, VDC
’ is the DC voltage rectified and 

VDC
’’ is the floating capacitor voltage of the TLI. 
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Fig. 4. 94 Asymmetrical Hybrid Unidirectional T-Type Boost Rectifier. 

Bidirectional switches Sa1, Sa2, Sb1, Sb2 and Sc1, Sc2 are exploited to connect the midpoint n with the middle 

point of each phase leg to obtain a zero level voltage. They are operated at low frequency depending on the 

rectified DC-Bus voltage VDC’ and to the sign of the AC generator current. The mean value of the rectified 

voltage VDC’ can be controlled by acting on the switching angle α. Moreover, a three level modulation is 

accomplished, thus improving the harmonic content of the generator phase current namely; + VDC’/2, 0 and -

VDC’/2. The time in which the 0-level is produced is determined by acting on the switching angle α.  The last 

is the output of a VDC
’ control loop, as depicted in Fig. 4. 95.  Table 4.6 shows the staircase voltage generation 

algorithm.  Note that the power switches for each leg are turned on one at time, based on the sign of the phase 

current, minimizing the power losses. 
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Fig. 4. 95 Block diagram of the voltage control algorithm. 
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Tab. 4.6 Table indicating the staircase voltage generation. 

VaMn VbMn VcMn 

if 0<θe<α && ia>0 

Sa1=1    Sa2=0 

if 0<θe<α && ia<0 

Sa1=0    Sa2=1 

if 0<θ(e-2/3*<α && ib>0 

Sb1=1    Sb2=0 

if 0<θ(e-2/3*<α && ib<0 

Sb1=0    Sb2=1 

if 0< θ(e+2/3*<α && ic>0 

Sc1=1    Sc2=0 

if 0< θ(e+2/3*<α && ic<0 

Sc1=0    Sc2=1 

 

 Fig. 4. 96 deals with simulation results obtained with a conventional three phase six pulse rectifier with 

Ls=350µH, C1=C2=80 µF, Vg=350 V peak and f=750Hz. The DC load consists of a resistance R=37Ω.  The 

value of the rectified voltage VDC’ is 550 V.  The generator current waveform is distorted, while, the DC voltage 

VDC’ shows a 1% ripple. 

Two modulation regions can be identified namely: Mode 1 (α <27°) and Mode 2 (27°<α <45°). Fig. 4. 97 

shows the output voltage in Mode 1. According to Fig. 4. 98 twelve converter states are possible, they are 

summarized in Table 4.7. The switching angle α affects the charge and discharge of the capacitors C1 and C2 

and the DC voltage.  In Mode 2, as shown in Fig. 4. 99, the state (111) causes a high generator current because 

the three stator inductances are short circuited, as described in Fig. 4. 100.   Possible converter states are 

summarized in Table 4.8.  In these conditions, the efficiency of the system rapidly decreases.   
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Fig. 4. 96 Conventional trhee phase rectifier: generator current ia, 3L RECT output voltage VaMn and generator voltage 

Vag (left). Harmonic spectrum of ia 
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Fig. 4. 97 3L RECT: Mode 1.  
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Fig. 4. 98 3L RECT: Voltage combinations in Mode 1  

Tab. 4.7 Vector combination Mode 1: Charging and discharging of the DC-link capacitors. 

S1 S2 S3 ic1 ic2 C1 C2 VaMn VbMn VcMn 

0 0 1 ia >> ib << Charge discharge VDC/2 -VDC/2 0 

0 1 1 ia >> -VDC/R Charge discharge VDC/2 0 0 

0 1 0 ia << ic >> Discharge discharge VDC/2 0 -VDC/2 

1 1 0 -VDC/R ic >> Discharge Charge 0 0 -VDC/2 

1 0 0 ib >> ic << Charge discharge 0 VDC/2 -VDC/2 

1 0 1 ib >> -VDC/R Charge discharge 0 VDC/2 0 

0 0 1 ib << ia >> Charge discharge -VDC/2 VDC/2 0 

0 1 1 -VDC/R ia >> Discharge Charge -VDC/2 0 0 

0 1 0 ic >> ia << Charge Discharge -VDC/2 0 VDC/2 

1 1 0 ic >> -VDC/R Charge Discharge 0 0 VDC/2 

1 0 0 ic << ib >> Discharge Charge 0 -VDC/2 VDC/2 

1 0 1 -VDC/R ib >> Discharge Charge 0 -VDC/2 0 
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Fig. 4. 99 3L RECT: Mode 2.  
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Fig. 4. 100 3L RECT: Voltage combinations in Mode 2  

Simulation test have been carried out to investigate the system. In Mode 1 (0°<α<27°), it is possible to regulate 

the DC from 550V to 750V.  As shown in Fig. 4. 101, by operating the converter in Mode 2 as a boost rectifier 

(27°<α<32.3°) VDC’ varies from 750V to 550V, while operating in Mode 2 as a buck rectifier (32.3°<α< 45°) 
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the voltage VDC’ varies from 550V to 0V. As, for α>27°, the the rms value of the generator current rapidly 

increases, reducing the efficiency, the optimal operation range is 0°<α< 27°. 

Tab. 4.8 Vector combination Mode 2: Charging and discharging of the DC-link capacitors. 

S1 S2 S3 ic1 ic2 C1 C2 VaMn VbMn VcMn 

0 1 1 ia >> -VDC/R Charge discharge VDC/2 0 0 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 

1 1 0 -VDC/R ic >> Discharge charge 0 0 -VDC/2 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 

1 0 1 ib >> -VDC/R Charge discharge 0 VDC/2 0 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 

0 1 1 -VDC/R ia >> Discharge charge -VDC/2 0 0 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 

1 1 0 ic >> -VDC/R Charge discharge 0 0 VDC/2 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 

1 0 1 -VDC/R ib >> Discharge charge 0 -VDC/2 0 

1 1 1 -VDC/R -VDC/R Discharge discharge 0 0 0 
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Fig. 4. 101 3L RECT without TLI filter: VDC’ vs α (a). THD of the generator current ia vs α (b). Generator current ia vs α 

(c). Efficiency vs α (d). 
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Fig. 4. 102 3L RECT without TLI filter: Generator current ia, 3L RECT output voltage VaMn and generator voltage Vag 

(left). Harmonic spectrum of ia 

Some spikes are present in the 3L-T RECT output voltages VabcMn, due to the reactive power Fig. 4. 102(left). 

This issue can be overcome by acting on the additional angle φ in order to reduce the reactive power Q, although 

also the DC-Bus voltage VDC’ is modified, Fig. 4. 103. 
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Fig. 4. 103 3L RECT without TLI filter and reduced reactive power: Generator current ia, 3L RECT output voltage VaMn 

and generator voltage Vag 

The TLI reference voltage consists of the difference between the 3L-T RECT output voltage VabcMn and the 

fundamental component Vabc1Mn as shown in Fig. 4. 104. Fig. 4. 105 shows the TLI harmonic voltage reference 

Vah
* when α=20° and VDC’ is 760 V. 
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Fig. 4. 104 Block diagram of the VTLI generation 
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Fig. 4. 105 A-phaseTLI harmonic voltage reference Vah

* 

A suitable voltage control loop is implemented in order to control the TLI DC-Bus voltage, Fig. 4. 106. A 

further control loop acts on the DC-Bus voltage of the 3L-T RECT in order to balance the voltages across the 

capacitors C1 and C2.  Hence the TLI voltage reference is given by: 
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Fig. 4. 106 TLI voltage references 

According with Fig. 4.109, the power equations are given by: 
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The output of the TLI DC-Bus voltage controller is the fundamental input conductance gTLI on the AC-side of 

the inverter.  The generator phase currents can be expressed as: 
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Combining eq. 4.52 and eq. 4.51: 
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(4.53) 

At steady state VDC
’’ is constant and PMLI1=0.  Hence, the power PMLI1 is a function of the conductance gTLI. 
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Fig. 4. 107 Power flows 

The same approach can be used to balance the output capacitors voltage.   The generator phase currents can be 

expressed as a function of gMLI , considering that the reference voltages Vag
*, Vbg

* and Vcg
* are shifted by angle 

φ. 
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According to Fig. 4.109, the power equations are given by: 
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(4.55) 

If VC1= VC2 =constant, then PMLI2=RiDC
2.  Thus, the power PMLI2 is a function of the conductance gMLI. 
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Fig. 4. 108 AHUTTBR rectifier with 12kH TLI: Generator current ia, 3L RECT output voltage VaMn, generator back-

EMF Eag and phase generator voltage Vag(left). Harmonic spectrum of ia 

The effectiveness of the active power filter is shown in Fig. 4. 108, where a reduction of the THD from 19.7% 

to 10.5% is observable.  

Fig. 4. 109 shows the rectified voltage VDC’, the TLI DC-Bus Voltage VDC’’ and the capacitor voltages VC1 and 

VC2, when α=20°, and VDC’’= 200 V. An unbalanced capacitor voltage condition is achieved by introducing an 

additional 500 Ω resistance in parallel to C1. The capacitors voltage balance is active in 0<t<0.8s. In t=0.8s, 

the balance is deactivated.  The ripple of VDC’ is measured in 5% VDC’. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

0

200

400

600

800

1000

[V]

[s]

VDC
’’

VC1 VDC
’

VC2

 

Fig. 4. 109 AHUTTBR rectifier: 3L RECT DC-Bus voltage VDC’, 3L RECT DC-Bus capacitor voltages VC1, VC2 and TLI 

DC-Bus voltage VDC’’ 

The proposed AHUTTBR is compared with a conventional PWM 3L RECT with the same DC-Bus voltage 

VDC’=750 V and amplitude of generator current.  Fig. 4. 110 shows the generator current ia and the THD which 
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is increased from 10.5%, with TLI, to 23.7%.  Furthermore, unbalanced capacitor voltages are present in Fig. 

4. 111. 
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Fig. 4. 110 12kHz PWM 3L RECT rectifier: Generator current ia(left). Harmonic spectrum of ia 
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5 Multi-Motor Drive Exploiting the 

AHMLI approach 

     Multi-Motor Drives are used in construction, container handling and in a number of industrial plants such as 

ironworks, paper mills and textile. A standard MMD is composed by at least two electrical motors, coupled on the 

load side through mechanical transmission devices,  Fig. 5. 1.   

IM2

IM1

IMi

Mechanically 

coupled

IM1

Belt

Motor shaft

IM2

 

Fig. 5. 1 Multi-Motor Drives 

The general equation of the coupling torque existing between two generic drives (i and i+1) of a MMD is: 

   111,,  iieKiipKiism   (5.1) 

where:  Kp is the viscous damping coefficient, Ke is the saliency coefficient of the coupling material, and ω and θ are 

the motor shaft angular speed and angular position. Different coupling configurations may exist, namely: 

 Rigid coupling Kp≈0 Ke→∞; 

 Resilient coupling, Kp≈0 Ke≠0; 

 Viscous damping coupling, Kp≠0 Ke≈0; 

 Uncoupling, Kp≈0 i Ke≈0. 

Based on the structure of the power converter, MMDs are classified into two main groups: 

1. Multiple Motors fed by Single Converter (MMSC) 

2. Multiple Motors fed by Multiple separated Converters (MMMC) 

In a MMSC, only one converter is adopted to control all motors and the torque load is proportionally divided among 

the motors, as depicted in (left).  An individual motor torque-control is impossible and the load sharing is determined 

by motor torque-speed characteristic.  To overcame this problem, a MMMC can be used where each motor is fed by 
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one converter, Fig. 5. 2(right). The torque contribution of each motor can be separately set by acting on the specific 

converter [5].  MMD systems with rigid coupling require only one speed controller, therefore, only one power 

converter can feed all the motors.  However, on medium and high power drives, the use of a separate converter for 

each motor is generally required.  In this case the load distribution is accomplished at the control level, tasking each 

motor to provide a fraction of the total load proportional to its size. 
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coupled
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1-Converter
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coupled

2-Converter

n-Converter

 

Fig. 5. 2 Multiple Motors fed by Single Converter (MMSC) (left). Multiple Motors fed by Multiple separated Converters 

(MMMC) (left). 

The common speed controller determines the total torque reference, as shown in Fig. 5. 3, where: Te1 and Te2 are the 

electromagnetic torques of the two motors and  K1 and K2 two factors depending on the power rating of the motors. 
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Fig. 5. 3  Two rigidly coupled drives, with separate power converters 

On MMDs with resilient and viscous damping couplings, each drive must be speed controlled, thus, it must have its 

own controller, speed sensor, and the separate converter, Fig. 5. 4.  The same considerations apply for uncoupled 

MMDs. 
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Fig. 5. 4 Resilient coupled drives, with separate power converters 

A typical MMD applications is on cranes.  Cranes featuring different size and structures are largely used for handling 

heavy loads in the metallurgy, paper and cement industry, as well as in transport for loading and unloading of 

containers and in the construction for the movement of materials, Fig. 5. 5.  

 

Fig. 5. 5 Rail mounted gantry crane. 

Early electrically operated cranes were equipped with grid connected wound rotor Induction Motors (IM). Speed 

control was achieved through rotor resistors and electro-mechanical contactors and braking by plugging. Variable 

speed four quadrant thyristor based DC motor drives were subsequently introduced in an effort to improve the 

efficiency [1]. Last generation cranes finally switched to more efficient, compact and robust digitally controlled AC 

motor drives [2], [3]. Main advantages of this solution are precise positioning of the load by torque control at very 

low and zero speed, reduction of load swing by acceleration control and improved efficiency by regenerative braking. 



167 
 

Moreover, an increased motor lifetime is achieved because a lower voltage is applied at the starting, thus leading to 

lower in-rush currents. As a result, AC motor drives not only are today the standard equipment of modern cranes, 

but they are also progressively replacing wound rotor IM and DC drives on revamped old cranes [4].  Large size 

cranes very often exploit MMDs which are less expensive than a set of single motor drives, while, if compared to a 

single large drive, their inner redundancy can be exploited to mitigate the effects of motor faults [5]-[7].   

 

5.1 Proposed Open-end Winding Multi-Motor Drives 

(OW MMDs) 

Two novel multi-level inverters multi-motor drive topologies for crane applications have been developed 

exploiting the AHMLI configuration [11].  A key feature of the proposed multi-motor systems is that each motor is 

connected to a single multilevel inverter from one side and, on the other side, to a two-level inverter acting as an 

active power filter, [7].  The two proposed MMDs configuration are: 

1. Open-end Winding Multi-Motor-Single-Converter (OW MMSC) 

2. Open-end Winding Multi-Motor-Multi-Converters (OW MMMC) 

The OW MMSC exploits a three-phase two level inverter as active power filter, Fig. 5. 6, while the OW MMMC 

uses a five-leg two level inverter (TLI5), Fig. 5. 7.  The main difference between the two configuration is that, the 

load sharing between the two motor can be controlled by exploiting the TLI5. 
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Fig. 5. 6 Proposed OW MMSC 
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Fig. 5. 7 Proposed OW MMMC 

5.1.1Open-end Winding Multi-Motor Single Converter 
 

     The dual machine structure of Fig. 5. 6 consists of two Open-end Winding (OW) induction motors, IM1 and 

IM2, connected on one side to a Multi-Level Inverter (MLI) and on the other side to a Two-Level Inverter (TLI).  

Both machines are rigidly mechanically coupled, which means that they run at the same mechanical speed r, 

moreover, they are also electrically connected in parallel, thus an independent torque control is impossible.  Fig. 5. 

8 shows the equivalent circuit of the proposed OW MMSC.  The two motors are fed by the same three-phase set of 

voltages, thus: 

  1 2

  1 2

1 2

cmVcmV

bmVbmV

amVamV







 (5.2) 

According to the AHMLI approach, a staircase voltage modulation based on a harmonic elimination technique 

is adopted on the MLI in order to minimize switching losses, while the TLI exploits a high frequency PWM strategy 

to shape the motor currents. The voltage control system is shown in Fig. 5. 9.  In order to eliminate voltage harmonics 

generated by the MLI staircase voltage modulation from the motors phase voltages the reference voltage of the TLI 

PWM modulator is set to: 

    
*

 V - 
*

abcMLIabcVTLIabcV   (5.3) 
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being Vabc
* the fundamental component of the reference voltage. 
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Fig. 5. 8   Equivalent circuit of the proposed OW MMSC 
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Fig. 5. 9   Voltage control system for the proposed OW MMSC 
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Simulation tests proved the consistence of the proposed approach in a constant V/f induction motor control 

application. A 5LI is used as main inverter, with VDC’=500 V and a TLI as active filter operating at 5kHz, VDC’’=70 

V.  Since the two motor are rigidly coupled, the mechanical equation is given by: 

     F21 rdt

rd
jLTeTeT 


  

(5.4) 

being r the common mechanical speed of the two motors, Te1 and Te2 the electromagnetic torques of IM1 and IM2 

respectively, TL the load torque and F the friction coefficient.  Fig. 5. 10 shows the mechanical speed of both motor 

while Fig. 5. 11 depicts the electromagnetic torques Te1 and Te2 when a 10 Nm load torque is applied to the motors 

shaft.  The stator currents iabcm1, iabcm2, the total phase currents of both motors and the phase voltage are shown in Fig. 

5. 12 and Fig. 5. 13, respectively.  The MLI generates a staircase phase voltage, Fig. 5. 14(left) and, while, the 

difference between the MLI output voltage VMLIabc and the fundamental voltage Vabc
* is produced by the TLI, Fig. 5. 

14(right).  Since the two motors are of the same type and size, they produce the same torque, while running at the 

same speed.  Therefore, the harmonic compensation terms VTLIabc* are the same for both motors.  The phase motor 

voltages of the two motors Vabcm assume the waveforms depicted in Fig. 5. 15(left).  Fig. 5. 15 (right) shows in detail 

the motor stator currents, whose waveforms are almost sinusoidal. 
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Fig. 5. 10 OW MMSC V/f control: Mechanical speed of IM1r1(left). Mechanical speed of IM1r2 (right)   
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Fig. 5. 11 OW MMSC V/f control: Electromagnetic Torque of IM1Te1(left). Electromagnetic Torque of IM1Te2 (right)   
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Fig. 5. 12 OW MMSC V/f control: Phase motor currents of IM1iabcm1(left). Phase motor currents of IM1iabcm2(right). 
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Fig. 5. 13 OW MMSC V/f control: Phase total motor currents of both motors iabcm(left). AHMLI output phase voltages 

Vabcm(right). 
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Fig. 5. 14 OW MMSC V/f control: MLI Staircase output phase voltages VMLIabc(left). TLI reference voltages 

VTLIabc*(right)   
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Fig. 5. 15 OW MMSC V/f control: AHMLI output phase voltages Vabcm(left). Phase currents of both motors iabcm(right)   

A comparison between the AHMLI system, a system with two wye-connected motors fed by a PWM MLI and a 

system with two wye-connected motors fed by a Step modulated MLI, has been accomplished in terms of current 

harmonic content and torque ripple.  The stator currents and the torque ripple of the two motors are shown in Fig. 5. 
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16, Fig. 5. 16, Fig. 5. 17, Fig. 5. 16, Fig. 5. 20 and Fig. 5. 21.  The first two systems give substatially the same 

results, while the third one shows a remarkably larger torque ripple, because the stator currents contain higher low 

order harmonic components, Fig. 5. 20 and Fig. 5. 21. 
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Fig. 5. 16 OW MMSC V/f control: Motor phase currents of IM1 iabcm1 (left). Torque ripple of IM1 Te1(right)   
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Fig. 5. 17 OW MMSC V/f control: Motor phase currents of IM2 iabcm2 (left). Torque ripple of IM2 Te2(right)   
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Fig. 5. 18 PWM MMSC V/f control: Motor phase currents of IM1 iabcm1 (left). Torque ripple of IM1 Te1(right)   
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Fig. 5. 19 PWM MMSC V/f control: Motor phase currents of IM2 iabcm2 (left). Torque ripple of IM2 Te2(right)   
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Fig. 5. 20 Wey-connected MLI Step modulated MMSC V/f control: Motor phase currents of IM1 iabcm1 (left). Torque 

ripple of IM1 Te1(right)   
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Fig. 5. 21 Wey-connected MLI Step modulated MMSC V/f control: Motor phase currents of IM2 iabcm2 (left). Torque 

ripple of IM1 Te2(right)   

A suitable current control strategy has been developed starting from the voltage control system of Fig. 5. 9. 

As schematized in Fig. 5. 22, it belongs to the class of synchronous current regulators, acting on rotating d,q axes 

components of the current and encompasses two different subsystems, respectively acting on the MLI and the 

TLI.  The current feedback consists of the sum of stator currents of IM1 and IM2, as it is supposed that they are 

the same.  The MLI current control subsystem is tasked to decouple the q,d axes regulation and is of the predictive 

type. The q,d axes voltage references are the back EMF components Eq* and Ed*, which, assuming the two 

machines identical, are estimated as: 
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and: 
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where: r and r are respectively the rotor flux angular speed and the rotor speed of the two machines, while Ls, 

Lr and Lm are respectively the stator, rotor and magnetizing inductances. 
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Fig. 5. 22 OW MMSC configuration current control system.  

The TLI current control subsystem acts as the main closed loop regulator, controlling the total phase current 

taking advantage from the PWM fast dynamic and precision. Moreover, exploiting the same mechanisms introduced 

in the voltage control scheme, it predictively compensates low order stator voltage harmonics generated by the MLI 

and stabilizes VDC ''. Thus, the reference voltage of the TLI is determined as: 

capabcVabcV
MLIabcVTLIabcrVTLIabcV

  )
*

( 
*

 (5.7) 

being Vabc-c the additional term needed to control the TLI DC-Bus voltage VDC '' and VTLIabcr the output of the 

current control loop.  The qd-axes reference currents are set to: 
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 (5.8) 

A speed reversal from r =-40rad/s to r =40rad/s accomplished by a 5LI+TLI MMSC system is shown in Fig. 

5. 23 and Fig. 5. 24 for the two motors. The system features a good dynamic response. Moreover, q-axis and d-

axis components of rotor flux of the two motors are almost coincident, as shown in Fig. 5. 24(right). 

Experimental validations of the proposed OW MMSC drive structure have been performed on two scaled 

prototypes respectively 3LI+TLI and 5LI+TLI whose rated power is 3kVA. The two induction machines are 

mechanically coupled, while the drives are controlled by means of a single control board. The carrier frequency 
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of the sine-PWM is 10kHz, while a 1μs dead time is introduced.  The DC-Bus VDC’ of the MLI is 400V, while 

VDC''=VDC'/2(n-1).  Induction motors parameters are listed in Table 5.1, while technical specification of IGBT 

assuming to equip the inverters are reported in Table 5.2.  A 480mF floating capacitor is also utilized.  
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Fig. 5. 23 OW MMSC Speed reversal simulation test: Speed motor(left), qd-axes currents(right) 
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Fig. 5. 24 OW MMSC Speed reversal simulation test: Electromagnetic Torque of two motors and load torque(left), q-

axis and d-axis components of rotor flux of the two motors(right) 

Tab. 5.1 Induction Machine data. 

Motor I 

Pn 

(HP) 

Vn 

(V) 

pp 
Ls  

(mH) 

Lr  

(H) 

Lm 

(H) 

Rs 

(Ω) 

Rr  

(Ω) 

J (Kg.m2) 

50 400 2 0.031 0.031 0.03 2.5 2.7 0.016 

Motor II 

Pn 

(HP) 

Vn 

(V) 

pp 
Ls  

(mH) 

Lr  

(H) 

Lm 

(H) 

Rs 

(Ω) 

Rr  

(Ω) 

J (Kg.m2) 

50 400 2 0.031 0.031 0.03 0.1 0.06 0.016 

Tab. 5.2 Inverter IGBT data 

Tj   

(C°) 

Vceo 

(V) 

Rce 

(mΩ) 

Vfeo 

(mΩ) 

Rfe 

(mΩ) 

tont 

(ns) 

toffT 

(ns) 

toffD  

(ns) 

150 0.75 6.3 0.9 3.8 60 131 53 

A remarkable distortion of the stator current is observable in Fig. 5. 25, dealing with results obtained on the 

system supplied by a step modulated 5MLI.  The test has been performed at r =70rad/s and no load exploiting 
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a rotor flux field oriented control.  When adopting the MMSC scheme of Fig. 5. 6, the THD is considerably 

improved, as clearly visible in Fig. 5. 27.  In Fig. 5. 6, a comparison is made between two systems exploiting 

the proposed scheme, one equipped with a 3LI and the other with a 5LI. 
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Fig. 5. 25 Steady state test: both motors are wye connected and fed by a step modulated 5LI. 

2 A

200 V

20 rad/s ωr

Vm

iam1

iam2

10 ms

THDi=1.9%

THDi=2.02%
 

Fig. 5. 26 Steady state test with the proposed OW MMSC (5LI+TLI). 
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Fig. 5. 27 OW MMSC prototypes (3LI+TLI - left, 5LI+TLI - right): phase voltage Vam, phase current iam, TLI reference 

VTLIa* and TLI output voltage VTLIa. 

A speed reversal from -40 to 40rad/s is shown in Fig. 5. 28(left), performed on a MMSC drive featuring the 

5LI+TLI configuration.  Obtained results confirm the consistence of the field oriented control and the 

effectiveness of the floating capacitor voltage stabilization. 
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Fig. 5. 28 OW MMSC prototype 5LI+TLI: speed reversal between r =-40rad/s and r =40rad/s. id*=2 A(up). Steady 

state at r =50rad/s. id*=2 A, rotor fluxes of two motors(down). 

Total power losses of the OW MMSC configuration have been evaluated and compared with those of a more 

conventional system encompassing a 3-level inverter and two wye connected induction motors.  The 

conventional system is operated either with a 10kHz PWM, either with a step voltage modulation.  Fig. 5. 29 

deals with estimated total efficiency.  
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Fig. 5. 29 Total efficiency of the MMSC with: step operated 3LI (left), PWM operated 3LI (middle) and the proposed 

3LI+TLI OW configuration (right). 
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It has been determined on the basis of computed motor (core and winding) and inverter (switching and on-state) 

power losses, by taking into consideration the harmonic content of stator currents and voltages up to the 90th 

harmonic. The proposed configuration scores a higher efficiency at medium and high loads, while at low loads 

it is comparable with that of the conventional system when it is PWM operated. 

5.1.2  Open-end Winding Multi-Motor Multiple 

Converters 
 

     The AHMLI approach has also been exploited to carry out a Multi-Motor-Multi-Converters (MMMC) 

system. As shown in Fig. 5. 30, the three-phase TLI of the OW MMSC system is replaced by a Five-Leg Inverter 

(TLI5), which works as active filter and independently controls the stator current of the two motors [8], which 

are supplied on the other side by a single MLI.  

VMLIa
VMLIb VMLIc

VTLIa
*

VMLI

VTLI

Vm1

VDC
’’

VDC
’

MLI

TLI

Step

Modulation

PWM

R
S
T

VTLIb
*

VTLIc
*

Va
*

Vb
*

Vc
*

ωr

ωr

Rotor Position

Vm2

Rail

iam1

ibm1

icm1

iam2

ibm2

icm2

VTLId
*

VTLIe
*

ibm1

 

Fig. 5. 30 Proposed OW MMMC 

This configuration enables a full control of the load sharing between two machines, which run at the same speed, 

as it is required by the large majority of cranes applications. 
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Fig. 5. 31 Conventional dual induction motors fed by five-leg inverter 

A conventional system requires two different inverters, thus twelve power switches, to operate the two motors 

with an independent torque control. The five legs inverter, shown in Fig. 5. 31 is used instead, in order to reduce 

the amount of required power switches. Such a configuration uses a common leg to supply two phases belonging 

to different motors. In particular, in the scheme of Fig. 5. 31, the C legs acts as common leg.   

The voltage vector applied to the two induction motors according to a stationary α, β reference frame is given 

by: 
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 (5.9) 

where Va, Vb, Vc, Vd and Ve are the output inverter voltages. 

A TLI5 may generate 25 (32) different voltage vectors, as depicted in Fig. 5. 32. 
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Fig. 5. 32 Space vector combinations of a conventional five-leg inverter 
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Two PWM strategies have been developed in [9]: PWM with cancellation of the voltage reference and PWM 

with addition of the voltage reference.   

The first technique accomplishes the cancellation of the voltage reference of the common leg. The reference 

voltages of the two motors are: 
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(5.10) 

The main drawback of this technique relies a reduction of the maximum reference voltage by a factor 1/√3, if 

compared with the conventional two inverters systems [10]. 

The second technique is based on the addition of the phase voltage references of the two motors, thus the 

reference voltages are: 
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(5.11) 

Fig. 5. 33 shows the output voltage control system, using the PWM strategy based on the addition of the voltage 

reference.  As shown in Fig. 5. 30,  VTLIa
*, VTLIb

*, VTLIc
*, VTLId

* and VTLIe
* are the reference voltage of the TLI5 of 

the proposed OW MMMC system. 
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Fig. 5. 33 Output voltage control system for Pulse Width Modulation strategy based on the addition of the voltage 

reference 
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Fig. 5. 34 shows the equivalent circuit of the proposed OW MMMC system. VMLIa, VMLIb and VMLIc are the MLI 

staircase output phase voltages while VTLIa, VTLIb VTLIc, VTLId and VTLIe are the TLI5 output phase voltages.  The 

c-phase windings of the two motors are connected in parallel and supplied by the phase voltages VMLIc and VTLIc.  

By applying the Kirchhoff's current law at node n’’ the following expressions are obtained: 
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Fig. 5. 34 Equivalent circuit of the proposed OW MMMC 

According the AHMLI approach, in order to compensate the undesired low order harmonic components 

generated by MLI step modulated, TLI reference voltages must be set to: 
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being Vam, Vbm Vcm, the fundamental components of the reference motor voltages, as shown in Fig. 5. 30. The 

output current control system is schematized in Fig. 5. 35.   
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Fig. 5. 35 OW MMMC configuration current control system. 

Assuming the two machines identical and running at the same speed, the q,d axes back EMF voltage references Eq
* 

and Ed
* are estimated as: 
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and: 
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being r and r respectively the rotor flux angular speed and the rotor speed of the two machines, while Ls, Lr and 

Lm are respectively the stator, rotor and magnetizing inductance.  According to the voltage control system of Fig. 5. 

33, the reference voltages of the TLI5 are: 
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being Vabde-c additional terms to control the TLI DC-Bus voltage, VTLIabc1 the output of the IM1 current controller 

VTLIabc2 the output of the IM2 current controller. 

The qd-axes reference currents are set to: 
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 (5.18) 

In these conditions, the back-EMF voltages of the two motors are the same in amplitude, frequency and phase. They 

are synthetized by the MLI using a low switching frequency modulation.  Low order voltage harmonic components 

generated by MLI low switching frequency modulation are compensated on both motors by the TLI5. If the two 

motors operate at a different speed  r1≠r2, , back-EMF voltages of the two motor do not feature the same values of 

amplitude, frequency and phase.  In this case a full compensation can be obtained on only one of the two motors.  

The effectiveness of the harmonic compensation depends in this case by the difference between the speeds of the 

two motors.  Steady state simulation tests have been carried out operating the two motors at different speeds. Fig. 5. 

36 shows the phase voltages of IM1 running at 157 rad/s and the phase voltages of IM2 operating at 125 rad/s. Since 

the harmonic compensation terms used are those of IM1, the stator current harmonic content of IM1 is better than 

that of IM2, as shown in Fig. 5. 37 and Fig. 5. 38.  Moreover, the electromagnetic torque Te2 of IM2 is affected 

by a ripple, Fig. 5. 39. 
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Fig. 5. 36 OW MMMC: Phase voltage of IM1 at 157 rad/s(left). Phase voltages of IM2 at 125 rad/s 
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Fig. 5. 37 OW MMMC: Spectrum of Phase voltage of IM1 at 157 rad/s(left). Spectrum of Phase voltages of IM2 at 

125 rad/s 
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Fig. 5. 38 OW MMMC: Phase currents of IM1 at 157 rad/s(left). Phase currents of IM2 at 125 rad/s 
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Fig. 5. 39 OW MMMC: Torque ripple of IM1 at 157 rad/s(left). Torque ripple of IM2 at 125 rad/s 

A speed reversal simulation between -40 and 40rad/s is shown in Fig. 5. 40(left).  Assuming a rigid mechanical 

coupling, both even and uneven load torque sharing have been considered.  Fig. 5. 40(right) shows the phase 
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currents of the TLI5. The c-phase current is higher than the others, because it is the composition of the c-phase 

currents of the two machines.  The dynamic response of the system with an even load current sharing is shown 

in Fig. 5. 41. Stator currents are shown in Fig. 5. 42, confirming the effectiveness of the active current shaping.  

t[s]

[rad/s] ωr

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5-80

-60

-40

-20

0

20

40

60

80

 

[A] -iam, idm

-ibm, iem

-icm

-20

-15

-10

-5

0

5

10

15

20

t[s]
1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

 

Fig. 5. 40 OW MMMC speed reversal simulation test between r =-40rad/s and r =40rad/s: Mechanical speed(left). 

TLI5phase currents(right) 
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Fig. 5. 41 OW MMMC speed reversal simulation test between r =-40rad/s and r =40rad/s with uniform 

distribution of the load torque: qd-axes currents of IM1, iq1= 1A, id1=2A(left). qd-axes currents of IM2, iq2= 1A, 

id2=2A (right) 
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Fig. 5. 42 OW MMMC speed reversal simulation test between r =-40rad/s and r =40rad/s with uniform 

distribution of the load torque: phase currents of IM1, iq1= 1A, id1=2A(left). phase currents of IM2, iq2= 1A, id2=2A 

(right) 

The consistence of the independent control of the two motors is shown in Fig. 5. 43 and Fig. 5. 44, dealing 

with a uneven load torque sharing between the two motors running at the same speed. 

An experimental test where an even sharing of the load torque is established between the two motors is shown  

Fig. 5. 45. An uneven load sharing is instead considered in the test of Fig. 5. 46, where a 70% of the required 

torque is produced by IM1 and only a 30% by IM2. Phase currents of the two motors feature in the last case 
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different amplitudes and THD levels, as shown in Fig. 5. 47.  Estimated motor back-EMF E1 and E2, as well 

the average back EMF E*, computed according to eq. (5.15) are shown in Fig. 5. 48. Both steady state and 

dynamical torque and speed responses are quite satisfactory. 
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Fig. 5. 43 OW MMMC speed reversal simulation test between r =-40rad/s and r =40rad/s with non-uniform 

distribution of the load torque: qd-axes currents of IM1, iq1= 0.7A, id1=2A(left). qd-axes currents of IM2, iq2= 0.3A, 

id2=2A (right) 
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Fig. 5. 44 OW MMMC speed reversal simulation test between r =-40rad/s and r =40rad/s with uniform 

distribution of the load torque: phase currents of IM1, iq1= 0.7A, id1=2A(left). phase currents of IM2, iq2= 0.3A, 

id2=2A (right) 
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Fig. 5. 45 OW MMMC prototype 5LI+TLI5: speed reversal between r =-40rad/s and r =40rad/s. iq1=iq2=iq*, id*=2 
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Fig. 5. 46 OW MMMC prototype 5LI+TLI5: speed reversal between r =-40rad/s and r =40rad/s. iq1=0.7iq*, 

iq2=0.3iq*,id*=2A  
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Fig. 5. 47 OW MMMC prototype 5LI+TLI5: speed reversal between r =-40rad/s and r =40rad/s. iq1=0.7iq*, 

iq2=0.3iq*,id*=2A, phase currents 

 

Fig. 5. 48 OW MMMC prototype 5LI+TLI5: speed reversal between r =-40rad/s and r =40rad/s. iq1=0.7iq*, 

iq2=0.3iq*,  id*=2 A, estimated Back-EMF 
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6 Conclusions and recommended future 

work 
 

The work has been focused on the study and development of a new multilevel converter topology, called 

Asymmetrical Hybrid Multilevel Inverter (AHMLI) and on the assessment of possible advantages coming from 

the exploitation of such a topology in different application fields.   The developed topology is tailored around 

an electrical machine adopting an open end winding configuration.  According to such an approach the stator, 
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or primary, winding of an electrical machine (motor, generator or transformer) is supplied on one end by a 

main multilevel converter, fully managing the active power stream, and, on the other end by a conventional 

two level inverter.  The last acts as an active power filter, providing reactive power to the electrical machine 

and suitably shaping the phase currents.  The AHMLI approach has been advantageously exploited either on 

electric motor drives, either on fully stationary systems, and even to realize a high efficiency rectifier for high 

speed generation systems.  Remarkable improvements are achieved in all the considered cases over more 

conventional solutions in terms of power losses and power quality.  Specifically, power losses reduction is 

obtained by adopting an original design strategy.  The main multilevel inverter is, in fact, very efficiently 

operated at medium voltage with a low switching frequency and equipped with low on-state losses devices.  

The auxiliary two level inverter is, instead, operated at a remarkably lower voltage with a high frequency PWM 

technique and is equipped with low switching losses devices.  In terms of phase voltage levels an AHMLI is 

equivalent to a PWM operated multilevel inverter with a larger number of power devices, but it is more 

efficient, thus reducing the cost and size.  The consistency of the proposed topology in different fields of 

application has been exhaustively evaluated by simulation and experimental tests. 

Obtained results can constitute the starting point for further investigations about the Asymmetrical Hybrid 

multilevel inverter structure.  Specifically, overvoltage mitigation in industrial motor drives, high efficiency 

rectifiers and grid inverters for PV plants are fields of great potential. 

 

 

 

 

 

 


