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Summary 

In the framework of the design and of the reliability assessment of 

fixed structures, among the static and dynamic loads that have to be 

considered, certainly the most important one is the seismic load, due 

to its terrible and disastrous consequences, not only in terms of the 

breakdown of the structure but also for the preservation of life. In 

fact during the past decades Italy has been the scene of terrible 

earthquakes, that destroyed whole cities and with a lot of human 

victims. First of all, in terms of magnitude and, unfortunately, a 

large number of deaths, Messina earthquake, in 1908, caused about 

120000 victims, between Messina and Reggio Calabria, with an 

estimated magnitude of 7.1 (Richter scale). Then Irpinia earthquake, 

in 1980 (2914 victims, 6.5 Ricther), L’Aquila earthquake, in 2009 

(309 victims, 5.9 Ricther) and the last events in 2016 in the centre of 

Italy, see Amatrice (299 victims, 6 Richter), Ussita (5.9 Richter), 

and Norcia (2 victims, 6.1 Ricther).  

Due to the difficulty in the prevision of the seismic event, one of 

the most important and hard problem in seismic engineering is the 

correct characterization of the ground motion acceleration; in fact it 

has been demonstrated that it is possible to increase the reliability 

level of the structures defining in a suitable way the seismic input 

and shaping realistically the structure.  
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Nowadays,  from  the  analysis  of  the  large  amount  of  data  of  

recorded events, it is possible to study the main characteristics of 

real earthquakes and reproduce them with analytical models. In 

particular, because of the randomness of the seismic event, in terms 

of energy distribution and intensity, propagation path of the seismic 

waves through any specified location from the earthquake focus to 

the epicenter, etc…, it has been shown that it should be modelled as 

a stochastic process.  

On the other hand, once the input has been defined, the second 

problem in the seismic engineering is the reliability assessment of 

the structures subjected to the ground motion acceleration. It is 

obvious that, if the excitations are modelled as random processes, 

the dynamic responses are random processes too, and the structural 

safety needs to be evaluated in a probabilistic sense. Among the 

models  of  failure,  the  simplest  one,  which  is  also  the  most  widely  

used in practical analyses, is based on the assumption that a structure 

fails as soon as the response at a critical location exits a prescribed 

safe  domain  for  the  first  time.  In  random  vibration  theory,  the  

problem of probabilistically predicting this event is termed first 

passage problem. Unfortunately, this is one of the most complicated 

problem in computational stochastic mechanics. Therefore, several 

approximate procedures have been proposed. These procedures lead 

to the probabilistic assessment of structural failure as a function of 

barrier crossing rates, distribution of peaks and extreme values. The 

latter quantities can be evaluated, for non-stationary input process, 

as a function of the well-known Non-Geometric Spectral Moments 

(NGSMs). 

Aim of this thesis is to propose a novel procedure to obtain closed 

form solutions of the spectral characteristics of the response of linear 

structural systems subjected to seismic acceleration modelled as 
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stochastic processes. The proposed method is a powerful tool in the 

analysis of both classically and non-classically damped systems, in 

reliability assessment problems and takes into account also the case 

of multi-correlated forcing input. 

In  Chapter  1  the  preliminary  definitions  of  probability  theory  are  

outlined, starting from the concept of random variable and stochastic 

process,  analysing  the  stationary  Gaussian  random process  with  its  

statistics,  with  a  short  discussion  on  the  probability  distribution  for  

maxima. 

Chapter 2 focuses on the characterization of the ground motion 

acceleration, thanks’ to a statistical analysis of a set of real 

earthquakes; the different strategies to model the ground motion 

acceleration stochastic process will be investigated. Furthermore, in 

order to follow the prescriptions of the building codes, a procedure 

to generate artificial fully non-stationary spectrum-compatible 

accelerograms will be proposed. 

The spectral characteristics of the response of linear structural 

systems, subjected to non-stationary excitation, will be obtained in 

Chapter 3 and, in Chapter 4, closed form solutions of the Time-

Frequency varying Response (TFR) vector function will be 

proposed. In particular the main steps of the proposed approach are: 

i)  the  use  of  modal  analysis,  or  the  complex  modal  analysis,  to  

decouple the equation of motion; ii) the introduction of the modal 

state variable in order to evaluate the NGSMs, in the time domain, as 

element of the Pre-Envelope Covariance (PEC) matrix; iii) the 

determination, in state variable, by very handy explicit closed-form 

solutions,  of  the  TFR vector functions and of the Evolutionary 

Power Spectral Density (EPSD) matrix function of the structural 

response for the most common adopted models of the seismic input 

in the framework of stochastic analysis; iv) the evaluation of the 
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spectral characteristics of the stochastic response by adopting the 

closed-form expression of the EPSD matrix function. 

Finally, in Chapter 5 the reliability assessment of structural 

systems will be performed; in particular two different approaches for 

the first passage probability problem will be used: the method 

requiring the evaluation of the mean up-crossing rate of given 

thresholds, considered independent or occurring in clumps, and the 

method requiring censored closures of the non-stationary extreme 

value random response process.  

Several numerical applications will be done in order to test the 

effectiveness of the proposed procedure; in particular the presented 

results will be compared with the Monte Carlo simulation method, 

that will confirm the validity and the generality of the proposed 

method.  

Equation Section (Next) 
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Chapter 1 

Preliminary definitions 

1.1 Introduction 
The main aim of this Chapter is to give general, preliminary 

definitions that may be useful in reading this thesis.  

The  concept  of  random  variable  and  random  process  will  be  

firstly introduced, in order to probabilistically describe a random 

event. Then the class of stationary Gaussian random process and 

their statistics will be discussed, together with their characterization 

both in the time domain and in the frequency domain.  

The last part of this Chapter is dedicated to a short discussion on 

the distribution of the extreme value of a random process,  that  will  

be further discussed in the last Chapter in the framework of 

reliability assessment. 

1.2 Random variables and random process 
A variable X  is called random variable (or stochastic variable) 

when  it  mathematically  describes  the  results  of  a  random  event  

whose domain is a numeric ensemble.  

With  the  concept  of  a  random variable,  we  can  adopt  numerical  

values  to  describe  the  results  of  any  random  experiment.  For  
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instance, an elementary event is expressed in the form that a random 

variable X  is equal to one deterministic number (i.e. X x ), while 

any arbitrary event can be expressed in a way that X  takes values 

over an interval 1 2x X x  and its probability of occurring is 

denoted by 1 2Pr x X x .  There  are  two  basic  types  of  random  

variable: discrete random variable, when it assumes values in a finite 

set, and continuous random variable, if it can take any value in one 

or several intervals (Li and Chen 2009).  

The Cumulative Distribution Function (CDF) and the Probability 

Density Function (PDF)  of  the  random  variable  X  are defined, 

respectively, as: 

 

dPr ; .
dX X XL x X x p x L x

x
  (1.1) 

 

Then a random process X t  is  a  family  of  n random variables 

related to a similar phenomenon which may be functions of one or 

more independent variables.  

The stochastic process can be viewed in terms of its possible 

time-histories; for example, considering the ground motion 

acceleration as a stochastic process, any earthquake ground 

acceleration record might be thought as one of the many time 

histories that could have occurred for an earthquake with the same 

intensity at that site (Lutes and Sarkani 1997). 

As shown in Figure 1.1 the samples of the stochastic process are 

indicated with rX t  1,2, ,r . 
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Figure 1. 1 Ensemble of time histories of X t  (Lutes and Sarkani 1997). 

 

The  ensemble  of  the  coordinates  for  a  given  instant  1
rX t  

1,2, ,r  gives the realizations of the random variable 1X t . 

In this way, the basic idea is that for every possible 1t  value there is 

a random variable 1 1X t X , whose CDF and PDF are defined, 

respectively, as: 

 

1 1 11 1 1 1 1 1 1
1

dPr Pr ; .
dX X XL x X x X t x p x L x
x

 (1.2) 

 

It is obvious that in order to have a complete probabilistic 

description of a stochastic process X t , one must know the 

probability distribution for every set of random variables belonging 

to that process. 

Alternatively, the stochastic process X t  can also be defined 

from the knowledge of the moment functions of various orders, 

which are defined as: 
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1

1 2

1 1 1 1

1 2 1 2 1 2 1 2

E d

E d d

X t

X t X t

X t x p x x

X t X t x x p x p x x x   (1.3) 

 

Specifically, the mean value, or expected value, X t , of the 

random process X t  coincides with the first order moment: 

 

=E d .X X tt X t x p x x   (1.4) 

 

The variance at time t , 2
X t , of the random process X t  is 

calculated as a function of the mean value X t  and of the mean 

square value, 2
X t : 

 

2 2 2 2 2= d .X X X XX tt t t x p x x t   (1.5) 

 

Furthermore  the  most  important  joint  measure  in  a  random  

process is the correlation of the process with itself at two different 

times, 1X t  and 2X t . This measure of correlation is called 

autocorrelation function and it is defined as: 

 

1 21 2 1 2 1 2 1 2 1 2, =E d d .X X t X tR t t X t X t x x p x p x x x  (1.6) 
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1.3 Stationary Gaussian random processes 
For many situations in random vibrations, the probability 

distribution do not appear to evolve over the time intervals of 

interest to the engineer. In these situations important simplifications 

in the mathematical analysis may be made (Wirsching et al. 1995). 

A process is called strictly stationary if the joint probability 

distribution of 1 2 3, , , , nX t X t X t X t  is identical to the 

joint distribution of the same variables displaced an arbitrary amount 

of time, , that is 1 2 3, , , , nX t X t X t X t . 

The process is called weakly stationary (or stationary in wide 

sense) if the mean and the variance of the process are constants, 

independent of t, and the autocorrelation function depends only upon 

the difference between 1t  and 2t : 

 

2 2

1 2

,

,

, , E .

X X

X X

X X X

t

t

R t t R t t R X t X t

  (1.7) 

 

In the framework of stochastic dynamics one of the most 

important random process is the Gaussian random process; for this 

random  process  the  joint  distribution  of  

1 2 3, , , , nX t X t X t X t  is  a  normal  distribution.  Since  a  

normal random variable is completely defined by its mean and 

variance, all higher moments of the density function are dependent 

on the variance. Particularly important for application to vibration 

analysis is the fact that any linear combination of jointly Gaussian 

random variables is itself Gaussian, and jointly Gaussian with other 

such linear combinations. 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

10 

The probability density function of the Gaussian random process 

is: 

 

1
1
2

, , ; ,

1 1exp ,
2

2 Det ,

k l k lX X k l X X k l k l

T
X k l

X k l

p x x p x x t t

t t
t tR

  (1.8) 

 

where 

 

E
E .

E
k k k k

l l l l

x X x X
x X x X

  (1.9) 

 

In Eq. (1.8) ,X k lt tR  is the correlation matrix, defined as: 

 

2
2

22

, ,
,

, ,

E E EE E

E E E E E

X k k X k l
X k l

X l k X l l

k k lk k l

l k l l k l

R t t R t t
t t

R t t R t t

X X XX X X

X X X X X X

R

  (1.10) 

 

and it is a simmetrix function, since the relation 

, ,X k l X l kR t t R t t is satisfied. 

In  the  class  of  Gaussian  random  process,  a  particular  attention  

goes to the stationary Gaussian random process (notice that if a 

Gaussian process is weakly stationary it is also strictly stationary).  

A stationary Gaussian process is completely defined from the 

knowledge of its mean X  and its autocorrelation function XR , 
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in the time domain; however stationary random vibration are more 

usefully studied in the frequency domain. In this case the stationary 

Gaussian random process is defined by its mean X  and its Power 

Spectral Density (PSD) function XS . The PSD function of the 

stationary Gaussian random process is given by the following 

relation: 

 

1 exp d
2X XS R i   (1.11) 

 

that is, except for the coefficient 1/ 2 , the Fourier transform of the 

autocorrelation function. The inverse Fourier transform of the PSD 

gives the autocorrelation function: 

 

exp d .X XR S i   (1.12) 

 

The Eqs. (1.11) and (1.12) are the celebrated Wiener-Khinchine 

relations, that play a fundamental role in the random vibration 

analysis. 

The variance of the process X t  represents the area of the PSD 

function; in fact, by substituting 0  in Eq. (1.12):  

 

2 0 d .X X XR S   (1.13) 
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Figure 1. 2 Area between PSD function and -axis. 

 

Figure 1.2 shows the area between the PSD function and the - 

axis. 

1.4 Stationary spectral moments 
For a given stationary process, X t , defined by its mean X , its 

variance 2
X , its autocorrelation function XR  and PSD function 

XS , the function XG  

 

02
         

00
X

X
S

G   (1.14) 

 

is called one-sided PSD function. This function is a real and positive 

function in the domain 0,  ad its area is equal to the area of the 

PSD function, defined in the domain , . 
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Figure 1. 3 PSD function XS  (continuous line) and one-sided PSD function 

XG  (dashed line) of a stationary random process. 

 

The Spectral Moments (SMs) ,i X , introduced by Vanmarcke 

(1972), are the moments of the one-sided PSD function with respect 

to the 0 axis: 

 

,
0

d            0,1,...i
i X XG i   (1.15) 

 

In particular 0, X , that represents the area of the function XG

, is equal to the variance of the process X t , since the PSD 

function XS  is  a  symmetric  function  with  respect  of  the  axis  

0 : 

 

2
0,

0 0

d 2 d d .X X X X XG S S         (1.16) 
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Then, other useful spectral parameters can be defined: 

 

1,0
1,X

0,

0

d
,

d

X
X

X
X

G

G
  (1.17) 

 
1/2

2

2,0
2,X

0,

0

d

d

X
X

X
X

G

G
  (1.18) 

 

where 1, X  is the frequency at the area centric of XG , that 

indicates where the spectral density concentrates, and 2,X  is  the is  

the gyration radius of the area under the function XG . 

 

 
Figure 1. 4 Up-crossing (×) and down-crossing ( ) rate of the time axis of the random 

process X t . 

 

t

X(t)
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Another important parameter is the mean frequency, X , which 

evaluates the variation in time of the mean up-crossing rate of the 

time axis (see Figure 1.4): 

 

2,X .
2X   (1.19) 

 

The barycenter gyration radius 2, X , or the measure of the 

dispersion around the frequency at the area centric of XG , is: 

 

2
1,

2, 2, 2,
0, 0,

1 X
X X X X

X X

  (1.20) 

 

where 

 

2
1,

0, 2,

1            0 1X
X X

X X

  (1.21) 

 

is a non-dimensional parameter and it is called bandwidth 

parameter, directly corresponding to coefficient of variation, that 

measures the variation in the time of the narrowness of the stochastic 

process X t . 
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Figure 1. 5 Geometric representation of the SMs of the one-sided PSD function 
XG . 

 

From the analysis of Figure 1.5 it is possible to have an 

immediate geometric representation of the SMs of  the  one-sided  

PSD function XG . 

1.5 Distribution of extreme values for stationary 

random process  
The probability distribution of extrema of a random process is of 

particular interest in engineering design problems. In general, the 

extreme value of a stochastic process is a random variable.  

Consider a zero-mean stationary Gaussian process X t  having 

an arbitrary PSD function XS . A sample of this process shows 

positive and negative maxima and positive and negative minima. For 

simplicity it is possible to define a new random process maxX t  that 

represents the extreme value of X t : 

 

max 0
max

s t
X t X s   (1.22) 

GX ( )

X X X

X X 
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where the symbol  denotes absolute value. 

 

 
Figure 1. 6 Samples of the random process X t (dashed line), of the corresponding 

absolute value X t (continuous line) and of the extreme value random 
process maxX t  (dash dot line). 

 

In this way, the extreme value distribution for X t  is simply the 

distribution of the maxX t  random variable. The CDF of  the  

maxX t  random variable can be expressed as: 

 

max max, Pr Pr : 0X tL u t X t u X s u s t   (1.23) 

 

in which the notation on the final term means that the X s u  

inequality holds for all the given s values. The PDF for the extreme 

value, of course, is simply the derivative 

 

max max

d ,
dX t X tp u L u t

u
  (1.24) 

 

and from this information one can also calculate the mean, variance, 

and so forth. 

s,t

X (k)(s), |X (k)(s)|, X max
(k) (s)
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Once the PDF of  the  random  process  maxX t  is defined, it is 

possible to derive another important parameter, very useful in 

engineering design problems, that is the lower fractile ,tX p ; ,ptX  

represents the probability p that the maximum of the process X t  

is inferior or equal to ,ptX  in the time interval 0,t : 

 

max , max ,; Pr ( )X t tF X t X t Xp p p.   (1.25) 

 

The previous equation is a non-linear differential equation that 

can be alternatively solved introducing the dimensionless quantity 

,X t p : 

 

,, / .X t Xt X pp   (1.26) 

 

,X t p  is called peak factor and represents the lower fractile of 

probability p of the dimensionless random process 

max / XY t X t . The peak factor can be obtained from the 

solution of the differential equation: 

 

max max, ; Pr ( ) ,X X X X XF t t X t tp p p.   (1.27) 

 

A lot of hypothesis for the evaluation of the peak factor have 

been done in the literature; in particular for narrow band process the 

peak factor is given as (Vanmarcke 1975): 
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12,

0,

1/2

12,1.2

0,

( , ) 2ln ln

1 exp ln ln .

X
X

X

X
X

X

tt

t

p p

p

 (1.28)  

 

Once the peak factor ,X t p  and the lower fractile ,tX p  have 

been defined it is possible to deal with the reliability assessment of 

linear structures subjected to zero-mean stationary Gaussian random 

process. This problem will be further discussed in Chapter 5. 

Equation Section (Next) 
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Chapter 2 

Models of the ground motion acceleration 

process 

2.1 Introduction 

The first step in structural engineering deals with a proper 

definition of the structural model and loads. For earthquake-resistant 

design of structures, the earthquake-induced ground motion is 

generally represented in the form of a response spectrum of pseudo-

acceleration or displacement. The spectrum used as input is usually 

obtained by scaling an elastic spectrum by factors that account for, 

amongst other phenomena, the influence of inelastic structural 

response (Chopra 1995). There are, however, situations in which the 

scaled response spectrum is not considered appropriate, and a fully 

dynamic analysis is required. These situations may include 

structures with configuration in plan or elevation that is highly 

irregular; structures for which higher modes are likely to be excited; 

structures with special devices to reduce the dynamic response; 

buildings designed for a high degree of ductility and so on. Faced 

with  these  special  situations,  the  engineer  will  generally  have  to  

employ time-history analysis, for which the requirements are 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

22 

appropriate linear or non-linear models for the structure and a 

suitable suite of accelerograms to represent the seismic excitation 

(Bommer and Acevedo 2004). 

There are three basic options available to the engineer in terms of 

obtaining suitable accelerograms. The first approach requires the 

generation of synthetic accelerograms from seismological source 

models and accounting for path and site effects (Lam et al. 2000, 

Rezaeian and Der Kiureghian 2010). In general, there are actual 

difficulties in defining appropriate input parameters such as the 

source, path, and site characteristics. Moreover, to generate synthetic 

accelerograms there is a need for a definition of a specific 

earthquake scenario in terms of magnitude, rupture mechanism in 

addition to geological conditions and location of the site. Generally, 

most of these parameters are not often available, particularly when 

using seismic design codes. It follows that the main limit of this 

approach is that practitioners cannot always accurately characterize 

the seismological threat to generate appropriate synthetic signals.  

The second approach adopts real accelerograms recorded during 

earthquakes (Iervolino et al. 2010, Katsanos et al. 2010). Real 

accelerograms contain a wealth of information about the nature of 

the ground shaking, carry all the ground-motion characteristics 

(amplitude, frequency, and energy content, duration and phase 

characteristics), and reflect all the factors that influence 

accelerograms (characteristics of the source, path, and site). Due to 

the increase of available strong ground motion acceleration records, 

using and scaling real recorded accelerograms becomes one of most 

referenced contemporary research issues in this field. Despite the 

continued growth of the global strong motion database, there are 

many combinations of earthquake parameters such as magnitude, 

rupture mechanism, source-to-site distance and site classification 
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that are not well represented. It follows that their manipulation is 

relatively simple but often confusing and it is difficult to obtain 

suitable records in some circumstances.  

The third approach uses artificial spectrum-compatible 

accelerograms. Artificial accelerograms are generated to match a 

target elastic response spectrum by obtaining a Power Spectral 

Density (PSD) function from the smoothed response spectrum, and 

then to derive harmonic signals having random phase angles 

(Vanmarcke and Gaparini 1977, Kaul 1978, Pfaffinger 1983, 

Preumont  1984,  Cacciola  et  al.  2004).  The  attraction  of  these  

approaches is obvious because it is possible to obtain acceleration 

time-series that are almost completely compatible with the elastic 

design spectrum, which in some cases will be the only information 

available to the design engineer regarding the nature of the ground 

motions to be considered.  

The simulation of artificial accelerograms is usually based upon a 

stationary stochastic zero-mean Gaussian process assumption; the 

stationary non-white models were suggested first by Kanai (1957), 

Tajimi (1960), Housner and Jennings (1964). These models, which 

account for site properties and for the dominant frequency in ground 

motion, fail to reproduce the typical characteristics of the real 

earthquakes: stationary artificial accelerograms generally have an 

excessive number of cycles of strong motion and consequently they 

possess unreasonably high energy content (Wang et al. 2005). 

Furthermore, the stationary model suffers the major drawback of 

neglecting the changes in amplitude and frequency content.  

In order to overcome this drawback the so-called quasi-

stationary (or uniformly modulated non-stationary) random 

processes have been introduced (see Shinozuka and Sato 1967, 

Aming and Ang 1968, Iyengar and Iyengar 1969, Jennings et al. 
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1969, Hsu and Bernard 1978, Iwan and Hou 1989). These processes 

are constructed as the product of a stationary zero-mean Gaussian 

random process by a deterministic function of time; for this reason 

they are also called separable non-stationary stochastic processes.  

Furthermore, a time-varying frequency content is observed in 

actual accelerogram records. This non-stationary frequency is 

prevalently  due  to  different  arrival  times  of  the  primary,  secondary  

and surface waves that propagate at different velocities through the 

earth crust. Moreover, it has been shown that the non-stationarity in 

frequency content can have significant effects on the response of 

structures (see e.g. Saragoni and Hart 1973, Yeh and Wen 1990). 

The stochastic processes involving both the amplitude and the 

frequency changes are referred in literature as fully non-stationary 

random processes. The spectral characterization of the fully non-

stationary processes is usually performed by introducing the 

Evolutionary Power Spectral Density (EPSD) function (Priestley 

1965). On the contrary of the stationary case, the EPSD function 

cannot be defined univocally. Then, several models have been 

proposed in literature. In particular Preumont (1985) derived the 

EPSD function by imposing to the non-stationary model the equality 

of the average energy for each frequency with respect the stationary 

case. Saragoni and Hart (1973) proposed a fully non-stationary 

model by juxtaposing time segments of gamma-functions modulated 

filtered zero-mean Gaussian white noises; Spanos and Solomos 

(1983) proposed a non-separable model introducing a particular 

EPSD function; Yeh and Wen (1990) and Fan and Ahmadi (1990) 

proposed a generalization of the Kanai-Tajimi model; Conte and 

Peng (1997) defined the ground motion acceleration as the sum of a 

finite number of pairwise independent uniformly modulated zero-
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mean Gaussian stochastic process, the so-called sigma-oscillatory 

processes. 

Another powerful strategy to analyse the evolutionary frequency 

content is based on the wavelet analysis (Spanos and Failla 2004, 

Spanos et al. 2005, Mallat 2009). Wavelet analysis is well suited to 

identify and preserve non-stationarity because the wavelet basis 

consist of compact functions of varying lengths. Each wavelet 

function corresponds to a finite portion of the time domain and has a 

different bandwidth in the frequency domain. The multiscale nature 

of wavelet analysis facilitates the simultaneous evaluation of non-

stationarity in the time and frequency domains. Wavelet analysis has 

been performed by Suàrez and Montejo (2005) to simulate non-

stationary ground motions. Moreover, several studies have been 

carried out to obtain fully non-stationary spectrum-compatible 

artificial accelerograms (Mukherjee and Gupta 2002, Giaralis and 

Spanos 2009 and Cecini and Palmeri 2015). 

Alternatively, adaptive signal processing techniques can be 

adopted, such as the decomposition of the signal on a Gaussian 

chirplet set of functions and the empirical mode decomposition (see 

Yin et al. 2002, Politis et al. 2006, Spanos et al. 2007). 

After a deep analysis of real earthquakes, in order to understand 

their main characteristics, the principal purpose of this Chapter is to 

examine the different models of the ground motion acceleration 

process that have been proposed in literature, for both the mono-

correlated and the multi-correlated input process.  

Furthermore, a procedure to generate artificial spectrum-

compatible fully non-stationary accelerograms is proposed; the 

generation of fully non-stationary accelerograms is performed in 

three steps. In the first step the spectrum-compatible PSD function in 

the hypothesis of stationary excitations is derived. In the second step 
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the spectrum-compatible EPSD function is obtained by an iterative 

procedure to improve the match with the target response spectrum 

starting from the stationary PSD function, once a time-frequency 

modulating function is chosen.  In the third step the accelerograms 

are generated by the Shinozuka and Jan (1972) formula and 

deterministic analyses can be performed to evaluate the structural 

response. 

2.2 Real earthquakes 
Earthquakes are vibrations of the earth surface caused by sudden 

movements of the earth crust which consists of rock plates that float 

on the earth mantle. The ground motion is due to the rupture of the 

rock when the shear stress exceeds the strength of the rock and the 

energy  is  released  in  the  form  of  seismic  waves.  Two  of  the  most  

common parameters related to a seismic event are the earthquake 

magnitude (M) and distance (R) (in km) of the rupture zone from the 

site of interest.  

 

   
Figure  2.  1  a)  El  Centro  NS  recorded  earthquake,  1940;  b)  Mexico  City  N90W  

recorded earthquake, 1985. 

 

It is obvious that every accelerogram is sensitively different from 

the others, as shown in Figure 2.1, mainly due to the characteristics 

of the specific location of the propagation path of the seismic waves. 
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For engineering purposes, the ground motion caused by seismic 

waves is measured by accelerometers or accelerographs which 

record three components of the ground acceleration, two horizontal 

and one vertical. The earthquake accelerograms by themselves 

provide general information among which the Peak Ground 

Acceleration (PGA) and the total seismic duration dt . The PGA is 

the most simple and widely used intensity index for seismic 

structural analysis purposes. It is also adopted in many structural 

design codes or provisions worldwide. Although PGA is an 

important intensity index, its scope of application is limited because 

a single measure is unable to fully describe the complex earthquake 

characteristics. For further information an elaboration of the 

accelerograms is necessary. The results of this elaboration are 

characteristic parameters, either in the time or in the frequency 

domain. Some parameters in the time domain are the ARIAS 

intensity, the HUSID diagram, the Strong Motion Duration (SMD). 

On the other hand, some parameters in the frequency domain are the 

spectral intensities and the Fourier spectra. The ARIAS intensity is 

a measure of the strength of a ground motion and it is usually 

defined by the following relationship: 

 

2
A g

0

( ) d ,
2g

dt

I u t t   (2.1) 

 

where g  is the acceleration due to gravity and g ( )u t  is the recorded 

accelerogram. The HUSID diagram, ( )H t , is the time history of the 

seismic energy content scaled to the total energy content and it is 

defined by the following relation: 
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By means of the HUSID diagram it is possible to define the SMD, 

sT , as the time elapsed between the 5% and 95% of the HUSID 

diagram defined by the following relation: 

 

0.95 0.05sT t t   (2.3) 
 

where 0.95t  is the time elapsed at the 95% of the HUSID diagram and 

0.05t  the time elapsed at the 5% of the HUSID diagram. 

 

   

Figure 2. 2 Husid Function and definition of the SMD:  a)  El  Centro  NS,  1940;  b)  
Mexico city N90W, 1985. 

 
Table 2. I Characteristics of real earthquakes. 

Site Year PGA 
amax 

[m/s2] 

Arias Intensity 

AI  

[m/s] 

Duration 
td 

[s] 

SMD 
Ts 
[s] 

t0.05 

[s] 
t0.95 

[s] 

El Centro NS 1940 3.13 1.78 31.16 24.20 1.63 25.83 

Mexico City 1985 1.68 2.45 180.08 40.71 39.68 80.38 

In order to understand the main characteristics of real 

earthquakes, a statistical study has been performed, by selecting a 
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set of recorded accelerograms and analysing the time-frequency 

behaviour. 

The chosen database is the “PEER: Pacific Earthquake 

Engineering Research Center: NGA Database”; 30 recorded 

accelerograms have been selected to perform the statistical analysis. 

In particular, all of them are time histories of seismic events that 

happened in the Imperial Valley (California) (see Figures 2.3, 2.4).  

 

 

Figure 2. 3 Some of the seismic events in Imperial Valley. 

 

In the following Figures all the ground motion time history are 

shown. 
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Figure 2.4 a) Registration of earthquakes in the Imperial Valley, California. 
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Figure 2.4 b) Registration of earthquakes in the Imperial Valley, California.  
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Figure 2.4 c) Registration of earthquakes in the Imperial Valley, California.  
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Figure 2. 4 d) Registration of earthquakes in the Imperial Valley, California. 

 

For each of the recorded accelerograms the mean frequency has 
been evaluated, as shown in Figure 2.5. 
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Figure 2. 5 Mean frequency of the i-th accelerogram. 
 

 
Figure 2. 6 Arithmetic average of the up-crossing time axis rate, 

gU t [s-1], of the 30 

accelerograms recorded in the Imperial Valley (California-USA). 
 

Then, in order to perform a statistical analysis the average of the 

mean frequency 
gU t  (see Figure 2.6) has been determined. This 

figure shows both the time-varying amplitude and frequency content 

of recorded accelerogram. 

In Table 2.II the main characteristics of these 30 accelerograms 
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event, the magnitude, the PGA, the energy, the strong motion 
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Table 2. II Main characteristics of the accelerograms recorded in the Imperial Valley 
(California-USA) 

n Station Date Magn. PGA 
amax 

[m/s2] 

Energy 
2

A
g I  

[m2/s3] 

Duration 
td 

[s] 

SMD 
Ts 
[s] 

t0.05 

[s] 
t0.95 

[s] 

1 El Centro Array #9 19/05/1940 6.53 3.07 10.30 40.00 23.50 1.96 25.47 

2 El Centro Array #9 24/01/1951 6.53 0.28 0.12 40.00 25.44 0.99 26.44 

3 El Centro Array #9 17/12/1955 6.53 0.55 0.18 40.00 16.82 0.77 17.59 

4 El Centro Array #12 15/10/1979 6.53 1.40 2.38 39.01 19.16 6.41 25.58 

5 Niland Fire Station 15/10/1979 6.53 1.07 1.14 39.98 22.20 5.83 28.03 

6 Calipatria Fire 
Station 

15/10/1979 6.53 1.26 0.89 39.52 22.35 7.52 29.87 

7 Parachute Test Site 15/10/1979 6.53 1.09 1.25 39.33 17.52 6.91 24.44 

8 Brawley Airport 15/10/1979 6.53 1.57 1.81 37.82 11.89 6.12 18.01 

9 El Centro Array #1 15/10/1979 6.53 1.37 1.68 39.03 12.84 6.25 19.09 

10 El Centro Array #2 15/10/1979 5.01 3.09 7.82 39.52 8.59 7.12 15.71 

11 El Centro Array #3 15/10/1979 6.53 2.61 7.11 39.54 12.48 6.13 18.61 

12 El Centro Array #4 15/10/1979 6.53 4.76 8.33 39.00 6.72 4.80 11.52 

13 El Centro Array #5 15/10/1979 6.53 5.09 10.08 39.28 6.07 4.36 10.43 

14 El Centro Array #6 15/10/1979 6.53 4.02 9.07 39.03 10.65 2.51 13.16 

15 El Centro Array #7 15/10/1979 6.53 3.31 5.33 36.82 6.50 4.78 11.28 

16 El Centro Array #8 15/10/1979 6.53 5.90 9.90 37.56 6.68 5.39 12.08 

17 EC Country Center 
FF 

15/10/1979 6.53 2.09 4.70 39.98 11.01 6.04 17.06 

18 El Centro Diff. 
Array 

15/10/1979 6.53 3.45 10.66 38.96 6.92 5.31 12.24 

19 El Centro Array #10 15/10/1979 6.53 1.68 3.52 36.97 12.36 5.42 17.78 

20 Holtville Post 
Office 

15/10/1979 5.62 2.48 5.40 37.74 11.59 4.72 16.31 

21 El Centro-Mel. 
Geot. Array 

15/10/1979 6.53 3.08 5.34 39.98 8.16 3.87 12.03 

22 El Centro Array #11 15/10/1979 6.53 3.57 12.19 39.03 8.48 6.17 14.65 

23 Westmorland Fire 
Station 

16/10/1979 5.62 1.68 1.05 40.00 8.82 2.81 11.64 

24 Victoria 15/10/1979 6.53 1.19 1.21 40.00 20.85 9.12 29.97 

25 Chihuahua 15/10/1979 6.53 2.65 7.17 40.00 19.17 5.36 24.54 

26 Compuertas 15/10/1979 6.53 1.83 2.71 36.00 28.29 5.40 33.70 

27 Bonds Corner 15/10/1979 6.53 5.77 24.20 37.60 9.36 3.09 12.46 

28 Calexico Fire 
Station 

15/10/1979 6.53 2.69 5.34 37.80 11.77 4.71 16.49 

29 El Centro Array #13 15/10/1979 6.53 1.15 1.66 39.50 21.96 5.89 27.86 

30 Westmorland Fire 
Station 

15/10/1979 6.53 0.73 0.76 39.98 23.76 5.22 28.98 
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2.3 The evolutionary process model 
In this section the characterization of the non-stationary model of 

the ground motion acceleration process will be done following the 

Priestley (1965, 1967) evolutionary process model. Firstly the 

spectral description of the non-stationary stochastic process is done; 

then four models of modulating functions, for both the quasi-

stationary and fully non-stationary process, amongst the most 

common present in literature, will be presented. 

2.3.1 Definition of the non-stationary stochastic input 
In  order  to  define  the  fully non-stationary stochastic input, the 

evolutionary spectral representation of non-stationary processes is 

often adopted (Priestley 1965). According to this representation, the 

non-stationary stochastic process is defined by the following 

Fourier-Stieltjes integral (Priestley 1965, Priestley 1967): 

 

( ) exp(i ) ( , )dt t a t NF                (2.4) 

 

where i 1  is  the  imaginary  unit,  ( , )a t  is a slowly varying 

complex deterministic time-frequency modulating function, which 

has to satisfy the condition: ( , ) ( , )a t a t , where the asterisk 

denotes the complex conjugate; ( )N  is a process with orthogonal 

increments, so that its increments 1d ( )N  and 2d ( )N  at any two 

distinct points 1  and 2  are uncorrelated random variables,  

satisfying the conditions: 

 
*

1 2 1 2 0 1 1 2E d d d d .N N S  (2.5) 
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In Eq. (2.5) the symbol E  means stochastic average and 

 is the Dirac delta defined as: 

 

0
0

0

0, ;
, ;

t t
t t

t t
  (2.6) 

 

0( )S  is the PSD function of the so-called “embedded” stationary 

counterpart  process  (Michaelov  et  al.  1999a).  It  is  a  real  and  

symmetric function: 0 0( ) ( )S S . 

It has to be emphasized that the stochastic process ( )tF  is also 

termed oscillatory process since it possesses evolutionary spectrum 

belonging to the family of the oscillatory functions q  defined as 

exp( ) ( , )q qi t ta . The zero-mean Gaussian non-stationary 

random process tF  is completely defined by the knowledge of 

the autocorrelation function 1 2 2 1( , ) ( , )FF FFR t t R t t 1 2E ( ) ( )t tF F  

which is a real symmetric function given as: 

 

*
1 2 1 2 1 2 0

1 2 1 2

, exp i ( , ) ( , ) ( ) d

exp i ( , , ) d . 

FF

FF

R t t t t a t a t S

t t S t t

(2.7) 

 

In the evolutionary process analysis (Priestley 1999), the 

function: 

 
2

0( , ) ( , ) ( )FFS t a t S                      (2.8) 
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is called EPSD function of the non-stationary process ( )tF . In the 

previous equation the symbol  denotes the modulus of the function 

in brackets. The processes characterized by the EPSD function 

( , )FFS t , are called fully non-stationary random process, since both 

time and frequency content change. If the modulating function is a 

real time dependent function, ( , ) ( )a t a t , the non-stationary 

process is called quasi-stationary (or uniformly modulated) random 

process.  

In the stochastic analysis the one-sided EPSD function is 

generally used; the latter, in the Priestley representation, can be 

suitably defined by the following relationships: 
 

*
1 2 0 1 2

1 2
( , ) ( , ) ( ) 2 ( , , )  ,  0;

( , , )
0 ,                                                             0,

FF
FF

a t a t G S t t
G t t (2.9) 

 

where 0( )G  0 0( ) 2 ( ),  0;G S 0( ) 0,  0G  is the 

one-sided PSD function of the stationary counterpart of input 

process ( )F t .  

2.3.2 Models of the non-stationary random process 

1) Normalized exponential type I modulating function 

Among the modulating functions that are herein considered, the 

simplest one, 1( )a t , that defines an uniformly modulated random 

process, has been proposed by Hsu and Bernard (1978):  
 

1 1 1( ) expa t t t         (2.10) 

 

where  
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1 1 exp 1 .               (2.11) 

 

The constant 1 normalizes the exponential modulating function 

so that the maximum of the real function 1( )a t  is unity.  

 

 
Figure 2. 7 Hsu and Bernard (1978) modulating function, 1 1/ 6 . 

 

2) Normalized exponential type II modulating function 

Another time modulating function, among the most used in 

literature, 2( )a t  has been proposed by Shinozuka and Sato (1967): 

 

2 2 2 3( ) exp exp .a t t t               (2.12) 

 

The constant 2  normalizes the exponential modulating function 

so that the maximum of the real function 2( )a t  is unity; it can be 

evaluated as: 
 

2 3 3
2

3 2 3 2 2

exp ln .               (2.13) 
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Figure 2. 8 Shinozuka and Sato (1967) modulating function, 2 30.045 , 0.05 . 

 

3) Normalized Jennings et al. type modulating function 

This modulating real function initially increases parabolically (up 

to time 1t ), remains constant between times 1t  and 2t , and then 

decreases exponentially. This was proposed by Amin and Ang 

(1968) and by Jennings et al. (1969). The normalized to unity 

expression can be written as: 
 

3 1 1 2 4 2 22
1

( ) (0, ) ( , ) exp ( )
2ta t t t t t t t t

t
         (2.14) 

 

where ( , )i jt t  and ( )t  are the window and the unit-step functions 

defined as: 

 

0
0

0

1,    ; 0, ;
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0, , ; 1, .
i j
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i j

t t t t t
t t t t
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Figure 2. 9 Jennings et al. (1969) modulating function, 1 2 44 , 14 , 0.3t s t s . 

 

4) Normalized Spanos and Solomos model of the fully non-

stationary process 

In order to take into account the main features of seismic ground 

motion, that is the “build-up” and the “die off” segments as well as a 

decreasing dominant frequency, Spanos and Solomos (1983) 

proposed the following time-frequency modulating function, 

4( )a t :  

 

4 4 5( ) expa t t t                (2.16) 

 

with the parameter 4  that normalizes the time-frequency 

modulating function so that the maximum of the real function 

4( , )a t  is unity. 
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Figure 2. 10 Spanos and Solomos (1983) modulating function, 4
max

1 2 ,
5a

2

5 max2
1 0.15 , 6.007.
2 500

a  

 

2.4 Wavelet analysis  
In order to identify and preserve the non-stationarity of the real 

earthquakes, a powerful tool is represented by the wavelet analysis. 

In fact, the use of wavelets permits a joint time–frequency signal 

representation. 

The wavelet transform gives a time-frequency representation of a 

signal ( )F t , belonging to the family of finite energy functions: 

 

2( ) dE F t t   (2.17) 

 

by a double series of basis functions called “wavelets” ,u s t . Each 

wavelet is a local function of time, it possesses a certain frequency 

content and it is generated by scaling, by the parameter s

(controlling the frequency distribution), and shifting, by the 

parameter u  (localising the function at around the time instant 

t u ) a single “mother function” t  (Cecini and Palmeri 2015). 
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The continuous wavelet transform of the signal ( )F t , at scale s 

and position u is given by: 

 

*
, , du s u sa F t t t   (2.18) 

 

where the asterisk denotes the complex conjugate and  

 

,
1 .u s

t u
ss

  (2.19) 

 

The signal ( )F t  will be obtained from the inverse continuous 

wavelet transform: 

 

, ,2
0

1 1 d du s u sF t a t s u
C s

  (2.20) 

 

in which C is a normalizing constant. 

Unfortunately the wavelet is a decaying function, so it is 

impossible to localize it in time. However families of wavelets can 

be conveniently generated in a way to form an orthogonal basis, so 

that the wavelet transform is bijective, giving a unique 

representation. Among the proposed models, Newland (1994) 

introduced a class of harmonic wavelets, having a box-shaped band 

limited spectrum. Later, the filtered harmonic wavelet scheme was 

presented by the same author (Newland 1999) incorporating a 

Hanning window function in the frequency domain to improve the 

time localization capabilities of the harmonic wavelet transform in 

the wavelet mean square map for a given frequency resolution 
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(Newland 1999, Spanos et al. 2005). In this case, the wavelet 

function  of  scale  (m, n) and position (k) in the frequency domain 

takes the form: 

 

, ,

1 21 cos , 2 ;

0, elsewhere.
m n k

m m n
n m n m   (2.21) 

 

By applying the inverse Fourier transform it is possible to obtain 

the complex-valued time domain counterpart, having magnitude  

 

, , 2
2

sin

1
m n k

kt n m
n mt

k kt t n m
n m n m

  (2.22) 

 

and phase: 

 

, , .m n k
kt t m n

n m
  (2.23) 

 

The harmonic wavelet transform of the signal ( )F t  will be given 

by  

 

*
, , , , dm n k m n ka n m F t t t   (2.24) 

 

and, in order to perform a time-frequency analysis, the wavelet 

spectrogram can be derived  
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2

, ,, .m n kSP t a   (2.25) 

 

 
Figure 2. 11 Approximation of the first seconds of the El Centro NS recorded 

earthquake, 1940 (black line) with the wavelet decomposition (blue 
dashed line). 

 

Figure 2.11 shows an example of approximation of a given signal 

( )F t  through the wavelets analysis.  

2.5 Adaptive chirplet decomposition 
In the framework of fully non-stationary processes, it is possible 

to use the adaptive chirplet decomposition in order to represent the 

forcing input. In particular the Gaussian chirplets are able to catch 

the modulation in frequency and in time of the signal and are suited 

for the decomposition of highly non-stationary signals. 

For a given signal ( )F t , Mallat and Zhang (1993) and Qian and 

Chen (1995), developed independently the Matching Pursuit (MP) 

algorithm that permits its decomposition if the following 

relationship is satisfied: 

 

2( ) dE F t t   (2.26) 
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where E is the total energy of the signal. The MP provides the 

following decomposition of the signal: 

 

( ) k k
k

F t A h t                 (2.27) 

 

where kh t  is the Gaussian chirplet:  

 

2
4

2

exp / 2

exp / 2 exp

k
k k k

k k k k

ah t a t t

i t t i t t
  (2.28) 

 

with k  that is a scaling factor, kt  and k  that shift in time and in 

frequency, respectively, the chirplet and the chirprate k  that leads 

to a linear frequency modulation (Mann and Haykin 1995) .  

The coefficients kA  are obtained such as the mean square error 

between the signal and its approximation is minimum. This leads to 

the solution of the optimization problem: 

 
2

22 max , max d .
k k

k k k k kh h
A F t h t F t h t t   (2.29) 

 

First, the original signal kF t F t  for 0k  is  projected  on  

all the functions of the dictionary and the coefficient 0A  is 

determined from Eq.(2.29). Then, the residual 1kF t is determined: 

 

1 .k k k kF t F t A h t   (2.30) 
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This procedure, described above for the original signal, is 

repeated for the residual iteratively, and the algorithm terminates 

when the energy of the residual reaches a desired predefined level 

that obviously characterizes the quality of the approximation 

(Spanos et al. 2007).  

 

 
Figure 2. 12 Approximation of the firts seconds of the El Centro NS recorded 

earthquake, 1940 (black line) with adaptive chirplet decomposition 
(blue dashed line). 

 

Applying the Wigner-Ville distribution, the adaptive spectrogram 

can be derived: 

 

222

0
, 2 exp /

K

k k k k k k k
k

AS t A t t t t  

 (2.31) 
 

and then it is possible to generate the artificial seismic waves (Yang 

1986) 
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where  is the frequency increment, k  is the discrete frequency, 

r
k  is  the  random  phase  with  uniform  distribution  between  0 and 

2  and 0G  is the one-sided PSD function. 

2.6 Fully non-stationary spectrum compatible 

seismic waves 

2.6.1 Simulation of the random process samples 
The problem of simulating spectrum-compatible earthquake 

accelerograms is addressed on a probabilistic basis under the 

assumption that an earthquake accelerogram is considered as a 

sample of a random process. The samples must satisfy two 

exigences: 

- they have to be random; 

- they must describe the probabilistic characteristics of the 

corresponding stochastic process. 

 

 

Figure 2. 13 Approximation of the one-sided PSD function for the generation of 
samples of a stationary Gaussian random process. 
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k
2 GF( k)
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A zero-mean stationary Gaussian random process F t  is 

completely defined by the autocorrelation function FR  or by the 

corresponding one-sided PSD function FG ; in order to apply the 

simulation technique is firstly necessary to sample this one, as 

shown in Figure 2.13. 

It is necessary to define a cut off frequency  such that: 

 

2 2

0
F F FG   (2.33) 

 

where 0FG if ; for the ground motion acceleration 

process 0FG  if 100 rad/s . 

Once the cut off frequency has been chosen, the interval 0,  is 

divided in cm  interval of amplitude / cm , with the central 

point ,1,2,. ,k ck m ,  in  such  a  way that  the  corresponding  area  

of the sampled one-sided PSD function is 2
k F kG . So the 

r-th sample rF t  of the zero-mean stationary Gaussian random 

process F t , having one-sided PSD function FG  and 

autocorrelation function FR , is defined as (Shinozuka and Jan, 

1972): 

 

1
( ) 2 sin

cm
r r

F k
k

F t G k k t +   (2.34) 
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where  is the frequency increment, r
k is the random phase with 

uniform distribution between 0 and 2 . 

When the process is a uniformly-modulated or fully non-

stationary random process, with modulating function, respectively, 

a t  and ,a t , Eq. (2.34) is modified as: 

 

1

1

( ) 2 sin

( ) , 2 sin

c

c

m
r r

F k
k
m

r r
F k

k

F t a t G k k t +

F t a k t G k k t +
        (2.35) 

 

Notice that the implementation of Eqs.(2.35) leads to a greater 

computational cost then (2.34); this is mainly due to the introduction 

of the modulating functions a t  and ,a t . 

2.6.2 Stationary spectrum-compatible accelerograms 
The simulation of artificial accelerograms is usually based upon a 

stationary stochastic zero-mean Gaussian process assumption. 

Several methods for generating a spectrum-consistent PSD 

function are available in the literature (Vanmarcke and Gaparini 

1977, Kaul 1978, Pfaffinger 1983, Preumont 1984, Cacciola et al. 

2004). 

Here the method proposed by Cacciola et al. (2004) is briefly 

described. This method considers the ground-acceleration as a 

sample of a zero-mean stationary Gaussian process. It approximates 

the pseudo-acceleration response spectrum as the 50% fractile of the 

peak maxima distribution of the response process of a Single Degree 

of Freedom (SDOF) oscillator subjected to the earthquake 
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acceleration zero-mean process, gU t , whose motion is governed 

by the following relationship: 

 
2

0 0 0( ) 2 ( ) ( ) .gU t U t U t U t                                         (2.36) 

 

Consequently the following very handy recursive expression of 

the one-sided PSD function of the earthquake acceleration zero-

mean process, gU t , compatible with the assigned pseudo-

acceleration response spectrum, is obtained (Cacciola et al. 2004): 

 

g

g g

ST

2 1
pa 0ST ST0

U2
10 1 0

( ) 0, 0 ;

( , )4( ) ( ) , ;
4 ( , )

k k iU

k
k

k j i k fU
jk k U k

G

S
G G

  (2.37) 

 

where the apex ST evidences that the one-sided PSD function is 

evaluated in the hypothesis of stationary random processes, 

1(rad s)i  (Cacciola et al. 2004) and f  are chosen as bounds of 

the existence domain of the one-sided PSD function 
g

ST( )UG . In 

Eq.(2.37) pa 0( , )kS  is the target pseudo-acceleration elastic 

response spectrum for a given natural frequency k  and damping 

ratio 0 0.05  and 0( , )U k  is the peak factor given as 

(Vanmarcke 1975): 
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1
0

1/2

11.2

( , ) 2ln ln0.5

1 exp ln ln0.5 .

s k
U k

s k
U

T

T
 (2.38)  

 

In the previous equation ST  is the time observing window, 

assumed equals to the strong motion phase of the ground motion 

process and U  is the bandwidth factor (see Eq. (1.21)) evaluated in 

the hypothesis of white noise process. The latter quantities can be 

written as (Vanmarcke 1972): 

 
1 22

0
02 2

0 0

1 21 1 arctan 0.246 0.05 .
1 1

U (2.39) 

 

Once the one-sided PSD function is obtained by Eq.(2.37), the N 

stationary spectrum-compatible artificial earthquake accelerograms 

are generated substituting 
g

ST( )UG in Eq. (2.34). 

 2.6.3 Non-stationary spectrum-compatible 

accelerograms 
The main problem of the stationary model of the ground motion 

acceleration process is that it is unable to catch the characteristics of 

real earthquakes, such as the amplitude and frequency modulation of 

the signal. In particular it can be easily proved that the mean 

frequency, 
gU t , which evaluates the variation in time of the mean 

up-crossing rate of the time axis, is a constant quantity for the 

stationary spectrum-compatible acceleration random process g ( )tU . 
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This result is in contrast with the analysis of recorded 

accelerograms. Furthermore, the energy, 
g

ST
dUE t , of the spectrum-

compatible stationary acceleration random process is proportional to 

the variance. Indeed the following relationship holds: 

 

g g g

ST ST 2

0 0

d d ,
dt

d dU U UE t G t t  (2.40) 

 

where 
g g

2 ST

0
dU UG  is the variance of the stationary 

spectrum-compatible stationary stochastic process g ( )U t . Moreover, 

Eq.(2.40) shows that the energy of the spectrum-compatible 

stationary acceleration random process is proportional to the 

duration of the process itself. This confirms that a stationary 

stochastic process, as well as its generic realization, possesses 

infinite energy. Even though this result is strictly coherent from a 

mathematically point of view, it is physically unrealistic. 

So, the main problem of the stationary model of the ground 

motion acceleration process is the inability to catch the 

characteristics of real earthquakes. Then the most suitable model of 

the ground motion acceleration is the fully non-stationary process 

model. 

The procedure proposed by Cacciola and co-workers (Cacciola 

2010, Cacciola and Zentner 2012, Cacciola et al. 2014) is here 

extended to generate artificial spectrum-compatible fully non-

stationary  earthquake  accelerograms.  On  the  contrary  of  the  

stationary case the EPSD function cannot be defined univocally; 

here the following Priestley evolutionary model of the one-sided 

EPSD function of the fully non-stationary process is chosen: 
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g g

2NST STC, ( , )U UG t a t G   (2.41) 

 

where 
g

STC
UG  is the stationary counterpart of the fully non-

stationary process gU t  and ( , )a t  is a slowly varying 

deterministic time-frequency modulating function.  

This method evaluates the spectrum-compatible PSD function of 

the stationary counterpart, 
g

STC ( )UG , modifying the PSD function 

evaluated by Eq.(2.37) under the hypothesis of stationary spectrum-

compatible process, 
g

ST( )UG , adding an additional term 
g

ST( )kUG  

(Cacciola 2010), namely: 

 

g

g g g

STC

STC ST ST

( ) 0, 0 ;

( ) ( ) ( ), .

k k iU

k k k i k fU U U

G

G G G
 (2.42) 

 

The term 
g

ST( )kUG  is evaluated to reduce the gap between the 

target spectrum and the average one, that is: 
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where  is the unit step function defined in Eq.(2.15), 

pa 0( , )kS  is the target pseudo-acceleration elastic response 

spectrum and 

 
NST

pa 0 pa 0

pa 0
NST

pa 0

1 if ( , ) ( , )
or else

( , )
min .

( , )

k k

k

k

S S

S
S

 (2.44) 

 

Finally, in the previous equations, NST
pa 0( , )kS  is the average 

pseudo-acceleration response spectrum obtained as the arithmetic 

average of the response of SDOF oscillators with natural circular 

frequency k  and damping ratio 0  subjected to N fully non-

stationary artificial earthquake accelerograms generated substituting 

into the second of Eqs. (2.35) the new one-sided PSD 
g

STC ( )UG

defined in Eq.(2.42). 

Notice that, according to the Eurocode 8 (EC8) instructions 

(2003), the spectrum compatibility is verified if no value of the 

mean elastic spectrum, NST
pa 0( , )S ,  calculated  from  all  time  

histories, is less than 90% of the corresponding value of the target 

response spectrum, pa 0( , )S  in  a  selected  range  of  periods.  If  the  

spectrum compatibility is not verified it is necessary to modify the 

stationary counterpart PSD function by adopting the following 

iterative scheme:  

 

g g

2

pa 0STC ( ) STC ( -1)
NST ( -1)

pa 0

( , )
( ) ( )

( , )
j j

U U j

S
G G

S
 (2.45) 
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where 
g

STC ( 1) ( )j
UG  and NST ( -1)

pa 0( , )jS  are the PSD function of the 

stationary counterpart and the average simulated pseudo-

acceleration response spectrum, respectively, both evaluated at the 

1j  iteration. Furthermore, the energy of the spectrum-

compatible fully non-stationary acceleration random process is given 

as: 

 

g g

NST NST

0 0

, d d .
dt

dU UE t G t t  (2.46) 

 

2.7 Multi-correlated seismic input 

2.7.1 Introduction 
When the analysis of structures, such as long span bridges, 

pipelines, communication transmission systems, etc., is performed, 

another important problem is to correctly represent the ground 

motion acceleration by taking into account its spatial variability. In 

fact the hypothesis of uniform ground motion, that is often used in 

earthquake engineering to analyse conventional structures, is 

appropriate  only  when  the  base  dimensions  of  the  structure  are  

small with respect to the seismic vibration wavelengths. Moreover, 

for long extended structures to neglect the spatial variability could 

mean to neglect significant additional stresses with respect to the 

ones resulting from the hypothesis of uniform ground motion 

(Saxena et al. 2000). It follows that in these cases the multi-

correlated model of the seismic excitation is more appropriate 

(Zerva 1991). In fact it has been demonstrated that the seismic 

response of extended structures, is strongly influenced from the real 

behaviour of seismic waves by difference in arrival times of 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

57 

seismic waves at different locations, loss of coherence of seismic 

waves  due  to  multiple  reflection  and  refraction  as  they  propagate  

through the highly inhomogeneous soil medium and change in the 

amplitude and frequency content of seismic ground motion due to 

different local soil conditions. 

In the framework of stochastic analysis, the effects of the spatial 

variability of the ground motion on the response have been mainly 

investigated assuming the multi-correlated seismic excitation as 

zero mean stochastic stationary Gaussian processes (see e.g. Abdel-

Ghaffar and Rubin 1982, Perotti 1990, Heredia-Zavoni and 

Vanmarke 1994, Zerva 1994, Zanardo et al. 2002, Tubino et al. 

2003, Lupoi et al. 2005, Zhang et al. 2009). To describe the fully 

non-stationary stochastic multi-correlated input process, two 

models are mainly adopted: i) the evolutionary process model 

(Priestley 1965, Priestley 1967); ii) the sigma-oscillatory process 

model (Battaglia 1979), but in the case of multivariate and/or multi-

correlated fully non-stationary input processes, only the sigma-

oscillatory process model is able to catch the time-dependence of 

the coherence function (Battaglia 1979).  

2.7.2 The evolutionary process model for multi-

correlated input 
If the multi-correlated process model is adopted, the stochastic 

forcing process has to be modelled as a zero-mean Gaussian random 

process tF  of order N, where N is  the  support’s  number  of  the  

structural system being analysed. Following the evolutionary 

spectral representation of non-stationary processes (Priestley 1999), 

this vector can be defined by the Fourier-Stieltjes integral as: 
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exp( ) ( , )dt i t tF A N          (2.47) 

 

where ( , )tA  is a slowly varying complex deterministic time-

frequency modulating diagonal function matrix, of order N N , 

which has to satisfy the condition: ( , ) ( , )t tA A ; while N  

is an orthogonal vector process (of order N) satisfying the following 

conditions: 

 
*

1 2 1 2 0 1 1 2E d d d dTN N G                   (2.48) 

 

where 0( )G , is an Hermitian positive definite function matrix of 

order N N , which describes the one-sided PSD function matrix of 

the “embedded” stationary counterpart vector process. After some 

algebra it can be proved that the autocorrelation function matrix of 

the zero-mean Gaussian non-stationary random vector process  

tF  can be obtained as: 

 

1 2 1 2

1 2 1 2
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, E

exp i ( , , )d  

Tt t t t

t t t t

FF

FF

R F F

G
 (2.49) 

 

where 

 
*

1 2 1 0 2( , , ) ( , ) ( ) ( , ).t t t tFFG A G A  (2.50) 
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Notice that the one-sided EPSD function matrix of the non-

stationary multi-correlated process tF  is obtained setting 1 2t t  

in Eq.(2.50). In the framework of stochastic seismic analysis, the 

main  distinct  phenomena  that  give  rise  to  the  spatial  variability  of  

earthquake-induced ground motions are: (i) the incoherence effect 

associated  to  loss  of  coherency  of  seismic  waves  arriving  from  an  

extended source; (ii) the wave-passage effect due to difference in 

the arrival times of waves at separate supports; (iii) the attenuation 

effect due to gradual decay of wave amplitudes with distance due to 

energy dissipation in the ground medium; (iv) the site-response 

effect associated to spatially varying of the local soil profiles. For 

stationary excitations, these effects are well characterized by the so 

called coherence function, 0,sr . It represents the one sided 

cross-PSD, 0,rsG , of the of the motion between the two stations r 

and s, normalized by the square root of the corresponding one- sided 

auto-PDFs 0,rrG  and 0,ssG  (see e.g. Harichandran and 

Vanmarcke 1986, Luco and Wong 1986, Loh and Ku 1986, Zerva 

1991, Der Kiureghian 1996): 

 

0,
0,

0, 0,

r s
r s

r r s s

G

G G
  (2.51) 

 

where 0,r sG  is the r-th, s-th element of the matrix 0G . In 

general, 0,s r  is complex valued function, whose bounded 

modulus is 0,0 1s r . This modulus, often called lagged 

coherency, gives a measure of linear statistical dependence between 
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the two processes. In particular, 0, 1s r  denotes perfect linear 

dependence between the two processes (e.g. identical and in-phase 

motions), whereas 0, 0s r  denotes complete lack of linear 

dependence. For stationary excitations, the coherence function is 

usually written as: 

 

0, exp i /r s r s r sd c                                           (2.52) 

 

in which exp i /r sd c  is a measure of the wave passage delay 

due  to  the  apparent  velocity  of  waves; c represents the velocity of 

the seismic waves through the ground (c decreases as the distance 

between the support-points increases or the soil is softer); rsd  is the 

distance between the r-th and s-th support-points and 

0,( )r s s r  is usually referred as the spatial correlation 

function between the two support-points. Several models of the 

coherence function have been proposed in literature (see e.g. 

Harichandran and Vanmarcke 1986, Luco and Wong 1986, Loh and 

Ku 1986, Zerva 1991, Der Kiureghian 1996).  

Notice that if the same one-sided PSD in every point location is 

considered, the one-sided cross-PSD of ground accelerations in a 

particular direction between surface points r and s, 0,r sG , may 

be written as the product of the coherence function by the target 

one-sided PSD of ground acceleration 0G  as follows: 

 

0, 0
0,

0

, for
, for .

r s
r s

G r s
G

G r s
                 (2.53) 
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For non-stationary excitations the coherence function for multi-

correlated non-stationary vector processes, in line with Eq.(2.51), 

can be defined as: 

 

*
0,

0, 0,

( , )
,

( , ) ( , )

( , ) ( , )
.

( , ) ( , )

r s

r s

r r r s

F F
F F

F F F F

r s r s

r s r r s s

G t
t

G t G t

a t a t G

a t a t G G

       (2.54) 

 

However, in the very common hypothesis of real modulating 

function, the following relationship holds: 

 

0,
0,

0, 0,

,
r s

r s
F F rs

r r s s

G
t

G G
 (2.55) 

 

where 0,rs  is the coherence function for stationary excitations 

introduced in Eq.(2.52). Then Eq.(2.55) shows that in the 

evolutionary spectral analysis the coherence function of the non-

stationary multi-correlated vector, tF , is independent on the time 

and coincides with the coherence function of the stationary 

counterpart of the non-stationary process. This not describes 

correctly the phenomenon where both intensities and structural 

influences of each component on the others evolve in time 

(Battaglia 1979). 
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2.7.3 The sigma-oscillatory process model for multi-

correlated input 

2.7.3.1 The sigma-oscillatory process model 
The evolutionary spectral analysis of multi-correlated stochastic 

processes, based on the oscillatory process model, turns out to 

coherence matrix independent of the time. This characteristic is a 

limit to the analysis of phenomenon where both intensities and 

frequency content of each component on the others evolves in time 

(Battaglia 1979). In order to overcome this drawback Battaglia 

(1979) introduced the sigma-oscillatory process as  the  sum  of  a  

finite number of mutually independent component oscillatory 

processes ( ) ( 1, ,qX t q M ;  M being the number of component 

oscillatory processes required by the problem). Admitting the 

spectral representation (2.4), a sigma-oscillatory process is 

represented as (Battaglia 1979): 

 

1 1
( ) ( ) exp(i ) ( , ) d .

M M

q q q
q q

F t X t t a t N          (2.56) 

 

It follows that the mean value and the mean square function of 

the sigma-oscillatory process ( )F t  are given respectively as: 

 

1

22 2 ( )
0

1 1 0

E ( ) E ( ) 0, 1, , ;

E ( ) E ( ) ( , ) d .

M

q
q

M M
q

q q
q q

F t X t q M

F t X t ta G
 (2.57) 
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The second of Eqs.(2.57) gives a decomposition over the 

frequency of the variance of the sigma-oscillatory process ( )F t  at 

time t. Therefore, the one-sided EPSD function of the sigma-

oscillatory process ( )F t  can be meaningfully defined with respect 

to the family of the oscillatory functions q  as: 

 

2 ( ) ( )
0 0

1 1
, ( , ) , .

M M
q q

FF q
q q

G t t ta G G   (2.58) 

 

Notice that Eq.(2.58) shows that the sigma-oscillatory processes, 

( )F t , is a fully non-stationary process also in the case in which 

each component process ( )qX t  possesses separable one-sided EPSD 

function 2( ) ( )
0 0, ( )q q

qt tG a G .  

If the multi-correlated process model is adopted the stochastic 

forcing process has to be modelled as a zero-mean Gaussian random 

process tF  of order N. It follows that the multi-correlated sigma-

oscillatory process, tF , can be defined as: 

 

1
exp( ) ( , )d

M

q q
q

t i t tF A N     (2.59) 

 

with qN  zero-mean mutually independent, orthogonal vector 

process satisfying the property: 

 
* ( , )

1 2 1 2 0 1 1 2E d d d d ;

, 1,2

T p q
p q pq

p q M

N N G
    (2.60) 
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where  is the Dirac Delta function defined in Eq. (2.6) and pq  is 

the Kronecker delta, defined as: 

 

1, ;
0, .pq

p q
p q

  (2.61) 

 

It follows that the correlation function matrix of the multi-

correlated sigma-oscillatory process tF  is given as: 

 

1 2 1 2

( ) *
1 2 1 0 2

1 0

1 2 1 2
0

, E

exp i ( , ) ( ) ( , ) d

exp i ( , , )d .

T

M
q

q q
q

t t t t

t t t t

t t t t

FF

FF

R F F

G A

G

A      (2.62) 

 

In this model, for 1 2t t , the one-sided EPSD function matrix of 

the non-stationary multi-correlated sigma-oscillatory process can be 

written as: 

 

( ) *
0

1
( , ) ( , ) ( ) ( , ).

M
q

q q
q

t t tFFG G AA     (2.63) 

 

The spectral representation in Eq.(2.63) evidences that the one-

sided EPSD function of the sigma-oscillatory process is determined 

as the sum of the function ( ) *
0( , ) ( ) ( , )q

q qt tG AA  associated to 

each component. Finally, the coherence function between the s-th, 

r-th element of the matrix can be written as (Battaglia 1979): 
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* ( )
, , 0,

1

2 2( ) ( )
, 0, , 0,

1 1

( , ) ( , )
, .

( , ) ( , )
r s

M
q

r q s q rs
q

M M
q q

r q rr s q ss
q q
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a t a t G
t
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     (2.64) 

 

Moreover, if the one-sided cross-PSD function of ground 

accelerations, in a particular direction between surface points r and 

s, ( )
0,

q
rsG , may be written as the product of the coherence function 

by the one-sided PSD functions of ground acceleration at two 

supports, that is: 

 

( ) ( )
0, 0, 0,( )

0, ( )
0,

, for

, for

q q
r s rr ssq

rs q
rr

G G r s
G

G r s
                  (2.65) 

 

it follows that Eq.(2.64) can be rewritten as: 

 

0,, ,
r sF F r s r st t    (2.66) 

 

where 0,rs  is the coherence function for stationary excitations 

introduced in Eq.(2.52) and 

 

* ( ) ( )
, , 0, 0,

1

2 2( ) ( )
, 0, , 0,

1 1

( , ) ( , )
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( , ) ( , )

,

M
q q

r q s q rr ss
q

M M
q q

r q rr s q ss
q q

r s

a t a t G G

a t G a t G

t            (2.67) 

 

Equations (2.66) and (2.67) show that, if the sigma-oscillatory 

process model is adopted, the coherence function of the non-
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stationary multi-correlated vector, tF , depends on both the time 

and circular frequency, on the contrary of the evolutionary process 

model. 

2.7.3.2 The Conte and Peng sigma-oscillatory process 

model 
In order to consider the time-frequency variation of non-

stationary stochastic ground motion, Conte and Peng (1997) 

proposed a sigma-oscillatory process model in the case of mono-

correlated input; this process model, here described in the original 

version, can be obviously extended in the case of multi-correlated 

input. 

The authors (Conte and Peng 1997) modelled the seismic 

acceleration as the sum of a finite number, N, of zero-mean, 

independent, uniformly modulated Gaussian sub-processes qX t . 

Each uniformly modulated process consists of the product of a real 

deterministic time modulating function, ( )qa t , and a stationary 

Gaussian sub-process, having one-sided PSD function ( )qG . Thus, 

this  model  of  fully  non-stationary  process  is  a  particular  sigma-

oscillatory Gaussian process whose one-sided EPSD function is 

expressed as (Conte and Peng 1997): 

 

2

1
( , ) ( ) ( )

M

FF q q
q

G t a t G           (2.68) 

 

where 

 
( )( ) ( ) ( ); 1,...,q q pr t t

q q q qa t t t e t t q M          (2.69) 
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and 

 

2 2 2 2

1 1( ) ; 1,..., .
( ) ( )

q
q

q q q q

G q M    (2.70) 

 

In the previous equations q  and q  are positive constants; qr  is a 

positive integer;  qt  is the arrival time of the sub-process qX t ; q  

and q  are two free parameters representing the frequency 

bandwidth and the circular mean frequency of the q-th stationary 

sub-process, respectively. Moreover, since the q-th sub-process 

qX t  possesses real part of autocorrelation function 

exp cos
q qX X q qR , it can be viewed as the linear 

combination of the displacement and velocity response processes of 

an oscillator subjected to two statistically independent Gaussian 

white noise processes. 

The one-sided EPSD function (2.68) describes simultaneously the 

time-varying intensity and the time-varying frequency content. It 

follows that the excitation F t  is not separable (i.e. fully-non 

stationary) although its component processes are individually 

separable (i.e., uniformly modulated). Each uniformly modulated 

component process, qX t ,  is  characterized  by  a  unimodal  PSD 

function in the frequency domain and a unimodal mean square 

function in the time domain (Conte and Peng 1997).  
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2.7.4 Simulation of non-stationary stochastic multi-

correlated sigma-oscillatory vector processes  
The time-varying frequency content together with the spatial 

variability of the seismic acceleration input where firstly included in 

Monte Carlo Simulation (MCS) by Shinozuka (1971). Then several 

methods have been proposed in literature (see e.g. Shinozuka and 

Deodatis 1988, Vanmarcke et al. 1993, Deodatis 1996a, Deodatis 

1996b, Di Paola and Zingales 2000, Cacciola and Deodatis 2011). 

Since the main drawback of the MCS is the calculation time, in this 

section it is firstly looked for the most convenient method among 

the ones proposed in literature, in the framework of multi-correlated 

stationary stochastic seismic excitations. The attention is focused on 

the methods proposed by Shinozuka (1971) after improved by 

Deodatis (1996a) and the alternative one proposed by Di Paola and 

Zingales (2000). Both methods require the decomposition of the 

one-sided PSD function matrix 0( )G .  

In particular, in the methods proposed by Shinozuka (1971) and 

Deodatis (1996a) the decomposition of 0( )G  is performed by the 

Cholesky’s decomposition (see Figure 2.14) while in the Di Paola 

and Zingales (2000) method the decomposition is performed once 

an associated frequency dependent eigenproblem is solved (see 

Figure 2.15). 

It has been proved that, analysing the computation times for the 

generation of a set of artificial stationary multi-correlated 

accelerograms, the ratio between the calculation time of the Di 

Paola and Zingales (2000) method and Deodatis (1996a) method is 

about 1/269. Notice that in comparing the computational times, 

according to the main purpose of the thesis, the ergodic property of 

the sample has not been used.  
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Figure 2. 14 Flow chart of the method proposed by Deodatis (1996a) for the 
generation of multi-correlated stationary ground motion stochastic 
vector process. 

START 

Input data: one-sided PSD function matrix 0G  order N N  

Determine the Cholesky’s decomposition of the matrix 0G  
*

0
TG H H  

Write the off-diagonal terms in polar form 

, , ,expj k j k j kH H i j k   
where 

,1
,

,

Im
tan

Re
j k

j k
j k

H
H

  

Define the zero-mean Gaussian random process tF  

1 2 ... ...
T

j Nt F t F t F t F tF  
 

END 

Generate the samples of the components of the forcing vector 
process tF  

, , ,
1 1

cos

1, 2, ...,

cmN

j j m k k j m k m k
m k

F t H t

j N
 

where k k  1,2,..., ck m , c cm  and ,m k  
1,2,..., ; 1,2,..., cm N k m  are N sequences of independent 

random phase angles distributed uniformly over the interval 
[0, 2 ) . 
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Figure 2. 15 Flow chart of the method proposed by Di Paola and Zingales (2000) for 

the generation of multi-correlated stationary ground motion stochastic 
vector process. 

START 

Input data: one-sided PSD function matrix 0G  of order N N  

Compute the eigenproblem associated with the matrix 0G , 
satisfying the relationships: 

ˆ

0

N
*T

*T

I
 

where  is a matrix of order ˆN N  N̂ N  whose 

columns are the corresponding eigenvectors j  and  
is a diagonal matrix whose elements are the eigenvalues j . 
 

Generate the samples of the component vector processes j tF  

1
cos sin

cos sin

cm
j j

j j k j k k k k k
k

j j
j k j k k k k k

t R t I t

I t R t

F

where k k  1,2,..., ck m , c cm , j k and 

j k are the real and imaginary part, respectively, of the 

eigenvector  j , j
kR  and j

kI  are the real and imaginary 

parts of j
kP , that are complex, normally distributed, zero mean 

random variables, obeying the following condition: 
* *,j s j j

k r kr rs k kE P P P P   

Decompose the zero-mean multi-correlated Gaussian random 
process tF  as the sum of N̂  fully coherent and independent 

each other vector processes 
ˆ

1

N

j
j

t tF F  

END 
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Then, since the Di Paola and Zingales (2000) method, originally 

formulated for the stationary case, is more convenient from a 

computational point of view, it has been herein extended to non-

stationary multi-correlated random processes for both evolutionary 

and sigma-oscillatory processes.  

In particular, the proposed MCS technique, for the sigma-

oscillatory stochastic process, requires preliminarily the spectral 

decomposition of the matrices 0
qG , which are Hermitian positive 

definite matrices, by solving the following eigenproblem:  

 

0 , 1, .q q q q q MG    (2.71) 

 

As in the classical modal analysis, often only the first N̂ N  

eigenproperties are sufficient to decompose accurately the PSD 

matrices 0
qG . In this case q  becomes  a  ˆN N  matrix, 

whose columns are the corresponding eigenvectors, q
j , being 

q
j k  and q

j k  their real and imaginary parts, respectively; 

while q  is a ˆ ˆN N  diagonal matrix, of order ˆ ˆN N , whose 

elements are the eigenvalues q
j . Notice that, since the 

matrices 0
qG  are Hermitian positive definite matrices, all 

eigenvalues q
j  are real and positive while the eigenvectors 

q
j  are complex vectors. Normalizing the eigenvectors in 

respect to the identity matrix N̂I , the following relationships hold: 
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ˆ

0 .

q q
N

q q q q

*T

*T

I

G
             (2.72) 

 

Then, the zero-mean Gaussian random vector process tF , of 

order N , can be decomposed as a summation of N̂ N  fully 

coherent and independent each other vector processes: 

 
ˆ

1
.

N

j
j

t tF F   (2.73) 

 

For the sigma-oscillatory stochastic process subdividing the 

frequency axis in cm  small intervals one can write: 

 

( )

1 1
,

cos sin

cos sin .

cm M
qq

j k j k
k q

q j j
j k k k k k

q q j j
j k j k k k k k

t t

R t I t

I t R t

F A

  (2.74) 

 

In the previous equation c cm  is the cut-off frequency, 

j
kR  and j

kI  are the real and imaginary parts of j
kP ,  that  are  

complex, normally distributed, zero-mean random variables, 

obeying the following condition: 

 
* *, .j s j j

k r kr rs k kE P P P P           (2.75) 
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Furthermore ( ) ,q
k tA  1,...,q M  is the deterministic time-

frequency modulating diagonal function matrix, whose elements 

are the corresponding moduli of the elements of the matrix 
( ) ,q

k tA . 

From Eq.(2.74) it is possible to derive, as a particular case, the 

generation formula for evolutionary multi-correlated stochastic 

vector processes: 

 

1
,

cos sin

cos sin .

cm

j k j k
k

j j
j k k k k k

j j
j k j k k k k k

t t

R t I t

I t R t

F A

    (2.76) 

 

Notice that the calculation times for the generation of a set of 

artificial non-stationary multi-correlated accelerograms is almost 

comparable with the times required for the generation of the same 

numbers of sample vectors in the stationary case; this is 

fundamentally due to the introduction of the matrix ( ) ,q
k tA  

(see Figure 2.15) that does not significantly influence the 

computational cost. 

2.8 Numerical Applications 

2.8.1 Fully non-stationary spectrum-compatible 

artificial earthquakes  
In order to verify the procedure described in Section 2.6.3, to 

generate fully non-stationary artificial spectrum-compatible 

earthquake time histories, the set of accelerograms recorded in the 
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Imperial Valley (California-USA) is analysed (see Figure 2.4). Since 

all the events, except the one recorded at the station “El Centro 

Array #2” at the date of 15/10/1979, have a magnitude superior than 

5.5 (see Table 2.II) and according to the EC8 instructions (2003) a 

spectrum  of  Type  I  is  chosen  as  target  spectrum.  The  PGA is 

assumed equal to the average of the PGA of the recorded events 
22.483 m / sga  and, following the values of the parameters 

describing the recommended Type I elastic response spectra (EC8 

2003) for the type “C” of soil, the parameters 1.15S , 0.2BT  [s] 

0.6CT  [s] and 2.0DT  [s] are selected. 

Following the iterative procedure described before the spectrum-

compatible PSD function 
g

STC ( )UG  of the stationary counterpart of 

the fully non-stationary process gU t  is obtained, for the Spanos 

and Solomos (1983) modulating function defined in Eq.(2.16) and 

for a new modulating function, obtained modifying the Spanos and 

Solomos (1983) model, that is:  

 

2

2

max

1, ( ) ( )exp 0.15 ;
2 500

1 2( )

a t t t

a

 (2.77) 

 

with ( )t  a piecewise function, which models the time-amplitude 

variation of the non-stationary accelerograms, here assumed step-

wise as in the Jennings et al. (1969) model: 
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2

0.05 0.05 0.95
0.05

0.95 0.95

( ) (0, ) ( , )

exp ( )

tt t t t t
t

t t t t

 (2.78) 

 

where ( , )i jt t  and ( )t  are the window and the unit-step functions 

defined in Eq. (2.15). 

In Eq.(2.77) the parameter maxa  normalizes the exponential 

modulating function so that the maximum is unity, while the 

parameter ,  in  Eq.(2.78),  is  an  adjustable  parameter  which  has  to  

be chosen to match the mean duration of the recorded 

accelerograms. This parameter is here assumed 0.13. 

In Figure 2.16 
g

STC ( )UG  is  then  compared  (in  logarithmic  scale)  

with the PSD 
g

ST( )UG  evaluated by Eq.(2.37) under the hypothesis 

of stationary spectrum-compatible process.  

From the analysis of the Figure 2.16 it is evident that at the lower 

frequencies the spectrum-compatible one-sided PSD function of the 

stationary counterpart, 
g

STC ( )UG , is bigger than the stationary 

spectrum-compatible one-sided PSD function, 
g

ST( )UG , on the 

contrary of the higher frequencies.  
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Figure 2. 16 One-sided spectrum-compatible PSDs 2 3/m s . Stationary assumption 

(black line) and stationary counterpart in the fully non-stationary 
assumption (red line), a) Spanos and Solomos (1983) model, b) modified 
Spanos and Solomos model. 

 

The one-sided EPSD function of the spectrum-compatible fully 

non-stationary process evaluated by Eq.(2.41) is depicted in Figure 

2.17. 
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Figure 2. 17 One-sided EPSD function of the spectrum-compatible fully non-
stationary process gU t  a) Spanos and Solomos (1983) model, b) 
modified Spanos and Solomos model. 

 

Figure 2.18 shows the comparison between the target spectrum 

pa 0( , )S T  and the average spectrum NST ( -1)
pa 0( , )jS T  derived from 

the 1000 artificial spectrum-compatible fully non-stationary 

accelerograms. 

 

a) 

b) 
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Figure 2. 18 Comparison between the selected EC8 target pseudo-acceleration 
spectrum pa 0( , )S T  (black line) and the average of 1000 pseudo-
acceleration spectra NST

pa 0( , )S T  (red line): a) Spanos and Solomos 
(1983) model, b) modified Spanos and Solomos model. 

 

The arithmetic average of the up-crossing time axis rate 
gU t  is 

also obtained from the 1000 artificial spectrum-compatible fully 

non-stationary accelerograms and compared, in Figure 2.19, with the 

average of the up-crossing time axis rate derived from the set of the 

recorded time histories. From the analysis of this figure it is evident 

that the described model is able to catch both the time-varying 

amplitude and frequency content of actual accelerogram records. It 

is important to notice that the gap between the average mean 

frequency  of  the  real  accelerograms and  of  the  artificial  set  cannot  

be regained because it depends on the spectrum compatible PSD 

function of the stationary counterpart.  
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Figure 2. 19 Comparison between the average mean frequency (black line) and the 

average mean frequency of the artificial spectrum-compatible fully non-
stationary accelerograms (red line): a) Spanos and Solomos (1983) model, 
b) modified Spanos and Solomos model. 

 

Finally, in Table 2.III the following quantities are reported: the 

average of the energy, 2 /AgI ,  evaluated  as  a  function  of  the  

average of Arias intensity, AI , of the recorded accelerograms in the 

Imperial Valley; the average energy of the 1000 artificial 

earthquakes, 
g

NST
dUE t , as well as the average energy, 

g

ST
dUE t , of a 

set of 1000 spectrum-compatible stationary acceleration random 

process.  
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Table 2. III Energy characteristics 2 3/m s   of  the set of accelerograms and of the 

stationary and fully non-stationary spectrum compatible acceleration 
processes 

Recorded 
accelerograms 

Artificial accelerograms 

Spanos & Solomos 
spectrum 

compatible 
model 

Modified 
spectrum compatible 

model 

Stationary  
spectrum compatible 

model 

Total mean 
energy 

Standard 
deviation 

Total 
mean 

energy 

Standard 
deviation

Total mean 
energy 

Standard 
deviation

Total mean 
energy 

Standard 
deviation

2
A

g I  2
AI

g  
g

NST
dUE t  NST

g dUE t
 

g

NST
dUE t  NST

g dUE t
 

g

ST
dUE t  ST

g dUE t
 

5.54 4.88 14.11 1.2 13.02 1.45 27.31 1.32 

 

From the analysis of the results reported in this Table it is evident 

that the energy associated to the spectrum-compatible stationary 

model is much higher than the energy evaluated by applying the 

other ones. On the contrary the spectrum-compatible fully non-

stationary process model is able to catch also the energetic aspects of 

the recorded earthquakes. 

2.8.2 Multi-correlated seismic input  

In this section in order to verify the validity of the theory 

explained in Section 2.7, a four span continuous deck bridge is 

analysed (Lupoi et al. 2005). The deck is over three cantilever piers 

and the four spans are all 50 [m] long, for a total length of the 

bridges equal to 200 [m] (Figure 2.20).  
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Figure 2. 20 Reference four span continuous deck bridge structure. 

 

The concrete long span bridge is assumed classically damped 

with damping ratio equal to 0 0.05 . The area and the transverse 

inertia  of  the  deck  and  of  the  piers  are,  respectively,  equal  to  
2 49.5 m , 156 md dA I  and 2 42 m , 1 mp pA I . The 

mass, M, is obtained taking into account the structure’s own weight 

and is equal to M = 36375 [t]. The natural period of the structure is 

0 2.37 sT  and the corresponding natural circular frequency is 

0 2.65 rad/s . 

The structure undergoes to non-uniform base excitation 

modelled by a zero mean tri-variate Gaussian non-stationary 

process;  the  multi-variate  input  is  obtained  assuming  that  for  the  

three  support  points  the  seismic  acceleration  possesses  equal  one-

sided PSD and different modulating functions. The velocity of the 

seismic waves through the ground, c, is herein assumed c , so 

that the coherence functions (see Eq.(2.51)) 0,rs  become real 

function, as shown in Figure 2.21. Then 0,rs  are equal to the 

spatial correlation function between the r-th and s-th support-

points, ( )r s ,   for  which  the  Hanrichandran  and  Vanmarcke  

(1986) model is adopted : 
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    (2.79) 

 

 
Figure 2. 21 Prescribed coherence functions 0,rs  , 1,2,3;r s r s . 
 

In the previous equation it is assumed: 0.626a , 0.022 , 
1/23.4719700 1 /12.692  and 12 23 50 md d  and 

13 100 md  (see Figure 2.20). 

In order to confirm the generality of the proposed approach, in 

the framework of the evolutionary process model, two cases have 

been analysed: the quasi-stationary (or uniformly modulated) 

random process model, if only the time content of the modulating 

function changes, and the fully non-stationary random process, 

when both time and frequency content change. The first model is 

obtained taking into account the Hsu and Bernard (1978) time-

dependent modulating function while the Spanos and Solomos 

(1983) time-frequency dependent modulating function has been 

selected for the fully non-stationary model. These modulating 
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functions differ at each support in the time instant, maxt , in which 

they take their maximum value. The Hsu and Bernard (1978) 

normalized to one modulating function at the v-th support point is 

written as: 

 

( ) exp 1 exp ( ) 1,2,3v v va t t t t v  (2.80) 

 

where ( )t  is the unit step function defined in Eq.(2.15). 

Furthermore in Eq.(2.80) it has been assumed max, 1/v vt , with 

1 2 31/ 6; 1/ 7; 1/8  for the three support points, 

respectively. 

The normalized to one evolutionary modulating function 

proposed by Spanos and Solomos (1983) assumes the following 

representation:  

 

( ) exp ( ) 1,2,3 .v v va t t t t v   (2.81) 

 

For the three support points the following parameters have been 

selected: max,2 5v va , with 2
1 1( ) 0.15 2 4 , 

2
2 2( ) 0.20 2 4 , 2

3 3( ) 0.25 2 4 ; then the 

normalizing to one coefficients are max,1 1.34a , max,2 1.16a , 

max,3 1.04a . The unitary maximum is reached at 1 1.94 rad/s  

and 1 6.67 st , 2 2.24 rad/s  and 2 7.02 st , 

3 2.50 rad/s  and  3 4.00 st . 
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The target one-sided PSD of ground acceleration 0G  (see 

Eq.(2.8)) is modelled by the Clough and Penzien (1975) acceleration 

spectrum: 

 
22

0 22 22

4

22 22

1 4 /

1 / 4 /

/

1 / 4 /

g g

g

g g g

f

f f f

G G

                   (2.82) 

 

with 8 rad/sg , 0.6f g , 0.1f g  and 

2 30.01246 m /sgG . 

In Figure 2.22 the coherence functions of the non-stationary 

multi-correlated vector, tF ,  are  shown.  This  Figure  shows  that,  

for the evolutionary model of multi-correlated seismic actions, the 

coherence function depend only on the circular frequency. 
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Figure 2. 22 Coherence functions 
1 3

,F F t : a) Hsu and Bernard (1978) 

modulating function; b) Spanos and Solomos (1983) modulating 

function. 

 

In order to obtain a multi-correlated sigma-oscillatory process 

model, the Fourier transform of the El Centro 1940 earthquake has 

been decomposed in five non-overlapping frequency intervals: 

1 10 ,  1 2 2,  2 3 3,  3 1 4  and 

4 1 5  with 1 10 rad/s ,  2 20 rad/s ,  

3 40 rad/s ,  4 60 rad/s  and 5 100 rad/s , in such a 

way that the total energy of the modelled accelerogram is the same 

of the recorded one. Moreover, the target one-sided PSD of the five 

a) 

b) 
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component evolutionary processes is chosen following the 

philosophy of the Conte and Peng (1997) approach, obtaining: 

 

( )
0 2 2 2 2

1 1( ) 1, ,5
( ) ( )

qq

q q q q

G q       (2.83) 

 

where 2q  and 1 1 2q q q q  are two parameters 

representing the frequency bandwidth and the central mean 

frequency  of  the q-th stationary counterpart component process, 

respectively 1,2, ,5q . The time variation is taken into 

account by the Shinozuka and Sato (1967) model of the modulating 

function: 

 

, , 1, , 2, ,( ) exp exp ( ),

1, ,5; 1, 2,3
v q v q v q v qa t t t t

q v
      (2.84) 

 

where  

 

1, , 2, , 2, ,
, ,

2, , 1, , 2, , 1, , 1, ,

exp ln ,

1, ,5; 1,2,3.

v q v q v q
v q v q

v q v q v q v q v q

q v

        (2.85) 

 

The parameters 2, , 1, ,v q v q  and ,v q  are selected in such a way 

that the total energy of the modelled accelerogram is the same of the 

recorded one. The set of selected parameters are collected in Table 

2.IV. They characterize the sigma-oscillatory process for each of 

the three support points of the bridge.  
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Table 2. IV Parameters of the Shinozuka and Sato (1967) modulating functions 
adopted in modeling the sigma-oscillatory multi-correlated process. 

q 1,q  1,1,q  2,1,q  2,q  1,2,q  2,2,q  3,q  1,3,q  2,3,q  

1 66.545 0.119 0.30  58.475 0.097 0.20  51.310 0.072 0.16  

2 95.772 0.271 0.27  76.847 0.165 0.19  65.478 0.114 0.15  

3 76.518 0.191 0.24  64.478 0.134 0.17  57.064 0.107 0.13  

4 40.893 0.204 0.23  34.623 0.149 0.16  30.752 0.121 0.12  

5 22.015 0.254 0.20  19.304 0.166 0.15  16.528 0.156 0.10  

 

 

Figure 2. 23 Coherence function  
1 3

,F F t  for the sigma-oscillatory process model 
(Battaglia 1979). 

 

Figure 2.23 shows that the coherence function of the non-

stationary multi-correlated vector, tF , depends on both the time 

and circular frequency, if the sigma-oscillatory process model is 

adopted on the contrary of the evolutionary process model analysis. 

2.9 Summary and conclusions 
This Chapter focuses on the characterization of the ground motion 

acceleration as a non-stationary random process; in fact, starting 

from an analysis of a set of real earthquakes, it has been shown that 

the stationary model of the seismic acceleration input process fails to 
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reproduce the typical characteristics of real recorded ground-motion 

time history, such as the amplitude and frequency modulation of the 

signal.  

Then different strategies to model the ground motion acceleration 

stochastic process have been considered; firstly the non-stationary 

model of the mono-correlated input process has been done following 

the evolutionary spectral representation (Priesley 1965, Priesley 

1967). In this framework four models of modulating functions, for 

both the quasi-stationary and fully non-stationary process, amongst 

the most common present in literature, have been presented. Other 

powerful strategies to analyse the evolutionary frequency content, 

here analysed, are based on the wavelet analysis (Spanos and Failla 

2004, Spanos et al. 2005, Mallat 2009) and on the adaptive 

decomposition of the signal on a Gaussian chirplet set of functions 

(Yin et al. 2002, Politis et al. 2006, Spanos et al. 2007). 

Furthermore, in order to follow the prescriptions of the building 

codes, a procedure to generate artificial fully non-stationary 

spectrum-compatible accelerograms has been proposed; a numerical 

application, where the non-stationary input process has been chosen 

coherently with the characteristics of a set of recorded earthquakes, 

has confirmed the proposed procedure. 

In order to take into account the spatial variability of the ground 

motion acceleration process, that arises when the analysis of 

structures, such as long span bridges, pipelines, communication 

transmission systems, etc., is performed, the multi-correlated model 

of the seismic excitation has been analysed. To describe the fully 

non-stationary stochastic multi-correlated input process, two models 

have been adopted: i) the evolutionary process model (Priestley 

1965, Priestley 1967); ii) the sigma-oscillatory process model 

(Battaglia 1979). In the numerical application it has been shown 
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that, in the case of multivariate and/or multi-correlated fully non-

stationary input processes, only the sigma-oscillatory process model 

is able to catch the time-dependence of the coherence function. 

Furthermore in the framework of the generation of non-stationary 

stochastic multi-correlated sigma-oscillatory vector process, it has 

been proved that the Di Paola and Zingales (2000) method, 

originally formulated for the stationary case, is more convenient 

from a computational point of view than the traditional methods, 

then it has been herein extended to non-stationary multi-correlated 

random processes for both evolutionary and sigma-oscillatory 

processes.  

Notice that, since the main aim of this research work is to obtain 

closed form solutions of the EPSD function of the response process, 

the wavelets analysis will not be further investigated whereas it is 

not yet possible to obtain such solutions in this case.  
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Equation Section (Next) 
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Chapter 3 

Spectral characteristics of the response 

3.1 Introduction 
Once the characterization of the ground motion acceleration 

process is done, the second step of the structural engineering deals 

with the evaluation of structural response to perform the prediction 

of the safety of structural systems. Among the models of failure, the 

simplest one, which is also the most widely used in practical 

analyses, is based on the assumption that a structure fails as soon as 

the response at a critical location exits a prescribed safe domain for 

the first time. The probability of failure, in this case, coincides with 

the first passage probability, i.e. the probability that the absolute 

value of the random response process of a selected structural 

response  (e.g.  strain  or  stress  at  a  critical  point)  will  exceed  a  

specified safety bound, b, within a specified time interval (Lin 1976). 

In random vibration theory, the problem of probabilistically 

predicting this event is termed first passage problem. Unfortunately, 

this is one of the most complicated problem in computational 

stochastic mechanics. The solution of this problem, has not been 

derived in exact form, even in the simplest case of the stationary 

response of a Single Degree of Freedom (SDOF) linear oscillator 
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under zero mean Gaussian white noise (Muscolino and Palmeri 

2005). Hence, a large number of approximated techniques has been 

proposed in literature, which differ in generality, complexity and 

accuracy (Lutes and Sarkani 1997). These techniques require the 

evaluation of the reliability function of structural systems as a 

function of barrier crossing rates, distribution of peaks and extreme 

values. The latter quantities can be evaluated, for stationary input 

process, as a function of the well-known Spectral Moments (SMs) 

introduced by Vanmarcke (1972). For stationary stochastic response 

processes, the SMs are defined as the geometric moments of the one-

sided Power Spectral Density (PSD) function of the response 

process. Application of spectral methods to non-stationary random 

processes is more difficult than for stationary processes, indeed for 

non-stationary processes the geometric approach fails (Di Paola 

1985, Muscolino 1988). To solve this problem, Di Paola (1985) 

introduced the Pre-Envelope Covariances (PECs) as the covariances 

of the response of structural  systems subjected to a complex-valued 

random process, the so-called pre-envelope process. The real part of 

this process is proportional to the original non-stationary process, 

while the imaginary part is an auxiliary random process related to the 

real part in such a way that the complex process exhibits power in 

the positive frequency range only. Since the use of complex pre-

envelope process is not very intuitive, Michaelov et al. (1999a, 

1999b) evaluated the PECs as a function of the Evolutionary Power 

Spectral Density (EPSD) function of the response and recalled them 

as Non-Geometric Spectral Moments (NGSMs).  It  has  to  be  

emphasized that the NGSMs contain more information than the 

“conventional” covariances. Indeed, the NGSMs have been proved to 

be more appropriate for describing non-stationary processes and can 

be effectively employed in structural reliability applications. 
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The NGSMs have been evaluated by means of the integral 

formulation (Di Paola and Petrucci 1990, Muscolino 1991, 

Michaelov et al. 1999b, Barbato and Conte 2008). Alternatively, the 

NGSMs have  been  derived  as  solution  of  set  of  first-order  linear  

differential equations, for white (Caddemi and Muscolino 1998) and 

non-white uniformly modulated input process (Langley 1986a, 

Borino et al. 1988, Caddemi et al. 2004). Although the differential 

formulation is more suitable from a computational point of view, it is 

not widely applied and the integral formulation is preferred 

(Muscolino and Cacciola 2011). This is due to the fact that, in the 

differential formulation, the complex input-output covariances, 

which involve the Hilbert transform of both input and output, are 

needed in order to define the imaginary part of the complex pre-

envelope input process. 

This Chapter is addressed on the definition of the spectral 

characteristics of the response of linear n-degree-of-freedom, 

classically and non-classically damped, systems subjected to fully 

non-stationary excitations. After a brief analysis of the dynamic 

behaviour of these systems, the NGSMs will be obtained as elements 

of the pre-envelope covariance matrix and a new approach for their 

evaluation via the Monte Carlo Simulation (MCS) method will be 

presented. 

3.2 Classically damped structures subjected to 

mono-correlated input  

3.2.1 Equations of motion  
Let consider a linear quiescent n-degree-of-freedom (n-DOF) 

classically damped structural system whose dynamic behaviour is 

governed by the equation of motion:  
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( ) ( ) ( ) ( )t t t tM u Cu Ku f                        (3.1) 

 
where M, C, and K are the ×n n  mass, damping, and stiffness 

matrices of the structure; u(t) is the ×1n  vector of displacements, 

having for i-th element ( )iu t  and a dot over a variable denotes 

differentiation with respect to time; f(t) denotes the external loads 

vector. Under the assumption of classically damped system the 

equation of motion can be decoupled by applying the modal analysis. 

Therefore let introduce the modal coordinate transformation: 

 

1 1
( ) ( ) ( )   ( ) ( ).

m m

j j i i j j
j j

t t q t u t q tu q                (3.2) 

 
In this equation, 1 2 ... m  is the modal matrix, of 

order n m , collecting the m eigenvectors j , normalized with 

respect to the mass matrix M , solutions of the following 

eigenproblem:   

 
1 2 ;    T

mK M I             (3.3) 
 
where  is a diagonal matrix listing the undamped natural circular 

frequency j , mI  is the identity matrix of order m and the 

superscript T  denotes the transpose operator. Once the modal matrix 

 is evaluated, by applying the coordinate transformations (3.2) to 

Eq.(3.1), the following set of decoupled second order differential 

equations is obtained: 

 
2( ) ( ) ( ) ( )Tt t t tq f             (3.4) 
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in which  is a the generalized damping matrix given by: 

 
.T                (3.5) 

 
For classically damped structures the modal damping matrix  is 

a diagonal matrix listing the quantities 2 j j , being j the modal 

damping  ratio.  Let’s  assume  now  that  the  forcing  term  is  a  mono-

correlated zero-mean Gaussian random process vector that can be 

given by the equation: 

 
t F tf s                (3.6) 

 
where s  is the 1n  vector of spatial distribution of loads and 

tF  is  a  zero-mean  Gaussian  non-stationary  random  process.  It  

follows that the j-th differential Eq.(3.4) can be written as: 

 
2 ,( ) 2 ( ) ( )  =1, 2,...,      j j j j j j j tq t q t q t F j mp          (3.7) 

 
where 

 
T

j jp s                  (3.8) 

 

is the j-th participating factor. 

Notice that, since the zero-mean Gaussian non-stationary random 

process F t  possesses one-sided PSD,  it  is  a  complex  process  

whose imaginary part is a process having stationary counterpart 

proportional  to  Hilbert  transform  of  the  real  part  of  the  complex  

process itself (Di Paola 1985, Langley 1986a, Muscolino 1988, Di 

Paola and Petrucci 1990, Muscolino 1991). 
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3.2.2 Evaluation of NGSMs 
The modal NGSMs have to be defined as the element of the modal 

PEC matrix, introduced by Di Paola and Petrucci (1990), which 

collects the complex covariances of the response: 

 
* *

*

* *

0, 1,

1, 2,

E ( ) ( ) E ( ) ( )
( ) E ( ) ( )

E ( ) ( ) E ( ) ( )

( ) i ( )
i ( ) ( )

T

T

t t t t
t t t

t t t t

t t
t t

yy

qq qq

qq qq

q q q q
y y

q q q q
  (3.9) 

 

where the asterisk indicates the complex conjugate quantity and 

where 0, ( )tqq , 1, ( )tqq  and 2, ( )tqq  are complex time-dependent 

matrices of m m  order collecting the modal NGSMs of zero-th, first 

and second order; moreover ( )ty  is the modal state variable vector 

defined as: 

 

.
t

t
t

q
y

q
                        (3.10) 

 

After very simple algebra it can be proved that, by means of the 

coordinate transformation (3.2), the b-th NGSMs, , ( )
i ib u u t  

0,1,2)(b , of the i-th nodal response, ( )iu t , can be evaluated as 

function of the elements of the modal PECs matrices, ( )k t  

1...,, mk , since the following relationship holds: 

 

1,

*
1,

0,

1 12,

i ( )
( ) .

i ( )

( )
( )

( )
i i

i i

i i

i i

i i

u u

u u
u u

m mu u
ik ik k

ku u

t
t

t

t
p p t

t
    (3.11) 
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Mathematically strictly speaking, as a consequence of the 

introduction of the one-sided PSD, the response processes ( )iu t  is a 

complex function. Moreover, it has to be emphasized that the zero-th 

NGSM, 0, ( )
i iu u t , and the second order NGSM, 2, ( )

i iu u t , are real 

functions that coincide with the covariance of the response in terms 

of displacement and velocity, respectively; while the first order 

NGSM, 1, ( )
i iu u t ,  is  a  complex  quantity  whose  real  part  can  be  

evaluated as the cross-covariance between the response process and 

the response velocity process of the same linear system subjected to 

a non-stationary input whose stationary counterpart  is proportional 

to its Hilbert transform (Di Paola 1985, Muscolino 1988, Di Paola 

and Petrucci 1990, Muscolino 1991, Langley 1986a). The modal 

PECs matrices, ( )k t , introduced in Eq.(3.11), is defined as 

follows: 

 
* *

* *

1,

*
1,

0,

2,

E ( ) ( ) E ( ) ( )
( )

E ( ) ( ) E ( ) ( )

i ( )

i ( )

( )
( )

k k

k

k k

k

k

k

k

q t q t q t q t
t

q t q t q t q t

t

t

t
t

  (3.12) 

 

where j j jq t q t p  is  a  complex  process  too  solution  of  the  

following differential equation: 

 
2( ) 2 ( ) ( ) ( )j j j j j jq t q t q t F t         (3.13) 

 

Notice that Eq.(3.13) coincides with Eq.(3.7), with the position 

1jp ; namely Eq. (3.13) is the equation of the motion of a dummy 
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oscillator, in fact its solution is “purged” from the participating 

factors. It has been proved (Di Paola 1985, Langley 1986a, 

Muscolino 1988, Borino et al 1988, Di Paola and Petrucci 1990, 

Muscolino 1991, Caddemi and Muscolino 1998,  Michaelov et al. 

1999a, Michaelov et al. 1999b, Caddemi et al. 2004, Barbato and 

Conte 2008, Muscolino and Cacciola 2011) that the so called 

“purged” NGSMs, , ( )b k t , can be evaluated as a function of the 

statistics of the response of a dummy oscillator whose motion is 

governed by Eq.(3.13). Indeed after some algebra, these quantities, 

which are complex ones, can be evaluated in time-domain, for 

quiescent structural systems (at time t=0) as follows (Di Paola 1985, 

Di Paola and Petrucci 1990, Muscolino 1991): 
 

*
0, 1 2 1 2 1 2

0 0

*
1, 1 2 1 2 1 2

0 0

*
2, 1 2 1 2 1 2

0 0

( ) E ( ) ( ) ( , ) d d ;

( ) i E ( ) ( ) i ( , )d d ;

( ) E ( ) ( ) ( , ) d d ;

             

t t

k k k FF

t t

k k k FF

t t

k k k FF

t q t q t h t h t R

t q t q t h t h t R

t q t q t h t h t R

                                             1,2,..., ;  1,2,..., .k m m
  

(3.14) 
 

where 1 2( , )FFR  is the complex autocorrelation function defined as: 

 

*
1 2 2 1 1 2 0

0

, exp i ( , ) ( , ) ( )d  FFR t t t t a t a t G        (3.15) 

 

where 0G  is the one-sided PSD function of the stationary 

counterpart of the input process and 
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1 exp sinj j j j
j

h t t t         (3.16) 

 

with 21j j j  ,j k  the damped circular frequency of the 

j-th dummy oscillator. Notice that the presence of the imaginary unit 

in  the  second term of  the  second of  Eqs.  (3.14)  inverts  the  roles  of  

the real and imaginary parts of 1, ( )k t  with respect to the cross-

covariance 0, 2,( )  and  ( );k kt t  furthermore for k  while 

0, 2,( )   and   ( )k kt t  become real quantities, 1, ( )k t  remains a 

complex one.  

Moreover, by substituting the complex function 1 2( , )FFR t t , 

defined in Eq.(3.15), into Eq.(3.14), after very simple algebra, it is 

possible to evaluate the “purged” NGSMs as (Di Paola and Petrucci 

1990): 
 

*
0, 0

0

*
1, 0

0

*
2, 0

0

( ) , , ( )d ;

( ) i , , ( )d ;

( ) , , ( )d .

k k

k k

k k

t Q t Q t G

t Q t Q t G

t Q t Q t G

       (3.17) 

 

For j=k, , the following positions have be made:  
 

0

0

, exp i ( , )d ;

, exp i ( , )d .

t

j j

t

j j

Q t h t a

Q t h t a
        (3.18) 
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Remarkably, since the integrals (3.18) are convolution integrals of 

Duhamel’s type, they can be interpreted as the response, in terms of 

state variables, of the quiescent j-th dummy oscillator subjected to 

the deterministic complex function ( , ) exp i ( , )f t t a t . 

Moreover, introducing the state variable, of the response of the j-th 

dummy oscillator:  
 

,
, ; ,

,
j

j

j

Q t
t j k

Q t
Y =         (3.19) 

 

the relationships (3.17) can be rewritten in compact form as follows:  
 

0

( ) ( , )dk kt tG        (3.20) 

 

where ( , )k tG  is the one-sided EPSD function matrix of the 

“purged” modal response, in state variable, given as: 
 

*
0( , ) ( ) , , .T

k kt G t tG Y Y         (3.21) 

 

It follows that, by applying the coordinate transformation (3.2), 

the one-sided EPSD function matrix of the nodal response is given 

as: 

 

1 1
( ) .( )

i iu u

m m

ik ik k
k

t p p tG G   (3.22) 

 

It has to be emphasized that the vector function introduced in Eq. 

(3.19), ,j tY , is herein defined as the modal Time-Frequency 
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Varying Response (TFR) vector function in terms of state variables.  

Indeed, its first element, ,jQ t , is the so-called evolutionary 

frequency response function of the j-th modal oscillator ,j k  (Li 

and Chen 2009). 

Finally, taking into account Eq. (3.11), the b-th NGSMs, , ( )
i ib u u t  

( 0,1, 2b ), of the i-th nodal response, ( )iu t , is given as a function 

of modal NGSMs , ( )b k t , 0,1, 2b , “purged” by jp  factors as 

follows: 

 

0, 0,
1 1

1, 1,
1 1

2, 2,
1 1

( ) E ( );

( ) i E ( );
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i i

i i

i i

m m
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u u i i k ik i k
k

m m
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u u i i k ik i k
k

m m
*

u u i i k ik i k
k

t u t u t p p t

t u t u t p p t

t u t u t p p t

          (3.23) 

 

3.2.3 Stationary SMs 

Let us assume now the modulating function ( , ) ( )a t t . In this 

case, starting from this non-stationary formulation it is possible to 

deduce the formulation in the case of stationary input. This result is 

obtained by setting t  into Eq.(3.19). So operating the following 

time independent relationship is obtained: 

 

exp i
lim ,

i exp i
j

jt
j

t H
t

t H
Y  (3.24) 

 

where jH  (j=k, ) is the transfer function of the j-th oscillator: 
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2 2
0

1exp i d .
i 2j j

j j j

H h  (3.25) 

 

By substituting Eq. (3.24) into Eq.(3.21) and the results into 

Eq.(3.20), the elements of this matrix are the well-known 

Vanmarcke (1972) SMs, between the ,  k -th dummy oscillators: 

 

0, 0
0

1, 0
0

2
2, 0

0

( )d ;

( )d ;

( )d .

k k

k k

k k

H H G

H H G

H H G

 (3.26) 

 

3.3 Classically damped structures subjected to 

multi-correlated input 

3.3.1 Equations of motion  

Let consider a linear quiescent classically damped structural 

system with n unconstrained degree-of-freedom (n-DOF) subjected 

to N–support motion. In the hypothesis that the seismic motion has 

only one component per each support point, so N is also the number 

of DOF of the support points, the dynamic behaviour of the 

structural system is governed by the following equation of motion:  

 

( ) ( ) ( ) ( )t t t tM u Cu Ku M B F                                          (3.27) 
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where u(t) is the vector of order ×1n collecting the displacements of 

the n-DOF  of  the  structure  with  respect  to  the  N–support points, 

having for i-th element ( )iu t . Furthermore, in Eq.(3.27) tF  is the 

1N  order vector containing the base input accelerations and B  is 

the influence matrix, of order ×n N , given as: 

 
1

sbB K K                                                                               (3.28) 

 

where sbK  is the ×n N  order coupling stiffness matrix between the n 

unconstrained DOF of the structure and the N support DOF. It 

follows that the k-th column of the influence matrix, represents the 

displacements at the unconstrained DOF of the structure when the k-

th support DOF is displaced by a unit amount, while all other 

support DOF remain fixed.  

Under the assumption of classically damped systems the equation 

of motion can be decoupled by applying the modal analysis, by 

introducing the modal coordinate transformation (3.2) to Eq.(3.27), 

the following set of decoupled second order differential equations is 

obtained: 

 
2( ) ( ) ( ) ( )t t t tq q PF            (3.29) 

 

where  

 
TP MB.   (3.30) 

 

The k-th differential Eq.(3.29) can be written as: 

 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

104 

1

2 , =1,2,..., ;( ) 2 ( ) ( )    
N

k r r
r

k k k k k k p t k mq t q t q t F  (3.31) 

 

where k rp  is the k-th, r-th element of the matrix P and r tF  is the 

r-th element of the of vector tF .  

Notice that, since the zero-mean Gaussian non-stationary random 

process tF  possesses one-sided PSD,  it  is  a  complex  process  

whose imaginary part is a process having stationary counterpart 

proportional to Hilbert transform of the real part of the complex 

process itself. 

3.2.2 Evaluation of the NGSMs 
The modal NGSMs have to be defined as the element of the modal 

PEC matrix introduced by Di Paola and Petrucci (1990). Indeed the 

following relationship holds: 

 
* *

*

* *

0, 1,

1, 2,

E ( ) ( ) E ( ) ( )
( ) E ( ) ( )

E ( ) ( ) E ( ) ( )

( ) i ( )
i ( ) ( )

T

T

t t t t
t t t

t t t t

t t
t t

yy

qq qq

qq qq

q q q q
y y

q q q q
  (3.32) 

 

where 0, ( )tqq , 1, ( )tqq  and 2, ( )tqq  are complex time-dependent 

matrices of m m  order collecting the modal NGSMs of zero-th, first 

and second order; moreover ( )ty  is the modal state variable vector 

defined as: 

 

.
t

t
t

q
y

q
                        (3.33) 
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After very simple algebra it can be shown that, by means of the 

coordinate transformation (3.2), the b-th NGSMs, , ( )
i ib u u t  

0,1, 2b , of the i-th nodal displacement response, ( )iu t , are 

evaluated as function of the modal PECs matrices ( )k rs t  

, 1, , ; , 1,k l m r s N  by the following relationships: 

 

1,

*
1,

1 1

0,

2,

1 1

i ( )
( )

i ( )

( )

( )
( )

i i

i i

i i

i i

i i

u u

u u
u u

N N

k r s i k i k r s
r s

u u

u u

m m

k

t
t

t

p p t

t
t

                                      (3.34) 

 

where j vp  is the j-th, v-th element of the matrix P  

, ; ,j k v r s . Once again it has to be emphasized that the zero-

th NGSM, 0, ( )
i iu u t , and the second order NGSM, 2, ( )

i iuu t , are real 

functions that coincide with the variances of the response in terms of 

displacement and velocity, respectively; while the first order NGSM, 

1, ( )
i iu u t ,  is  a complex quantity .  The modal PEC matrix, ( )k rs t , 

introduced in Eq.(3.34), is defined as: 

 
* *

* *

1,

*
1,

0,

2,

E ( ) ( ) E ( ) ( )
( )

E ( ) ( ) E ( ) ( )

i ( )

i ( )

( )
( )

kr s kr s

k rs

kr s kr s

k rs

k rs

k rs

k rs

q t q t q t q t
t

q t q t q t q t

t

t

t
t

  (3.35) 

 

where jv j jvq t q t p  is  a  complex  process  too,  solution  of  the  

following differential equation: 
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2( ) 2 ( ) ( ) ( ).jv j j jv j jv vq t q t q t F t         (3.36) 

 

As already done for the classically damped systems subjected to 

mono-correlated input, the “purged” NGSMs , ( )b k rs t , among the 

surface points r and s, can be evaluated as a function of the statistics 

of the response of a dummy oscillator whose motion is governed by 

Eq. (3.36). Indeed after some algebra, these quantities, which are 

complex ones, can be evaluated in time-domain, for quiescent 

structural systems (at time t=0) as follows (Di Paola 1985, Di Paola 

and Petrucci 1990, Muscolino 1991): 
 

*
0,

1 2 1 2 1 2
0 0

*
1,

1 2 1 2 1 2
0 0

*
2,

1 2 1 2 1

( ) E ( ) ( )

( , ) d d ;

( ) i E ( ) ( )

i ( , ) d d ;

( ) E ( ) ( )

( , ) d d

r s

r s

r s

k rs kr s

t t

k F F

k rs kr s

t t

k F F

k rs kr s

k F F

t q t q t

h t h t R

t q t q t

h t h t R

t q t q t

h t h t R 2
0 0

;

1,2,..., ;  1,2,..., ;  1,2,..., ;  1,2,...,

t t

k m m r N s N

  (3.37) 

 

where 1 2( , )
r sF FR  is the complex autocorrelation function at the two 

stations r and s defined as: 

 

*
1 2 2 1 1 2 0,

0

, exp i ( , ) ( , ) ( )d  
r sF F r s rsR t t t t a t a t G    (3.38) 

 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

107 

where 0,r sG  is the r-th, s-th element of the matrix 0G , 

( , )va t  ,v r s  is the v-th, element of the diagonal matrix ( , )tA  

and with jh t  the function defined in Eq.(3.16). Notice that the 

presence of the imaginary unit in the second term of the second of 

Eqs. (3.37) inverts the roles of the real and imaginary parts of 

1, ( )k rs t  with respect to the cross-covariance 0, 2,( )   and   ( ).k rs k rst t  

Moreover, by substituting the complex function defined in 

Eq.(3.38), into Eq.(3.37), after very simple algebra, it is possible to 

evaluate the “purged” NGSMs as: 
 

*
0, 0,

0

*
1, 0,

0

*
2, 0,

0

( ) , , ( )d ;

( ) i , , ( )d ;

( ) , , ( )d ;

k rs kr s rs

k rs kr s rs

k rs kr s rs

t Q t Q t G

t Q t Q t G

t Q t Q t G

       (3.39) 

 

For j=k, and v=r,s, the following positions have be made:  
 

0

0

, exp i ( , )d ;

, exp i ( , )d .

t

jv j v

t

jv j v

Q t h t a

Q t h t a
        (3.40) 

 

Remarkably, since the integrals (3.40) are convolution integrals of 

Duhamel’s type, they can be interpreted as the response, in terms of 

state variables, of the quiescent j-th dummy oscillator at the v-th 

surface point subjected to the deterministic complex function 
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( , ) exp i ( , )v vf t t a t .  Introducing  the  state  variable  of  the  

response of the j-th dummy oscillator at the v surface point:  
 

,
, ; , ,s

,
jv

jv

jv

Q t
t j k v r

Q t
Y =         (3.41) 

 

the relations (3.39) can be written in compact form as: 

 

0

( , )d( ) k rsk r s tt G   (3.42) 

 

where ( )k r s t  is the covariance function matrix and ( , )k rs tG is the 

one-sided EPSD function matrix between the k-th and -th  modal 

“purged” response processes and among the surface points r and s. 

This matrix can be written as: 

 

0,( , ) , , .T
k rs k r rs st t G t*G Y Y        (3.43) 

 

By means of the modal transformation (3.2), the nodal one-sided 

EPSD function matrix of the displacement response, ( )iu t , can be 

evaluated, after very simple algebra as follows: 

 

1 11 1
( ) ( )

i i

N N

u u k r s i k i k r s
r s

m m

k
t p p tG G   (3.44) 

 

Finally, by taking into account Eq.(3.34), the nodal NGSMs can 

be evaluated as a function of , ( )b k rs t , 0,1, 2b , which are the so-
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called time-dependent modal NGSMs “purged” by jvp  factors as 

follows: 

 

0, 0,
1 1 1 1

1, 1,
1 1 1 1

2, 2,
1 1 1 1

( ) ( );

( ) ( );

( ) ( ).

i i

i i

i i

m m N N

u u k r s i k i k r s
k r s
m m N N

u u k r s i k i k r s
k r s

m m N N

u u k r s i k i k r s
k r s

t p p t

t p p t

t p p t

  (3.45) 

 

3.4 Non-Classically damped structures subjected 

to mono-correlated input  

3.4.1 Equations of motion  
When the structural system is assumed non-classically damped it 

follows that the mass, damping and stiffness matrices do not satisfy 

the Caughey-O’Kelly (1966) condition. In this case the modal 

damping matrix  is not a diagonal matrix. It follows that, the 

equation of motion in modal subspace Eq.(3.4) are coupled. To solve 

Eq.(3.1) the vector ( )tz  of state variables have to be introduced:  

 

= +t t F tz D z w                                (3.46) 
 

where ( )tz  is the 2n-state vector variable while the matrix D and the 

vector w are defined as: 

 

1 1; ; .mt
t

t
u 0 I 0

z D w
u M K M C

               (3.47) 
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It has been proved that from a computational point of view it is 

more convenient to decouple the set of first order differential 

equations given in Eq.(3.46) by applying the complex modal 

analysis. According to this analysis the following coordinate 

transformation is introduced: 

 

( ) ( ).t tz x                                                                                (3.48) 
 

If m is the number of modes selected for the analysis, ( )tx  is a 

complex vector of order 2m and the complex matrix , of order 

(2 ×2 )n m , collects the complex eigenvectors solutions of the 

following eigenproblem: 

 
1 1

2;    T
mD I                                                 (3.49) 

 

with  the diagonal matrix collecting the 2m  complex eigenvalues 
and  
 

.
C M

A
M 0

                                                                            (3.50) 

 

Since the structural systems are usually underdamped, both 

eigenvalues, j , and eigenvectors, j , appear in complex-

conjugated pairs. Then the corresponding matrices can be written as: 

 
* * *

1 2 1 2

* * *
1 2 1 2

;

Diag .

m m

m m

                (3.51) 
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The asterisk over a variable denotes complex conjugate quantity 

and Diag  represents a diagonal matrix. In the previous matrices 

the eigenvalues and the associate eigenvectors are ordered in such a 

way that 1 2 m . The symbol  denotes the modulus of 

the function in brackets. Once the complex matrix  is evaluated, 

by applying the coordinate transformations Eq. (3.48) to Eq.(3.46), 

the  following  set  of  2m complex decoupled first order differential 

equations is obtained: 

 

( ) ( ) ( );        (0)t t F tx x v x 0                                            (3.52) 
 

with  

 

.Tv A w                                                                                (3.53) 
 

Finally the nodal response can be evaluated by the coordinate 

transformation (3.48). 

3.4.2 Evaluation of the NGSMs  
In the case of non-classically damped systems the nodal NGSMs 

are evaluated directly as the ,b b  element of the matrices , ( )i tuu . 

These matrices can be evaluated in compact form by introducing the 

PEC matrix. This matrix is a 2 2n n  Hermitian that for non-

classically damped systems can be evaluated as (Muscolino 1991): 

 
* *

*

* *

0, 1,

1, 2,

E ( ) ( ) E ( ) ( )
( ) E ( ) ( )

E ( ) ( ) E ( ) ( )

( ) i ( )
i ( ) ( )

T

T

t t t t
t t t

t t t t

t t
t t

zz

uu uu

uu uu

u u u u
z z

u u u u
          (3.54) 
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where ( )tz  is the nodal state variable vector defined in Eq.(3.47). 

After some algebra, these matrices, can be evaluated in time-domain, 

for quiescent structural systems (at time t=0)  as  follows  (Di  Paola  

1985, Di Paola and Petrucci 1990, Muscolino 1991): 
 

1 2 1 2 1 2
0 0

( ) , d d
t t

T T
FFt t t Rzz ww  (3.55) 

 

where w  has been defined in Eq. (3.47), 1 2( , )FFR  is the complex 

autocorrelation function defined in Eq.(3.15), and t  is  the  

transition matrix defined as (Borino and Muscolino 1986, Muscolino 

1996): 
 

* *( ) exp exp exp *T Tt t t t A        (3.56) 

 

in which D  has been defined in Eq.(3.47),  and , are the 

matrices that collect its eigenvalues and eigenvectors, respectively, 

defined in Eq.(3.51). By substituting the transition matrix (3.56) into 

Eq.(3.55), the nodal PEC matrix can be written as: 

 

* * *
1 2 1 2 1 2

0 0

( )

exp exp , d d
t t

T T
FF

t

t t R

zz

v v

  (3.57) 
 

where the position (3.53) has been used. By substituting the 

autocorrelation function defined in Eq.(3.15) into Eq.(3.57), it is 

possible to evaluate the PEC matrix (3.54) as: 

 
*( ) ( ) Tt tzz xx   (3.58) 
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where ( )txx  is the PEC matrix in the complex state space defined 

as: 

 

0

( ) ( , ) d .t txx xxG   (3.59) 

 

In the previous equation ( , )txxG  is the one-sided EPSD matrix 

function of the complex response, that is: 

 
*

0( , ) ( ) , ,Tt G t txxG X X   (3.60) 

 

where 0G  is  the  one-sided  PSD function of the stationary 

counterpart of the input process and ,tX  is the TFR vector of the 

complex response, given by: 

 

1
0

, exp exp i ( , )d .
t

t t aX = v   (3.61) 

 

Since coordinate transformation (3.48) holds, the following 

coordinate transformation holds too: 

 

( , ) ( , )t tZ X   (3.62) 

 

where ,tZ  is the TFR vector of the complex response. Then Eq. 

(3.58) can be alternatively written as: 
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* *
0

0

*
0

0

( ) ( ) , , d

( ) , , d .

T T

T

t G t t

G t t

zz X X

Z Z
  (3.63) 

 

Notice that by means of the proposed approach the computational 

effort is sensitively reduced; in fact, by mean of the second of 

Eqs.(3.63) the NGSMs of the nodal response are evaluated directly as 

the diagonal element of submatrices of the nodal PEC matrix. This 

means that it is necessary to calculate only 3n  integrals, without the 

necessity of the evaluation of the NGSMs in the complex state space, 

that is equivalent to 23m  integrals. 

3.5 Monte Carlo simulation for the evaluation of 

NGSMs 
In order to make a validation of the models that will be proposed, 

the NGSMs evaluated by the analytical approach have to be 

compared with the ones obtained with the MCS. This method, 

proposed in 1944 by Von Neumann e Ulam, in fact permits to 

evaluate  the  statistics  of  the  response  process,  once  the  samples  of  

the input process have been generated. It is well known that the MCS 

technique is still the only universal method that can provide accurate 

solution even when nonlinearities and input uncertainties are 

involved. In fact the main advantage of this method is to provide 

accurate results for all the problems in which the deterministic 

solution,  analytic  or  numeric,  is  known;  the  main  defect  is  the  

computational effort, that is necessary to obtain solutions that are 

statistically significant. 
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In this section a new approach for the evaluation of the NGSMs 

via the MCS method will be presented; by means of this new method 

the computation of any Hilbert transforms of the generated samples 

of the response is avoided. 

3.5.1 Classically damped structures subjected to mono-

correlated input 
In the framework of classically damped systems subjected to 

mono-correlated stochastic process, since the samples of the input 

stochastic process, ( )iF t , are chosen in such a way that the input 

process, ( )F t , possess one-sided EPSD function, ,FFG t  (see 

Eq.(2.9). In orded to do this the non-stationary input process has to 

be a complex process having stationary counterpart of the imaginary 

part proportional to Hilbert transform of the real stationary 

counterpart part itself. Then, for the evaluation of the NGSMs via the 

MCS, it is necessary to define the real and imaginary part of the 

input process; this requires the computation of the Hilbert transform 

of the samples of the stationary counterpart of the stochastic process 

( )F t . Since the Hilbert transform is very arduous from a 

computational point of view, a new procedure to evaluate the 

NGSMs via the MCS is  herein  proposed.  Notice  that,  doing  so,  the  

computation of any Hilbert transform is avoided.  

The “purged” NGSMs of the complex output process have to be 

evaluated by means of the following relationships (Di Paola 1985, 

Langley 1986a, Muscolino 1988, Di Paola and Petrucci 1990, 

Muscolino 1991): 
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0,
1

1,
1

2,
1

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( ) ;

1Re ( ) Re ( ) Im ( ) Im ( ) Re ( ) ;

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( )

N
i i i i

k k l k l
i
N

i i i i
k k l k l

i
N

i i i i
k k l k l

i

t q t q t q t q t
N

t q t q t q t q t
N

t q t q t q t q t
N

                                                                                        (3.64) 
 

where Re ( )i
kq t  is  the  response  of  the  dummy  oscillator,  whose  

motion is governed by the differential equation (3.13) subjected to 

the forcing function Re ( )iF t , whose generic sample, according to 

Eq.(2.35), can be evaluated as: 
 

1

2Re ( ) 2 , sin
2

cm
i i

FF r
r

F t G t r r t +        (3.65) 

 

while Im ( )i
kq t  is the response of the dummy oscillator (3.13) 

subjected to the forcing function Im ( )iF t , whose generic sample, 

according to Eq. (2.35), can be evaluated as: 
 

1

2Im ( ) 2 , cos .
2

cm
i i

FF r
r

F t G t r r t +        (3.66) 

 

Notice that in Eq. (3.66) the introduction of the function cos , 

instead of sin  is equivalent to carry out the Hilbert transform of 

the stationary counterpart of the input process, but it is not 

equivalent form a computational point of view. In fact, by mean of 

this procedure, the computational effort is sensitively reduced. 
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In Eqs.(3.65) and (3.66) 0.1c cm  is the frequency 

increment; 100 rad /sc  is  the  adopted  upper  cut-off  circular  

frequency; 1000cm  and i
r  are random phase angles uniformly 

distributed over the interval [0 2 ) . Notice that, in order to rightly 

apply  Eqs.(3.64),  the  samples  of  random  phase  angles  have  to  be  

generated at the same time in Eqs.(3.65) and (3.66).  

3.5.2 Classically damped structures subjected to multi-

correlated input 
When the stochastic input is modelled as a multi-correlated fully 

non-stationary process, the “purged” NGSMs of the complex output 

process have to be evaluated by means of the following 

relationships: 

 

0,
1

1,
1

2,

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( ) ;

1Re ( ) Re ( ) Im ( ) Im ( ) Re ( ) ;

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( )

N
i i i i

k rs kr ls kr ls
i
N

i i i i
k rs kr ls kr ls

i

i i i i
k rs kr ls kr ls

i

t q t q t q t q t
N

t q t q t q t q t
N

t q t q t q t q t
N 1

N

  (3.67) 

 

where Re ( )i
jvq t  and Im ( )i

jvq t  are the response of the j-th dummy 

oscillator at the v-support, whose motion is governed by the 

differential equation (3.36) subjected, respectively, to the forcing 

function Re i
v tF  and Im i

v tF . 

The generic sample of the input process, according to the flow 

chart in Figure 2.15, can be evaluated as the v-th element of the 

vector: 
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where 
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   (3.69) 

 
with 0.1c cm  is the frequency increment; 100 rad /sc  

is the adopted upper cut-off circular frequency; 1000cm , j k

and j k are the real and imaginary part, respectively, of the 

eigenvector j  (see Figure 2.15), j
kR  and j

kI  are the real and 

imaginary parts of j
kP , that are complex, normally distributed, zero 

mean random variables, obeying the following condition: 

 
* *,j s j j

k r kr rs k kE P P P P                                              

(3.70) 
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where pq  is the Kronecker delta, defined as: 

 

1, ;
0, .pq

p q
p q

 (3.71) 

 

Notice that, in order to rightly apply Eqs.(3.67), the samples of 

random variables have to be generated at the same time in Eqs. 

(3.69). 

3.5.3 Non-Classically damped structures subjected to 

mono-correlated input 
When the structure is assumed as non-classically damped, the 

traditional modal analysis is not still used, and the nodal NGSMs are 

evaluated directly through the relations: 

 

0,
1

1,
1
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1

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( ) ;

1Re ( ) Re ( ) Im ( ) Im ( ) Re ( ) ;

1Re ( ) Re ( ) Re ( ) Im ( ) Im ( ) .
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N
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N

i i i i
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i

t u t u t u t u t
N

t u t u t u t u t
N

t u t u t u t u t
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  (3.72) 

 

In this case Re ( )i
ru t  and Im ( )i

ru t  are the response of the r-

th nodal DOF, whose motion is governed by the state-variables 

differential equation (3.46) subjected to the forcing function, 

respectively, Re ( )iF t , defined in Eq.(3.65), and Im ( )iF t , 

defined in Eq.(3.66). 
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3.6 The Role of NGSMs in reliability analysis of 

structures 
The NGSMs play a fundamental role in the reliability analysis of 

structures; in fact, for linear structure subjected to stationary or non-

stationary Gaussian random input processes a lot of papers have 

been devoted to the validation of the so called first-passage 

probability problem solutions (that will be further discussed in 

Chapter 5) by applying the methods based on up-crossing mean rates 

of a given threshold and censored closures. Both methods require the 

evaluations of NGSMs which need a very cumbersome 

computational effort, especially for fully non-stationary input 

processes. 

In particular, starting from the purged NGSMs of the modal 

response , ( )i kl t , it is possible to obtain the ones for the generic 

structural response of interest, ( )rS t , , ( )
r ri S S t , by introducing an 

opportune influence matrix E ; in fact, taking into account Eq. (3.2), 

since the following transformations holds: 

 

t t t tS Ru R u Eq   (3.73) 

where R  is a transformation matrix that have to be defined 

specifically for the structural response of interest, consequently the 

NGSMs of ( )rS t  are given by the following relationships: 
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1 1
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1 1 1
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1 1
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( ) ( );

( ) ( ).

i i

i i

i i

m m

S k r s i k i k
k
m m N

S k r s i k i k
k s

m m
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t p p e e t

t p p e e t

t p p e e t

  (3.74) 

 

Then in the framework of non-stationary analysis of structures, 

other time-dependent parameter, very useful in describing the time-

variant spectral properties of the stochastic process, are: i) the 

bandwidth parameter, S t , that measures the variation in the time 

of the narrowness of the stochastic process S t ; ii) the mean 

frequency, S t , which evaluates the variation in time of the mean 

up-crossing rate of the time axis;  iii) the central frequency, C,S t , 

which scrutinizes the variation of the frequency content of the 

stochastic process with respect to time. The three functions 

introduced before can be evaluated as a function of NGSMs and have 

been defined, respectively, as (Michaelov et al 1999a, Michaelov et 

al 1999b): 
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         (3.75) 
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The  problem of  the  reliability  analysis  of  structures  subjected  to  

non-stationary input process and the importance of the NGSMs in 

this framework will be further discussed in Chapter 5. 

3.7 Summary and conclusions 
Once the characterization of the ground motion acceleration is 

done,  aim  of  this  Chapter  is  the  definition  of  the  spectral  

characteristics of the response of linear n-degree-of-freedom 

systems, according to three different scenarios: 

 classically damped structures subjected to mono-correlated 

input; 

 classically damped structures  subjected to multi-correlated 

input; 

 non-classically damped structures subjected to mono-

correlated input. 

After a brief analysis of the dynamic behaviour of these 

structures, the NGSMs are  be  obtained  as  elements  of  the  pre-

envelope covariance matrix. Notice that for the classically damped 

systems the nodal NGSMs are  obtained  as  a  function  of  the  modal  

NGSMs, while for the non-classically damped systems the nodal 

NGSMs are obtained directly in the nodal state space; in the last case 

the computational effort is sensitively reduced, because there isn’t 

the necessity of the evaluation of the NGSMs in  the  complex  state  

space.  

Furthermore, in order to make a validation of the proposed 

procedure, the NGSMs evaluated by the analytical approach have to 

be compared with the ones obtained with the MCS. Then, in this 

Chapter a new approach for the MCS of  the  NGSMs has been 

presented; this new method, takes into account that the non-

stationary input process has to be a complex process having 
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stationary counterpart of the imaginary part proportional to Hilbert 

transform of the real stationary counterpart part itself. By means of 

this new procedure the computational effort is sensitively reduced 

since the computation of any Hilbert transforms of the generated 

samples of the stationary counterpart of the input process is avoided. 
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Equation Section (Next) 
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Chapter 4 

Closed form solutions of the EPSD 

function matrix of the response 

4.1 Introduction 

In the framework of stochastic analysis of linear Multi-Degree of 

Freedom (MDOF) structures, closed-form or explicit solutions are 

very useful especially if the structural reliability analysis is 

performed. Spanos and Solomos (1983) derived analitycal 

expressions for the joint and the marginal probability densities of the 

response amplitude for a lightly damped Single-Degree of Freedom 

(SDOF) oscillator subjected to zero-mean stochastic excitation 

modelled as non-stationary excitation. Explicit or closed-form 

solutions have been presented by Iwan and Hou (1989) for the 

evaluation of the cross-covariance functions of an oscillator 

subjected to uniformly modulated white noise and by Conte and 

Peng (1996) for the evaluation of correlation and the Evolutionary 

Power Spectral Density (EPSD)  matrices  of  the  response  of  

classically damped linear MDOF system subjected to uniformly 

modulated random process. Afterwards closed form solutions have 

been presented by Peng and Conte (1998) for fully non-stationary 
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earthquake excitation modelled by the Conte and Peng (1997) sigma-

oscillatory process. In the case of uniformly modulated random 

process: Jangid (2004) derived closed form expressions for the time-

varying frequency response function; Falsone and Settineri (2011) 

derived the correlation matrix and the EPSD matrix of the response 

of linear structural systems subjected to random multi-correlated 

processes for an exponential type of the modulating function. 

In literature, approximate explicit form solutions of the Non-

Geometric Spectral Moments (NGSMs) have been determined by 

Michaelov et al. (1999b) for linear oscillators subjected to uniformly 

modulated white noise processes, while closed form solutions of the 

NGSMs have been obtained, for both classically and non-classically 

damped linear systems, by Barbato and Conte (2008) for non-

stationary white noise input processes and by Barbato and Vasta 

(2010) for uniformly modulated non-stationary coloured input 

process. Barbato and Conte (2015) derived closed-form solutions for 

the NGSMs of non-stationary stochastic processes representing the 

response of linear elastic structural models subjected to fully non-

stationary excitation earthquake ground motion processes. 

In this Chapter a novel procedure to obtain closed form solutions 

of the EPSD function matrix of the response of linear, classically and 

non-classically damped, structural systems subjected to the seismic 

input, modelled as a fully non-stationary random process is 

proposed. The effectiveness of the proposed procedure will be tested 

with several numerical applications where the results will be 

compared with the Monte Carlo Simulation (MCS).  

Explicit solutions of the EPSD function matrix for particular 

modulating functions, among the most used in literature, are 

proposed in Appendix A.  
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4.2 Closed form solution of the EPSD matrix  

4.2.1 Closed form solutions for classically damped 

structures subjected to mono-correlated input 
In this section closed-form solutions of the EPSD function matrix 

of the response of classically damped systems subjected to mono-

correlated input are proposed. According to Eq. (3.22) the one-sided 

EPSD function matrix of the nodal response is given as: 

 

1 1
( ) ( )

i iu u

m m

ik ik k
k

t p p tG G   (4.1) 

 

where ( , )k tG  is the one-sided EPSD function matrix of the 

“purged” modal response, that can be evaluated as a function of the 

modal Time-Frequency varying Response (TFR) vector function 

, ,i t i k lY (see Eq(3.19)): 

 
*

0( , ) ( ) , ,T
k kt G t tG Y Y                                             (4.2) 

 

where the asterisk indicates the complex conjugate quantity and 

0( )G  is the one-sided PSD function of the stationary counterpart of 

the input process. According to Eqs.(3.18), the vector ,j tY  can 

be written in integral form  as: 
 

0

, = exp i ( , ) d ; ,
t

j j
t

t t a j kY v        (4.3) 

 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

128 

where j t  is the transition matrix of the j-th modal oscillator 

defined as (Borino and Muscolino 1986): 
 

2

2

( ) ( )
( ) exp

( ) ( )
j j j

j j
j j j

g t h t
t t

h t h t
D        (4.4) 

 

with 
 

2

1( ) exp cos( ) sin( ) ;

1( ) ( ) exp sin( );

( ) exp cos( ) sin( ) .

j j
j j j j j

j j

j j j j j
j

j j
j j j j j

j

g t t t t

h t g t t t

h t t t t

       (4.5) 

 

Notice that Eq.(4.3) represent the integral form of the response, in 

state variable, of the j-th quiescent dummy oscillator (3.13), at time 

0t t , subjected to the force , exp ,f t i t a t . Eq. (4.3) 

can  be  also  obtained  as  the  solution  of  the  following  first  order  

differential equation:  
 

0 0,, = , + , ( ); ,j j j j jt t f t t tY D Y v Y Y  (4.6) 

 

where ( )t  is the unit step function defined as 

 

0
0

0

0, ;
( )

1, ,
t t

t t
t t

  (4.7) 

 

and 
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2

0 1 0
; .

2 1j
j j j

D v    (4.8) 

 

Eq.(4.6) represents the differential equation of motion, in state 

variable,  of the j-th dummy oscillator (3.13), with initial conditions 

0 0,,j jtY Y  at time 0t t , subjected to a pseudo-force ( , )f t . 

If the particular solution of this equation, p, ,j tY , can be 

determined in explicit form (Muscolino and Alderucci 2015), the 

modal TFR vector function,  solution  of  Eq.(4.6),  can  be  written  as  

(Borino and Muscolino 1986,Muscolino 1996): 

 

p, 0 0 p, 0, , , , ( ).j j j j jt t t t t t tY Y Y Y  (4.9) 

 

Notice that the differential formulation (4.9) is valid also when 

the j-th dummy oscillator is not quiescent at time time 0t t , on the 

contrary of the integral formulation (4.6). Furthermore, the 

contribution  of  the  last  term  in  the  right  member  of  Eq.(4.9)  

decreases in the time because of the transition matrix satisfies the 

following condition: 

 

lim ( ) .jt
t 0          (4.10) 

 

The analytical expression of the particular solution vector 

p, ,j tY , which appears in Eq.(4.9), can be easily obtained in 

closed form for the most common models of modulating function 

( , )a t  proposed in literature. 

In particular almost the totality of modulating functions proposed 

in literature (see e.g. Shinozuka and Sato 1967, Amin and Ang 1968, 
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Iyengar and Iyengar 1969, Jennings et al. 1969, Hsu and Bernard 

1978, Spanos and Solomos 1983, Iwan and Hou 1989, Conte and 

Peng 1997) can be evaluated as linear combinations of the following 

function: 

 

0 0 0( , ) ( ) ( ) exp ( )( ) ( );ba t t t t t t t  (4.11) 

 

where 0( )t t  is the unit step function (4.7), r  is an integer real 

number, while  and  could be complex functions which 

have to be chosen to satisfy the condition: ( , ) ( , )a t a t . It 

follows that the particular solution vector of the differential 

equations of the j-th oscillator with initial conditions 

0 0,,j jtY Y  at time 0t t , forced by the function 

exp i ( , )0t - t a t , can be evaluated in closed form as follows 

(Muscolino and Alderucci 2015):  

 

p,

1
0 0 0

0

,

!( ) exp ( ) ( ) ( );
!

j

b
s b s

j
s

t

bt t t t t t
s

Y

B v

              (4.12) 

 

with 

 

1

2 2

i ;

2 1
+ ;j j

j j j
j

B D
 (4.13) 

 

and  



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

131 

2 2

1 .
2j

j j j

  (4.14) 

 

Substituting the vector p, ,j tY  into Eq.(4.9), the solution 

vector, ,j tY , of the j-th oscillator in state variable, can be 

evaluated in closed-form solution as:  

 

10
0

0

1
0 0

( ), ( ) ! exp ( )
!

( );

sb
b s

j j
s

b
j j

t tt b t t
s

t t t t

Y B

B v

 

 (4.15) 
 

where the conditions 0,j tY 0  has been considered. It has to be 

emphasized that this very remarkable result is obtained because of 

the state variable formulation has been adopted. 

Notice that if the modulating function is assumed equals to unit 

step function, ( , ) ( )a t t , with ( )t  defined in Eq.(4.7), and 

taking the limit as t , the first of element of Eq.(4.15) leads to: 
 

lim , exp ij jt
Q t t H         (4.16) 

 

where jH  is the frequency response function of  the  j-th modal 

oscillator: 
 

2 2

1 .
i 2j

j j j

H         (4.17) 
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Finally, substituting Eq. (4.15) in Eq. (4.2) and the result in Eq. 

(4.1) the one-sided EPSD function matrix of  the  nodal  response  is  

obtained. 

4.2.2 Closed form solutions for classically damped 

structures subjected to multi-correlated input 
In this section closed-form solutions of the EPSD function matrix 

of  the  response  of  classically  damped  systems  subjected  to  multi-

correlated input are proposed, for both the evolutionary process 

model and sigma-oscillatory process model of the stochastic input. 

In this case this matrix, according to Eq. (3.44), can be written as: 

 

1 11 1
( ) ( )

i i

N N

u u k r s i k i k r s
r s

m m

k
t p p tG G   (4.18) 

 

where ( , )k rs tG  is the is the one-sided EPSD function matrix of 

the “purged” modal response between the two stations r and s. 

4.2.2.1 Evolutionary process model 

In the case of multi-correlated input the one-sided EPSD function 

matrix of the “purged” modal response between the two stations r 

and s is obtained as: 

 

0,( , ) , , .T
k rs k r rs st t G t*G Y Y   (4.19) 

 

In the previous equation 0,r sG  is the r-th, s-th element of the 

matrix 0G ; the modal TFR vector function, ,j v tY , for 
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quiescent systems at time 0t t , taking into account Eq.(2.47), can 

be evaluated as: 

 

0

, exp i ( , ) d ; , ; , .
t

j v j v
t

t t a j k v r sY v

                                                                                                 (4.20) 

 

Notice that Eq.(4.20) represent the integral form of the 

response, in state variable, of the j-th quiescent dummy oscillator 

(3.36), at time 0t t , subjected to the force 

, exp ,v vf t i t a t , in which ( , )va t  is the modulating 

function of the evolutionary process, v-th, element ( , )v r s  of 

the diagonal matrix ( , )tA . 

As recently proposed by Alderucci and Muscolino (2015), the 

modal TFR vector functions ,j v tY , for the commonly adopted 

expressions of the time-frequency varying modulating functions, 

( , )va t ,  can  be  obtained  in  closed  form solution  as  the  solution  of  

the following first order differential equations, given as:  

 

0 0,, = , + exp i ( , ); ,jv j jv v jv jvt t t a t tY D Y v Y Y   (4.21) 

 

If the particular solution of this equation, p, ,j v tY , can be 

determined in explicit form, the solution of Eq.(4.21), can be written 

respectively as (Borino and Muscolino 1986, Muscolino 1996): 

 

p, 0 0 p, 0, , , , .j v j v j j v j vt t t t t tY Y Y Y  (4.22) 
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Notice that the differential formulation (4.21) is valid also when 

the j-th dummy oscillator is not quiescent at time time 0t t , on the 

contrary of the integral formulation (4.20). Furthermore, the 

contribution of the last term in the right member of Eq.(4.22) 

decreases in the time because of the transition matrix, defined in 

Eq.(4.4) satisfies the condition (4.10). 

Almost the totality of modulating functions proposed in literature 

(see e.g. Shinozuka and Sato 1967, Amin and Ang 1968, Iyengar 

and Iyengar 1969, Jennings et al. 1969, Hsu and Bernard 1978, 

Spanos and Solomos 1983, Iwan and Hou 1989, Conte and Peng 

1997) can be evaluated as linear combinations of the following 

function: 

 

0 0 0( , ) ( )( ) exp ( ) ( ) ( ) ; 1,..., ;vb
v v va t t t t t t t v N  

                  (4.23) 

 

where 0( )t t  is the unit step function defined as (4.7), r  is an 

integer real number, while ( )v  and ( )v  could be complex 

functions which have to be chosen to satisfy the condition: 
*( , ) ( , )v va t a t . It follows that the particular solution vector of the 

differential equations of the j-th oscillator with initial conditions 

0 0,,j v j vtY Y  at time 0t t , forced by the function 

0exp i ( , )vt - t a t , can be evaluated in closed form as follows 

(Alderucci and Muscolino 2015):  
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p, 0

1
0 0

0

, ( ) exp ( )

!( ) ( );
!

v
v

j v v v

b
b ssv
j v

s

t t t

b t t t t
s

Y

B v
                    (4.24) 

 

with 

 

1

2 2

i ;  

2 1
+

v v

v j j
j v j v j v

j v

B D
(4.25) 

 

and  

 

2 2

1 .
2j v

v j j v j

        (4.26) 

 

Substituting the vector p, ,j v tY  into Eq.(4.22), the solution 

vector, ,j v tY ,  of  the  j-th oscillator in state variable, can be 

evaluated in closed-form solution as:  

 

0

1 10
0 0

0

, ( ) ! exp ( )

( ) ( );
!

v
v v

j v v v v

b s
b s b
j v j jv

s

t b t t

t t t t t t
s

Y

B B v
 (4.27) 

 

where the condition ,j v qtY 0  has been considered. It has to be 

emphasized that this very remarkable result is obtained because of 

the state variable formulation has been adopted.  
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Finally, substituting Eq. (4.27) in Eq. (4.19) and the result in Eq. 

(4.18) the one-sided EPSD function matrix of the nodal response is 

obtained. 

4.2.2.2 Sigma-oscillatory process model 
When the sigma-oscillatory process is used as model of the multi-

correlated input the one-sided EPSD function matrix of the “purged” 

modal response is given as: 

 

0,
1

( , ) , ,
N

q T
k rs k rq rs lsq

q
t t G t*G Y Y                             (4.28) 

 

where ( )
0,

q
rsG is the one-sided cross-PSD function of ground 

accelerations, in a particular direction between surface points r and 

s. In this case the modal TFR vector function, ,jvq tY , for 

quiescent systems at time 0t t , taking into account Eq.(2.59), can 

be evaluated as: 

 

,, exp i ( , ) d ; , ; , .
q

t

j vq j v q
t

t t a j k v r sY v

                                                                                                    (4.29) 
 

Notice that Eq.(4.29) represent the integral form of the 

response, in state variable, of the j-th quiescent dummy oscillator 

(3.36), at time qt t , subjected to the force 

, ,, exp ,v q v qf t i t a t , in which , ( , )v qa t  is the 

modulating function of the q-th component of the sigma-
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oscillatory process, v-th, element ( , )v r s  of the diagonal matrix 

( , )q tA . 

As recently proposed by Alderucci and Muscolino (2015), the 

modal TFR vector functions ,jvq tY , for the commonly adopted 

expressions of the time-frequency varying modulating functions 

, ( , )v qa t , can be obtained in closed form solution as the solution of 

the following first order differential equations, given as:  

 

, 0,, = , + exp i ( , ); , .j vq j j vq v q jvq q j vqt t t a t tY D Y v Y Y
                                                                                   (4.30) 

 

If the particular solution of this equation, p, ,jvq tY , can be 

determined in explicit form, the solution of Eq.(4.30), can be written 

as (Borino and Muscolino 1986, Muscolino 1996): 

 

p, 0 0 p, 0, , , , .j vq j v q j j v q j v qt t t t t tY Y Y Y  
         (4.31) 
 

Notice that the differential formulation (4.21) is valid also when 

the j-th  dummy  oscillator  is  not  quiescent  at  time  qt t , on the 

contrary of the integral formulation (4.20). Furthermore, the 

contribution of the last term in the right member of Eq.(4.31) 

decreases in the time because of the transition matrix, defined in 

Eq.(4.4) satisfies the condition (4.10). 

Almost the totality of modulating functions proposed in literature 

(see e.g. Shinozuka and Sato 1967, Amin and Ang 1968, Iyengar 

and Iyengar 1969, Jennings et al. 1969, Hsu and Bernard 1978, 

Spanos and Solomos 1983, Iwan and Hou 1989, Conte and Peng 
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1997) for the sigma-oscillatory stochastic processes can be evaluated 

as linear combinations of the following function: 

 

, ( , ) ( )( ) exp ( ) ( ) ( ) ;

1, ..., , 1, ...,

v qb
v q v q q v q q qa t t t t t t t

v N q M
       (4.32) 

 

where ( )qt t  is the unit step function defined as (4.7), r  is an 

integer real number, while vq  and vq  could be complex 

functions which have to be chosen to satisfy the condition: 
*

, ,( , ) ( , )v q v qa t a t . It follows that the particular solution vector of 

the differential equations of the j-th oscillator with initial conditions 

0,,j v q j vtY Y  at time qt t , forced by the function 

,exp i ( , )q v qt - t a t , can be evaluated in closed form as follows 

(Alderucci and Muscolino 2015):  

 

p,

1

0

, ( ) exp ( )

!
( ) ( );

!

v q
v q

j vq vq v q q

b
b sv q s

q j vq q
s

t t t

b
t t t t

s

Y

B v
        (4.33) 

 

with 

 

1

2 2

i ;   

2 1
+ ;

vq vq

vq j j
j vq j v q j v q

j v q

B D

                                                                                                   (4.34) 

 

and  
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2 2

1 .
2j vq

vq j j vq j

        (4.35) 

 

Substituting the vector p, ,j v q tY  into Eq.(4.31), the solution 

vector, ,j v q tY ,  of  the  j-th oscillator in state variable, can be 

evaluated in closed-form solution, respectively,  as:  

 

11

0

, ( ) ! exp ( )

( )
( )

!

v q
v qvq

j vq vq vq v q q

sb
bb sq

jv q j q j vq q
s

t b t t

t t
t t t t

s

Y

B B v
 (4.36) 

 

where the condition ,j v q qtY 0  has been considered. It has to be 

emphasized that this very remarkable result is obtained because of 

the state variable formulation has been adopted. 

Finally, substituting Eq. (4.36) in Eq. (4.28) and the result in Eq. 

(4.18) the one-sided EPSD function matrix of the nodal response is 

obtained. 

4.2.3 Closed form solutions for non-classically damped 

structures subjected to mono-correlated input 
In this section closed-form solutions of the EPSD function matrix 

of the response of non-classically damped systems subjected to 

mono-correlated input are proposed.  

The one-sided EPSD matrix function of the nodal response 

( , )tZZG  is, given by: 

 
*

0( , ) ( ) , ,Tt G t tZZG Z Z   (4.37) 
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where 0( )G  is  the  one-sided  PSD  function  of  the  stationary  

counterpart of  input process ( )F t  and ,tZ  is the TFR vector of 

the nodal response. If the system is assumed as non-classically 

damped, the vector ,tZ  can be written in integral form  as: 

 

0

, = exp i ( , ) d ; ,
t

t

t t a j kZ v        (4.38) 

 

where t  is the transition matrix defined as (Borino and 

Muscolino 1986): 
 

( ) exp exp Tt t tD A        (4.39) 

 

where D  has been defined in Eq.(3.47). Notice that Eq.(4.38) 

represent the integral form of the solution of Eq. (3.46), when the 

system is assumed quiescent, at time 0t t , and subjected to the 

force , exp ,f t i t a t . ,tZ  can be also evaluated as 

the solution of the following set of 2n first order differential equation 

(Muscolino and Alderucci, 2015): 

 

0 0, = , + , ;     , t =t t t tfZ D Z w Z Z   (4.40) 

 

subjected to pseudo-force ( , ) exp i ( , )f t t a t . In the 

previous equations w  has been defined in Eq.(3.47). Since the 

following coordinate transformation holds: 

 

( , ) ( , )t tZ X   (4.41) 
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It follows that the first order differential equation (4.40) can be 

rewritten as a set of 2m decoupled first order differential equations: 

 

0 0 0

( , ) ( , ) ( , ) ;

( , )= T

t t f t t

t

X X v

X X A Z
  (4.42) 

 

This equation represents the differential equation of motion, in 

state variable, of a dynamical system at with initial conditions 

0 0( , )tX X  at time 0t t , subjected to a pseudo-force ( , ).f t  If 

the particular solution of Eq.(4.42), p ,tX , can be determined in 

explicit form, the TFR vector function can be written as (Borino and 

Muscolino, 1986; Muscolino 1996): 

 

p 0 p 0, , exp , ,t t t t t tX X X X  (4.43) 

 

Notice that the differential formulation (4.43) is valid also when 

the dynamical system is not quiescent at time time 0t t , on the 

contrary of the integral formulation(4.38). Then, according to 

Eq.(4.41), the solution of Eq.(4.40) can be written as:  

 

p 0 p 0

p 0 p 0

, ,

= , exp , ,

, , , .

t t

t t t t t

t t t t t

Z X

X X

Z Z Z

 (4.44) 

 

The analytical expression of the particular solution vector 

p p, ,t tZ X , can be easily obtained in closed form for the 
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most common models of modulating function ( , )a t  proposed in 

literature.  

Then the particular solution vector of non-classically damped 

structural system, forced by the function , exp ,f t i t a t , 

can be evaluated in closed form as:  

 

p 0

1
0

0

, exp

!
!

b
s b s T

s

t t - t

b t - t t
s

Z

A w
 (4.45) 

 

where i  and is a diagonal matrix defined as:  

 
1

2+ mI  (4.46) 

 

whose j-th element is  

 

1
j

j

 (4.47) 

 

being j  the j-th element of diagonal matrix . Finally, substituting 

p , tZ  into Eq.(4.44) the solution vector ,tZ  can be evaluated 

in closed-form solution as: 

 

0

1 10
0

0

, ! exp ( )

( )
!

sb
b s T b

s

t b t t

t t t t t
s

Z

w
 

              (4.48) 
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where the condition 0( , )tZ 0  has been considered. Notice that if 

all complex modes have been considered in the analysis and the 

modulating function is assumed equals to unit step function, 

( , )a t t ,  by  taking  the  limit  as  t , the TFR vector 

function, ,tZ , leads to: 

 

lim , exp i

exp i
i

T

t
t t t

t t

Z A w

H
w

H

                         (4.49) 

 

where H  is the frequency response function matrix in the nodal 

space: 

 
12 i .H K M C                                                  (4.50) 

 

Finally, substituting Eq. (4.45) in Eq. (4.44) and the result in Eq. 

(4.37) the one-sided EPSD function matrix of the nodal response is 

obtained. 

4.3 Numerical applications 

4.3.1 Classically damped systems subjected to mono 

correlated input 

4.3.1.1 SDOF system  
In order to validate the proposed procedure when the forcing 

input is represented by the chirplets, a SDOF system, with different 

damping ratios has been analysed. These three SDOF systems are 
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subjected to a ground motion acceleration, modelled as the adaptive 

spectrogram (2.31), with the target one-sided PSD of ground 

acceleration 0G  modelled by the Clough and Penzien (1975) 

acceleration spectrum defined as: 

 
22

0 22 22

4

22 22

1 4 /

1 / 4 /

/

1 / 4 /

g g

g

g g g

f

f f f

G G

       (4.51) 

 

with 8 rad/sg , 0.6f g , 0.1f g  and 

2 30.01246 m /sgG . 

The Figures 4.1, 4.2 shows the comparison between the between 

the first NGSM 0,uu t  and  the  validation  with  the  MCS (1000 

samples).  

 

 

Figure 4. 1 Comparison of closed-form solutions and MCS of spectral characteristics 
0, ( )uu t  2m for  SDOF  systems  with  natural  period  2 sT  and 

varying damping ratio 0.01, 0.05, 0.15 . 
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Figure 4. 2 Comparison of closed-form solutions and MCS of spectral characteristics 

2, ( )uu t  2 2m /s for SDOF systems with natural period 2 sT  and 

varying damping ratio 0.01, 0.05, 0.15 . 

 

Figure 4.3 show the one-sided EPSD function of the response of 

the three SDOF systems, evaluated according to Eq.(4.1); closed 

form solution of the EPSD function when the input is represented by 

the chirplets are given in the Appendix A. 
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Figure 4. 3 One-sided EPSD functions of the response ,uuG t  2m s  of   SDOF  

systems with natural period 2 sT  and varying damping ratio: a) 
0.01 ; b) 0.05 ; c) 0.15 . 

 

4.3.1.2 MDOF system  
In this section the benchmark quiescent classically damped linear 

MDOF (Muscolino and Alderucci 2015), composed by a three-story 

one-bay steel shear-frame, is considered. This frame has a uniform 

story height 320 cmH  and a bay width 600 cmL , as shown 

in Figure 4.4. The steel columns are made of European HE340A 

wide  flange  beams  with  moment  of  inertia  along  the  strong  axis  
427690 cmI . The steel material is modelled as linear elastic 

with Young’s modulus  200 GPaE . The beams are considered 

rigid to enforce a typical shear building behaviour. Under this 

b) 

c) 
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assumptions, the shear-frame is modelled as a three DOF linear 

system.  

 

 

Figure 4. 4 Geometric configuration of benchmark three-story one-bay shear-type 
frame. 

 

The frame described above is assumed to be part of a building 

structure with a distance between frames 0 600 cmL . The 

tributary mass per story, M, is obtained assuming a distributed 

gravity load of 28 kN/mq , accounting for the structure’s own 

weight, as well as for permanent and live loads, and is equal to 

28800 kgM . The modal periods of the linear elastic undamped 

shear-frame are 1 0.376 sT , 2 0.134 sT  and 3 0.093 sT , with 

corresponding effective modal mass ratios of 

91.41%, 7.45% and 1.10%  respectively. The damping ratio 

0.05  is assumed equal for the three modes of vibration.  
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The benchmark structural model is subjected to a stochastic 

earthquake base excitation. The ground acceleration is modelled as 

either time or time-frequency modulated functions. The one-sided 

PSD of the “embedded” stationary countpart stochastic process is 

defined by the so-called Kanai (1957)-Tajimi (1960) model: 
 

2 2 2 4
K K K

0 W 22 2 2 2 2
K K K

4
( )

4
G G                     (4.52) 

 

where K=19 rad/s  is the filter frequency that determines the 

dominant input frequency and K= 0.65 is the filter damping 

coefficient that indicates the sharpness of the one-sided PSD 

function. In Eq.(4.52), in order to compare the responses evaluated 

by adopting different models, the one-sided PSD of  the  ideal  white  

noise, WG , is normalized in such a way that the “total ground motion 

acceleration energy” of the analysed non-stationary ground 

acceleration model is the same as that of Conte and Peng (1997) 

model, that is: 
 

W
0 0

, d d
ft

FFE G                       (4.53) 

 

where ,FFG t  is the one-sided EPSD function of the input process 

introduced in Eq.(2.9) and (0, ]ft  is the time interval in which the 

ground motion possesses significant values. 

In this section, four different models of the non-stationary 

earthquake ground acceleration are considered. The first two 

processes, that is the normalized exponential type II modulating 
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function (see Eq. (2.12)) (Shinozuka and Sato 1967) and Jennings et 

al. (1969) type modulating function (see Eq.(2.14)), represent 

uniformly modulated processes; while the last two, Spanos and 

Solomos model (1983) (see Eq.(2.16)) and Conte and Peng model 

(1997) (see Eq.(2.68) to Eq.(2.70)), represent fully non-stationary 

random processes. The parameters selected for the normalized 

exponential type II modulating function (Shinozuka and Sato 1967), 

see Eq.(2.12), are: 2 0.045 ,  3 0.05 ; while the ones for the 

Jennings et al. (1969), see Eq.(2.78), are: 1 4 s ,t  2 14 s ,t  and 

4 0.3 . The parameters selected for Spanos and Solomos (1983) 

type modulating function are: 
 

2

5 52

1 0.15 ; 2.
2 25

                   (4.54) 

 

Finally, the parameters selected for the Conte and Peng (1997) 

model are the ones estimated for the N-S accelerogram component 

of the Imperial Valley earthquake of May 18, 1940, recorded at the 

El Centro site (Conte and Peng 1997). These parameters are reported 

in Table 4.I.  

 

 
Table 4. I Parameters for the non-stationary ground motion of the Conte and Peng 

(1997) model, corresponding to the NS accelerogram component recorded 
to El Centro (May, 18 1940). 

q q  qr  q  qt  [s] q  q  [rad/s] 

1 37.2434 8 2.7283 - 0.5918 1.4553 6.7603 
2 104.0241 8 2.9549 - 0.9857 2.4877 11.0857 

3 31.9989 8 2.6272 1.7543 3.3024 7.3688 

4 43.8375 9 3.1961 1.6860 2.1968 13.5917 
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5 33.1958 9 3.1763 - 0.0781 3.1241 14.3825 

6 41.3111 9 3.1214 - 0.7096 6.7335 25.1532 

7 4.2234 10 2.9904 - 0.9464 2.6905 48.0612 

8 19.9802 6 1.8950 1.4020 7.2086 37.6163 

9 2.4884 10 2.6766 5.3123 6.1101 19.4612 

10 24.1474 10 3.3493 8.8564 1.9862 9.040 

11 2.5916 2 0.2240 3.2558 2.4201 9.3381 

12 2.2733 3 0.5285 16.2065 1.5244 14.1067 

13 24.2732 3 1.0361 17.5331 1.7141 24.0444 

14 41.0734 2 0.7511 22.3717 5.9541 27.7953 

15 1.3697 10 2.5936 21.6830 1.9362 12.9198 

16 15.4646 2 0.7044 27.2979 1.7897 12.0205 

17 0.0174 10 1.8451 - 2.4168 4.9373 98.6280 

18 2.9646 10 3.1137 1.5751 1.9726 61.8316 

19 0.0007 10 1.3686 2.5173 3.2479 43.9075 

20 0.8092 4 0.5969 6.4396 3.6749 26.3365 

21 16.7115 2 0.7294 12.4930 1.7075 37.1139 

 

The corresponding “total ground motion acceleration energy” is: 
2 2107734 cm /sWE . It follows that the 2 3

W 157.3 cm sG  for 

the normalized exponential type II quasi-stationary model 

(Shinozuka and Sato 1967), 2 3
W 155.4 cm sG  for the Jennings et 

al. (1969) quasi-stationary type model and 2 3
W 418 cm sG  for 

the Spanos and Solomos (1983) fully non-stationary type model. 

In Figures 4.5 and 4.6 the one-sided EPSD functions, ,FFG t , 

and the central frequency functions, ,C F t , of the input processes 

associated to the four modulating functions herein considered are 

depicted. Analysing these Figures the different behaviour of these 

functions for the four models here studied is evident. In particular for 

the first two models, which represent quasi-stationary random 

processes, the central frequency is constant while for the last two 
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models, which describe fully non-stationary random  processes,  the  

central frequency is time-variant. 

 

       

      

Figure 4. 5 One-sided EPSD of the input process ,FFG t 2 3cm s for the four 

analysed non-stationary models: a) Shinozuka and Sato model (1967); b) 
Jennings et al. model (1969); c) Spanos and Solomos model (1983); d) 
Conte and Peng model (1997). 

a) b) 

c) d) 
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Figure 4. 6 Time-variant central frequency ,C F t  [rad/s] of the input process for the 
four analysed non-stationary models: a) Shinozuka and Sato model (1967); 
b) Jennings et al. model (1969); c) Spanos and Solomos model (1983); d) 
Conte and Peng model (1997). 

 

Figures 4.7-4.9 show the absolute value of the components of the 

modal TFR vector functions, , 1,2,3j t jY , that are the 

evolutionary frequency response function, ,jQ t , and its time 

derivative ,jQ t , for the first three models of the non-stationary 

earthquake ground acceleration (Shinozuka and Sato (1967) model, 

Jennings et al. (1969) model, Spanos and Solomos (1983) model).  
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Figure 4. 7 Absolute value of the modal evolutionary frequency response function, 

,iQ t  1,2,3i ,  and  of  its  time  derivative,  ,iQ t  1,2,3i , for 

the Shinozuka and Sato model (1967) of the non-stationary input process  

 

From the analysis of this Figures it is evident that for the first two 

models, that are quasi-stationary input model, the shape of this 

function is sensitively influenced from the corresponding circular 

frequency, while in the Spanos and Solomos model of the fully non-

stationary input process their aspect is substantially due to the 

frequency varying content of the modulating function.  
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Figure 4. 8 Absolute value of the modal evolutionary frequency response function, 

,iQ t  1,2,3i ,  and  of  its  time  derivative,  ,iQ t  1,2,3i , for 

the Jennings et al. model (1969) of the non-stationary input process  

 

Notice that the same quantities are not depicted for the Conte and 

Peng (1997) model since, in this case, the TFR vector functions have 

to be defined for each component of the sigma-oscillatory process. 

For this reason the meaning of these quantities is difficult to 

interpret. 
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Figure 4. 9 Absolute value of the modal evolutionary frequency response function, 
,iQ t  1,2,3i ,  and  of  its  time  derivative,  ,iQ t  1,2,3i , for 

the Spanos and Solomos model (1983) of the non-stationary input process  

 

In Figure 4.10-4.12 the time histories of the relative to ground 

displacement NGSMs of the three floors for the four modulating 

functions, herein analysed, are depicted; it can be easily observed 

that the shape of the modulating function influences significantly the 

response configuration of spectral moments. In order to verify the 

proposed procedure the time-variant NGSMs evaluated by the 

proposed analytical approach are compared with the ones obtained 

by MCS. To obtain the MCS results, 5000N  samples of input the 

random process have been generated.  
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Notice that the imaginary part of the first order NGSM, 1,Im
i iu u

, has not been here depicted since it is not necessary for the 

evaluation of the spectral characteristics of the response. 

 

       

       

Figure  4.  10  Comparison  between  the  time-variant  histories  of  the  0, ( )
i iu u t NGSMs 

2cm , of the three relative to ground floor displacements, evaluated by 

applying the proposed analytical solution and the MCS for the four 
analysed models of non-stationary input process a) Shinozuka and Sato 
model  (1967);  b)  Jennings  et  al.  model  (1969);  c)  Spanos  and  Solomos  
model (1983); d) Conte and Peng model (1997). 
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Figure 4. 11 Comparison between the time-variant histories of the
1,R e ( )

i iu u t  

NGSMs 2cm s , of the three relative to ground floor displacements, by 

applying the proposed analytical solution and the MCS for the four 
analysed models of non-stationary input process : a) Shinozuka and Sato 
model (1967); b) Jennings et al. model (1969); c) Spanos and Solomos 
model (1983); d) Conte and Peng model (1997). 
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Figure 4. 12 Comparison between the time-variant histories of the 2, ( )
i iu u t  NGSMs 

2 2cm s , of the three relative to ground floor displacements, evaluated 

by applying the proposed analytical solution and the MCS for the four 
analysed models of non-stationary input process : a) Shinozuka and Sato 
model  (1967);  b)  Jennings  et  al.  model  (1969);  c)  Spanos  and  Solomos  
model (1983); d) Conte and Peng model (1997). 

 

In Figure 4.13 the bandwidth parameters, 
i iu u t , of the relative 

to ground floor displacements are depicted. These Figures show that, 

for  the  uniformly  modulated  models  as  well  as  for  the  Spanos  and  

Solomos (1983) model, the bandwidth parameters decrease rapidly 

from a value close to 0.6 (corresponding to a broadband process) to a 

value close to 0.2 (corresponding to a much narrower band process). 

On the contrary for the Conte and Peng (1997) model, this parameter 
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Figure 4. 13 Bandwidth parameter 
i iu u t  of the three floors for the four analysed 

models of non-stationary input process : a) Shinozuka and Sato model 
(1967); b) Jennings et al. model (1969); c) Spanos and Solomos model 
(1983); d) Conte and Peng model (1997). 
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behaviour is different for the last two models, corresponding to non-

separable processes; in Figures 4.14c and 4.15c the mean frequencies 

and the central frequencies decrease in time while in Figures 4.14d 

and 4.15d the same quantities oscillate through a mean value. In 

addition the time histories of time-variant spectral parameters for the 

three floors are almost coincident. 

 

       

       

Figure 4. 14 Mean frequency ,i iu u t of the three floors for the four analysed models 
of non-stationary input process : a) Shinozuka and Sato model (1967); b) 
Jennings et al. model (1969); c) Spanos and Solomos model (1983); d) 
Conte and Peng model (1997). 
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Figure 4. 15 Central frequencies of the three floors normalized by the first mode 
natural frequency , 1/

i iC u u t  for the four analysed models of non-
stationary input process: a) Shinozuka and Sato model (1967); b) 
Jennings et al. model (1969); c) Spanos and Solomos model (1983); d) 
Conte and Peng model (1997). 
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Figure 4.16 One-sided EPSD of the response process of the third floor 
3 3

,u uG t
2cm s for the four analysed non-stationary models: a) Shinozuka and 

Sato model (1967); b) Jennings et al. model (1969); c) Spanos and 
Solomos model (1983); d) Conte and Peng model (1997). 

 

4.3.2 Classically damped systems subjected to multi-

correlated input 

4.3.4.1 Four span continuous deck 
The accuracy of the proposed method if verified comparing the 

between the first NGSM of the bridge deck (see Figure 2.19) 

response, 0,uu t , evaluated by means of the proposed procedure 

with the one obtained by MCS (2500 samples). In particular, in 

Figures 4.17, as well as the validation with the MCS, the first NGSM 

of the response of the bridge obtained by taking into account the 

spatial variability of the ground motion and the ones which are the 

result of the hypothesis of uniform ground motion, are compared for 

the two analysed models of non-stationary multi-correlated input 

process: Hsu e Bernard model (1978) and Spanos and Solomos 

a) b) 

c) d) 
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model (1983). The parameters of these modulating functions are the 

same of Section 2.8.2.  

 

  

  
Figure 4. 17 Time-variant histories of the 0, ( )uu t NGSMs 2m  obtained by taking 

into account the spatial variability of the ground motion (dashed line), 
under the hypothesis of uniform ground motion (continuous line) and 
comparison with the MCS (red dots) for the two analysed models of 
non-stationary input process: a) Hsu e Bernard model (1978); b) 
Spanos and Solomos model (1983). 

 

Then figure 4.18 shows the comparison between the first NGSM 

of the response of the bridge obtained by taking into account the 

spatial variability of the ground motion and the one in the hypothesis 

of uniform ground motion, when the input is modelled as a sigma-

oscillatory process, as explained in Section 2.8.2. In the same Figure 

the validation with the MCS (2500 samples) is shown.  
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Figure  4.  18  Time-variant  histories  of  the  variance  of  the  0, ( )uu t NGSMs 2m  

obtained by taking into account the spatial variability of the ground 
motion (dashed line), under the hypothesis of uniform ground motion 
(continuous line) and comparison with the MCS (red dots) for the 
sigma-oscillatory process model. 

 

 

Figure 4. 19 One-sided EPSD functions of the response ,uuG t  2m s  for the two 

analysed models of non-stationary input process: a) Hsu e Bernard model 
(1978); b) Spanos and Solomos model (1983). 
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Figure 4. 20 One-sided EPSD functions of the response ,uuG t  2m s  for  the  

sigma-oscillatory process model (Battaglia 1979) 

 

For both the evolutionary and sigma-oscillatory models of 

stochastic input the EPSD function of the response (see Eq. (4.18)) 

are obtained as function of the TFR vector functions (see Figures 

4.19 and 4.20). 

4.3.4.2 Truss structure bridge 
The proposed procedure is also applied to the 43-bar truss 

structure (Cacciola and Muscolino 2011) shown in Figure 4.21.  

 

 

Figure 4. 21 Reference truss structure. 

 

All the elements have the same cross section area, 
20.004265 miA , and nominal Young’s modulus, 

11 22 10 N/miE , while the lengths iL are specified in Figure 
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4.21 1, 2, , 43i ; the lumped mass at each node is summarized 

in Table 4.II, while the first ten periods and circular frequencies are 

written  in  Table  4.III.  The  truss  structure  is  assumed  classically  

damped with damping ratio equal to 0.02  

 
Table 4. II Lumped mass at each node of the truss-structure 

n Mass [kg] n Mass [kg] n Mass [kg] n Mass [kg] 

1 156.55 7 10212.69 13 187.58 19 212.69 

2 10212.69 8 10212.69 14 212.69 20 212.69 

3 156.55 9 10212.69 15 212.69 21 212.69 

4 10212.69 10 10212.69 16 212.69 22 187.58 

5 10212.69 11 10212.69 17 212.69 23 75.31 

6 10212.69 12 75.31 18 212.69   

 
Table 4. III First ten periods and circular frequencies of the truss-structure. 

i 
i  [rad/s] iT  [s] 

1 45.89 0.1369 

2 47.90 0.1311 

3 90.04 0.0698 

4 94.98 0.0661 

5 114.62 0.0548 

6 118.00 0.0532 

7 142.09 0.0442 

8 142.33 0.0441 

9 171.39 0.0366 

10 171.40 0.0366 

 

The structure, quiescent at time 0t ,  is  subjected to the a non-

uniform base excitation modelled by a zero mean tri-variate 

Gaussian non-stationary process. The multi-variate input is assumed 

equal to the one defined in the previous subsection, obtained 
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substituting in Eq. (2.79) the distances 12 23 15 md d  and 

13 30 md  (see Figure 4.21).  

For both the evolutionary and sigma-oscillatory models of 

stochastic input the EPSD function of the response (see Eq. (4.18)) 

are obtained as function of the TFR vector functions.  

 

 
 

 
Figure 4. 22 One-sided EPSD functions for the Spanos and Solomos model (1983) : a) 

nodal vertical displacement of the node n°13,
,13 ,13

,
y yu uG t  2m s ; b) 

normal stress of the bar n°3, 
3 3

,N NG t  2N s . 

 

For the Spanos and Solomos model (1983) of the stochastic input 

the one-sided EPSD functions of the normal stress of the bar n°3 and 

of the vertical displacement of the node n°13 (see Figure 4.21) are 

depicted in Figures 4.22, respectively. In Figures 4.23 the same 

functions are shown for the sigma-oscillatory model (Battaglia 

1979) of the stochastic input. 

 

a) 

b) 
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Figure 4. 23 One-sided EPSD functions for the sigma-oscillatory model (Battaglia 

1979): a) nodal vertical displacement of the node n°13,
,13 ,13

,
y yu uG t  

2m s ; b) normal stress of the bar n°3, 
3 3

,N NG t 2N s . 

 

Notice that the one-sided EPSD of the nodal response have been 

evaluated according to Eq. (4.18). 

4.3.3 Non-classically damped system subjected to 

mono-correlated input 

4.3.3.1 Shear type frame 
In this section in order to verify the accuracy of the proposed 

procedure when the system is assumed non-classically damped the 

benchmark quiescent linear MDOF of Section 4.3.1 is analysed. 

In this case the structure presents viscous dampers of coefficient 

200 kNs/mc  across  the  second  and  third  stories  and  a  

proportional damper of coefficient c across the first story, as 

a) 

b) 
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shown in Figure 4.24 a). When 1  the structure is classically 

damped. The elements out of the diagonal can be considered as a 

measure of the non-classicity of the system. A method to define this 

value request the introduction of the “coupling index” (Claret and 

Venancio Filho 1991): 

 

2
, , ,max , 1,2, , 0 1i j i i j j i j n i j   (4.55) 

 

 

 

Figure 4. 24 a) Geometric configuration of benchmark three-story one-bay shear-type 
frame; b) Coupling index 

 

As shown in Figure 4.24 b), when 1  the coefficient 0  and 
the frame is classically damped. 
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Table 4. IV Periods, natural frequencies and complex eigenvalues of the shear-type 
frame, 1   

Mode Circular frequency 
rad/s  

Period 

sT  

Eigenvalue  

1 16.701 0.376 -0.688+16.688  

2 49.797 0.134 -5.399+46.485  

3 67.624 0.093 -11.274+66.677  

 

By applying the complex modal analisys (see Eqs.(3.48) to (3.51)

) it is possible to obtain the complex eigenvalues of the system (Eq. 

(3.51)). In particular, if 1 , since the system is classically 

damped, the natural frequencies of the structure are coincident with 

the modulus of the complex eigenvalue. 

If 10  the system becomes non-classically damped and the 

complex eigenvalues change: 

 
Table 4. V Complex eigenvalues of the shear-type frame, 10 . 

Mode Eigenvalue  

1 -4.025+17.730  

2 -32.099+35.469  

3 -12.487+59.476  

 

When 13  the eigenvalues becomes positive and real, so the 

system is overcritically-damped and it is not possible to apply the 

proposed procedure. 

The benchmark structural model undergoes to a stochastic 

earthquake base excitation, modelled by a zero mean Gaussian 

spectrum-compatible fully non-stationary process, as explained in 

section 2.8.1, with the Spanos and Solomos (1983) modulating 

function.  
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Figure 4. 25 Comparison between the time-variant histories of a) the mean frequency 

3u t , b) the central frequency 
3C,u t  and c) the bandwidth 

parameter 
3u t , of the third relative to ground floor displacement, by 

applying the proposed analytical solution and the MCS. 

 

Figures 4.25 show the time histories of the mean frequency, the 

central frequency and the bandwidth parameter of the third floor for 
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1  and 10 , evaluated by the proposed analytical approach and 

compared with the ones obtained by Monte Carlo Simulation (1000  

samples of input). 

 

      

Figure 4.26 One-sided EPSD of the response process of the third floor 
3 3

,u uG t
2m s : a) 1 ; b) 10 . 

 

Figure 4.26 shows one-sided EPSD function of the response of 

the third floor, obtained according to Eq.(4.37). 

4.3.3.2 External viscous dampers in the 2-D structure 
In this section the quiescent linear MDOF depicted in Figure 4.27 

is analysed; differently from the previous application in this case the 

viscous dampers are outside the structure and considered as fixed to 

a rigid support. It is important to notice that this configuration 

doesn’t modify the stiffness matrix of the structure. 

 

 
Figure 4. 27 Five-story plane frame structure, 03.07 m , 1.18 ml l . 

 

a) b) 
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The geometric configuration is reported in Figure 4.27. The 

columns are made of concrete, modelled as linear elastic with 

Young’s modulus  28000 MPaE . The beams are considered 

rigid to enforce a typical shear building behaviour. Under this 

assumptions, the shear-frame is modelled as a three DOF linear 

system. The geometrical properties of the columns are reported in 

Table 4.VI and are the same for each floor. 

 
Table 4. VI Geometric configuration of the 2-D frame 

Columns: a, q [cm] Columns: b, c, d, e, f, g, h, 
j, k, l, m, n, o [cm] 

Column: i [cm] 

20 50  60 60  2 0 4 0  

 

The frame described above is assumed to be part of a building 

structure with a distance between frames 0 835 cmL . The 

tributary mass per story, Mi, are obtained assuming a distributed 

load, accounting for the structure’s own weight, as well as for 

permanent and live loads, and are reported in Table 4.VII. 

 
Table 4. VII Tributary mass per story 

Floor Mass [kg] 

1 212230 

2 230845 

3 104213 

 

The three natural circular frequencies and periods of vibration are 

reported in Table 4.VIII. 
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Table 4. VIII Periods and natural frequencies of the 2-D frame 

Mode Circular frequency 
rad/s  

Period 

sT  

1 14.230 0.441 

2 38.224 0.164 

3 47.771 0.131 

  

The structure presents viscous dampers of coefficient 

2700 kNs/mc  outside the first and the third stories, as shown in 

Figure 4.27. The elements out of the diagonal of the generalized 

damping matrix  can be considered as a measure of the non-

classicity of the system; in fact for this structure the coupling index 

defined in Eq.(4.55) is equal to 0.76 , so the system cannot be 

considered classically damped. 

The three complex eigenvalues (see Eq.(3.51)) are reported in 

Table 4.IX. 

 
Table 4. IX Complex eigenvalues of the 2-D frame 

Mode Eigenvalue  

1 -17.99+5.33  

2 -11.93+28.36  

3 -7.37+44.42  

 

The structural model undergoes to a stochastic earthquake base 

excitation, modelled by a zero mean Gaussian fully non-stationary 

process. The time-frequency modulating function is assumed 

coherently to Eq.(2.77), with: 
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max

1

2

6.007;
5.04 s ;

19.44 s ;
0.13.

a
t

t
 (4.56) 

 

The target one-sided PSD of ground acceleration 0G  (see 

Eq.(2.8)) is modelled by the Clough and Penzien (1975) acceleration 

spectrum (see Eq.(4.51)). 

The following Figures show the time histories of the NGSMs with 

or without the contribution of the viscous dampers and the 

comparison with the results of the MCS (1000 samples). 

 

    

 
Figure  4.  28  Comparison  between  the  time-variant  histories  of  the 0, ( )

i iu u t  NGSMs 
2m , of the three relative to ground floor displacements, by applying the 

proposed analytical solution and the MCS. 
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Figure 4. 29 Comparison between the time-variant histories of the

1,R e ( )
i iu u t  

NGSMs 2m s , of the three relative to ground floor displacements, by 

applying the proposed analytical solution and the MCS. 

 

  

 

Figure  4.  30  Comparison  between  the  time-variant  histories  of  the 2, ( )
i iu u t  NGSMs 

2 2m s , of the three relative to ground floor displacements, by applying 

the proposed analytical solution and the MCS. 
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From the analysis of Figures 4.28-4.30 it is evident the influence of 

the dampers, in terms of reduction of the spectral characteristics of 

the response. 

 

     

Figure 4. 31 One-sided EPSD of the response process of the first floor 
3 3

,u uG t
2m s : a) without dampers; b)with dampers. 

 

     

Figure 4. 32 One-sided EPSD of the response process of the second floor 
3 3

,u uG t
2m s : a) without dampers; b)with dampers. 

 

     

Figure 4. 33 One-sided EPSD of  the  response  process  of  the  third  floor  
3 3

,u uG t
2m s : a) without dampers; b)with dampers. 

 

a) b) 

a) b) 

a) b) 
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Figures 4.31, 4.32 and 4.33 show the one-sided EPSD function of 

the response of each floor, obtained according to Eq.(4.37), with or 

without dampers. Notice that the presence of the dampers influences 

the shape of the EPSD function. 

4.3.3.3  External viscous dampers in the 3-D structure 

The effectiveness of the proposed procedure is assessed also in 

the case of a five-story spatial frame, depicted in Figure 4.34 

subjected to seismic excitation in the x direction. 

  

 

Figure 4. 34 Five-story frame structure: 3D model. 
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The columns are made of concrete, modelled as linear elastic with 

Young’s modulus  28000 MPaE . The beams are considered 

rigid to enforce a typical shear building behaviour. The 3D-frame is 

modelled as a 15- DOF linear system. 

The mass matrix M, obtained assuming a distributed load, 

accounting for the structure’s own weight, as well as for permanent 

and live loads, and the stiffness matrix K of the structural system are 

here reported: 

 

;
x

y

p

M 0 0
M 0 M 0

0 0 I
  (4.57) 

 

with  
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 (4.58) 

 

and 
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  (4.59) 
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Table 4. X Periods and natural frequencies of the 3-D frame 

Mode Circular frequency 
rad/s  

Period 

sT  

1 11.279 0.557 

2 12.046 0.521 

3 14.835 0.423 

4 31.720 0.198 

 

The first four natural circular frequencies and periods of vibration 

are reported in Table 4.X. 

The structure presents viscous dampers of coefficient 

5100 kNs/mc  in the x direction, distributed outside every story, 

as shown in Figure 4.35.  

 

 

Figure 4. 35 Five-story frame structure with dampers configuration. 

 

The elements out of the diagonal of the generalized damping 

matrix  can be considered as a measure of the non-classicity of the 

system; in fact for this structure the coupling index defined in 

Eq.(4.55) is equal to 0.62 , so the system cannot be considered 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

182 

classically damped. The fifteen complex eigenvalues (see Eq.(3.51) 

are reported in Table 4.XI.  

The structural model undergoes to a stochastic earthquake base 

excitation, modelled by a zero mean Gaussian fully non-stationary 

process, as explained in Section 4.2.3.2. 
 

Table 4. XI Complex eigenvalues of the 3-D frame 

Mode Eigenvalue  

1 -1.07+12.19  

2 -12.30+1.59  

3 -2.19+13.33  

4 -13.82+30.34  

5 -2.40+34.42  

6 -4.81+38.87  

7 -12.76+48.62  

8 -3.40+52.96  

9 -7.02+60.40  

10 -12.55+60.07  

11 -4.17+66.06  

12 -15.15+68.89  

13 -4.65+72.77  

14 -8.19+77.54  

15 -9.41+87.47  

 

The following Figures show the time histories of the NGSMs with 

or without the contribution of the viscous dampers and the 

comparison with the results of the MCS (1000 samples). 
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Figure  4.  36  Comparison  between  the  time-variant  histories  of  the 0, ( )
i iu u t  NGSMs 

2m , of the three relative to ground floor displacements, by applying the 

proposed analytical solution and the MCS. 
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Figure 4. 37 Comparison between the time-variant histories of the
1,R e ( )

i iu u t  

NGSMs 2m s , of the three relative to ground floor displacements, by 

applying the proposed analytical solution and the MCS. 
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Figure  4.  38  Comparison  between  the  time-variant  histories  of  the 2, ( )
i iu u t  NGSMs 

2 2m s , of the three relative to ground floor displacements, by 

applying the proposed analytical solution and the MCS. 

 

From the analysis of Figures 4.36-4.38 it is evident the influence 

of the dampers, in terms of reduction of the spectral characteristics 

of the response. 

 

     

Figure 4. 39 One-sided EPSD of the response process of the first floor 
1 1

,u uG t
2m s : a) without dampers; b)with dampers. 
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Figure 4. 40 One-sided EPSD of the response process of the fifth floor 
3 3

,u uG t
2m s : a) without dampers; b)with dampers. 

 

Figure 4.39 and 4.40 show the one-sided EPSD function of the 

response of the first and fifth floor, obtained according to Eq.(4.37), 

with or without dampers. Notice that the presence of the dampers 

influences the shape of the EPSD function. 

4.4 Summary and conclusions 

In this Chapter a new, very handy, procedure to evaluate the 

spectral characteristics of the structural response for both classically 

and non-classically damped systems, in the cases of mono-correlated 

and multi-correlated stochastic input process, is proposed. In fact, by 

mean of closed form solutions of the TFR vector function it is 

possible to evaluate the EPSD matrix function of the structural 

response. The main steps of the proposed approach are:  

i) the  use  of  modal  analysis,  or  the  complex  modal  analysis,  to  

decouple the equation of motion;  

ii) the introduction of the modal state variable in order to evaluate 

the NGSMs, in the time domain, as element of the pre-envelope 

covariance matrix;  

a) b) 
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iii) the determination, in state variable, by very handy explicit 

closed-form solutions, of the TFR vector functions and  of  the  

EPSD matrix function of the structural response for the most 

common adopted models of the seismic input in the framework 

of stochastic analysis;  

iv) the evaluation of the spectral characteristics of the stochastic 

response by adopting the closed-form expression of the EPSD 

matrix function. 

Several numerical applications, where the comparison with the 

MCS has been done, have confirmed the generality and the 

effectiveness of the proposed procedure. 
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Equation Section (Next) 
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Chapter 5 

First passage probability problem 

5.1 Introduction 
Structural systems are conceived and designed to survive natural 

actions.  If  the  excitations  are  modeled  as  random  processes,  the  

dynamic response is described by a random process too and the 

structural safety needs to be evaluated in a probabilistic sense.  

In many dynamic applications of structural systems subjected to 

stochastic excitation, it is important to determine the probability that 

the maximum absolute value of a selected structural response of 

interest, ( )S t  (e.g. strain or stress at a critical point), will not exceed 

in magnitude, for the first time, its relative limit state level, ( )b t , 

within an assigned time interval [0, ]t : 

 

max maxPr ( ) ( ); 0  S t S b t                                     (5.1) 

 

where 
maxS t  is the so-called reliability function and max( )S t  is the 

extreme value random response process of a selected structural 

response of interest ( )S t  defined as: 
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max 0
( ) max ( ) .

t
S t S                                              (5.2) 

 

In the previous equations, the symbol  denotes absolute value, 

while  gives the probability associated with the event into angle 

brackets.  This problem is known in literature as the first-passage 

probability problem (Lutes and Sarkani 1997, Li and Chen 2009). 

This  is  based  on  the  assumption  that  a  structure  fails  once  the 

extreme value random response process of interest, ( )S t , at a critical 

location, exits a prescribed safe domain for the first time. 

Unfortunately, the prediction of the probability of success is one of 

the most complicated problems in random vibration theory. Indeed, 

the solution of this problem has not been derived in exact form, even 

in the simplest case of the stationary response of a Single-Degree-of-

Freedom (SDOF) linear oscillator under zero-mean Gaussian white 

noise (Lutes and Sarkani 1997, Li and Chen 2009). Hence, a large 

number of approximate techniques has been proposed in the 

literature, which differ in generality, complexity and accuracy (see 

e.g. Muscolino and Palmeri 2005, Li and Chen 2009, Pradlwarter 

and Schueller 2010). In this context solution of first-passage 

probability problem has been performed by diffusion methods which 

require the solution of a first order partial differential equation to 

obtain the evolution of the Probability Density Function (PDF) of 

extreme value random process (see e.g. Langley 1988, Li and Chen 

2009) or by numerical procedures which determine the stochastic 

input and response processes in terms of the Karhunen–Loève 

representation while the extreme value random process statistics are 

estimated by a line sampling procedure (Pradlwarter and Schueller 

2010).  
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The most adopted methods, which lead to analytical solutions, are 

based on simplified assumptions in which structural failures are 

associated to up-crossing mean rate of a given threshold (Corotis et 

al. 1972, Yang 1972, Corotis and Marshall 1977). Alternatively, the 

first-passage probability problem has been approached by solving, in 

approximate form, the highly non-linear first order differential 

equation governing the time evolution of the non-stationary extreme 

value random response process (Suzuki and Minai 1980). Since the 

usual tools of the non-linear stochastic analysis cannot solve this 

differential equation, approximate solution has been obtained by 

means of Gaussian and non-Gaussian censored closures (Suzuki and 

Minai 1980, Suzuki and Minai 1985, Senthilnathan and Lutes 1991, 

Muscolino and Palmeri 2005). In this context, more recently, 

Muscolino and Palmeri (2005), proposed an Advanced Censored 

gumbel Closure (ACC)  approach  to  evaluate  the  statistics  of  the  

extreme value random process for linear systems excited by zero-

mean Gaussian random processes. This procedure, very efficient 

from a computational point of view, requires, as well as the methods 

based on the knowledge of up-crossing mean rates of given 

thresholds, the evaluation of the first three Non-Geometric Spectral 

Moments (NGSMs) of the structural response of interest, which need a 

very cumbersome computational effort, especially for fully non-

stationary input processes. Indeed, only in the paper by He (2010) 

the reliability function has been estimated for a fully non-stationary 

excitation, under the little bit realistic hypothesis of filtered white 

noise random process excitation. Moreover, no results exist in 

literature about the validation of the two methods for the most 

general case of non-filtered fully non-stationary input processes. 

This is especially due to the difficulties in the evaluation of the 

NGSMs for such input processes.  
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Thanks’ to the procedure recently proposed by Muscolino and 

Alderucci (2015) it is possible to evaluate the NGSMs of  the  

structural response of interest by evaluating simple integrals in the 

frequency domain for both separable and non-separable non-

stationary excitations. It follows that the approximate solution of the 

first-passage probability problem can be performed very efficiently 

for fully non-stationary input processes too. 

The evaluation of the reliability function and the subsequent 

survival probability of Multi-Degree-of-Freedom (MDOF) structural 

systems subjected to fully non-stationary excitations is an open 

problem in  the  framework  of  stochastic  analysis,  especially  from a  

computational point of view. In my opinion this is due to the lack of 

computational efficiency of the simplest and intuitive methods 

before described requiring the mean up-crossing rate of given 

thresholds or censored closures.  

Aim  of  the  last  Chapter  of  this  Ph.D.  thesis  is  to  evidence  that  

once the Evolutionary Power Spectral Density (EPSD) function, of a 

generic structural response of interest, is evaluated in closed form 

solutions by means of the approach here proposed, the reliability 

function as well as the survival probability can be evaluated very 

efficiently.  In  order  to  do  this,  after  a  short  summary  of  the  

preliminary concepts on the first-passage probability problem, the 

main equations useful to evaluate the survival probability of linear 

structural systems with material having strength described by a 

Gaussian PDF are presented.  

Furthermore, in the numerical applications section, the 

approximated formulation has been tested for the prediction of 

maximum response statistics and of the reliability functions of two 

different oscillators,  with different damping ratios,  and of a MDOF 

system. The comparison between the classical and the ACC 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

193 

(Muscolino and Palmeri 2005) approach has been performed and the 

validation has been done thanks to the Monte Carlo Simulation 

(MCS).  

5.2 First passage probability problem: 

preliminary concepts  

5.2.1 Methods requiring the mean up-crossing rate of 

given thresholds 
The first-passage probability problem permits  to  define  the  

probability of success as a function of the probability that the 

maximum absolute value of a selected structural response of interest, 

( )S t  (e.g., strain or stress at a critical point), will not exceed in 

magnitude, for the first time, its relative limit state level, b , within 

an assigned time interval [0, ]t . 

As said before, this problem is one of the most complicated 

problems in random vibration theory and only approximate solutions 

have been derived. In the framework of approximate methods, for 

linear structures subjected to zero-mean Gaussian random processes, 

the reliability function, 
maxS t , of the extreme value random 

response process, max( )S t  defined in Eq.(5.2), of the selected 

structural response of interest, ( )S t , can be expressed as (see e.g. 

Lutes and Sarkani 1997, Muscolino and Palmeri 2005, Li and Chen 

2009): 

 

max max max

1
max

0

; Pr ( ) ( )

Pr ( ) Pr (0) (0) exp ; d 

S S

t

S S

t L b t S t b t

T b t S b b
     (5.3) 
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where 
max

;SL b t  is the Cumulative Distribution Function (CDF) of 

the random process max( )S t ; ;S b t  is the so-called hazard function 

and represents the limiting decay rate of the first passage 

probability; 1( )ST b  is a random variable describing the instant at 

which the random process max( )S t  firstly crosses the threshold 

( ) 0b t  with positive slope; finally maxPr (0) (0)S b  is the 

probability of success at time 0t  which, for quiescent structural 

systems, is equal to unity. Various definitions have been proposed 

for the hazard function for zero-mean Gaussian random process. The 

first one assumes that successive up-crossing of the level b are 

independent and constitute a Poisson process, in this case the hazard 

function is evaluated as:  

 

; 2 ;S Sb t b t               (5.4) 

 

where 

 

0

; , ; dS SSb t s p b s t s              (5.5) 

 

is the mean up-crossing rate of level ( )b t  by the random process 

( )S t  (Rice 1945), while , ;SSp s s t  is the joint Gaussian PDF 

between the response random process of interest, ( )S t , and its time 

differentiation.  

The second approximation assumes the hypothesis that the crossings 

occur in clumps (Vanmarcke 1975); in this approximation the hazard 
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function for non-stationary processes can be written  as (Corotis et  al  

1972, Yang 1972): 

 

; 2 ; ;S S Sb t b t b t              (5.6) 

 

where  

 

;
1 exp

2 ;
;

;
1

0,

A

S
S

S

S

b t
b t

b t
b t

t

            (5.7) 

 

and 

 

0

; , ; dA AAb t a p b a t a              (5.8) 

 

is the mean up-crossing rate of level ( )b t by the random envelope 

process ( )A t  defined as follows (Cramer and Leadbetter 1967): 

 

2 2ˆ( ) ( ) ( ).A t S t S t              (5.9) 

 

In Eq.(5.8)  is the joint PDF between the envelope 

response process and its time differentiation. In Eq.(5.9) Ŝ t  is the 

Hilbert transform of S t  defined as:  
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1 ( )ˆ( ) d .SS t
t

            (5.10) 

 

Explicit expressions with different level of accuracy were derived 

in literature to evaluate ;A b t  (Yang 1972, Langley 1986b, 

Muscolino 1988). It has to be emphasized that ,S b t  in Eq.(5.7) 

can be seen as a corrective term of the hazard function, given in 

Eq.(5.4), obtained considering the up-crossing of barrier b 

constituting a Poisson process. In order to evaluate the mean up-

crossing rates ;S b t  and ;A b t , assuming negligible the 

correlation coefficient between the response process and its time 

derivative, the following approximate relationships have been derived 

for the up-crossing rates (Langley 1986b): 

 

2
2,

0, 0,

2
2,

0, 0,

1; exp
2

; exp
2

S
S

S S

S S
A

S S

t b t
b t

t t

t b t t b t
b t

t t

        (5.11) 

 

where S t  is the bandwidth parameter defined in the first of Eq. 

(3.75) and the functions ,j S t  ( 0,1, 2i ) are the NGSMs defined 

in Eq.(3.74). Substituting Eqs.(5.11) into Eq.(5.6) the following 

approximate expression is derived for the hazard function (Corotis et 

al. 1972, Corotis and Marshall 1977): 
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0,2,
2

0,

0,

; 2 ; ;

1 exp
21

exp 1
2

S S S

S
SS

S

S

b t b t b t

b t t
tt

t b t
t

                   (5.12)  

 

where the function ;S b t , introduced in Eq.(5.7), takes the 

following approximate form: 

 

0,

2

0,

1 exp
2

; .
1 exp

2

S
S

S

S

b t t
t

b t
b t

t

        (5.13) 

 

Substituting the hazard function given in Eq.(5.12) into Eq.(5.3) 

the CDF 
max

;
SSL b t  of extreme value random process is determined. 

Then, the mean value, 
max

( )S t , and standard deviation, 

max max max

2
2,( ) ( ) ( )S S St m t t , of the random process max( )S t  can be 

obtained once the following quantities are numerically evaluated:  

 

max max max

max max

1,
0

2
2,

0

( ) ( ) ; d

( ) ; d

S

S

S S S

S S

t m t b t p b t b

m t b t p b t b
                              (5.14) 

 

where 
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max

max

;
; S

S

S
S

L b t
p b t

b
           (5.15) 

 

is the PDF of the extreme value random process. 

5.2.2 Methods requiring censored closures  
In the previous section the approximate reliability function was 

derived assuming that the up-crossing rate of given thresholds are 

independent or occur in clumps. In literature the first-passage 

probability problem has been approached alternatively by solving, in 

approximate form, the highly non-linear first order differential 

equation governing the time evolution of the non-stationary extreme 

value random response process max( )S t  (Suzuki and Minai 1980): 

 

max max

max

( ) ( ), ( ), ( ) d

( ) ( ) ( ) ( ) ( ) d

S t g S t S t S t t

S t S t S t S t S t t
        (5.16) 

 

 being the unit step function continuous from the right, that is: 

 

0
0

0

0, ;
( )

1, .
t < t

t t
t t

                                                                (5.17) 

 

Eq.(5.16) allows to derive the non-linear differential equation 

governing the time evolution of the i-th statistical moment of max( )S t  

as follows: 

 

max

1
, max max( ) E ( ) ( ), ( ), ( ) .i

i Sm t i S t g S t S t S t         (5.18) 
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Notice  that,  for   1,  2,  ,i n , Eq.(5.18) implicitly involves 

higher-order moments, the latter constitutes an infinite hierarchy of 

equations, which has to be closed with expedient techniques. Doing 

so, statistical moments of order greater than n are expressed as 

functions of those of a given order up to n (closure order),  and the 

first n moment equations can be solved in approximated form. 

Unfortunately, classical closures, e.g. the simplest Gaussian closure 

(in which n = 2), do not apply, because an inconsistency exists, 

which brings theoretical and computational difficulties. In fact, by 

virtue of Eq. (5.16), the non-stationary random process max( )S t  has a 

positive increment at time t  if and only if sign ( ) sign ( )S t S t  

and max( ) ( )S t S t . However, by the definition of stochastic process 

max( )S t , given in Eq.(5.2), the latter condition can be satisfied just by 

the equivalence, max ( ) ( )S t S t .  

A  simple  way  to  circumvent  this  evident  discrepancy  is  to  

consider a censored distribution for the random process max( )S t . 

Namely the probability mass associated with the impossible event 

max ( ) ( )S t S t  is removed and conveniently lumped at the limiting 

position where max( ) ( )S t S t  (Suzuki and Minai 1980, Suzuki and 

Minai 1985, Senthilnathan and Lutes 1991, Muscolino and Palmeri  

2005). Doing so, the condition max( ) ( )S t S t  is satisfied 

associating a finite probability with the limit event max( ) ( )S t S t . 

As a finite probability cannot be directly included in any continuous 

model, the analytical counterpart of this arrangement is the 

introduction of two Dirac delta functions in the joint PDF between 

the random processes max( )S t  and ( )S t . The latter are centered at 
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max( ) ( )S t S t , i.e. where max( )S t  reaches a barrier of level 

( )b t S t  (Muscolino and Palmeri 2005).  

The main drawback of this approach is that the joint PDF should 

be known in order to center the Dirac deltas. This drawback has 

been overcome introducing a guest PDF for the extreme value 

random process (Suzuki and Minai 1980, Suzuki and Minai 1985, 

Senthilnathan and Lutes 1991, Muscolino and Palmeri 2005). In 

order to do this Muscolino and Palmeri (2005) introduced the 

following hypotheses: i) the random processes ( )S t  and max( )S t  are 

treated as independent; ii) the guest PDF is of Gumbel type; iii) the 

response bandwidth is accounted for a consistent censorship factor, 

max
0 ( ) 1S t ,  which  governs  the  distribution  of  the  Dirac  delta  

functions introduced in the joint PDF of ( )S t  and max( )S t . Under 

these hypothesis the time evolution of the first two statistical 

moment of the extreme value random response process can be 

evaluated as: 

 

max max max max

max max max

1, 1
0

2, 2
0

( ) ( ) ( ) 2 ( ) ; ; d

( ) ( ) 4 ( ) ; ; d

G
S S S S S

G
S S S S

m t t f t t b t L b t b

m t f t t b t b t L b t b
       (5.19) 

 

where 
max

;G
SL b t  is the guest CDF of the random processes max( )S t  

assumed of the Gumbel type: 

 

max

max

max

( )
; exp exp

( )
SG

S
S

t b t
L b t

t
         (5.20) 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

201 

with 

 

max max max max

max max max

2
2, 1,

1,

6 1( ) ( ) 6 ( ) ( ) ;

( ) ( )

S S S S

S S S

t t m t m t

m t t
       (5.21) 

 

0.5772  being the Euler number. It has been proved that the 

censorship factor 
max

( )S t  introduced in Eq.(5.19) can be evaluated 

as (Muscolino and Palmeri 2005): 

 

max max
0

( ) ; ; dS S St b t p b t b           (5.22) 

 

where ,S t  is the coefficient introduced in Eq.(5.13) and 

max
;

SSp b t  is the PDF of the extreme value process given as: 

 

max max

max

; ; 2 ; 1

2 ; ;

G
S S S

G
S S

p b t p b t L b t

L b t p b t b
         (5.23) 

 

with ;Sp b t  the Gaussian Power Spectral Density (PSD) function 

of the response process ( )S t , ;SL b t  its CDF and 
max

;G
Sp b t  the 

guest PDF of Gumbel type: 

 

max

max

max max

max max max

;
;

( ) ( )1 exp exp .
( ) ( ) ( )

G
SG

S

S S

S S S

L b t
p b t

b
t b t t b t

t t t

       (5.24) 
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The  solution  of  the  problem  must  be  numerically  obtained  with  

the second-order Runge–Kutta method, after the subdivision of the 

time axis into small intervals of equal width t. Since at the time 

step 1,k kt t  the NGSMs statistics of the response process ( )S t  can 

be evaluated independently, the statistical moments of the random 

process max( )S t  at the left endpoint kt k t  are also known from the 

previous step. Then the approximate first two statistical moments at 

the right endpoint, 1k kt t t , can be evaluated as (Muscolino and 

Palmeri 2005): 

 

max max

max max

1, 1 1, 1

2, 1 2, 2

( ) ( ) ( )

( ) ( ) ( )
S k S k k

S k S k k

m t m t f t t

m t m t f t t
          (5.25) 

 

where 

 

max max

max max

1
0

2
0

( ) 2 ( ) ; ; d

( ) 4 ( ) ; ; d .

G
k S k S k S k

G
k S k k Y k S k

f t t b t L b t b

f t t b t b t L b t b
        (5.26) 

 

Then the mean value, 
max max1 1, 1( ) ( )S k S kt m t , and standard 

deviation, 
max max max

2
1 2, 1 1( ) ( ) ( )S k S k S kt m t t , of extreme value 

random of the random process max( )S t   at time instant 1kt , can be 

derived.  Finally  the  reliability  function  can  be  evaluated  as  

(Muscolino and Palmeri 2005): 

 

max max max
; 2 ; 1 ; .G

S S S St L b t L b t L b t b        (5.27) 
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5.3 Reliability assessment  
In structural engineering, once the CDF of the extreme value 

process max( )S t  is determined, the next step is to provide a measure 

of the risk in terms of probability of failure, ,  and  a  measure  of  

the success in terms of probability of success or survival probability, 

.  

 

 
Figure 5. 1 System reliability. 

 

For convenience, but without loss of generality, only the safety of 

the selected structural element of interest , ( )S t  (e.g., strain or stress 

at  a  critical  point),  is  considered  here  and  the  structural  element  is  

considered to have failed if its resistance, R, is less than the extreme 

value, max( )S t , acting on it. In particular, if it is required that the 

extreme value random response process, max( )S t , of a structural 

response of interest will not exceed in magnitude, for the first time, 

the deterministic limit state level, cr , in the time interval 0,t , the 

survival probability can be evaluated as: 
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L S
m

ax
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,t)

S
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max

max max

, max

0

, Pr ( ) ; 0 =

; d , .
c

S c c

r

S S c

r t S r t

p b t b L r t
         (5.28) 

 

Often it is assumed that the resistance of the structural element is 

a Gaussian random variable, R, characterized by the PDF, Rp r , 

having mean-value R  and standard deviation R .  In  this  case  the  

survival probability can be evaluated as: 

 

max max

max

,
0

; ( ) ; d d

( ) ; d

b r

S R S

R S

r t p r p b t b r

p r L r t r
         (5.29) 

 

where 
max

;Sp r t  and 
max

;SL r t  are the PDF and CDF of  the  

extreme value random response process, max( )S t , derived in the 

previous sections under the assumption that up-crossings of a specified 

threshold of the analysed structural quantity occur in clumps or by 

applying the advanced censored Gumbel closure approach. Finally, the 

so-called failure function (Melchers 1999) can be derived from the 

argument of the integral in Eq.(5.29) as follows:  

 

max max
; ( ) 1 ; .S R Sr t p r L r t           (5.30) 

 

It follows that the probability of failure is given as: 
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max

max max

, max; Pr ( ) ; 0

( ) ; d d ; d .

S c

R S S
b r

r t S r t

p r p b t b r r t r
        (5.31) 

 

Another useful parameter in reliability analysis is the reliability 

index, SI , given by: 

 

E
S

E

I                                                                                       (5.32) 

 

where  

 

2 2 2 .
E R S

E S R

  (5.33) 

 

Notice that much more higher is the reliability index much more 

lower is the failure probability. 

5.4 Numerical Applications  

5.4.1 Single-Degree of Freedom systems 
In order to validate the procedures previously described, the 

formulations have been implemented firstly for the prediction of  

maximum response statistics and of the reliability functions of two 

different oscillators, with different damping ratios. The excitation 

consists in a fully non-stationary process, modelled as the Spanos 

and Solomos (1983) model first and then as the Conte and Peng 

(1996) one. 
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For the evolutionary modulating function proposed by Spanos 

and Solomos (1983) (see Eq. (2.16)) the following parameters have 

been selected: 2 5  and 2( ) 0.15 2 4 . The 

maximum is reached at 1.94 rad/s  and 6.67 st . The target 

one-sided PSD function of the “embedded” stationary counterpart 

0G  is modelled by the Clough and Penzien (1975) acceleration 

spectrum: 

 
22

0 22 22

4

22 22

1 4 /

1 / 4 /

/

1 / 4 /

g g

g

g g g

f

f f f

G G

  (5.34) 

 

where  in  order  to  simulate  the  El  Centro  earthquake  (1940)  the  

following parameters have been selected: 

 
2 30.5656 m /s ;

19.0 rad/s ;
0.65;

2.0 rad/s ;
0.6.

g

g

g

f

f

G

  (5.35) 

 

The selected parameters for the Conte and Peng (1996) model 

(see Eq. (2.68) to Eq.(2.70)) are the ones estimated for the N-S 

accelerogram component of the Imperial Valley earthquake of May 

18, 1940, recorded at the El Centro site (Table 4.I). 
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In order to compare the responses evaluated by adopting different 

models, the one-sided PSD of the ideal white noise, gG , is 

normalized in such a way that the “total ground motion acceleration 

energy” (see Eq. (4.53)) of the analysed non-stationary ground 

acceleration model is the same as that of Conte and Peng (1996) 

model. 

Then, in order to check the accuracy of classical approximations, 

that are the Poisson model and the Corotis et al. (1972) model, and 

censored closures (Muscolino and Palmeri 2005), the results were 

compared with those of MCS, performed with 2,500 samples. 

 

     

       
Figure 5. 2 Comparison between classical and ACC (Muscolino and Palmeri 2005) 

approaches with MCS of the mean value for the Spanos and Solomos 
(1983) model. 
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Figure 5. 3 Comparison between classical and ACC (Muscolino and Palmeri 2005) 
approaches with MCS of the standard deviation for the Spanos and 
Solomos (1983) model. 

 

          

      

Figure 5. 4 Comparison between classical and ACC (Muscolino and Palmeri 2005) 
approaches with MCS of  the  reliability  function  at  time  T=30  s  for  the  
Spanos and Solomos (1983) model. 
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Figure 5. 5 Comparison between classical and ACC (Muscolino and Palmeri 2005) 
approaches with MCS of the mean value for the Conte and Peng (1996) 
model. 

 

     

      
Figure 5. 6 Comparison between classical and ACC (Muscolino and Palmeri 2005) 

approaches with MCS of the standard deviation for the Conte and Peng 
(1996) model. 
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Figure 5. 7 Comparison between classical and ACC (Muscolino and Palmeri 2005) 

approaches with MCS of  the  reliability  function  at  time  T=30  s  for  the  
Conte and Peng (1996) model. 
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5.4.2 Multi-Degrees of Freedom systems 
A reliability analysis is herein performed for a MDOF system. 

The structural model is the same of Section 4.3.3.3, considered 

without dampers and with a damping ratio equal for all modes 

0.05 .  

To perform reliability assessment of the structure, the attention is 

focused on the relative displacement components (the so-called 

drift) along the x-direction of the first frame, as evidenced in Fig 5.8.  

 

 
Figure 5. 8 Five-story frame structure. 

 

Notice that in order to obtain the NGSMs in terms of drift of the 

first frame, it is necessary to introduce a first coordinate 

transformation; in fact, in order to obtain the displacement of the 

first frame along the x direction, f tu ,  as  a  function  of  the  
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displacement of the barycenter at each floor, g tu , and according 

to the modal coordinate transformation t tu q the following 

relationship olds: 

 
f g gt t tu Tu T q                                                  (5.36) 

 

where T is defined as: 

 

1

2

3

4

5

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

g

g

g

g

g

y

y

y

y

y

T   

 (5.37) 

 

in which 1,2,...,5g
iy i are the coordinate of the barycenter with 

respect to the coordinate system along the y axis.  Then,  a  second  

coordinate transformation must be introduced in order to obtain the 

drifts along the x-direction of the first frame, tY , as a function of 

the displacement of the first frame along the x direction, f tu ; the 

transformation matrix R  is given by: 

 

0 0 0 1 1
0 0 1 1 0

.0 1 1 0 0
1 1 0 0 0

1 0 0 0 0

R                                                   (5.38) 
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According  to  Eq.  (3.73)  the  drift  of  the  first  frame  tY  are 

obtained thanks’ to the formula: 

 
f g g gt t t t tY Ru RTu RT q Eq   (5.39) 

 

By mean of the influence matrix E it is possible to evaluate the 

NGSMs in terms of drift starting by the purged NGSMs of the modal 

response, according to Eq. (3.74). 

The structure undergoes to a spectrum compatible input process 

(see Section 3.6), modelled as stationary input process, quasi-

stationary input process, with the Hsu and Bernard (1978) 

modulating function (see Eq.(2.10)), and fully-non stationary input 

process, with the Spanos  and Solomos (1983) modulating function 

(see Eq.(2.16)).  

According to the EC8 instructions (2003) a spectrum of Type I is 

chosen as target spectrum, following the values for the type “C” of 

soil, the parameters 1.15S , 0.2BT  [s] 0.6CT  [s] and 2.0DT  

[s] are selected. The peak ground acceleration is assumed equal to
2m /1.647 sga  , considering a strategic structure with a nominal 

life of 100 years and the damage limit state. 

In Table 5.I the energy, 
g

ST
dUE t  and 

g

NST
dUE t , of the stationary 

and non-stationary, respectively, spectrum-compatible acceleration 

random process are reported; these quantities are evaluated by the 

relationships:  
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g g

g g

ST ST

0 0

NST NST

0 0

d d ;

, d d ;

d

d

t

dU U

t

dU U

E t G t

E t G t t
  (5.40) 

 

where 
g

ST
UG  and 

g

NST ,UG t  are, respectively, the stationary 

spectrum compatible PSD function and the stationary counterpart of 

the non-stationary spectrum compatible EPSD. 

 

Table 5. I Total energy 2 3/m s  of the stationary, quasi-stationary and fully non-

stationary spectrum compatible acceleration processes 

Stationary  
spectrum compatible 

model 

Hsu & Bernard 
spectrum compatible 

model 

Spanos & Solomos 
spectrum compatible 

model 

12.13 6.04 6.30 

 

From the analysis of the results reported in this Table it is evident 

that the energy associated to the stationary spectrum-compatible 

model is much higher than the energy evaluated by applying the 

other ones.  

The mean values, the variance an the reliability functions of the 

response have been evaluated, according to the Corotis et al. (1972) 

model, in the three cases of spectrum compatible input process and 

all the results have been compared with the MCS method (1000 

samples). 
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Figure 5. 9 Comparison between Corotis et al. (1972) model and MCS of  the  mean  

value of the inter-story drift for the spectrum compatible stationary model. 
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Figure 5. 10 Comparison between Corotis et al. (1972) model and MCS of  the mean 

value of the inter-story drift for the spectrum compatible quasi-
stationary model. 
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Figure 5. 11 Comparison between Corotis et al. (1972) model and MCS of  the mean 

value of the inter-story drift for the spectrum compatible fully non-
stationary model. 
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Figure 5. 12 Comparison between Corotis et al. (1972) model and MCS of the standard 

deviation of the inter-story drift for the spectrum compatible stationary 
model. 
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Figure 5. 13 Comparison between Corotis et al. (1972) model and MCS of the standard 

deviation of the inter-story drift for the spectrum compatible quasi-
stationary model. 

0 10 20 30
t

0

0.0004

0.0008

0.0012

Y 5
-4

,m
ax
(t)

Corotis et al.
MCS

0 10 20 30
t

0

0.0004

0.0008

0.0012

0.0016

0.002

Y 4
-3

,m
ax
(t)

Corotis et al.
MCS

0 10 20 30
t

0

0.001

0.002

0.003

Y 3
-2

,m
ax
(t)

Corotis et al.
MCS

0 10 20 30
t

0

0.001

0.002

0.003

0.004

Y 2
-1

,m
ax
(t)

Corotis et al.
MCS

0 10 20 30
t

0

0.001

0.002

0.003

Y 1
,m

ax
(t)

Corotis et al.
MCS



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

220 

      

      

 
Figure 5. 14 Comparison between Corotis et al. (1972) model and MCS of the standard 

deviation of the inter-story drift for the spectrum compatible fully non-
stationary model 
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Table  5.  II  The  reliability  index  of  the  inter-story  drifts  for  the  stationary  spectrum 
compatible input. 

drift Corotis et al. (1972)  
model 

MCS Err% 

5-4 7.23459 7.82092 7.49694 

4-3 2.59175 2.80798 7.70078 

3-2 4.58210 4.98686 8.11655 

2-1 9.74390 10.3882 6.20251 

1 21.7345 10.3882 4.23157 

 

Table 5. III The reliability index of the inter-story drifts for the quasi-stationary 
spectrum compatible input. 

drift Corotis et al. (1972)  
model 

MCS Err% 

5-4 5.45901 5.48283 0.434547 

4-3 2.02867 2.12346 4.464100 

3-2 3.53385 3.61602 2.272590 

2-1 7.37268 7.34547 0.370374 

1 16.5459 15.8156 4.617810 

 

Table 5. IV The reliability index of the inter-story drifts for the fully non-stationary 
spectrum compatible input. 

drift Corotis et al. (1972)  
model 

MCS Err% 

5-4 5.69891 6.01186 5.20556 

4-3 2.10008 2.2125 5.08109 

3-2 3.63936 3.81761 4.66917 

2-1 7.66117 7.94568 3.58065 

1 17.2463 17.3986 0.87528 

 

From the analysis of Tables 5.II,  5.III,  5.IV it  is  evident that  the 

Corotis et al. (1972) model is in good agreement with the MCS, in 

fact the percentage error is always lower than 10%. An interesting 

result is that the reliability index in the stationary case is always 
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bigger than in the non-stationary case, that means that the stationary 

process model gives non-conservative results. 

 

      

      

 
Figure 5. 15 Comparison between Corotis et al. (1972) model and MCS of the 

reliability function at time T=35 [s] of the inter-story drift for the 
spectrum compatible stationary model. 
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Figure 5. 16 Comparison between Corotis et al. (1972) model and MCS of the 

reliability function at time T=35 [s] of the inter-story drift for the 
spectrum compatible quasi-stationary model. 
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Figure 5. 17 Comparison between Corotis et al. (1972) model and MCS of the 

reliability function at time T=35 [s] of the inter-story drift for the 
spectrum compatible fully non-stationary model. 
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 10             (5.41) 

 

where  is the limit probability of failure and  is the security 

measure, here assumed 2 . 
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Table 5. V The failure probability of the inter-story drifts for the stationary spectrum 
compatible input. 

drift  

5-4 0 

4-3 0 

3-2 0.0003103980 

2-1 0.0137624000 

1 0 

 
Table 5. VI The failure probability of the inter-story drifts for the quasi-stationary 

spectrum compatible input. 

drift  

5-4 0 

4-3 0 

3-2 0.0025108600 

2-1 0.0353412000 

1 0.0000451103 

 
Table 5. VII The failure probability of the inter-story drifts for the fully non-

stationary spectrum compatible input. 

drift  

5-4 0 

4-3 0 

3-2 0.0020935500 

2-1 0.0316602000 

1 0.0000246434 

 

Tables  5.II,  5.III,  5.IV  lists  the  probability  of  failure  for  the  

critical level of the /c c yx b  of each story along the x-direction. It 

is seen that the largest probability of failure of the stories, for which 

the safety check is not verified, occurs in the second floor, not in the 

first, for all the models of the input process. Notice that, in general, 

the stationary process model gives non-conservative results; in fact 
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the probability of failure is in general lower than the non-stationary 

models despite that the energy associated to the stationary spectrum-

compatible model is much higher than the energy evaluated by 

applying the non-stationary model of the input process.  

5.5 Summary and conclusions 
The last Chapter of this research work deals with the reliability 

assessment of linear structural systems subjected to fully non-

stationary stochastic excitations. To this aim the traditional methods 

for the first passage probability problem, that require the evaluation 

of the mean up-crossing rate of given thresholds, considered 

independent or occurring in clumps, have been compared with the 

method requiring censored closures of the non-stationary extreme 

value random response process. Thanks’ to the proposed procedure, 

that permits the evaluation of the NGSMs of the structural response 

of interest by evaluating simple integrals in the frequency domain 

for both separable and non-separable non-stationary excitations, the 

approximate solution of the first-passage probability problem can be 

performed very efficiently for fully non-stationary input processes 

too. 

In the Numerical Applications Section it has been demonstrated, 

thanks’ to the comparison of the results with the MCS, that the ACC 

model (Muscolino and Palmeri 2005) is able to catch with accuracy 

the mean value of the extreme value random response process as 

well as the Corotis et al. (1972) model, while both the classical and 

ACC approach are not always able to obtain the standard deviation. 

From the analysis of the reliability functions, it has been shown that 

the Poisson model fails, on the contrary of the ACC model and 

Corotis et al. model. Furthermore it has been shown that the Corotis 
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et al. (1972) model can be suitably used in reliability analysis of 

structures subjected to fully non-stationary input. 

Finally it has been evidenced that, in general, the stationary 

process model gives non-conservative results, despite that the energy 

associated to the stationary spectrum-compatible model is much 

higher than the energy evaluated by applying the non-stationary 

model of the input process. 

 

Equation Section (Next) 
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Conclusions 

The probabilistic analysis of structural systems subjected to the 

ground acceleration process requires the spectral characterization of 

both the input excitation and the structural response. Into this 

framework,  in  this  Ph.D.  thesis  a  novel  procedure  to  obtain  closed  

form solutions of the spectral characteristics of the response of linear 

structural systems subjected to seismic acceleration modelled as 

stochastic processes has been presented.  

After  a  short  review  of  the  preliminary  definitions  of  the  

probability theory in Chapter 1, Chapter 2 focuses on the 

characterization of the ground motion acceleration as a non-

stationary random process; in fact, starting from an analysis of a set 

of  real  earthquakes,  it  has  been  shown that  the  stationary  model  of  

the seismic acceleration input process fails to reproduce the typical 

characteristics of real recorded ground-motion time history. Then 

different strategies to model the ground motion acceleration 

stochastic process have been considered, for both the mono-

correlated an multi-correlated input process. Furthermore, in order to 

follow the prescriptions of the building codes, a procedure to 

generate artificial fully non-stationary spectrum-compatible 

accelerograms has been proposed. 
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Once the characterization of the ground motion acceleration is 

done, it is possible to analyse the safety of structural systems 

subjected to those excitations. Unfortunately the characterization of 

the output processes can be extremely complex, when non-stationary 

input processes are involved. In this framework a new, very handy, 

procedure to evaluate the spectral characteristics of the structural 

response, summarized in Chapter 3, is proposed thanks’ to closed 

form  solutions  of  the  Time-Frequency varying Response (TFR) 

vector function, that are obtained in Chapter 4 for both classically an 

non-classically damped systems, in the cases of mono-correlated and 

multi-correlated stochastic input process. In fact, by mean of this 

function it is possible to evaluate the Evolutionary Power Spectral 

Density (EPSD) matrix function of the structural response. The main 

steps of the proposed approach are: i) the use of modal analysis, or 

the complex modal analysis, to decouple the equation of motion; ii) 

the introduction of the modal state variable in order to evaluate the 

Non-Geometric Spectral Moments (NGSMs), in the time domain, as 

element of the pre-envelope covariance matrix; iii) the 

determination, in state variable, by very handy explicit closed-form 

solutions, of the TFR vector functions and of the EPSD matrix 

function of the structural response for the most common adopted 

models of the seismic input in the framework of stochastic analysis; 

iv) the evaluation of the spectral characteristics of the stochastic 

response by adopting the closed-form expression of the EPSD 

matrix function. 

The last Chapter of this research work deals with the reliability 

assessment of linear structural systems subjected to fully non-

stationary stochastic excitations. To this aim the traditional methods 

for the first passage probability problem, that require the evaluation 
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of the mean up-crossing rate of given thresholds, considered 

independent or occurring in clumps, have been compared with the 

methods requiring censored closures of the non-stationary extreme 

value random response process. Thanks’ to the proposed procedure, 

that permits the evaluation of the NGSMs of the structural response 

of interest by evaluating simple integrals in the frequency domain 

for both separable and non-separable non-stationary excitations, the 

approximate solution of the first-passage probability problem can be 

performed very efficiently for fully non-stationary input processes 

too. Furthermore it has been evidenced that, in general, the 

stationary process model gives non-conservative results, despite that 

the energy associated to the stationary spectrum-compatible model is 

much higher than the energy evaluated by applying the non-

stationary model of the input process. 

In conclusion the proposed method is a powerful tool in the 

analysis of both classically and non-classically damped systems, 

subjected to mono-correlated and multi correlated stochastic input. 

In fact, by mean of the closed form solutions of the TFR vector 

function it is possible to obtain closed-form solution of the EPSD 

matrix function of the response, that permits a simple and speedy 

evaluation of the NGSMs. It has been evidenced that the proposed 

procedure reduces the computational times with respect to the 

methods that are present in literature, so it can be efficiently used in 

reliability assessment problems. 

 

 

Equation Chapter (Next) Section 1 
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Appendix A 

TFR vector functions 

A.1 Evolutionary process model  

A.1.1 General solution 
In this section the general solution of Eq. (4.6), given in Eq.(4.15)

, which represents the equation of motion, in state variable, of the j-

th quiescent dummy oscillator (3.13), at time t=0, subjected to the 

pseudo-force 

( , ) exp exp i expr rf t t t t t t  is 

first derived. After very simple algebra it can be proved that the 

particular solution of Eq. (4.6). can be written as: 
 

p, ,
0

, exp , 0 ;
r

s
j j s

s
t t t tY b                     (A.1) 

 

where 
 

1
,

!
!

s r s
j s j

r t
s

b B v            (A.2) 
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with the positions given in Eqs.(4.13) and (4.14). Substituting 

Eq.(A.1) into Eq.(4.9) the general solution, given in Eq.(4.15), is 

obtained.  

An explicit close solution of the Time-Frequency varying 

Response (TFR) vector function and of the Evolutionary Power 

Spectral Density (EPSD) function matrix of the response is herein 

given for the most common modulating functions used in literature. 

A.1.2  Normalized  exponential  type  I  modulating  

function 
For the Hsu and Bernard (1978) model of the modulating 

function of the non-stationary zero-mean Gaussian process,  

 

1 1 1( ) expa t t t          (A.3) 

 

where  
 

1 1 exp 1 ,                (A.4) 

 

according to Eq. (4.12), the particular solution vector of Eq.(4.6), 

forced by the function 1( , ) exp i ( )f t t a t , can be evaluated in 

closed form as (Muscolino and Alderucci 2015):  

 

p, 1 1 2, exp ( );j j jt t t tY B B v      (A.5) 

 

where the matrix jB  has been defined in Eq.(4.13), with 

1 1 i , where 2  is  the  identity  matrix  of  order  2  

and where ( )t  is the unit step function defined as: 
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0
0

0

0, ;
( )

1, .
t t

t t
t t

                                                                (A.6) 

 

It follows that, according to Eq.(4.9) the state variable TFR vector 

function ,j tY ,  of  the  quiescent  j-th dummy oscillator (at time 

0t ), can be evaluated as: 

 

1 1 2, exp

( );

j j

j j j

t t t

t t

Y B

B B v
                           (A.7) 

 

Finally, for the modulating function defined in Eq.(2.10), the 

one-sided EPSD function matrix, ( , )k tG , between the state 

variable responses of the ,k -th dummy oscillators can be evaluated, 

according to Eq.(3.21), in explicit form as: 
 

*  
0

2 * * * *
1 0 1 2

1 2

( , ) ( ) , ,

   ( ) exp

    exp ;

T
k k

k k k k

T T T T T

t G t t

G t t t

t t t

G Y Y

B B B

v v B B B

  

             (A.8) 
 

where 0( )G  is the embedded stationary counterpart of the one-

sided EPSD function. Substituting Eq.(A.8) into Eq.(3.20) the pre-

envelope covariance matrix between the state variable responses of 

the ,k -th dummy oscillators is obtained. 
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A.1.3 Normalized exponential type II modulating 

function 
For the Shinozuka and Sato (1967) model of the modulating 

function of the non-stationary zero-mean Gaussian process,  
 

2 2 2 3( ) exp expa t t t               (A.9) 

 

where the constant 2  normalizes the exponential modulating 

function so that the maximum of the real function 2( )a t  is unity: 

 

2 3 3
2

3 2 3 2 2

exp ln ,               (A.10) 

 

according to Eq. (4.12), the particular solution vector of Eq.(4.6), 

forced by the function 2( , ) exp i ( )f t t a t , can be evaluated in 

closed form as (Muscolino and Alderucci 2015):  
 

p, 2 2 2,

3 3,

, exp

exp ( );

j j

j

t t

t t

Y B

B v
           (A.11) 

 

with 
 

1

, 2

, 2

i ;  

+

2 1
; 2,3

r r

r j j r

r j j
r j

j r

r

B D       (A.12) 
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and 
 

, 2 2

1 , 2,3.
2r j

r j j r j

r        (A.13) 

 

It follows that, according to Eq.(4.9) the state variable modal TFR 

vector function ,j tY , of the quiescent j-th dummy oscillator (at 

time 0t ), can be evaluated as: 
 

2 2 2, 3 3,

2, 3,

, exp exp

( ),

j j j

j j j

t t t

t t

Y B B

B B v
    

        (A.14) 
 

Finally, for the modulating function defined in Eq.(2.12), the 

one-sided EPSD function matrix, ( , )k tG , between the ,  k -th 

dummy oscillators, can be evaluated in explicit form as: 
 

2 * * * *
2 0 2 2, 3 3,

* *
2, 3,

2 2, 3 3,

2, 3,

( , )

( ) exp exp

exp exp

k

k k

T
k k k

T T

T T T

t

G t t

t

t t

t

G

B B

B B v v

B B

B B

 

   (A.15) 
 

where 0( )G  is the embedded stationary counterpart of the one-

sided PSD function. Substituting Eq.(A.15) into Eq. (3.20) the pre-

envelope covariance matrix between the state variable responses of 

the ,k -th dummy oscillators is obtained. 
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A.1.4 Normalized Jennings et al  type modulating 

function 
A quite different solution has to be pursued in the Jenning et al. 

model (1969) of the modulating function. In this case the forcing 

function ( , )f t  of differential equation (4.6) has to be written as the 

sum of three terms: 
 

3

1 1 2 4 2 22
1

( , ) exp i ( )

(0, ) ( , ) exp ( ) exp i
2

f t t a t

t t t t t t t t t
t

  

 (A.16) 
 

where ( , )j it t  is the window functions defined as: 

 

1,    ;
( , )

0, , .
i j

i j
i j

t t t
t t

t t t t
  (1.17) 

 

This modulating function is a three time interval step function. It 

follows that in spite of the j-th modal oscillator is quiescent at time 

t=0 , , 0jY 0 , the initial condition at time 1t t  and 2t t  are 

different from zero. It follows that the general solution in this case, 

,j tY , can be determined as (Borino and Muscolino 1986. 

Muscolino 1996): 
 

(1) (1)
p, p, 1

(2) (2)
p, 1 1 p, 1 1 2

(3) (3)
p, 2 2 p, 2 2

, , ,0 , 0 ;

, , , , , ;

, , , , , ,

j j j j

j j j j j

j j j j j

t t t t t

t t t t t t t t t

t t t t t t t t

Y Y Y

Y Y Y Y

Y Y Y Y
                 (A.18) 
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where ( )
p, ,i

j tY  is the particular solution vector in the i-th time 

interval. Namely, the first vector is evaluated in the time interval 

1(0, ]t , the second in the time interval 1 2( , ]t t  and the third for 2t t

.Then, the three particular solution vectors are evaluated considering 

the following three pseudo-force functions, each for the 

corresponding time interval: 

 

(1)
12

1
(2)

1 2

(3)
4 2 2

( , ) exp i , 0 ;

( , ) exp i , ;

( , ) exp i exp , .

2tf t t t t
t

f t t t t t

f t t t t t t

          (A.19) 

 

Then the particular solution vector of Eq.(4.6), forced by the 

function 3( , ) exp i ( )f t t a t , can be evaluated in closed form as 

(Muscolino and Alderucci 2015):  
 

2
2 1

12
01

p, 1 2

4 2 2

1 2exp i , 0 ;
!

, exp i ,            ;
exp i ,            .

s s
j

s

j j

j

t t t t
t s

t t t t t
t t t t t

B v

Y B v
B v

 (A.20) 

 

where the matrix jB  has been defined in Eq. (4.13) with 

4 4 i . It follows that, according to Eq. (4.13) the 

state variable vector of the modal TFR vector function, ,j tY , of 
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the quiescent j-th dummy oscillator (at time 0t ), can be evaluated 

as: 
 

2
2 2

2
01

1

1

1 1 1 2

4 2

2 1exp i ,
!

                                                            0 ;

exp i

, , exp i ,              ;

exp i

s s
j j j j
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j j

j j j

t t t
t s

t t

t t t

t t t t t t

t t t

B B B v

B v

Y Y B v

2

2 2 2, exp i ,                .
j j

j j

t t

t t t t

B v

Y B v

             (A.21) 
 

Once the state variable function vector, ,k tY  and ,tY , of 

the ,  k -th dummy oscillators are determined it is possible to 

evaluate in explicit form the one-sided EPSD function matrix 
*

0( , ) ( ) , ,T
k kt G t tG Y Y  as the sum of three 

contributions: the first in the time interval 1(0, ]t , the second in the 

time interval 1 2( , ]t t , the third for 2t t . Substituting the so 

evaluated one-sided EPSD function matrix into Eq. (3.20) , the pre-

envelope covariance matrix between the state variable responses of 

the ,k -th dummy oscillators is obtained. 
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A.1.5 Spanos and Solomos model of the fully non-

stationary process 
For the Spanos and Solomos (1983) model of the modulating 

function of the non-stationary zero-mean Gaussian process:  

 

4 4 5( ) expa t t t                (A.22) 

 

with the parameter 4  that normalizes the time-frequency 

modulating function so that the maximum of the real function 

4( , )a t  is unity. According to Eq. (4.12), the particular solution 

vector of Eq.(4.6), forced by the function 4( , ) exp i ( )f t t a t , 

can be evaluated in closed form as (Muscolino and Alderucci 2015):  

 

p, 5 5 2, exp

( ).
j j

j

t t t

t

Y B

B v
                 (A.23) 

 

It follows that, according to Eq. (4.13) the state variable vector of 

the modal TFR vector function, ,j tY , of the quiescent j-th 

dummy oscillator (at time 0t ), can be evaluated as 

 

5 5 2, exp

( )
j j j j

j

t t t t

t

Y B B

B v
 

        (A.24) 
 

where the matrix jB  has been defined in Eq. (4.13) with 

5 5 i . It follows that the corresponding one-

sided EPSD function matrix, ( , )k tG , between the state variable 



Methods for the analysis of structural systems subjected to seismic acceleration modelled as stochastic processes 

242 

responses of the ,k -th dummy oscillators can be evaluated, 

according to Eq. (3.21), in explicit form as: 
 

2 * * *
5 0 5 2

*
5 2

( , )

( ) exp

exp ;

k

k k k

T T T T T
k

t

G t t t

t t t

G

B B

B v v B B B

               (A.25) 
 

where 0( )G  is the embedded one-sided PSD function of the 

stationary counterpart process. Substituting Eq.(A.25) into Eq. (3.21) 

the pre-envelope covariance matrix between the state variable 

responses of the ,k -th dummy oscillators is obtained. 

A.2. Sigma-oscillatory process model 
In the Conte and Peng (1996) model the fully non-stationary 

process is a particular sigma-oscillatory process composed by the 

summation of N uniformly modulated random processes qX t . The 

modulating function of each component sub-process, qX t , is 

defined as ( )( ) ( ) ( )q q pr t t
q q q qa t t t e t t . Then this function 

starts at time qt t  where the initial condition of the j-th quiescent 

modal oscillator, ,j qtY 0 ,  are  imposed.  It  follows  that  the  

particular solution vector of the j-th differential equation (4.6), 

forced by the function ( , ) exp i ( )q qf t t - t a t , can be 

evaluated in closed form by a translation of the time axis with 

respect to Eq.(A.1) and it is given by: 
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p,

1
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!
( ) ( ) ;

!

q
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j q q q

r
r sq s

q j q q
s

t t t

r
t t t t

s
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                 (A.26) 

 

with 
 

1

, 2

2

i ;  

+

2 1
.

q q

j q j q

q j j
j

j q

B D   (A.27) 

 

Indeed, in this case the particular solution pertaining to initial 

conditions prescribed at time instant qt t  can be obtained 

straightforwardly from Eq.(A.1) assuming as time parameter qt - t . It 

follows that in this case the general solution can be written as 

(Borino and Muscolino 1986, Muscolino 1996): 
 

p, p,, , , ( ) .q q q
j j j q j q qt t t t t t tY Y Y        (A.28) 

 

Since the N zero-mean uniformly modulated Gaussian sub-

processes qX t  are assumed independent, the one-sided EPSD 

function matrix, ( , )k tG , between the state variable responses of 

the ,k -th dummy oscillators, can be evaluated, according to Eq. 

(3.21), in explicit form as: 
 

*

1
( , ) ( ) , , ( ) ( ).

N
q q T

k q k q
q

t G t t t t tG Y Y    (A.29) 
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Finally, by substituting Eq.(A.29) into Eq. (3.21) the pre-envelope 

covariance matrix between the state variable responses of the ,k -th 

dummy oscillators is obtained. 

A.3 Adaptive chirplet decomposition  
When the adaptive chirplet decomposition of the forcing input is 

used, the modal TFR vector function corresponding to the k-th 

chirplet ,k
j tY 0,2, ,k K  ,j r s  can be obtained as the 

solution of the following first order differential equation:  

 

, = , + , ( ); , 0k k k
j j j k jt t AS t tY D Y v Y 0     (A.30) 

 

where ( )t  is the unit step function defined in Eq. (2.15), jD  and v 

have been defined in Eq.(4.8) and ,AS t  is  the  adaptive  

spectrogram: 

 

222

0
, 2 exp / .

K

k k k k k k k
k

AS t A t t t t  

 (A.31) 
 

If the particular solution of equation (A.30), p, ,k
j tY , can be 

determined in explicit form, the modal TFR vector function, solution 

of Eq.(A.30), can be written as (Borino and Muscolino 1986, 

Muscolino 1996): 
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p, p,

,

, , - , ( ).

k
j

k k k
j j k j k j k k

t

t t t t t t - t

Y

Y Y Y
 

             (A.32) 

 

Furthermore, the contribution of the last term in the right member 

of Eq.(A.32) decreases in the time because of the transition matrix 

satisfies the condition (4.10). 

The analytical expression of the particular solution vector 

p, ,k
j tY , which appears in Eq.(A.32), can be easily obtained in 

closed form when the forcing term is represented by the k-th element 

of the adaptive spectrogram obtained in Eq.(2.31). 

By very simple algebra the particular solution vector p, ,k
j tY  

can be written as 

 

p,

*
, , ,, ( ) exp ( ) , t , t

j

k
j k j k j k j kt t tY B w       (A.33) 

 

with 
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  (A.34) 

 

where Erf is the Error Function defined as: 

 

2

0

2 exp d ,
x

Erf x   (A.35) 

 

21j j j  ,j r s  is the damped circular frequency of the j-

th dummy oscillator, j  and *
j  are the eigenvalues of the matrix 

jD , with the positions 
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Substituting the vector p, ,k
j tY  into Eq.(A.32), the solution 

vector, ,k
j tY , of the j-th oscillator in state variable, can be 

evaluated in closed-form solution  as:  

 
*

, ,

, ,

, ( ) exp ( ) , t

, t , t ( );

j

k
j k j k j k

j q j k j k q

t t t

t t t t

Y B

B w
 (A.37) 

 

where the condition ,k
j qtY 0  has been satisfied. It has to be 

emphasized that this very remarkable result is obtained because of 

the state variable formulation has been adopted. 

The one-sided EPSD function matrix, ( , )rs tG , between the state 

variable responses of the ,r s -th  dummy  oscillators,  can  be  

evaluated in explicit form as: 

 

*
, 0

0
( , ) ( ) , , ( ) .

K
k k T

r s r s k
k

t G t t t tG Y Y       (A.38) 

 

Finally, by substituting Eq.(A.38) into Eq.(3.20) the pre-envelope 

covariance matrix between the state variable responses of the ,r s -th 

dummy oscillators is obtained. 
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