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Abstract In some previous papers a linear theory for magnetic relaxation phenomena in magneti-
zable continuous media was developed, that is based on thermodynamics of irreversible
processes with internal variables. Here, we consider magnetizable reacting fluid mix-
tures, where irreversible microscopic phenomena give rise to magnetic relaxation, and
these phenomena are described splitting the total specific magnetization in two irre-
versible parts and introducing one of these partial specific magnetizations as internal
variable in the thermodynamic state vector. The phenomenological equations for these
fluid mixtures are derived and, in the linear case, a generalized Snoek equation for mag-
netic relaxation phenomena is worked out and particular cases are treated. The obtained
results have applications in several fields of applied sciences, as, for instance, in nuclear
magnetic resonance and in medicine, where complex fluids are taken into consideration.
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1. INTRODUCTION

In [1]-[7] magnetic relaxation phenomena in magnetizable media were studied
using the standard methods of irreversible thermodynamics with internal variables
[8]-[13]. In particular, in [1], in the linear approximation, Kluitenberg, assuming that
magnetization M is given by the sum of one reversible part M(0) and one irreversible
part M(1), derived, for magnetizable isotropic media, the following classical Snoek
equation [14]

χ(0)
(BM)B +

dB
dt
= χ(0)

(MB)M + χ
(1)
(MB)

dM
dt

, (1)

where χ(0)
(BM), χ

(0)
(MB) and χ(1)

(MB) are constant quantities, algebraic functions of the co-
efficients occurring in the phenomenological equations and in the equations of state.
Subsequently, in [2], assuming that the total magnetization M is composed of two ir-
reversible parts, i. e. M =M(0) +M(1), Kluitenberg obtained the following magnetic

141



142 Liliana Restuccia, Lidia Palese, Arcangelo Labianca

relaxation equation,

χ(0)
(BM)B +

dB
dt
= χ(0)

(MB)M + χ
(1)
(MB)

dM
dt
+ χ(2)

(MB)
d2M
dt2 , (2)

where χ(0)
(BM) and χ(k)

(MB) (k = 0, 1, 2) are constant quantities, algebraic functions
of the coefficients occurring in the phenomenological equations and in the equations
of state. In [5] one of the authors (LR) and Kluitengerg assumed that an arbitrary
number n of microscopic phenomena give rise to the magnetization axial vector M
and that this axial vector can be split in n + 1 parts, i.e.

M =M(0) +

n∑
k=1

M(k), (3)

where M(0) and M(k) (k = 1, ..., n) have irreversible character. In the isotropic
case the following magnetic relaxation equation generalizing Snoek equation was
obtained, having the form of a linear relation among the magnetic field B, the first
n time derivatives of this field, the total magnetization M and the first n + 1 time
derivatives of M

χ(0)
(BM)B + χ

(1)
(BM)

dB
dt
+ ... + χ(n−1)

(BM)
dn−1B
dtn−1 +

dnB
dtn =

χ(0)
(MB)M + χ

(1)
(MB)

dM
dt
+ ... + χ(n)

(MB)
dnM
dtn + χ

(n+1)
(MB)

dn+1M
dtn+1 , (4)

where n is the number of phenomena that give rise to the magnetization M and
χ(k)

(BM)(k = 0, 1, ..., n − 1) and χ(k)
(MB) (k = 0, 1, ..., n + 1) are constant quantities

(see also [6], [7]).
Here, we consider anisotropic magnetizable reacting fluid mixtures, where irre-

versible microscopic phenomena give rise to magnetic relaxation, and these phenome-
na are described splitting the total magnetization in two irreversible parts and intro-
ducing one of these partial magnetizations as internal variable in the thermodynamic
state vector (see [4] where reacting fluid mixtures magnetizable and polarizable were
studied by the one of the authors (LR) and Kluitenberg). In Sections 2 and 3, the
model of the considered media and the equations, that govern all the processes oc-
curring inside them, are presented, and the entropy balance equation is derived. In
Sections 4, 5 and 6 the phenomenological equations, the Onsager-Casimir relations
and the linear laws of state, with respect to a considered reference state, are obtained.
In Section 7, in the linear case, a generalized Snoek equation for magnetic relaxation
phenomena is derived. Finally, in Section 8 particular cases are treated. The ob-
tained results have applications in several fields of applied sciences, as, for instance,
in medicine and biology, where complex fluids are taken into consideration, in which
different types of molecules, having different magnetic susceptibilities and relaxation
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times, present magnetic relaxation phenomena and contribute to the total magnetiza-
tion (as an example such physical situations arise in nuclear magnetic resonance). In
[15]-[19] Maugin gave a description of relaxation magnetic phenomena in continu-
ous media with n different ionic species, by means of microscopic considerations and
introducing partial magnetizations per unit mass (see also [6], [7]). The continuum
theory for magnetizable bodies developed by Maugin gives explanations of internal
mechanisms in magnetizable bodies [20]-[24].

2. GOVERNING EQUATIONS

The standard Cartesian tensor notation in a rectangular coordinate system is used
and the equations governing the behaviour of reacting fluid mixtures, consisting of n
chemical components, with magnetic relaxation are considered in a current config-
uration Kt. The model for these media is developed in the framework of classical
irreversible thermodynamics with internal variables. In the Galilean approximation
all the processes occurring inside them are governed by two groups of laws: the
balance equations and Maxwell equations.

The conservation of mass is expressed by the relation

∂ϱ

∂t
= −div(ϱv⃗), (5)

where ϱ is the total mass density defined by

ϱ =

n∑
k=1

ρ(k), (6)

where ρ(k) is the mass density of chemical component k and v⃗ is the barycentric
velocity defined by

v⃗ =
1
ϱ

n∑
k=1

ρ(k)v⃗(k), (7)

with v⃗(k) the velocity of component k.
By using (7), Eq. (5) takes the form

∂ϱ

∂t
= −div

 n∑
k=1

ρ(k)v⃗(k)

 . (8)

The mass fractions c(k) are defined by

c(k) =
ρ(k)

ϱ
(k = 1, 2, . . . , n). (9)

From this definition and (6) we obtain
n∑

k=1

c(k) = 1. (10)
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The diffusion flow of substance k with respect to the barycentric motion is defined
by

J⃗(k)
(di f f ) = ρ

(k)(⃗v(k) − v⃗) (k = 1, 2 . . . , n). (11)

From this definition, by using Eqs. (6) and (7), we obtain

n∑
k=1

J⃗(k)
(di f f ) = 0⃗, (12)

which means that only n − 1 of the n diffusion flows are independent.
The balance equations for c(k) are given by (see [12])

ϱ
dc(k)

dt
= −divJ⃗(k)

(di f f ) +

r∑
h=1

ν(kh)J(h)
chem (k = 1, 2, . . . , n), (13)

where ν(kh)J(h)
chem is the production of component k per unit volume and per unit time

by the h-th chemical reaction, the quantity ν(kh) divided by the molecular mass M(k)

of component k is proportional to the stoichiometric coefficient with which the com-
ponent k appears in the chemical reaction h and J(h)

chem is the chemical reaction rate of
reaction h.

Maxwell’s equations for the electric and magnetic fields read (in the rationalized
Gauss system)

rotH⃗ − 1
c
∂E⃗
∂t
=

1
c

I⃗,

divE⃗ = ϱ(el),

rotE⃗ +
1
c
∂B⃗
∂t
= 0⃗,

divB⃗ = 0,

(14)

where ϱ(el) is the total electric charge per unit volume (electric charge density), I⃗ is
the density of the total electric current, c is the velocity of light, E⃗ and B⃗ are the elec-
tric and magnetic field strengths, respectively, and H⃗ is the magnetic displacement
field. We indicate by e(k) the charge per unit of mass of component k, the total charge
e per unit of mass of the system is given by

e =
1
ϱ

n∑
k=1

ρ(k)e(k) =

n∑
k=1

c(k)e(k), (15)

where we have used Eq. (9).
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In Eq. (14)1 I⃗ is defined by

I⃗ =
n∑

k=1

ρ(k)e(k)v⃗(k), (16)

and in Eq. (14)2 ϱ
(el) is given by

ϱ(el) =

n∑
k=1

ρ(k)e(k), (17)

and satisfies the charge conservation law

∂ϱ(el)∂t
=

− divI⃗. (18)

By definition (11) and Eq. (17), Eq. (16) can be written in the form

I⃗ = ϱ(el)v⃗ +
n∑

k=1

e(k) J⃗(k)
(di f f ), (19)

where on the right hand side the first contribution ϱ(el)v⃗ is the electric current con-
vection, the second contribution is the electric current due to the relative motion of
the various components, which is called conduction current j⃗(el), i. e.

j⃗(el) =

n∑
k=1

e(k) J⃗(k)
(di f f ). (20)

Finally, we define the magnetization axial vector M⃗ by

M⃗ = B⃗ − H⃗, (21)

and the specific magnetization axial vector m⃗ by

m⃗ =
1
ϱ

M⃗. (22)

The first law of thermodynamics for magnetizable fluid mixtures in an electromag-
netic field, in Galilean approximation, reads [12]

ϱ
du
dt
= −divJ⃗(q) + ταβ

dεαβ
dt
+ j⃗(el) · E⃗ + ϱB⃗ · dm⃗

dt
. (23)

In (23) u is the specific internal energy of the system, J⃗(q) is the heat flow density,
ταβ is the symmetric mechanical stress tensor and εαβ is the small strain tensor defined
by

εαβ =
1
2

(
uα,β + uβ,α

)
(α, β = 1, 2, 3), (24)
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where u⃗ is the displacement field. Then,
dεαβ

dt
is given by

dεαβ
dt
=

1
2

(
vα,β + vβ,α

)
(α, β = 1, 2, 3). (25)

In Eq. (23) all the quantities are per unit of volume and per unit of time. On the
right hand side the first term is the heat supply, the second term is the work done by

mechanical stress, the third term is the Joule heat, ϱB⃗ · dm⃗
dt

is the work done by the
magnetic field to change the magnetization.

3. ENTROPY BALANCE EQUATION

We assume that the specific entropy s (i.e. the entropy per unit of mass) for re-
acting fluid mixtures with magnetic relaxation is a function of the specific internal
energy u, the strain tensor εαβ, the specific magnetization m⃗, the concentrations c(k)

of n components (k = 1, . . . , n) and an axial vector field m⃗(1), which represents a
thermodynamic internal variable giving rise to magnetic relaxation phenomena

s = s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
. (26)

Following the general philosophy of CIT (classical irreversible Thermodynamics)
(see[8]-[13]) dissipative fluxes, gradients and time derivatives of the physical fields
are not included in the state space and the local equilibrium hypothesis for the system
is assumed (see[25]-[27]): out of the equilibrium each point of the medium is con-
sidered as a thermodynamic cell where the reversible thermodynamics is applicable.

We shall define the equilibrium temperature T , the equilibrium stress tensor τ(eq)
αβ ,

the equilibrium magnetic field B⃗(eq), the thermodynamic affinity B⃗(1), conjugate to the
internal variable m⃗(1), and the thermodynamic or chemical potential µ(k) of compo-
nent k, respectively by

T−1 =
∂

∂u
s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
,

τ
(eq)
αβ = −ϱT

∂

∂εαβ
s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
,

B⃗(eq) = −T
∂

∂m⃗
s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
,

B⃗(1) = T
∂

∂m(1) s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
,

µ(k) = −T
∂

∂c(k) s
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
(k = 1, . . . , n).

(27)

Considering very small deviations with respect to a thermodynamic equilibrium state,
we expand the entropy (26) into Taylor’s series with respect to this state, and confin-
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ing our consideration to the linear terms, we obtain the differential of the entropy s in
the following form

Tds = du − 1
ϱ
τ

(eq)
αβ dεαβ − B⃗(eq) · dm⃗ + B⃗(1) · dm⃗(1) −

n∑
k=1

µ(k)dc(k), (28)

where we have used Eqs. (27)1-(27)5.
An expression of the type (28) is called Gibbs relation.
Let us introduce the definitions of viscous stress tensor τ(vi)

αβ by

τ(vi)
αβ = ταβ − τ

(eq)
αβ (α, β = 1, 2, 3), (29)

of irreversible magnetic field B(ir) by

B⃗(ir) = B⃗ − B⃗(eq), (30)

and of entropy flow J⃗(s) by

J⃗(s) =
1
T

J⃗(q) −
n∑

k=1

µ(k) J⃗(k)
(di f f )

 . (31)

We multiply both sides of (13) by
µ(k)

T
and sum over k. Introducing the so-called

chemical affinities A∗(h) of each chemical reaction h, by the definition

A∗(h) =

n∑
k=1

µ(k)ν(kh) (h = 1, 2, . . . , r), (32)

and
A(h) = −A∗(h) (h = 1, 2, . . . , r), (33)

we obtain
ϱ

T

n∑
k=1

µ(k) dc(k)

dt
= −div

 1
T

n∑
k=1

µ(k) J⃗(k)
(di f f )

+
n∑

k=1

J⃗(k)
(di f f ) · grad

(
µ(k)

T

)
+

1
T

r∑
h=1

A∗(h)J(h)
(chem). (34)

From (28), deriving the time derivative of s and using Eq. (23) and (31) - (34), we
obtain

ϱ
ds
dt
= −divJ⃗(s) +

1
T

(
− 1

T
J⃗(q) · gradT + τ(vi)

αβ

dεαβ
dt
+ ϱB⃗(ir) · dm⃗

dt
+
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+ϱB⃗(1) · dm⃗(1)

dt
+

r∑
h=1

A(h)J(h)
(chem)

 − n∑
k=1

J⃗(k)
(di f f ) · grad

(
µ(k)

T

)
+

1
T

j⃗(el) · E⃗. (35)

Defining the thermodynamic force ⃗χ[2pt]
(k)

, conjugate to the diffusion flow of matter
J⃗(k)

(di f f ), by

⃗χ[2pt]
(k)
= −

[
T grad

(
µ(k)

T

)
− e(k)E⃗

]
(k = 1, . . . , n) (36)

we obtain

−
n∑

k=1

J⃗(k)
(di f f ) · grad

(
µ(k)

T

)
+

1
T

j⃗(el) · E⃗ = 1
T

n∑
k=1

J⃗(k)
(di f f ) · ⃗χ[2pt]

(k)
, (37)

where we have used Eq. (20). With the aid of (12) we obtain the following equality

n∑
k=1

J⃗(k)
(di f f ) · ⃗χ[2pt]

(k)
=

n−1∑
k=1

J⃗(k)
(di f f ) ·

(
⃗χ[2pt]

(k) − ⃗χ[2pt]
(n)

)
. (38)

Furthermore, defining the vector X⃗(k) by

X⃗(k) = ⃗χ[2pt]
(k) − ⃗χ[2pt]

(n)
(k = 1, . . . , n − 1), (39)

Eq. (38) becomes

n∑
k=1

J⃗(k)
(di f f ) · ⃗χ[2pt]

(k)
=

n−1∑
k=1

J⃗(k)
(di f f ) · X⃗

(k). (40)

Using definition (20) of j⃗(el) and Eqs. (34), (36), (40), it is easy to write Eq. (35)
in the following form

ϱ
ds
dt
= −divJ⃗(s) + σ(s), (41)

where σ(s) is the entropy production per unit volume and per unit time, given by

σ(s) =
1
T

(
− 1

T
J⃗(q) · gradT + τ(vi)

αβ

dεαβ
dt
+ ϱB⃗(ir) · dm⃗

dt
t+

ϱB⃗(1) · dm⃗(1)

dt
+

r∑
h=1

A(h)J(h)
(chem) +

n−1∑
k=1

J⃗(k)
(di f f )X⃗

(k)

 . (42)
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4. PHENOMENOLOGICAL EQUATIONS

By virtue of the expression (42) for the entropy production and according to the
usual procedure of non-equilibrium thermodynamics we obtain for magnetizable me-
dia the following phenomenological equations

B(ir)
α = ϱL(0,0)

(M)αβ

dmβ

dt
+ L(0,1)

(M)αβB(1)
β −

1
T

L(0,q)
(M)αβT,β+

n−1∑
k=1

L(0,k)
(MD)αβX(k)

β +

r∑
h=1

L(0,h)
(MC)αA(h) + L(0,vi)

(M)αβγ

dεβγ
dt

, (43)

ϱ
dm(1)

α

dt
= ϱL(1,0)

(M)αβ

dmβ

dt
+ L(1,1)

(M)αβB(1)
β −

1
T

L(1,q)
(M)αβT,β+

n−1∑
k=1

L(1,k)
(MD)αβX(k)

β +

r∑
h=1

L(1,h)
(MC)αA(h) + L(1,vi)

(M)αβγ

dεβγ
dt

, (44)

J(q)
(α) = ϱL(q,0)

(M)αβ

dmβ

dt
+ L(q,1)

(M)αβB(1)
β −

1
T

L(q,q)
αβ T,β +

n−1∑
k=1

L(q,k)
(D)αβX(k)

β

+

r∑
h=1

L(q,h)
(C)αA(h) + L(q,vi)

αβγ

dεβγ
dt

, (45)

J( j)
(diff )α = ϱL( j,0)

(DM)αβ

dmβ

dt
+ L( j,1)

(DM)αβB(1)
β −

1
T

L( j,q)
(D)αβT,β+

n−1∑
k=1

L( j,k)
(DD)αβX(k)

β +

r∑
h=1

L( j,h)
(DC)αA(h) + L( j,vi)

(D)αβγ

dεβγ
dt

(46)

( j = 1, 2, ..., n − 1),

J(l)
(chem) = ϱL(l,0)

(CM)β

dmβ

dt
+ L(l,1)

(CM)βB(1)
β −

1
T

L(l,q)
(C)βT,β+

n−1∑
k=1

L(l,k)
(CD)βX(k)

β +

r∑
h=1

L(l,h)
(CC)A

(h) + L(l,vi)
(C)βγ

dεβγ
dt

(47)

(l = 1, 2, ..., r),

τ(vi)
αβ = ϱL(vi,0)

(M)αβγ

dmγ

dt
+ L(vi,1)

(M)αβγB(1)
γ −

1
T

L(vi,q)
αβγ T,γ+

n−1∑
k=1

L(vi,k)
(D)αβγX(k)

γ +

r∑
h=1

L(vi,h)
(C)αβA(h) + L(vi,vi)

αβγd
dεγd

dt
. (48)
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Eqs. (43) and (44) are connected with irreversible changes in the magnetization.
Moreover, the phenomenological equations (45)-(47) are connected with the irre-
versible processes of heat flow, diffusion flow and chemical reactions. Eq. (48) is a
generalization of Newton’s law for viscous fluid flow. The quantities L(0,0)

(M)αβ, L(0,1)
(M)αβ,

L(0,q)
(M)αβ, . . . which occurr in (43)-(48) are called phenomenological tensors. For in-

stance, L(q,q)
αβ is the heat conductivity polar tensor of order two, L(vi,vi)

αβγd is the viscosity

polar tensor of order four, L( j,k)
(DD)αβ ( j, k = 1, 2, ..., n − 1) is a polar tensor of order two

connected with the diffusion flow of substance k, L(l,h)
(CC) is a scalar connected with the

chemical affinity of the reaction h (l, h = 1, 2, ..., r), L(vi,1)
(M)αβγ is a pseudotensor of order

three connected with the influence of the viscous flow on the magnetic relaxation. In
principle, all irreversible phenomena described by (43)-(48) can influence each other.
For instance, the third, fourth, fifth and sixth term on the right-hand sides of (43)
and (44) describe the influences of heat flow, diffusion flow, chemical reactions and
viscous flow on magnetic relaxation. Phenomena of this type are called cross effects.
The strain tensor εαβ is symmetric, then from (27)2 and (29) the equilibrium stress
tensor τ(eq)

αβ and the viscous stress tensor τ(vi)
αβ are also symmetric tensors. Because of

the symmetry of εαβ and τ(vi)
αβ one has

L(1,vi)
(M)αβγ = L(1,vi)

(M)αγβ, L(vi,1)
(M)αβγ = L(vi,1)

(M)βαγ,

L(0,vi)
(M)αβγ = L(0,vi)

(M)αγβ, L(vi,0)
(M)αβγ = L(vi,0)

(M)βαγ,

L(q,vi)
αβγ = L(q,vi)

αγβ , L(vi,q)
αβγ = L(vi,q)

βαγ ,

L( j,vi)
(D)αβγ = L( j,vi)

(D)αγβ, L(vi,k)
(D)αβγ = L(vi,k)

(D)βαγ ( j, k = 1, 2, ..., . . . , n − 1),

L(l,vi)
(C)αβ = L(l,vi)

(C)βα, L(vi,h)
(C)αβ = L(vi,h)

(C)βα (l, h = 1, 2, ..., . . . , r),

L(vi,vi)
αβγd = L(vi,vi)

αβdγ = L(vi,vi)
βαγd = L(vi,vi)

βαdγ .

(49)

Furthermore, ϱ
dm⃗
dt

, ϱ
dm⃗(1)

dt
, A(h) (h = 1, 2, ..., r), T−1gradT , X⃗(k) (k = 1, 2, ..., n−1)

and τ(vi)
αβ are even functions of the microscopic particle velocities, while B⃗(ir), B⃗(1),

J⃗(q), J⃗(k)
(di f f ), (k = 1, 2, ..., n − 1), J(l), (l = 1, 2, ..., r),

dεαβ
dt

are odd functions of
these velocities. Hence, according to the usual procedure of non-equilibrium thermo-
dynamics, we have for the phenomenological tensors, which occur in (43)-(48), the
following Onsager-Casimir reciprocity relations

L(0,0)
(M)αβ = L(0,0)

(M)βα, L(1,1)
(M)αβ = L(1,1)

(M)βα, L(q,q)
αβ = L(q,q)

βα ,
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L(0,1)
(M)αβ = −L(1,0)

(M)βα, L(0,q)
(M)αβ = L(q,0)

(M)βα,

L(0,k)
(MD)αβ = L(k,0)

(DM)βα, L( j,k)
(DD)αβ = L(k, j)

(DD)βα ( j, k = 1, 2, . . . , n − 1),

L(0,h)
(MC)α = L(h,0)

(CM)βα, L( j,h)
(DC)α = L(h, j)

(CD)α ( j = 1, 2, . . . , n − 1), (h = 1, 2, . . . , r),

L(1,k)
(MD)αβ = −L(k,1)

(MD)αβ, L(k,vi)
(D)αβγ = −L(vi,k)

(D)βγα (k = 1, 2, . . . , n − 1),

L(1,q)
(M)αβ = −L(q,1)

(M)βα, L(q,k)
(D)αβ = L(q,k)

(D)βα (k = 1, 2, . . . , n − 1)

L(1,h)
(MC)α = −L(h,1)

(CM)α, L(l,h)
(CC) = L(h,l)

(CC) (l, h = 1, 2, . . . , r)

L(q,h)
(C)α = L(h,q)

(C)α, L(h,vi)
(C)αβ = −L(vi,h)

(C)βα (h = 1, 2, . . . , r),

L(0,vi)
(M)αβγ = −L(vi,0)

(M)βγα, L(1,vi)
(M)αβγ = L(vi,1)

(M)βγα,

L(q,vi)
αβγ = −L(vi,q)

βγα , L(vi,vi)
αβγδ = L(vi,vi)

γδαβ . (50)

5. REFERENCE STATE AND
THERMODYNAMIC EQUILIBRIUM STATE

Now, let us consider a reference state of the medium, with an arbitrary (but fixed)
uniform temperature T(0) , in which the concentrations c(k) (k = 1, 2, . . . , n) of the
components of the fluid mixtures assume the fixed values c(k)

(0) and the mechanical
stress tensor ταβ and the magnetic field B. We also require that this reference state
(indicated by the symbol ”(0)”) is a state of thermodynamic equilibrium. We notice
that τ

(eq)
αβ , B(eq) and B(1) are functions of the temperature T(0), of the strain tensor

ϵαβ, the magnetizations m and m(1) and the concentrations c(k)
(0). We require that in

this state the value ϵ(0)αβ for the strain tensor and the values m(0) and m(1)
(0) for the

magnetization axial vectors are such that

τ
(eq)
αβ

(
T(0), ϵ(0)αβ,m(0),m(1)

(0), c
(1)
(0), . . . , c

(n)
(0)

)
= 0, (51)

B(eq)
(
T(0), ϵ(0)αβ,m(0),m(1)

(0), c
(1)
(0), . . . , c

(n)
(0)

)
= 0, (52)

B(1)
(
T(0), ϵ(0)αβ,m(0),m(1)

(0), c
(1)
(0), . . . , c

(n)
(0)

)
= 0, (53)

µ(k)
(
T(0), ϵ(0)αβ,m(0),m(1)

(0), c
(1)
(0), . . . , c

(n)
(0)

)
= 0

(k = 1, . . . , n). (54)

Being the tensor τ
(eq)
αβ symmetric, Eqs. (51)-(54) form a set of 12 + n equations for

the values of the 6 independent components of the symmetric strain tensor ϵ(0)αβ

and the values of the 6 components of the vectors m(0) and m(1)
(0). We choose the
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tensor ϵαβ and the axial vectors m, m(1), so that they vanish in the reference state.
Thus, ϵ(0)αβ = m(0)α = m(1)

(0)α = 0 . Furthermore, we choose

τ
(eq)
αβ = 0, B(eq) = 0, B(1) = 0, µ(k) = 0 (k = 1, 2, . . . , n),

for T = T(0), ϵ(0)αβ = m(0)α = m(1)
(0)α = 0, c(k) = c(k)

(0) (k = 1, 2, . . . , n). (55)

A medium is in a state of thermodynamic equilibrium if the entropy production (42)
vanishes. It follows that the reference state is a state of thermodynamic equilibrium,
provided that ϵαβ and the vectors m and m(1) (determined by (51)-(53)) are
kept constant. Moreover, the electric field E must be kept vanishing in this state of
thermodynamic equilibrium (see 36), where we assume that there are not chemical
reactions. We note that in the reference state the medium has the uniform temperature
T(0), and hence grad T vanishes in this state. Moreover, by virtue of phenomeno-
logical equation (48), the viscous stress tensor τ(vi)

αβ vanishes in the thermodynamic
equilibrium and it follows that

ταβ = τ
(eq)
αβ . (56)

6. LINEAR EQUATIONS OF STATE FOR
ANISOTROPIC MAGNETIZABLE REACTING
FLUID MIXTURES

Let us define the specific free energy f by f = u − T s. Using Gibbs relation (28),
we obtain the following expression for the differential of f ,

d f = −sdT + vτ(eq)
αβ dϵαβ + B(eq) · dm − B(1) · dm(1) +

n∑
k=1

µ(k)dc(k), (57)

where v = 1
ρ is the specific volume. Therefore, the following definitions are valid

s = − ∂

∂T
f
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
, (58)

τ
(eq)
αβ = ρ

∂

∂ϵαβ
f
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
, (59)

B(eq) =
∂

∂m
f
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
, (60)

B(1) = − ∂

∂m(1) f
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
, (61)

µ(k) =
∂

∂c(k) f
(
u, εαβ, m⃗, m⃗(1), c(1), . . . , c(n)

)
(k = 1, 2, . . . , n). (62)
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Now, we expand the free energy f into Taylor’s series with respect to the considered
reference state, considered in Section 5, and we consider very small deviations with
respect to this state, confining our consideration to the quadratic terms. We postulate
the following form for the specific free energy f of anisotropic reacting fluid mixtures

f = f (1) + f (2), (63)

where

f (1) = v(0)

{
1
2

aαβγζϵαβϵγζ + aαβϵαβ(T − T(0))+

n∑
k=1

b(k)
(
c(k) − c(k)

(0)

)
(T − T0) +

n∑
k=1

b(k)
αβ

(
c(k) − c(k)

(0)

)
εαβ

+
1
2

n∑
i,k=1

b(i,k) (I − I(0)
) (

c(k) − c(k)
(0)

) − φ(T ) (64)

and

f (2) =
1
2
ρ(0)

{
a(0,0)

(M)αβ mα

(
mβ − 2m(1)

β

)
+ a(1,1)

(M)αβ m(1)
α m(1)

β

}
+

(T − T(0))
(
a(0)

(M)α mα − a(1)
(M)αm(1)

α

)
+

n∑
k=1

(
c(k) − c(k)

(0)

) (
b(0,k)

(M)αmα + b(1,k)
(M)αm(1)

α

)
. (65)

In (64) v(0) is the specific volume in the reference state, given by v(0) =
1
ρ(0)

. In the

following, we shall replace it by v = 1
ρ , which is supposed to be a constant. φ(T ) is

some function of the temperature , b(k) is constant and also aαβγζ , aαβ, b(k)
αβ, b(i,k) are

constant and they satisfy the following symmetry relations

aαβγζ = aβαγζ = aαβζγ = aβαζγ = aγζαβ = aγζβα = aζγαβ = aζγβα, (66)

aαβ = aβα, b(k)
αβ = b(k)

βα, b(i,k) = b(k,i) (i, k = 1, 2, ..., n).

In (65) the vectors a(0)
(M)α, a(1)

(M)α, b(0,k)
(M)α and b(1,k)

(M)α (k = 1, 2, ..., n) are constant and also

the tensors a(0,0)
(M)αβ, a(1,1)

(M)αβ are constant and they satisfy the following symmetry
relations

a(0,0)
(M)αβ = a(0,0)

(M)βα, a(1,1)
(M)αβ = a(1,1)

(M)βα. (67)

Furthermore, these constants are determined by the physical properties of the medium
in the reference state. We have the following form for the specific entropy

s = −
a(0)

(M)αmα − a(1)
(M)αm(1)

α +

n∑
k=1

b(k)
(
c(k) − c(k)

(0)

) − vaαβϵαβ +
dφ
dt
. (68)
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We obtain for the equilibrium stress tensor the form

τ
(eq)
αβ = aαβγζϵγζ + aαβ(T − T(0)) +

n∑
k=1

b(k)
αβ

(
c(k) − c(k)

(0)

)
. (69)

Now, we define the fields M(0) and M(1) by

M(0) = ρm(0) and M(1) = ρm(1). (70)

Finally, from (60), (61) and (63)-(67) we have the following equations of state

B(eq)
α = a(0,0)

(M)αβ

(
Mβ − M(1)

β

)
+ a(0)

(M)α(T − T(0)) +
n∑

k=1

b(0,k)
(M)α

(
c(k) − c(k)

(0)

)
, (71)

B(1)
α = a(0,0)

(M)αβMβ − a(1,1)
(M)αβM(1)

β + a(1)
(M)α(T − T(0)) +

n∑
k=1

b(1,k)
(M)α

(
c(k) − c(k)

(0)

)
, (72)

µ(k) = v

b(k)(T − T0) + b(k)
αβεαβ +

n∑
i=1

b(i,k) (I − I(0)
)
+ b(0,k)

(M)αMα − b(1,k)
(M)αM(1)

α

 . (73)

If all cross effects are neglected, except for possible cross effects among the different
types of magnetic relaxation phenomena, we obtain the following equations for the
irreversible magnetic relaxation phenomena, the stress tensor, the heat flux, the dif-
fusion flows and chemical reactions, respectively (see Eqs. (43)-(48), (29), (30)and
(69)-(70)),

Bα = B(eq)
α + L(0,0)

(M)αβ

dMβ

dt
+ L(0,1)

(M)αβB(1)
β , (74)

dM(1)
α

dt
= L(1,0)

(M)αβ

dMβ

dt
+ L(1,1)

(M)αβB(1)
β , (75)

ταβ = aαβγζϵγζ + aαβ(T − T(0)) +
n∑

k=1

b(k)
αβ

(
c(k) − c(k)

(0)

)
+ L(vi,vi)

αβγζ

dϵγζ
dt

, (76)

J(q)
α = −

1
T

L(q,q)
αβ T,β, J( j)

(diff )α =

n−1∑
k=1

L( j,k)
(DD)αβX(k)

β ( j, k = 1, 2, ..., n − 1),

J(l)
(chem) =

r∑
h=1

L(l,h)
(CC)A

(h) (l = 1, 2, ..., r), (77)

where we have to take into consideration Eqs. (32), (33), (36), (39)-(40) and (73).



On magnetic relaxation equation for anisotropic reacting fluid mixtures 155

7. GENERALIZED SNOEK EQUATION FOR
ANISOTROPIC MAGNETIZABLE REACTING
FLUID MIXTURES

Taking into account (71), (72), Eqs. (74) and (75) may be written, respectively, in
the form

c(1)
αβM(1)

β = Q(1)
(0,0)α, (78)

where
c(1)
αβ = a(0,0)

(M)αβ + L(0,1)
(M)αγ

a(1,1)
(M)γβ, (79)

Q(1)
(0,0)α =

(
a(0,0)

(M)αβ + L(0,1)
(M)αγa(0,0)

(M)γβ

)
Mβ + L(0,0)

(M)αβ

dMβ

dt
− Bα +

(
a(0)

(M)α+

L(0,1)
(M)αβa

(1)
(M)β

)
(T − T(0)) +

n∑
k=1

(
b(0,k)

(M)α + L(0,1)
(M)αβb

(1,k)
(M)β

) (
c(k) − c(k)

(0)

)
, (80)

and
dM(1)

β

dt
+ hβγM(1)

γ = Q(1,0)β, (81)

where
hβγ = L(1,1)

(M)βηa
(1,1)
(M)ηγ (82)

and

Q(1,0)β = L(1,1)
(M)βηa

(0,0)
(M)ηγMγ + L(1,0)

(M)βγ

dMγ

dt
+

L(1,1)
(M)βγa(1)

(M)γ(T − T(0)) +
n∑

k=1

L(1,1)
(M)βγb(1,k)

(M)γ

(
c(k) − c(k)

(0)

)
. (83)

If the coefficients in (78) and (79) are constant, it follows from (78) that

c(1)
αβ

dM(1)
β

dt
=

dQ(1)
(0,0)α

dt
, (84)

provided that all derivatives exist in (84).
Multiplying both sides of Eq. (81) by (c(1)

αβ) and summing over β, with the aid of
(78), we obtain

c(1)
αβhβγM(1)

γ = c(1)
αβQ(1,0)β −

dQ(1)
(0,0)α

dt
. (85)

Finally, assuming that it is possible to define the inverse matrix (c(1)
αβ)−1, such that

(c(1)
αβ)−1c(1)

βγ = c(1)
αβ(c(1)

βγ )−1 = δαγ, (86)
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inserting in (85) the expression of the internal magnetic field M(1), obtained by (see
(78)), i.e.

M(1)
α = (c(1)

αβ)−1Q(1)
(0,0)β, (87)

one gets the following magnetic relaxation equation (see [7])

χ(0)
(BM)αβBβ +

dBα
dt
= χ(0)

(MB)αβMβ + χ
(1)
(MB)αβ

dMβ

dt
+ χ(2)

(MB)αβ

d2Mβ

dt2 +

χ(0)
(T )α(T − T0) + χ(1)

(T )α
dT
dt
+

n∑
k=1

χ(0,k)
(C)α

(
c(k) − c(k)

(0)

)
+

d
dt

n∑
k=1

χ(1,k)
(C)α

(
c(k) − c(k)

(0)

)
, (88)

where
χ(0)

(BM)αβ = c(1)
αγhγζ(c

(1)
ζβ )−1, (89)

χ(0)
(MB)αβ = c(1)

αγ

{
hγζ(c

(1)
ζη )−1

(
a(0,0)

(M)ηβ + L(0,1)
(M)ηµa(0,0)

(M)µβ

)
− L(1,1)

(M)γµ
a(0,0)

(M)µβ

}
, (90)

χ(1)
(MB)αβ = c(1)

αγ

{
hγζ(c

(1)
ζη )−1L(0,0)

(M)ηβ − L(1,0)
(M)γβ

}
+ a(0,0)

(M)αβ + L(0,1)
(M)αηa

(0,0)
(M)ηβ, (91)

χ(2)
(MB)αβ = L(0,0)

(M)αβ, (92)

χ(0)
(T )α = c(1)

αγ

{
hγζ(c

(1)
ζη )−1

(
a(0)

(M)η + L(0,1)
(M)ηβa

(1)
(M)β

)
− L(1,1)

(M)γβa
(1)
(M)β

}
, (93)

χ(1)
(T )α = a(0)

(M)α + L(0,1)
(M)αβa

(1)
(M)β. (94)

χ(0,k)
(C)α = c(1)

αγ

{
hγζ(c

(1)
ζη )−1

(
b(0,k)

(M)η + L(0,1)
(M)ηβb

(1,k)
(M)β

)
− L(1,1)

(M)γβb
(1,k)
(M)β

}
, (95)

χ(1,k)
(C)α = b(0,k)

(M)α + L(0,1)
(M)αβb

(1,k)
(M)β. (96)

Hence, it is seen that the linearization of the theory leads to a relaxation equation
for anisotropic magnetizable reacting fluid mixtures which has the form of a linear
relation among the temperature, the concentrations of the n chemical components, the
magnetic field, the total magnetization, the first time derivatives of the temperature,
the n concentrations, the magnetic field and the total magnetization, and the second
derivative with respect to time of this last axial vector.

8. PARTICULAR CASES

In this Section we treat two particular cases of the derived generalized Snoek equa-
tion. In the first special case a) where
a) B = Beq, Bir = 0,
from (74) one gets

L(0,0)
(M)αβ = 0, and L(0,1)

(M)αβ = −L(1,0)
(M)βα = 0. (97)
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Hence, the magnetic relaxation equation (88) becomes

χ(0)
(BM)αβBβ +

dBα
dt
= χ(0)

(MB)αβMβ + χ
(1)
(MB)αβ

dMβ

dt
+

χ(0)
(T )α(T − T0) + χ(1)

(T )α
dT
dt
+

n∑
k=1

χ(0,k)
(C)α

(
c(k) − c(k)

(0)

)
+

d
dt

n∑
k=1

χ(1,k)
(C)α

(
c(k) − c(k)

(0)

)
, (98)

where
χ(0)

(BM)αβ = a(0,0)
(M)αγL(1,1)

(M)γηa
(1,1)
(M)ηζ

(
a(0,0)

(M)ζβ

)−1
, (99)

χ(0)
(MB)αβ = a(0,0)

(M)αηL(1,1)
(M)ηγ

(
a(1,1)

(M)γβ − a(0,0)
(M)γβ

)
, (100)

χ(1)
MB)αβ = a(0,0)

(M)αβ, (101)

χ(0)
(T )α = a(0,0)

(M)αβL(1,1)
(M)βγ

{
a(1,1)

(M)γη

(
a(0,0)

(M)ηζ

)−1
a(0)

(M)ζ − a(1)
(M)γ

}
, (102)

χ(1)
(T )α = a(0)

(M)α. (103)

χ(0,k)
(C)α = a(0,0)

(M)αβL(1,1)
(M)βγ

{
a(1,1)

(M)γη

(
a(0,0)

(M)ηζ

)−1
b(0,k)

(M)ζ − b(1,k)
(M)γ

}
, (104)

χ(1,k)
(C)α = b(0,k)

(M)α. (105)

In this case the magnetization axial vector M is composed of two parts, M = M(0) +

M(1), where the contribution M(0) has reversible character and the contribution M(1)

has irreversible character. In the case where we have only an isotropic fluid without
chemical reactions, eq. (98) reduces to the classical Snoek equation (1) (see [1] and
also [6] and [7]).

In the second special case b) where
b) L(1,1)

(M)αβ = 0, and L(1,0)
(M)αβ = −L(0,1)

(M)αβ = 0,
Eqs. (74) and (75) become

B(ir)
α = L(0,0)

(M)αβ

dMβ

dt
(106)

and
dM(1)

α

dt
= 0. (107)

It is seen that M(1) is constant and it can be supposed that M(1) = 0 (i.e. there is
no internal variable) [7]. Equation (88) reduces to a generalized magnetic relaxation
equation for De Groot-Mazur media (see [1]-[3])

Bα = χ
(1)
(MB)αβMβ + χ

(2)
(MB)αβ

dMβ

dt
+ χ(1)

(T )α
dT
dt
+

d
dt

n∑
k=1

χ(1,k)
(C)α

(
c(k) − c(k)

(0)

)
, (108)
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where
χ(1)

(MB)αβ = a(0,0)
(M)αβ, (109)

χ(2)
(MB)αβ = L(0,0)

(M)αβ, (110)

χ(1)
T )α = a(0)

(M)α. (111)

χ(1,k)
(C)α = b(0,k)

(M)α. (112)

In the case where we have only an isotropic fluid without chemical reactions, eq.
(113) reduces to the classical De Groot-Mazur equation

Bα = χ
(1)
(MB)Mα + χ

(2)
(MB)

dMα

dt
, (113)

where χ(1)
(MB) and χ(2)

(MB) are constants.

9. CONCLUSIONS

The paper deals with anisotropic magnetizable reacting fluid mixtures, where dif-
ferent types of irreversible microscopic phenomena give rise to magnetic relaxation.
The standard procedures of irreversible thermodynamics with internal variables is
used. The The obtained results can be applied in several physical situations, in nu-
clear magnetic resonance, in medicine and biology and other different fields of ap-
plied sciences, where complex media, in which different types of molecules, having
different magnetic susceptibilities and relaxation times, are taken into consideration.
In [15]-[19] Maugin gave a microscopic description of relaxation magnetic phenom-
ena in continuous media with n different ionic species, introducing partial magne-
tizations per unit mass and illustrating internal mechanisms in magnetizable bodies
by internal variables. In this paper the total specific magnetization is supposed sum
of two irreversible parts and, linearizing the theory, the magnetic relaxation equation
for these magnetizable anisotropic media is derived. The particular cases of classical
Snoek and De Groot-Mazur media are treated.
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Editions Desoer, 1947.

[9] S. R. De Groot, Thermodynamics of Irreversible Processes, North-Holland Publishing Company,
Amsterdam, and Interscience Publishers Inc., New York, 1951.

[10] J. Meixner, H. G. Reik, Thermodynamik der Irreversiblen Prozesse, Handbuch der Physik, III/2,
Springer-Verlag, Berlin, 1959.

[11] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Interscience Publishers-
John Wiley & Sons, New York-London, 1961.

[12] S. R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics, North-Holland Publishing Com-
pany, Amsterdam, and Interscience Publishers Inc., New York, 1962.

[13] G. A. Kluitenberg, Plasticity and Non-Equilibrium Thermodynamics, CISM Lecture Notes,
Springer-Verlag, Wien, New York, 1984.

[14] J. L. Snoek, Physica, 5 (1938), 663.

[15] G. A. Maugin, A continuum theory of deformable ferrimagnetic bodies. I. Field equations, Jour-
nal of Mathematical Physics, 17, 9(1976), 1727-1738.

[16] G. A. Maugin, A continuum theory of deformable ferrimagnetic bodies. II. Thermodynamics,
constitute theory, Journal of Mathematical Physics, 17, 9(1976), 1739-1751.

[17] G. A. Maugin, The method of virtual power in Continuum Mechanics: application to coupled
fields (Review Article), Acta Mechanica, 35 (1980), 1-70.

[18] G. A. Maugin, Sur la dynamique des milieux déformables magnétisés avec spin magnétique,
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