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Introduction 

The introductory chapter presents the work motivation and concludes with a brief description of the 

thesis. 

Motivation 

The main focus of the present thesis is Elastic Incoherent Neutron Scattering (EINS) experimental 

data collected for dry and hydrated (H2O and D2O) lysozyme samples; this study was performed as a 

function of the exchanged wave vector.   

Later, the analysis of mean square displacement  on the collected elastically scattered intensity data 

as a function of the exchanged wavevector has been performed. 

What has been done to make a comparison between the values of mean square displacement obtained 

with different instruments.  

In particular the data analyzed were obtained at the Institute Laue Langevin (Grenoble, France) by 

using two spectrometers, IN13 and IN10 working at the energy resolution value of 8 μeV, 

corresponding to an elastic time resolution of 516 ps, and at the energy resolution value of 1 μeV, 

corresponding to an elastic time resolution of 4136 ps.  

Since the experimentally obtained neutron scattering data depend on the employed spectrometer 

instrumental characteristics, the system observables as mean square displacement (MSD), are 

influenced by instrumental effects.  

Then, there is the problem of comparing data from spectrometers with different instrumental 

resolutions. 

In order to do this, we faced the problem of normalization of data, which allow to solve it  comparing 

the MSD system.  

There are many ways in which we can address the problem of normalization but, after careful analysis, 

we deduced that only a few of them do not change the value of the MSD. 

The comparison, in particular, is performed at very low temperatures (T < 80 K). In such a case occur 

only vibrational motions and the MSD system can be considered almost constant <r 2> (t) → <r 2>(V). 
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Thesis outline 

The current thesis is organized as follows: 

 Chapter 1, Complementary approaches for the characterization of molecular motions in 

condensed matter systems. This chapter deals with the use of complementary spectroscopic 

techniques and numerical techniques for the study of systems of biophysical interest. In 

particular, the focus is addressed on laser light scattering, infrared absorption, neutron 

scattering for the characterization of the space-time correlations of physical systems. 

 Chapter 2, Recent Development on Elastic Incoherent Neutron Scattering and Resolution 

Elastic Neutron Scattering (RENS). It deals with the collection of elastic neutron scattering 

intensity both as a function of temperature (EINS) and resolution (RENS).  

 Chapter 3, Mean Square Displacement (MSD). After an introduction on the Brownian motion, 

it describes the concept of MSD and the SDF procedure: a recipe for the MSD evaluation from 

EINS experiments.  

 

 Chapter 4, Investigated systems and methods. A description of the investigated systems is 

reported. More specifically, these are dry and hydrated (H2O and D2O) lysozyme samples. In 

addition, the description of the protein structure and of IN10 and IN13 spectrometers is given. 

 

 Chapter 5, Results and discussion. It shows the different normalization procedures applicable 

to data obtained experimentally in laboratory, so that they can be compared. In particular, it 

focuses on those useful for normalization of MSD.The results obtained from applied approaches 

with different normalizzation procedures and the obtained values of MSD for dry and hydrated 

(H2O and D2O) lysozyme are reported.  
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Chapter 1 
Characterization of molecular motions in condensed matter 

systems using complementary techniques 

 
1.1 General introduction to molecular dynamics and spectroscopic 

techniques 

The spectroscopy experiments and molecular dynamics calculations allow us to approach 

the study of molecular motions in liquids in two complementary ways [1]. 

By means of spectroscopic techniques, it is possible to use a probe as electromagnetic 

waves (e.m.), centrifugal, neutrons, ..., prepared in a known state, that interacts with the 

degrees of freedom of the investigated system. The probe state changes are due to the 

interaction, (for example the e.m. wave is dispersed) and such a change reflects the 

dynamic properties of the system. The result appears normally in the form of a spectrum 

of energy that must be interpreted in terms of molecular motions. As will be seen below, 

each spectrum is proportional to the time Fourier transform of a well-defined correlation 

function (c.f). A c.f is the average balance of the set of two molecular dynamics variables 

product taken at time 0 and the time t. A means now widely used to extract the physical 

information from a spectrum is to use the concept of a dynamic model. This model is 

characterized by one or more equations that govern the rates of evolution of molecular 

dynamics variables. These equations allow to calculate the correlation functions and, after 

Fourier transforming, the theoretical spectrum. The parameters of the model may be 

deducted (jump time, gyration radius...) and the experimental spectrum are compared 

with the spectrum obtained 

If, however, we face the problem by molecular dynamics, we examine about N = 1000 

rigid molecules, we consider the potential intermolecular coupling, and we choose the 

boundary and initial conditions (i.e. the volume and energy) and numerically solve the 

coupled equations 6N of motion. Based on these results it can generally calculate a 

physical quantity associated with the system (balance amount as well as time dependent). 

But the method is limited by computer memory and time; this method can not be very 

good to test long-standing and long-range phenomena, as described, for example, from 

hydrodynamic theory theory and critical phenomena. This in particular because: 



2 

 

 N is always small compared to the number of particles in a real sample (the 

volume of sample tested is always very small) ; 

 the number of integration steps is necessarily finished then the time scale is 

relatively small. 

The restriction to pair potentials and to classical mechanics is the other limitation of this 

method. Consequently a quantum description is therefore necessary as important 

phenomena such as vibration can not be included. The main interest of the molecular 

dynamics method is to give typical results that can be compared to results obtained from 

experiments on real liquids. 

 

1.2 Models for translational and rotational diffusive motions and for 

vibration motions 

To describe molecular translation, rotation and vibration [1] a large number of 

models have been developed and the main ones are listed below: 

1. Translation 

- Langevin model describes the molecular centre of mass. Then the particle 

is assumed to be submitted to two forces: a viscous force and a random 

force. In the limits of very weak and very strong viscosity, one finds the free 

translation and the uniform translational diffusion, respectively. In the 

latter case, the motion is characterized by a single diffusion coefficient Dt 

(isotropic medium). On the other hand, collective translational motions are 

usually described in terms of longitudinal acoustic waves and thermal 

diffusivity in a hydrodynamic theory. 

2. Rotation 

- In this case many models have been devised and can be summarized in two 

major groups inertial and stochastic models.  

The inertial models are plausible in low density compounds from 

spheroidal molecules systems infact the molecules are essentially rotating, 

but undergo random collisions that modify their dynamic state. Examples 

of inertial models are: the free rotation model (collisions) and diffusion 

models extended (so-called J and Gordon M models) where, during the 

collision, the orientation of molecules do not change but their angular 
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momentum J is randomized. 

- The stochastic models are plausible in highly condensed systems. In this 

case the molecules are essentially non rotating, the motions occurring by 

rapid rotational jumps over barriers.  An example is the Debye model 

(isotropic diffusion characterized by a single diffusion coefficient Dr) so the 

anisotropic diffusion model and the model of Ivanov (jumps of isotropic 

finite angle). The distinction between inertial and stochastic models is not 

clear, especially when the time between jumps or collisions is of the order 

of (kBT / I) 1/2, the average time to jump to thermal motion rotation. In this 

case, the model should combine both aspects as is the case for example, in 

the Langevin model for the rotation. Other models in which they are 

combined translation and rotation have been imagined. For example, 

remember the violent collision model in which molecules move freely, 

except during collisions that instant randomize both the position and the 

angular momentum. As for the collective rotational motions, some recent 

experiments of diffusion of light seem to require a description in terms of 

coupling between shear waves and molecular rotations. 

3. Vibrations 

Regarding the molecular vibrations, little is known so far. However, it appears 

that a large number of mechanism may be the cause for the vibrational 

relaxation, in particular coupling with all the other degrees of freedom: rotation, 

translation and other vibrations. 

Obviously this does not exhaust the study of the subject which is much more 

extensive than we treated 

 

1.3 The principle of a spectroscopic experiment: definitions 
 

Given a system (i.e. a molecular liquid) which we call reservoir R, formed by N particles, 

in thermal equilibrium T. This reservoir is characterized by its Hamiltonian HR whose 

eigenvalues and eigenstates are Em’ and   respectively [1]. 

We wonder how the molecular properties of this system vary with time. For this reason, 

we consider another system (e.g. the e.m. field, the neutron field, a spin system) which 

'm
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we call the probe P. It is characterized by its Hamiltonian HP whose eigenvalues and 

eigenstates are labelled Em and . 

The probe has the ability to join with the dynamical variables of the reservoir and this 

coupling is characterized by an Hamiltonian HC. 

 

1.3.1 First step: Probe-system coupling 

 

Initially, we consider the probe in a defined dynamical state  (e.g. e.m. waves or 

neutrons are collimated and monochromatized). Being at thermal equilibrium, the 

reservoir R can be in any state  with the probability mp , given by the Boltzmann 

law: 

)exp(
1

'' m

R

m E
Z

p              (1.1) 

with 

 
'

' )exp(
m

mR EZ              (1.2) 

and  

 

Tk B

1
              (1.3) 

Where Bk is the Boltzmann constant. 

 

The figure below shows a sketch of a spectroscopic experiment. 

 
  

 

 

 

 

 

 

 

Figure 1.1 Sketch of a spectroscopic experiment 

 

Because of the interaction hc turned on, the state of the probe P can change with 

time from the inistial state to a final state . If HC is small compared to HP and HR, 

in the linear approximation this change can be characterized by a probability per unit time 

m

m

'm

m n

RESERVOIR  R PROBE P 

Interaction Hamiltonian Hc 
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nmW . The purpose of any spectroscopic experiment is to measure a quantity which is 

proportional to nmW as a function of n  or . This because nmW  measurement yields 

information about what is happening in R (e.g. the molecular motions) being that nmW  is 

a function of operators of R. Then what we need to do is to calculate nmW and relating it 

to a measurable quantity.  

 

1.3.2 Second step: Calculation of Wnm 

 

The calculation of  nmW  goes made considering the total system formed by the probe plus 

the reservoir. The corresponding eigenstates are symbolized by m .  

In the linear approximation, we have: 

 

'

''

'' m

nm

nnmmnm pWW              (1.4) 

where  Wn’nm’m is the probability for unit time that this total system changes from the state 

m  to the state n 'n  due to HC and its value is given by the following Fermi rule .  

 nnmmCnnmm EEEEmmHnnW  ''

2

'' ''
2





        (1.5) 

 

The delta function that we see is obtainable by the energy conservation principle. 

Defining CH  as the average of HC between the initial and final state of the probe: 

 

CH mHn int                         (1.6) 

 

Defined in this way, CH  is an operator that acts on the states of the reservoir only. 

With the following definitions: 

          

            nm EE                                       (1.7) 

'' mn EE              (1.8) 

 

considering the equation written above, the probability nmW  is written: 

)(''
)exp(2

''

2

''

'

2






 mnC

nm
R

m

nm mHn
Z

E
W


          (1.9) 

m

'm

'm
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This expression is suitable to describe discrete peaks in a spectrum, as is the case for a 

purely quantum system, thanks to the presence of the δ function [1]. 

Using the fact that CH  is an hermitian operator and by using the integral expression for 

the δ function is possible using another equivalent expression for nmW  for describing more 

complicated system. 

We have: 

 


2

'' mHn C
'''' nHmmHn CC


      (1.10a) 

 

and 

  







ti

mn
mndte

)(

''
''

2

1 


          (1.10b) 

 

inserting eqs. (1.10a) and (1.10b) in eq.(1.9) and using Eq. (1.8), we obtain 

 

ti
t

E
i

C

t
E

i

C

mn R

E

nm emeHennHm
Z

e
dtW

mnm













  ''''
1 ''

''
2




     (1.11) 

The double sum is simply the expression of a trace in the R Hilbert space. We thus 

have: 

 

  ti

CCRnm etHHdtTrW  




 )()0(
1

2
        (1.12) 

 

where R  is the density matrix of R at thermal equilibrium: 

 

 R

R

H

H

R
eTr

e









            (1.13) 

and )(tH C is the Heisenberg representation of operator CH : 

t
E

i

C

t
E

i

C

mn

eHetH 
'

)(


           (1.14) 

 

The quantity 

 


)()0( tHHTrC
CC

CC
RHH

 )()0( tHH
CC

        (1.15) 

is the quantum expression for the autocorrelation function of CH  . 
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If the reservoir is classical, then CH  is a classical function of the variables of R 

and  tC
CC HH should be replaced by its classical equivalent. Defining the spectral density 

 
CC HH

C  as the time Fourier transform of )(tC
CC HH : 






 dtetCC ti

HHHH CCCC




 )(

2

1
)(          (1.16) 

 

and using eq.(1.12), the probability of transition nmW is finally written: 

 

 

 


CC HHnm CW
2

2


           (1.17) 

 

An important point is to relate the probabilities for the direct transition nmW  and the 

inverse transition mnW  is finally. Changing   into   in the above equations, after a 

little algebra, we obtain: 

nmmn WeW                         (1.18) 

 

This is the Kubo-Ayant theorem which means that, in the linear approximation, the 

probability per unit time for the transition from one level to another is proportional to the 

population of this level. 

In summary, to describe any spectroscopic experiment, we are led to define the 

reservoir, the probe, the interaction HC and calculate the average value CH , its 

correlation function )(tC
CC HH  and the probability nmW . To be complete, we must relate 

nmW to a measurable quantity. However, this relationship is clearly dependent on the type 

and details of the experiment (e.g. an absorption experiment, a scattering experiment, a 

relaxation experiment) and no general formula can be given. We shall thus establish it for 

each particular case treated below.  
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1.4  Neutron Scattering  

 In this part we will talk about neutron, describing how they can be used to study 

molecular motions. We begin first remembering the properties and associated concepts, 

then describe the principles of a neutron scattering experiment, deduce the relevant 

correlation function, relate it to the scattered intensity and give some illustrative examples 

[1]. 

 

1.4.1 Properties of the neutron probe  

The free neutron [1] is an elementary particle with zero charge and spin ½, liberated 

for example during the process of fission of a heavy nucleus. In a nuclear reactor, the 

neutrons are thermalized by the atoms of the moderator, yielding a Maxwellian 

distribution of velocities v peaked at some v  such that the average (kinetic) energy E is 

TkvmE Bn
2

3

2

1 2

            (1.19) 

where nm  is the mass of the neutron. 

Neutrons can also be considered as plane waves of wave number k

 or wavelength 

k
 2 . The relationships between particle and wave aspects are: 

nm

k
E

2

22
             (1.20) 

and  

nm

k
v


             (1.21) 

For thermal neutrons (T=300K), we have E =26 meV and  =1.8 Å. It is important to 

note that these values have the same order of magnitude as the intermolecular energies 

and molecular dimensions, respectively. In fig. 1.2  the spatial scales interested by neutron 

probe are reported. 
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Fig. 1.2: Spatial scales interested by the neutron probe. 

Finally, considered as quantum objects, neutrons are characterized by wave functions k

such that  

k =
rkie

V

1
            (1.22) 

where V is the “volume of quantization” to be identified with the volume of the irradiated 

sample. In this volume, the density of states of momentum k

 is given by 

3)2(
)(




V
k 


            (1.23) 

Using the expression below of the volume element in spherical coordinates: 

 dkdkkd


2              (1.24) 

with:  

d = the solid angle corresponding to kd


 around k

 

we deduce that the number of independent neutron states between k

 and k


+ kd


 is: 

 dkdk
V

kdk


2

3)2(
)(


           (1.25) 

In fig. 1.3 a neutron “identity card” is reported. 
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Fig. 1.3: “Identity card” of neutron 

 

1.4.2  Nature of the neutron-nucleus interaction 

A neutron interacts with a nucleus through nuclear and magnetic forces. 

Concerning the nuclear part, since nuclear interactions are very short range compared to 

the (thermal) neutron wavelength, it can be shown that the interaction potential between 

a neutron located at r


and a nucleus located at 
ir
  can be written as 

)(
2

)(
2

ii

n

rrb
m

rV


 


          (1.26) 

In the expression we have written now (the so-called Fermi pseudo-potential), the 

scattering length bi characterizes the interaction and is independent of neutron energy. bi 

can be positive or negative depending on the attractive or repulsive nature of the 

interaction. Is so difficult theoretically calculate the value of bi and for this reason it is 

calculated experimentally 

For the magnetic interaction, the neutron interacts with the spins through the dipole-

dipole coupling. Compared to the nuclear interaction, for diamagnetic systems it is always 

insignificant and shall not be considered in the following. fig. 1.4 shows the Maxwell 

neutron velocity distribution. 
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Fig. 1.4: Neutron velocity distribution 

 

1.4.3 Coherent and incoherent scattering contributions and relative 

cross -sections 

 
Consider a set of a given atomic species, i, in which many isotopes possessing a 

nuclear spin. The scattering length, bi , will alter from one atom to another, since the 

interaction depends on the nature of the nucleus and on the total spin state of the nucleus-

neutron system. 

The average ib  of bi over all the isotopes and spin states is called coherent scattering 

length. The mean square deviation of bi from ib  is called the incoherent scattering 

length. We thus have 

i

coh

i bb               (1.27) 

  2
1

22

ii

incoh

i bbb            (1.28) 

From these definitions, it is clear that
coh

ib  and 
incoh

ib  can be modified simply by changing 

the relative concentration of the various isotopes. This has a great practical importance in 

Maxwell velocity distribution 
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neutron experiment (isotopic substitution). The coherent and incoherent scattering cross-

section are defined by 

coh

i

coh

i b2

 4              (1.29) 

incoh

i

incoh

i b2

 4            (1.30) 

In the following table we list the values of these quantities in barns (1barn=10-24 cm2) for 

a few atom: 

 
Element Z Weight 

number 

s coh 

(barn) 

inc 

(barn) 
 

(barn) 

ass (barn) NOTE 

H 1 1.0079 1/2 1.7568 80.26 82.02 0.3326 inc much larger than 

other elements. 

Privileged to study 

individual motion in 

hydrogenated 

compounds 

D 1 2.0144 1 5.592 2.05 7.64 0.000519 Advantage of a 

selective deuteration 

C 6 12.0107 0 5.551 0.001 5.551 0.0035  

O 8 15.9994 0 4.232 0.0008 4.232 0.00019  

Al 13 26.9815 5/2 1.495 0.0082 1.503 0.231@1.8Å Weak absorber. 

Sample containers, 

windows and high 

pressure cells 

V 23 50.9415 7/2 0.0184 5.08 5.1 5.08 Scattering nearly 

purely incoherent. 

Instrument calibration 

(relative efficiency of 

detectors, instrument 

resolution) 

Cd 48 112.411 1/2 3.04 3.46 6.5 2520@1.8Å Strong absorber. 

Shields against 

parasitic reflections or 

slits to delimit the 

shape and dimensions 

of neutron beams 

Gd 64 157.25 3/2 29.3 151 180 29400@1.8Å Strong absorber as Cd 

 

Table 1.1: Values of coherent and incoherent scattering cross-section in barns for a few common elements 
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In fig. 1.5 elements’ neutron total cross section values are reported. 

 

 
 

Fig. 1.5: Elements’ neutron total cross section 

 

1.4.4 Neutron scattering experiment 
 

Is necessary, to describe the principles of a neutron experiment, first of all define 

the probe P, the reservoir R, and the interaction HC. The probe P is constituted by the 

neutron plane waves which are characterized by their wave functions k . The reservoir 

R is made up of N particles located at ir


. The interaction CH  between P and R is given 

by Eq. (26) summed over all the particles i: 

 











i

ii

n

C rrb
m

H )(
2 2 




          (1.31) 

Subsequently a quantistic description, one looks for the probability of the neutrons to be 

scattered from a well defined initial state  0km to a final state  1kn . The 

average of CH  between these two states is:  
















i

rQi

i

n

CC
ieb

mV
kHkH

2

10

21 
        (1.32) 

where  

10 kkQ               (1.33) 

is the neutron momentum transfer. 

Calling V the scattering volume, based on what was said, the correlation function is 

simply obtained: 
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Based on the equation 1.17 the Fourier transform of equation (1.34), one obtains the 

corresponding probability transition Wk k
1 0

that is to be related to a measurable quantity. 

Indicating 0I  as the number of incident neutron per cm2 and per second and I as the 

number of neutron scattered per second between 
1k  and 

11 kdk  , we have: 

 ddkkW
I

I
kk 1

2

1

0

01
           (1.35) 

 

Starting from the equations (1.21), (1.17), (1.34) and (1.25) and using the definition 

of the energy E1 of the scattered neutron: 

nm

k
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2
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              (1.36) 

 

 in the end we get: 
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    (1.37) 

The double differential scattering cross-section, 
d

d d

2


 present in equation (1.37), 

represents the normalized scattered intensity per unit energy and per unit solid angle and 

is a measure of  the number of neutrons scattered per second into a solid angle d about 

1k with energies in a range dE’ about E’, with 

     



 dttitQIQS 


 exp,

2

1
,         (1.38) 

and 

        
ji

jiji rtrQibb
N

tQI
,

0exp
1

,         (1.39) 

From eq. (1.39) we can see that neutron scattering reflects molecular motions through the 

variation of the position of the scattering particles. By making explicit the average in eqn. 

(1.39), we can say out more about the nature of these motions. This average can be carried 

out on 
ji bb  and or also on the exponential. The explanation for this is that the actual 

scattering length of every nucleus is evidently independent of its position. According to 

equations (1.27) and (1.28) in equation (1.39) we can write: 

  ),(),(, tQItQItQI sp            (1.40) 
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with 
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rtrQicoh
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jiebb

N
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,
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        (1.41) 
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N
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),(          (1.42) 

and by analogy 

),(),(),(  QSQSQS sp           (1.43) 

 

These equations show that we have two types of scattering: a coherent part and an 

incoherent part.  

If the system is composed of molecules that do not contain hydrogen atoms (e.g. a simple 

liquid) then  

incoh

i

coh

i bb   

and the scattering is mainly coherent. ),( tQI p
is a pair correlation function and thus the 

spectra mainly reflect collective atomic motions. If, instead, it is in the system of 

hydrogen atoms then (e.g. most molecular liquids) then  

coh

i

incoh

i bb   

and the scattering is mainly incoherent. ),( tQI s
is a self correlation function and thus the 

spectra mainly reflect the individual atomic motions. From here on we shall consider only 

the latter case 

In fig. 1.6 the accessible wavevector-energy region of neutrons is reported.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6: Neutron accessible wavevector-energy region 

 

1.4.5 Scattering from incoherent scatterers 

Let us consider a system made of identical molecules that contain, for simplicity, only 

one hydrogen atom. Since the scattering is almost completely incoherent, we have 

)]0()([
),(),( ji rtrQi

s econsttQItQI


          (1.44) 

In fig. 1.7 a scheme of typical molecular motions is shown. 
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Fig. 1.7: Scheme of molecular motions. 

 

Hereafter we use for simplicity normalized functions by doing the constant equal to 1. 

Let us write  

udr                   (1.45) 

Where: 

 d  is the molecular centre of mass (c.o.m.) 

  is the position of the proton with respect to the c.o.m. and stands for the 

vibrational  

      displacement around the average position.  

We have, in the classical approximation: 


 )(

0
rrQi

e
)( 0ddQi

e
 )(

0
Qi

e
)( 0uuQi

e


       (1.46) 

If the translation (i.e. motion of d ), rotation (i.e. motion of ) and vibration (i.e. motion 

of u

) are not combined, then can be carried out individually the average on the three 

exponentials in eq. (1.46) and we have, with evident notations:  




Dynamics: time Dependent Pair-Correlation Function 
 

 

 

                                                                                        

 

 

 

 

                                                                 

 

 

 

 

 

Coupling arises from the impossibility to consider motions separately 

Movements 

Individual Collective 

Molecular 

diffusion 

Vibrations 

 

Rotation 

 𝑡~10−11+−12𝑠  
 

 

Intermolecular 

 𝑡~10−13𝑠  
 

 

Intramolecular 

 𝑡~10−14+−15𝑠  
 

Translation 

𝐷~10−5𝑐𝑚2𝑠−1 
 𝑡~10−9+−10𝑠  

 

Classical Mechanics 
 

Quantum Mechanics 
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),(),(),(),(  QSQSQSQS vib

s

rot

s

trans

ss                        (1.48) 

If the motions are independent this result implies that the total incoherent scattering law 

is the convolution product of the scattering laws for the three elementary motions. In fig. 

1.8 a sketch of autocorrelation, cross-correlation and convolution is shown. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.8: Sketch of autocorrelation, cross-correlation and convolution 

 

If now the molecules have inside inequivalent protons, the equations that we saw earlier 

should be averaged over these protons. In this case, the spectra reflect the superposition 

of the motions of the different protons. A way to separate them is to use several partially 

deuterated specimens in order to make invisible to neutrons afterwards each kind of 

proton. This approach was successfully utilized in the field of liquid crystals. 
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1.4.6 Incoherent “Quasi-elastic” Spectra 

 

In this part, we discuss calculations, that are simple in some cases, to make 

obvious the main features of incoherent spectra reflecting pure rotation, pure translation 

and a combination of both. Since these spectra are centered around 0 , they are 

usually qualified as “quasi-elastic”. 

1.4.6.1 Rotation and diffusion spectral contribution 
 

Let us examine the simple case of isotropic rotational diffusion on a sphere of 

radius  . The position of the particle is characterized by a vector  (t). The probability 

distribution sG of its orientation   is governed by the following rate equation 

Sr
S GD

t

G 2





           (1.49) 

In which: 

 tGs ,, 0  is the probability of finding the orientation at   at time t if it was at 0 at 

zero time 

rD  is the rotational diffusion coefficient. 

The solution of this equation is 
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From eqn. (1.44) we get: 
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    (1.51) 

And by Fourier transforming 
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      (1.52) 

Where the lj  are the spherical Bessel functions. 

The scattering law (1.52) is composed of a sharp )( peak superimposed on a broadened 

component (composed of various Lorentzians) whose width is of the order of a few rD  

(fig.1.9), and whose intensity depends on Q. For more complicated models, it can be 

shown that these key characteristics are preserved. For example a )(  peak and 
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broadened components whose widths are Q-independent, but other characteristics (e.g. 

side peaks or humps) appear if the rotation becomes relatively free. 

 

 
Fig.1.9: Theoretical incoherent neutron quasi-elastic scattering spectrum for a purely rotational diffusive 

motion 
 

1.4.6.2 Translation diffusion spectral contribution 
 

Now we consider the simple case of isotropic translational diffusion. The 

probability distribution 
sG  of the position )(td  of the particle is run by the rate equation: 

Sdt
S GD

t

G 2



           (1.53) 

In which: 

 tddGs ,, 0
 is the probability of finding the particle at d at time t  if it was at 0t at zero 

time 

tD  is the translational diffusion coefficient. 

The solution of this equation is 
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            (1.54) 

From eq. (44) we get: 
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          (1.55) 

And by Fourier transforming 
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It was noted that the scattering law (1.56) is a single Lorentzian line whose amplitude 

varies like 2Q  (figg.1.10-1.11-1.12). For more complex models, we get a superposition 

of Lorentzian (or more complicated shapes) lines whose widths and relative intensities 

are Q -dependent.  This must be compared with the rotational case where only the 

amplitudes are Q -dependent. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10: QENS: Macroscopic continuous diffusion 
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Fig. 1.11: Random jump diffusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.12: Comparison of translational motions in Gaussian approximation. 
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1.4.6.3 Superposition of rotation and translation diffusion spectral 

contributions 
 

The molecules are now assumed to undergo self-diffusion and reorientation. 

Supposing that these movements are independent, the total scattering law is the 

convolution of the rotational and translational scattering laws. It was noted that even if 

the two movements are described by simple models that we talked about, the scattering 

law is the sum of a number of elementary curves (Lorentzians) whose widths depend both 

on translational and rotational parameters and whose relative amplitudes are Q -

dependent. It is therefore difficult a priori to separate the two contributions, mostly when 

the finite instrumental energy resolutions is regarded. Nevertheless this is now possible 

using the concept of the Elastic Incoherent Structure Factor (EISF) and combing 

measurements from various instruments, as will be seen below 

 

1.4.6.4 Vibrational spectral contribution 
 

Lastly, when there are vibrations, the total scattering law should be convoluted with that 

of vibrations, which is generally composed of sharp peaks of small intensity in the 

inelastic region.  

In the quasi-elastic region, it can be demostrate that this affects the scattering law through 

a Debye-Waller factor 
22 uQ

e


, where 
2u  is a mean square vibration amplitude. In this 

case we can write: 

    
22

,,
uQrot

s

trans

s

quasi

s eSQSQS


          (1.57) 

 

The Debye-Waller factor thus pictures the decrease of the total “quasi-elastic” intensity 

with increasing Q  (i.e. the scattering angle) and povides information on the extent of the 

(fast) vibrational motions. 

 

1.4.7 The Elastic Incoherent Structure Factor (EISF) 
 

We take into account the rotational scattering law (1.52). In this law the first term 

is the product of a function of Q , )(QF , multiplied by a  )( function. This property is 
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in fact general for whatever rotational model and derives from the fact that ),( tQI s
does 

not decay to zero where t . We have: 

    00 ),,(, rdrderrGtQIQF
rQi

Ss           (1.58) 

Namely, the coefficient of the )(   function, that has the dimension of a structure factor 

and is called the Elastic Incoherent Structure Factor (EISF), is the spatial Fourier 

transform of final distribution of the rotating proton, averaged over all possible initial 

position. 

Since )(QF  pictures the “trajectory” of the moving proton, if )(QF  could be extracted 

from spectra obtained at various Q  values, one would have precious information on the 

nature of the rotational motion performed by the proton. The way to relate the EISF to a 

misurable quantity is the following: it was noted that any rotational scattering law can be 

written 

     

𝑆𝑠
𝑟𝑜𝑡  𝑄,𝜔 = 𝐹  𝑄 𝛿 𝜔 + ∑ 𝑜𝑡ℎ𝑒𝑟  𝑏𝑟𝑜𝑎𝑑𝑒𝑛𝑒𝑑 𝑡𝑒𝑟𝑚𝑠𝑛      (1.59) 

Furthermore, Fourier transform of eq. (1.44) and integration over ω yields: 

1)0,(),(  QIdQS SS


           (1.60) 

Integrating eqn. (1.59), it is evident that )(QF is the fraction of the total quasi-elastic 

intensity contained in the purely elastic    peak. If the instrumental resolution   is 

(much) smaller than the reorientational rate, then the real spectra have the form sketched 

in fig.5, and the separation between the sharp (purely elastic) and broad components can 

be performed by natural extrapolation. Let  )(QIe
and )(QIq

 be the corresponding 

intensities (measured by graphical integration after subtraction of a flat background). We 

have: 

  
)()(

)(

exp QIQI

QI
QF

qe

e


           (1.61) 

The analysis is a priori much more difficult and, in each case, less precise, if the two 

components are not well separated. Are now increasing in number the studies of purely 

rotational motions in molecular crystals based on these ideas. For example we mention 

the problem of reorientation in plastic crystals, in liquid crystals, and that of methyl group 

rotation in solid phases. 
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We have considered thus far only pure rotation but when self-diffusion is superimposed 

on rotation (as it is in the case in molecular liquids), one can generalize. 

Practically, we find that it is necessary that we know 
tD  rather accurately in order to 

extract a reliable value for the EISF and accordingly, a reliable picture for the rotation. 

The diffusion coefficient 
tD  can often be obtained regardless by the neutron method by 

working at sufficiently low Q   (such that 12 
 rottQD  ) and sufficiently high resolution 

(such that 2QDt ). In these conditions only the translational part is seen in practice, 

the rotational contribution acting as a flat background. These experimental conditions can 

nowadays be achieved for usual liquids ( tD 10-7 cm2/sec) using the backscattering 

technique. After determining the value of  Dt, one can make experiments on a medium 

resolution instrument (such that Δ
1

rot  ): typically 10<Δ<100 μeV and extract the 

EISF from these spectra to obtain information about the rotational model.  

In fig. 1.13 are shown graphs in which it is evident a time dependent pair correlation 

functions and of dynamical structure factors. 

 
 
Fig 1.13: Sketch of the typical behaviour of the time dependent pair correlation functions and of the 

dynamic structure factor for solids, liquids and glasses 
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1.5 Absorption and scattering of electromagnetic waves: dielectric and 

infrared absorption, Raman and Rayleigh scattering 
 

 In this part, we explain how electromagnetic (e.m.) waves or photons of long 

wavelength (much greater than molecular dimension) can be useful to study molecular 

motions [1]. First and foremost we listen the properties which characterize the photon, 

then we focus on the principles of absorption and scattering experiments and give a few 

illustrative examples. 

 

1.5.1 Electromagnetic waves and photons 

The electromagnetic field is classically characterized by its electric field vector, 

)(rE , and magnetic, )(rH , field vector, and has a wave character. A plane wave is 

characterized by its wave vector k, its angular frequency k , and moves at the velocity 

of light c. These quantities are related by 

 

c=
k

k
            (1.63) 

Furthermore, electromagnetic waves can be seen as a ultra relativistic particles, 

photons, moving at the velocity of light and of energy Ek given by 

Ek=
k             (1.64) 

For visible light, we have Ek2eV and λk6000 Ǻ. So is interesting put these values 

in comparison with the corresponding ones for neutrons, in particular the fact that the 

wavelength is much greater than the usual molecular dimensions. In fig. 1.14 the photon’s 

“identity card” is reported. 
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Fig. 1.14: The photon’s “identity card” 

 

Considered the electromagnetic field as a quantum object, it must be treated as an 

operator within the formalism of second quantization: 
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*           (1.65) 
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where )exp(
2

rki
V

iE k

k   


         (1.67) 

and 
 kk E

k

k
H  .           (1.68) 

k=clk is the angular frequency 

 cl  the light velocity 

 k the wave vector 

 the polarization versor  
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V is the volume of quantization  and  the annihilation and creation operators 

respectively. 

The eigenstates kN  of the Hamiltonian of the field are characterized by the number 

kN  of photons existing in each state (k,μ) 

...,...,,
,2,21,1 ppkkkk NNNN 

         (1.69) 

 

The corresponding eigenvalues are 

E= k

k

kN 


  
,

, )
2

1
(            (1.70) 

Finally, the properties of the operators ck,μ and c+
k,μ are: 

ck,μ ''kN = ''1   kkkk NN   (annihilation of one photon kμ)     (1.71) 

c+
k,μ ''kN = ''11   kkkk NN   (creation of one photon kμ)     (1.72) 

 

 

 

1.5.2 Long wavelength e.m. waves- matter interaction 
 

Electromagnetic waves interact with electric charges. If the medium is neutral, at 

each point r, one can define a permanent dipole moment )(ru


, a polarizability tensor 

)(r


  per unit volume. If the wavelength is enough large, it can be see that the interaction 

Hamiltonian can be obtained by an expansion in the electric field: 

𝐻𝐶 = −∫𝑑𝑟 [𝐸 𝑟 𝜇 𝑟 +
1

2
𝐸 𝑟 𝛼 𝑟 𝐸 𝑟 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠]               (1.73) 

 

 

The interaction with the permanent dipoles is taken into account by the first term )(r , 

and the interaction with the induced dipoles by the second term )()( rEr  when )(r  

being the polarizability tensor. 

The higher order terms include the hyperpolarizability interaction (trilinear term in the 

electric field), magnetic interactions, etc. For what interests us, we will restrict ourselves 

to these two first terms which will lead to dielectric and infrared absorption (linear term) 

and to Rayleigh and Raman scattering (bilinear term).  

ck ck
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The Fig. 1.15 shows the wavevector-energy region accessible for photons. 

 

 
 

Figure 1.15: Photon accessible wavevector-energy  region 

 

1.5.3 Dielectric and infrared absorption: interaction with permanent 

dipoles: Introductive definitions 
 

We must first of all say that:  

the probe is the e.m. field whose eigenstates are ;  

the reservoir is constituted by N particle which we suppose to be point-like, located 

at ri (long wavelength approximation) and characterized by their dipole moment μi. With 

this assumption, we can write 

 
i

ii rrr )()(


           (1.74) 

and  the present relevant interaction HC (first term of eq.(73) is written:  

  
V

iiC rdrrrrEH )()()(          (1.75) 

using eqn. (1.67) in eq. (1.75) and performing the integration over r yields 

kN
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     (1.76) 

Now we have to calculate the average value of CH between the initial and final state of 

the probe, that we call CH . The initial state is IkN
0

, i.e. are sent on the sample 

photons of momentum k0 and polarization εI (a monochromatic and polarized plane 

wave). Now let's see what are the possible interesting final states, i.e. those for which 

CH  has non-zero value. They correspond, obviously, to states such that the matrix 

elements of ck,μ  or c+
k,μ are non zero. According to eqs. (1.71) and (1.72) these are:  

(i) 1
0
IkN :absorption of one photon (k0, εI) 

(ii) 1
0
IkN : emission of one photon (k0, εI) 

(iii) skIkN
10

1, : emission of one photon (k1, εs) 

The values of the matrix element are IkN
0

1
0
IkN  and 1, respectively, and the 

corresponding probability of transition is thus proportional to IkN
0

 , 1
0
IkN  and 1.  

If the number of incident photons is big, as always happens in practice, then IkN
0

>>1 

and the the last case (in fact the spontaneous emission) is very weak compared to the two 

former ones, i.e. the induced absorption and emission. The correlation functions 

corresponding to these two latter cases are: 
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   (1.77) 

with + for absorption and – for emission. 

It was found that, a priori, the study of induced absorption and emission of e.m. waves by 

such a medium can provide information regarding the motions of μi (rotation and 

vibration) and on the motion of ri (i.e. translation). Pratically, however, k0 having a very 

small value (long wavelength approximation), the exponential decays much more slowly 

compared to the other terms and we can neglect its variation. With the conditions listed, 

the correlation functions for emission and absorption are the same, and we have: 



31 

 

 


ji
iIiIIk tN

V
C

tCHCH
,

0 ))0())(((
2

0)(



     (1.78) 

Eqn.(1.17) provides the corresponding probabilities of transition, one with ω=ω0  

(absorption of one photon), the other with ω=-ω0  (emission of one photon). These two 

probabilities are related by eqn. (1.18) in the linear approximation and we have Wabs Wemi. 

As foreseen by the general considerations, the net induced phenomenon is the absorption 

and the corresponding probability per unit time is according to eqns. (1.16), (1.17), (1.18) 

and (1.78): 

  )(1
2

02 )(


 

tCHCH
CeWWW emiobst 



       (1.79) 

Considered a sample that is a cylinder of section S and length l (Sl=V). The problem is 

now to relate Wt to a measurable quantity, namely the power Pa absorbed during the 

experiment. Let P0 be the incident power and Ikn
0

 the corresponding incident number 

of photons per cm2 and per sec.  

We have: 

P0= Ikn
0

S 0            (1.80) 

The number of incident photon in volume V is 

IkN
0

= V
c

n Ik0            (1.81) 

As the power absorbed in volume V is 

Pa=
tW0             (1.82) 

Combining eqn. (1.78) to (1.82) we finally obtain 
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with 

dtetcc ti
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It was found that, in the long wavelength approximation, the absorbed power is 

proportional to the spectral density of the fluctuation of the dipoles. Specifically, it 

reflects the correlation between the fluctuations of the components of the dipoles along 

the  polarization I  of the field. We have an important simplification if the medium can 

be considered as isotropic (e.g. as in a normal liquid). Then, one can average eq. (1.85) 

over all possible orientations of I  and easily obtain: 
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,

)()0(
1

)(           (1.86) 

We highlight the fact that the electric dipole moment of a molecule is a quantity which 

depends on the charge distribution in the molecules and this distribution changes when 

the molecule vibrates. We denoted by υ the vibrational states and by qυ the corresponding 

normal coordinates. We can write:  




 q 0            (1.87) 

with 

0






















 


q
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           (1.88) 

μ0 is the permanent dipole  

μν is the derivative dipole corresponding to vibration ν. 

According to these definitions, we have that the second member of eqn.(1.85) or (1.86) 

can be subdivided into various components (two for eqn. (1.86)): 
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      (1.90) 

 

which are respectively: the relevant correlation functions for the so-called dielectric and 

infrared absorption in an isotropic medium.  We have illustrated in detail later of these 

two cases. 
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1.5.3.1 Dielectric absorption: permanent dipoles 

 

a) General 
 

By eq. (1.89) we have the correlation function. If we consider identical molecules, 

considered 
iu  and ju  the unit vectors along  

0

i
  and 

0

j
  , and ji ,  the angle between 

them, eq. (1.89) the equation becomes as follows: 
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20
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)(           (1.91) 

This correlation function shows the fluctuations of the relative orientation of the 

permanent dipoles and thus reflects collective reorientational motions. A difficult 

problem is to relate this macroscopic function to monomolecular properties, namely to 

the single molecule correlation function F1(t) given by 

F1(t)=  ))(cos(1 tP ii           (1.92) 

where P1 is the first order ordinary Legendre polynomial. It is possible to address the 

problem experimentally using a trick: should be diluted polar molecules in an inert solvent 

and make a study as a function of the dilution. If the dilution is sufficiently large, the 

active molecules can be considered sufficiently far from one another so that their 

correlations can be neglected i.e. that we have: 

 0))(cos(  tij   for ji          (1.93) 

In this case, Eq. (89) can be written dropping the indices ii: 

)()()( 1

20

00 tFtc             (1.94) 

and by Fourier transforming 

)()()( 1

20

00  Ftc             (1.95) 

Using the fact that 

(i) in dielectric absorption TkB0  and 

(ii) N=nSl where n is the number of dipoles per unit volume,  

We can write eqn. (1,83) as: 

0lPPa              (1.96) 

Where 
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The quantity α is the absorption coefficient per unit length. Its variation with 0 yields 

the dielectric absorption spectrum. 

 

b) Dielectric absorption spectra 
 

We illustrate now calculations of dielectric absorption spectra. We will discuss the 

case of isotropic free rotation and isotropic rotational diffusion for dilute dipoles and 

compare the results to a real spectrum. 

 

1) Isotropic rotational diffusion spectral contribution  

The probability distribution Gs of the dipole orientation is given, in this case, by 

eqn.(1.50) and we have: 

F1(t)=  dGscos =e-2Drt          (1.98) 

The absorption coefficient α is thus 

α(0)  2
0 F(0)  2

0

2

2

0

)2( 



rD
         (1.99) 

 

2) Classical free rotation spectral contribution 

Free rotation implies that the rotational energy is conserved so, the angular velocity Ω is 

constant. In this case, the angle θ varies linearly with t: 

t           (1.100) 

 

Furthermore, given that the system is at thermal equilibrium, the distribution of angular 

velocities p(Ω) is Maxwellian 

p(Ω)=
Tk

I

B

Be
Tk

I
2

2

1 


           (1.101) 

where I is the inertial momentum of the molecule. The correlation function F1(t) can 

then be calculated: 

F1(t)=   dpt )()cos(         (1.102) 

As well as its Fourier transform. The final result is  
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       (1.103) 

Therefore we conclude that to study both collective rotational motions in pure polar 

liquids and individual rotational motions in dilute solutions of polar molecules in non 

polar solvents, dielectric absorption can be used. The  range available in practice lies 

between the radiofrequencies and the far infrared via the microwaves. This, according to 

the range of frequencies to be studied, has resulted in a large variety of different 

experimental set ups. Lastly, this method is used today in the field of critical phenomena 

(in particular in liquids) because dielectric absorption reflects mainly collective motions. 

 

1.5.3.2 Infrared (IR) absorption: derivative dipoles 

a) General 

In this case, eqn. (1.90) provides the relevant correlation. If we assume the following 

hypotheses: 

(i) the molecules are identical, 

(ii) rotations and vibrations are not coupled, and 

(iii) the vibrations between the molecules and within the same molecules are not 

coupled, i.e., 

 ))()0(( tqq
j

i


=0   for  ji   , '      (1.104) 
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      (1.105) 

Moreover, if we make the assumptions that the vibrations are weakly damped, we can 

write 

 ))()0(( tqq  =   )(
2

ttGeq
i


 

      (1.106) 

Where 

qν is the vibrational amplitude 

Ων the frequency of vibration ν and 

Gν (t) a slowly decreasing function picturing the damping of the vibration (Gν (t)=1 for 

no damping). Let θν (t) be the angle between μν (0) and  μν (t). We have 

 ))()0(( t
 =   )()()(cos 1

22
tFt 

       (1.107) 
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and eq. (105) is finally written: 
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       (1.108) 

and after Fourier transforming 

)()()()( 1

2







  FGqcvv      (1.109) 

This illustrates that the infrared absorption spectrum consists of a series of absorption 

lines centered around the vibration frequencies and that, given more or less questionable 

assumptions are made, each line is proportional to the convolution of the rotational and 

vibrational spectrum. We call this phenomenon infrared absorption since the Ων are 

usually in the infrared region of the e.m. spectrum. Comparing eqns.(1.95) and (1.109), 

if the vibrations are not muffled , it can be approximately said 

that for molecules in dilute solutions the infrared spectrum reproduces the dielectric 

spectrum around the frequencies Ων . We said approximately because, even if the 

absorbed power is proportional to  010

 
 e  as in the dielectric case (eqn.(1.83)), for 

infrared  and the absorption spectrum reproduces )(vvc around Ων.  

Fig.1.16 show the dependence of frequencies on atomic weight and bond energies. 

 

)()(   G

    0
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Fig. 1.16: Dependence of frequencies on atomic weight and bond energies. 

 

 

b) Typical infrared spectra 

We speak now of theoretical IR spectra in the same simple cases as before. We 

do it to illustrate this section and as for the case of dielectric absorption. Assuming no 

damping of the vibration.  

For rotational diffusion, we have 

F1() 
22)2(

)2(

r

r

D

D
        (1.110) 
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And the corresponding infrared spectrum is sketched in Fig.1.17a: it is a single 

Lorentzian centered at Ων .  

For free rotation, we have 

F1()  Tk

I

Be

2

2

1 


          (1.111) 

And the corresponding spectrum is sketched in fig.1.17b. It presents two maxima at 

m  with 
2

1











I

TkB
m . 

In fig 1.17c is shown the infrared spectrum of the polar molecule CO diluted in liquid 

C2Cl4. It clearly shows feature that recall the two borderline cases above. Specifically, the 

humps on each side of the spectrum suggest that the rotation is relatively free, and its 

general shape suggests that the numerous assumptions made are justified for this system. 

In particular, the additional observation that the shapes corresponding to the transition 1-

0 and 2-0 are practically the same suggest that the hypothesis of weak damping of the 

vibration is a good one. 

 

 
 
Fig 1.17: a) is a single Lorentzian centered at Ων, b) spectrum of the single Lorentzian centered and c) 

infrared spectrum of the polar molecule CO diluted in liquid C2Cl4 

 

a) b) 

c) 
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We have just described a real case considering very small molecules in a diluted solution 

so is almost ideal. When, instead, the molecules are bigger, the vibration can be strongly 

damped and contribute significantly to the width of the spectra.  

In which case, a trick frequently used to separate the vibrational and rotational 

contributions is to measure the full width of the spectra as a function of temperature, 

suppose that the two elementary widths are additive, and suppose that the vibrational 

width is temperature independent. In general, it is assumed that the relative contribution 

of vibration increases with the dimension of the molecule and may become the dominant 

one. Large molecules have a further important complication: the different vibrational 

levels are not sufficiently far from one another so that two or several spectra 

corresponding to different vibrational states overlap (inhomogeneous broadening). 

Finally, another important complication  is the coupling between rotation and vibration.  

In conclusion it seems that infrared absorption can be used to study both rotational and 

vibrational relaxation in liquids, but that the separation between them is difficult. Of 

course, additional results from other methods are needed. Comparison between dielectric 

and infrared absorption spectra can, in some cases, provide some information on the 

degree of cooperativity of the rotational motions. However, as we shall see below, 

Rayleigh Raman scattering of light are the most appropriate complementary methods for 

obtaining this kind of information as well as information about the coupling between 

rotation and vibration. 

Finally, it should be noted that absorption of e.m. waves in liquids cannot only be 

produced by permanent dipoles, but also by induced dipoles (and multipoles). These 

multipoles are induced both by the collisions and by the probing electric field itself, which 

deform the molecular electronic clouds. In non-polar liquids, the absorption due to 

collisions generally appears in the far infrared region (50-100 cm-1) and is very wide. For 

describing this type of phenomenon theories are still being developed, but it is clear that 

they necessarily involve physical quantities such as the values of the induced multipoles, 

the collision frequencies and consequently contain information on the specific interaction 

between non-dipolar molecules. Concerning the absorption due to the probing electric 

field, it appears as a phenomenon which superimpose on the phenomenon of scattering.  
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1.6 Interaction with induced dipoles: absorption and scattering of 

photons 

 

1.6.1 Introductive definitions 

Again, the probe is the e.m. field whose eigenstates are  [1]. The reservoir is 

made up of N particle which we assume to be point-like, located at ri (long wavelength 

approximation) but which are now  characterized by their polarizability tensor
i

 . With 

this hypothesis, we can write: 

        (1.112) 

and the current relevant interaction 
CH  (second term of eqn. (1.73)) 

=                  (1.113) 

Replacing E(r) by its expression given by eqn. (1.67) and carrying out integration over r 

yields 

=  
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         (1.114) 

with 

=        (1.115) 

 

Now we have to calculate , that is the average value of  between  the initial and 

final states of the probe. As for absorption experiments, the initial state is =  

We should look for non trivial final states , i.e. final states such that  is non zero 

and such that  . The problem reduces to inspecting the matrix elements of the 

operator  irF '  with the help of eqns. (1.71) and (1.72). From the structure of eqn. 

(1.115), it immediately appears that there are various possible final states among which 

we select the three following ones: 
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(i) state for which two photons (k0 ,I) are emitted or absorbed, namely . 

This case corresponds to induced emission and absorption of two incident photons via the 

induced dipoles ( 02    ), and is similar to the case described in section 4.3. The 

corresponding correlation functions of  are ( >>1)  
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                                                                                                                                  (1.116) 

with + for absorption and – for emission. 

This equation must be compared with eq.(1.77) and an analysis similar to that of section 

can be made to find the probability for the net absorption and the corresponding 

absorption coefficient. This is a question that we will not address here, but it appears that, 

provided the absorption due to this phenomenon can be separated from that due to other 

phenomena, one can in principle obtain information on the fluctuations of the 

polarizability tensor (i.e. the rotations and vibrations) and on the translational motions. In 

practice the separation is difficult. 

(ii)  states for which a photon (k0 ,I) is absorbed and a different photon which we 

label (k1 ,s) is emitted, namely the states skIk IN
10

,1 . This case corresponds to the 

induced emission of a photon other than the initial one, and corresponds to the scattering 

phenomenon. The corresponding correlation function is ( >>1): 

       







 









ij
jrtirQiIt

jSIiSIk
N

V
tC

CC HH
)0()(exp0

0
10

2
2

)( 


         (1.117) 

where 

 10 kkQ             (1.118) 

is the exchanged momentum. 

Finally states for which two photons (k1 ,1) and (k2 ,2) are emitted, namely skskIkN
210

1,1,  

This case corresponds to spontaneous emission of two photons and as for the case of one 

photon , its probability is very weak (1 compared to IkN
0

 for scattering and IkN
0

2  for 

absorption). In this way we will overlook this phenomenon and focus on scattering. 

2
0
IkN

CH IkN
0

IkN
0
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1.6.2 Rayleigh and Raman scattering of light 

The probability per unit time Wk1k0 that a photon is scattered into a state (k1 ,s) when 

IkN
0

 photons (k0 ,I) are present in the sample is given by eqn. (1.17) where )(
CC HH

C is 

the time Fourier transform of )(tC
CC HH

given by eqn. (1.117). We should relate this 

probability to a measurable quantity, namely the power P1 of photons (k1 ,s) scattered 

per sec. between k1 and k1+d k1. We have: 

1111 )(
01

kdkWP kk          (1.119) 

where the number of independent states of photons of well defined polarization ρ(k1) d k1 

is given by the same equation (25) as for neutrons. 

If the sample is a cylinder of section S and lemgth l (V=Sl), the number IkN
0

is 
c

VP

0

0


, 

using the fact that 
c

d
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 , a simple calculation finally yields: 
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where P0 is again the incident power of photons (k0 ,I), d is the solid angle and we have 

put, by analogy with neutrons (c.f. eqs. (1.38) and (1.39)) 
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        (1.121) 

and 
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Regarding neutrons, 




dd

d



2
, is the double differential cross-section and represents the 

normalized scattered intensity per unit solid angle and per unit energy,  tQJ ,  is the 

intermediate scattering function and  ,QT  is the scattering law. It is seen from eqn. 

(1.122) that light scattering reflects molecular motions through the fluctuations of the 

position (translation) and the fluctuations of the polarizability tensor (rotation and 

vibrations). The general situation is thus basically the same as for neutrons where all kinds 

of motions are also seen. There are however significant differences: 
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(i) for neutrons, the correlation functions corresponding to all types of 

movements depend on Q while for e.m. waves (in practice light), only those 

corresponding to translation are Q dependent (this is in fact related to the long 

wavelength approximation). 

(ii) For neutrons, Q is usually 1 Å-1 while for light it is usually 10-3 Å-1. Because 

of this, the correlation function for translation decays much more slowly             

( 610 times) for light than for neutrons. We conclude therefore that for light, 

the hypothesis of non-coupling between the various motions seems better 

justified than for neutrons (at least for individual motions), and we can 

reasonably separate the two statistical averages in eqn. (1.122). We are now 

focusing on the polarizability term. 

As for the dipole moment, the molecular polarizability tensoris is a physical quantity that 

depends on the charge distribution in the molecules, and this distribution changes when 

the molecules vibrate. Let ν denote all the vibrational states and with qν the corresponding 

normal coordinates. We can write, by analogy with eq. (1.87), the polarizability tensor is 

given by the sum of two contributions: 





 q

0
                               (1.123) 

where 
0

  is the permanent polarizability tensor,  
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          (1.124) 

and 


   are the derivative polarizability tensor corresponding to vibration .  

With these definitions, it appears that the second member of eq. (122) can be split into 

various components. As a result,  tQJ ,  can be written as: ),(),(),( 00 tQJtQJtQJ 

and we select the two following: 
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and 
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The former is the relevant correlation function for the so-called Rayleigh scattering; 

the latter is related to the Raman spectrum. 

 

1.6.3 Raman scattering of light: derivative polarizability tensor 

 

a) General 

 

The corresponding correlation function is  tQJ ,
. The rotations appear through 

 , the vibrations through q and the translations through r. If we can assume that these 

three types of motions are independent, and this can be a good approximation, especially 

for translation compared to the other motions, then the average in eqn. (1.126) can be split 

into three averages. If we also suppose that the vibrations between different molecules 

and within the same molecules are not coupled, then eqn. (1.104) holds and eqn. (1.124) 

can be written: 
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We can say that, using neutrons terminology, in this case the scattering is mainly 

incoherent since only individual motions are seen, and that this incoherence is introduced 

by the vibrations. Another important and always justified approximation is to assume that 

the exponential is 1. This approximation expresses the fact that the contribution to the 

broadening of the spectra due to translation is always much smaller than the instrumental 

energy resolution (typically 10-3 cm-1 compared to 1 cm-1) and that only the broadening 

due to rotations and vibrations is seen (typically a few cm-1 to a few hundred cm-1). If we 

also assume that all the molecules are identical, then the correlation function can finally 

be written: 

   




  )()0())()()0((, tqqt ISIStQc        (1.128) 
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In addition, as for infrared absorption, we can assume that the vibrations are well 

separated from each other and weakly damped, in which case eq. (106) holds. If we 

define the function : 

   ))()()0(( ISISSI ttD 
                    (1.129) 

we finally have: 
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This result shows that a Raman spectrum is composed of a series of lines centered at the 

vibration frequencies Ων. It is seen that, provided some assumptions are made, each line 

of the Raman spectrum is the convolution of a vibrational and rotational spectrum, as for 

the infrared case. In fig. 1.18 polarization geometries are presented. 

 
 

Fig.1.18: polarization geometries. 

 

However there are two important differences: 

(i) the rotational correlation function is not the same; 

(ii) here we have an external parameter that we do not have in infrared, namely 

the relative orientation of the polarization vectors I and s, which allows the 
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selection of certain components of the polarizability tensor and which is 

usually divided into its isotropic part I  and its anisotropic part  : 




   I         (1.132) 

with 

)(
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1
 Tr         (1.133) 

and  

ITr  )(
3

1
        (1.134) 

 

I  being the unit tensor.  

According to the geometry of the experiment, different combinations of isotropic and 

anisotropic parts can be chosen and corresponding spectra will reflect different aspects of 

the (same). In this sense, Raman scattering is comparable to neutron scattering, the 

external parameter being the momentum transfer Q is this latter case. In the following, 

we discuss the calculations in a simple case, for two typical geometrical configurations 

called VH and VV configurations. 

 

b) The case of a linear molecule 

We proceed to consider a linear molecule, whose orientation is characterized by its unit 

vector u and we only considerthe vibration qν along u. Due to the cylindrical symmetry, 

the polarizability tensor is diagonal in the molecular frame and contains two independent 

components αA and αB: 
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Let ur(r=x,y,z) be the components of u with laboratory frame. Simple algebra yields: 
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(i) VH configuration: depolarised spectrum.  

 
In this configuration, we choose a scattering angle of 90°. The beam comes along Oy 

with εI along Oz and is scattered along Ox with εS along Oy. In this case we have 

))(( zyBAyzIS uu         (1.137) 

and 

 )()()0()0()()( 2 tutuuutD zyzyBAyz       (1.138) 

Let us suppose that the medium is isotropic. Then we can average Dyz over all 

possible orientations of u(0) or equivalently, take Oz along u(0). Calling θ(t) and Φ(t) 

the polar coordinates of u(t), we have: 

 )(sin)(cos)(sin)()( 2 ttttD BAyz      (1.139) 

The function in brackets is an associated Legendre polynomial of order 2, mP2
. Since 

in an isotropic medium its average is independent of m, putting F2(t)=<P2cos(θ(t))> 

where P2 is the ordinary Legendre polynomial of order 2, we finally have : 
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This equation should be compared with eqn.(1.109). The comparison between 

infrared and Raman spectra can provide valuable information on the details of the 

rotational model. It appears here that the depolarised Raman spectrum reflects the 

same motion as the infrared absorption spectrum: vibration and rotations, except that 

the first order Legendre polynomial is replaced by the second order one.  

 

(ii) VV configuration: polarized spectrum. 

 
In this configuration, the experimental geometry is the same as for VH except that εs 

is also along Oz. In this case, we have 
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With the same previous hypotheses, applying a bit of math, we get: 
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What we have obtained shows that the polarized Raman spectrum is the sum of: 
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 a purely vibrational proportional term proportional to 

2








 

  

 a term identical to that obtained in the depolarized case. 

This is a very important result because, from a comparison of the two types of spectra, 

one can immediately say something about the time scale of the various motions. If the 

VH spectrum or the infrared spectrum is broad and the VV spectrum presents a central 

narrow component, then we can assign with certainty this narrow component to the purely 

vibrational term and the broader one to rotations, and reasonably conclude that vibrations 

and rotations are weakly coupled. If, on the contrary, both spectra havewidth of the same 

order, this last result is certainly not true. Its width is about 1.5 cm-1, to be compared with 

about 100cm-1 for the infrared spectrum. An example of the latter situation is found fo 

HCl in CO2 where the width of the infrared spectrum is about 61 cm-1, compared with 

about 48 cm-1 for the VV+VH Raman spectrum. In fig.1.19 a sketch of classical 

interpretation of Raman effect is reported. 

 
 

Fig.1.19: Sketch of the Raman classical interpretation  

 

We conclude, therefore, that Raman scattering of light may be a powerful method for 

studying vibrational and rotational movements in liquids. Because of the incoherence 

introduced by vibrations, only individual movements are seen in practice, even in pure 

liquids. Precious information about nature, time scale, and degree of coupling between 
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different movements can be provided by comparing spectra obtained in different 

configurations and infrared absorption. Although the amount of Raman data in liquids is 

increasing the precise theoretical description of the Raman line shapes is difficult, 

especially due to the great number of possible vibrational relaxation processes. 

Moverover as in the infrared case, on the experimental side the problem also becomes 

very difficult with large molecules, due to possible overlap of the various vibrational band 

(inhomogeneous broadening). Concerning the instrumental energy resolution, with the 

best monochromators one can reach Δω about 0.2 cm-1 about 20 μeV, i.e. the same order 

of magnitude as with ILL neutrons. This corresponds to a time scale of 10-11 sec., which 

means that in any case only fast motions can be seen by this method. So far, we have 

considered experiments using continuous waves. It should be noticed that an alternative 

manner of conducting Raman experiments is to use picosecond pulsed techniques which 

can yield additional information on the nature of the relaxation processes. 

 
 

1.6.4 Rayleigh scattering of light: permanent polarizability tensor 

 

a) General 
 

In this case the relevant correlation function is given by eq. (1.125), where as opposed to 

the raman case, the vibrations do not appear. For which there is no mechanism to decouple 

the relative motions and the scattering is coherent in the sense that it mainly reflects the 

collective motions. If the translations and rotations appear on a different time scale, here 

also it is reasonable to separate the two averages in eq. (1.125), and we have: 
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The fourier transform shows that the Rayleigh spectra are centered around the incident 

photon energy. As for the case of the derivative tensor, the permanent tensor can be split 

into an isotropic part α0
I and an anisotropic part β0 . So even in this case also, by choosing 

the relative orientation εS and εI, one can pick out different aspects of the motion. Let us 

consider the same two configuration. 
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b) VH spectrum: depolarised spectrum 
 

Like the Raman case, the relevant tensor component, in th laboratory frame, is βyz and the 

corresponding correlation function is  
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If the rotation are much faster than the translations, the spectrum corresponding to the 

correlation function of   is much broader than that corresponding to the exponential (i.e. 

we can take the exponential about 1) and the depolarised Rayleigh spectrum only reflects 

the(collective) rotational motions. In this case, the comparison between the two results 

can provide valuable information on the degree of cooperativity of the rotational motions 

since, among other things, depolarized Raman spectrum reflects individual rotational (and 

vibrational) motions. In practice, the Rayleigh spectrum of a pure liquid is generally found 

to benarrower than the corresponding raman spectrum, showing that the collective 

motions are slower than the individual ones, as expected from general consideratios. 

 

c)  VV spectrum: polarized Rayleigh scattering 
 

The corresponding correlation function, as for the Raman case, contains two kinds of the 

terms: terms related to the isotropic part of the permanent polarizbility tensor and terms 

related to the anisotropic part. Let us consider these terms separately. 

(i) The term related to 
0
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It is seen that this function is formally identical to the neutron intermediate pair 

correlation function Ip(Q,t) for a monoatomic liquid (eq.(41)). This means that VV 

Rayleigh light scattering and coherent neutron scattering contain a priori the same kind 

of information about the collective translational motions, the only difference being the 

very different momentum transfer range which can be reached (about 10-3 Ǻ-1 compared 

to 1 Ǻ-1). 

Since the space scale, and also the time scale due to a better energy resolution, are much 

larger with light than with neutrons, light scattering is more suitable than neutrons to test 

slow, large-scale phenomena such as those predicted by hydrodynamic and critical 
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phenomena theories. In particular, hydrodynamics predicts that the spectrum contains 

three components, a central component called the Rayleigh line, whose with is 

proportional to the thermal diffusivity timesQ2, and two side lines, centered at Qvs  

where vs is the velocity of sound, whose width is also proportional toQ2, and which is 

called the Brillouin doublet.  

In same special cases, a fourth central component may appear, called the Mountain line, 

the characteristics of which are linked to the shear viscosity properties. With neutrons, 

since Q is much larger, all the lines are much broader. However, neutrons are unique for 

testing the validity of these theories in the limits of short distances and times.  

(ii) The term related to 
0

 is 
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This term is comparable to the corresponding one in the VH geometry. It generally 

corresponds to a broader band which mainly reflects the collective rotational motions. 

The total VV scattering being the sum of these two contributions, a polarized Rayleigh 

spectrum should appear as the sum of three or four sharp components superimposed on a 

broad band. In practice the feature will depend on the actual energy resolution. 

We can conclude that Rayleigh scattering of light appears to be a powerful method for 

studying collective and rotary collateral movements in liquids. It is suitable for studying 

long space and time scale phenomena and testing hydrodynamic theories.  

A very high energy resolution, many orders of magnitude better than that which can be 

achieved with neutrons are due to advances in laser technology. Figure 1-20 shows an 

example of active CO2 bands. Progress in the technology of laser techniques has made it 

possible to obtain very high energy resolution, many orders of magnitude better In 

fig.1.20 an example of active bands for CO2 is reported. 
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Fig.1.20: Example of active bands for  CO2. 

 

In table 1.2, a comparison among different techniques is reported 

 
 

Table 1.2: Comparison among different techiniques 



53 

 

 

 

In table 1.3 a comparison of neutron, infrared and Raman spectroscopies is presented. 

 

 
Table 1.3 Comparison of techniques 

 

 

 

 

 

 

 

NEUTRON 

 

 

INFRARED 

 

RAMAN 

 

Wavelength 

𝜆~1.8 Å interatomic spacings 

ћ𝜔~26𝑚𝑒𝑉 tras. Energy in 

s.c.m. 

 

𝜆 = 107 ÷ 7800Å 

 

𝜆 = 3900 ÷ 7800Å 

 

Scatt. Centre 

 

 

Nucleus 

 

 

Electron 

 

Electron 

 

 

Coupling 

𝐻: 𝜎 = 81.67 10−28𝑚2 relatively 

small perturbation: system 

responds linearly 

 

𝜎𝑅 ≈ 10−22𝑚2 𝑚𝑜𝑙𝑒𝑐⁄  

 

2nd order in E (weaker) 

𝜎𝑅𝑎𝑚𝑎𝑛

≈ 10−32𝑚2 𝑚𝑜𝑙𝑒𝑐⁄  

 

Selection rules 

No 

-H pseudo-selection rule 

-longitudinal/transverse pseudo 

selection rule through 

polarization vector 

 

 

Yes, at least one over 3 

(isolated molecules, 

crystals: group theory) 

Yes, at least one over 6 

High % of optically inactive 

modes in highly symmetric 

molecules; e.g. C60>70% 

-polarization vector analysis 

 

Probe 

 

 

𝜔 = ћ𝑘2 2𝑚⁄  (non relativistic) 

 

𝜔 = 𝑐𝑘 

 

𝜔 = 𝑐𝑘 

 

 

 

Dispersion law 

Phonon dispersion law from B.N. 

Brockhouse (1955): typically the 

first Brillouin zone in a solid: 𝑘 =
𝜋 𝑎⁄ = 10𝑛𝑚−1  𝑎 =crystal 

constant) ћ𝜔 = 25.85𝑚𝑒𝑉; 
𝑘 = 35.2𝑛𝑚−1 𝐸𝑖𝑛𝑐 , 𝜃  

|𝐾| = 0 phonon 

dispersion 

|𝐾| = 0 phonon dispersion 

𝜆 = 5145Å (ћ𝜔 =
2.41𝑒𝑉); 𝑘 =
1.22 10−2𝑛𝑚−1 (X-ray: 

ћ𝜔 > 1𝑘𝑒𝑉- 𝑘 = 10𝑛𝑚−1) 

 

Spectral 

intensities 

Direct relation with vibrational 

eigenvectors (oscillation 

amplitude): harmonic oscillator 

vibrational spectrum (n=0 elastic, 

n=1 fundamental, n>1 overtone) 

Intensity depends on 

number of scatterers 

and on electronic 

structure of molecular 

systems electric 

anharmonicity distorces 

spectra 

Polarizability increases with 

electronic number Z: light 

elements masked in 

presence of heavy element 

 

Band activity 

 

 

Can be easily calculated 

 

 

Difficult to calculate 

 

Difficult to calculate 
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Chapter 2  
 

Recent Development on Elastic Incoherent Neutron Scattering 

(EINS) and Resolution Elastic Neutron Scattering (RENS) 

2.1 Introduction  

An excellent probe to characterize thermal molecular motions and conformational 

changes in biological systems is represented by neutrons as they have a wavelength of 1 

Å and an energy close to 1 kcal / mol [4-10]. In particular, they provide information on 

mean-square fluctuations in a given timescale by Elastic Incoherent Neutron Scattering 

(EINS) [11], on correlation times of diffusion motions by QENS [12], and on vibrational 

modes by INS [13].  

It is also known that, compared with QENS, EINS requires a relatively small amount of 

material, due to the fact that elastic contribution is often a factor of 100 ÷ 1000 higher 

than the almost elastic low-energy transfer; 

It is also well known that, in comparison with QENS, EINS due to the fact that the elastic 

contribution is often a factor 100÷1000 higher than the quasi-elastic one at low energy 

transfer, requires a relatively small amount of material; this point allows the investigation 

of a relevant number of interesting systems, such as for example those of interest in the 

biophysical field. Furthermore when dealing with QENS one of the main drawbacks is 

constituted by a relatively high number of fitting parameters. In this frame EINS, through 

the so called “elastic-window-method”, introduced by Alefeld and Kollmar [53], is one 

of the most effective approach for evaluating atomic MSD in hydrogenous systems and 

it is often preferred to the QENS technique. The MSDs obtained by an analysis as a 

function of Q are dominated by hydrogen motions due to its large incoherent cross-section 

value [14-15].  
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2.2    Fourier Transform (FT) 

In the first part of the 19th century, Joseph Fourier, a French mathematician and physicist, 

showed that any periodic function can be decomposed in a series of simple oscillating functions, 

namely sines and cosines (or complex exponentials). The generalization to the non-periodic 

signals has come only a century later, and took the name of  Fourier Transform (FT), a tribute 

brought to the original idea. The FT decomposes a signal in complex exponential functions at 

different frequencies. The equations used in the decomposition and reconstruction part are 

the following: 

𝑋 𝜔 = ∫ 𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
              (2.1) 

  

𝑥 𝑡 =
1

2𝜋
∫ 𝑋 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔
+∞

−∞
             (2.2) 

In the above equations, t stands for time, 𝜔 = 2𝜋𝑓 for frequency, 𝑥 denotes the signal in 

the time domain and 𝑋 denotes the signal in the frequency domain (also known as the 

spectrum of the original signal). The computation of the FT is done over all times, making 

no distinction between signals’ stationary parts and transient ones (whether the frequency 

component ‘𝜔’ appears at time 𝑡1 or, 𝑡2 it will have the same effect at the output of the 

integration). The scaling property of the FT states that if we have a scaled version of the 

original  

𝑥𝑠 𝑡 = 𝑥 𝑠𝑡                (2.3) 

then, its corresponding FT will be 𝑋𝑠 𝜔  

𝑋𝑠 𝑡 =
1

|𝑠|
𝑋  

𝜔

𝑠
       (2.4)          

From the last two equations we can see that if we reduce the time spread of x by s (if s>1) 

than the FT is dilated by s, meaning that if what we have gained in time localization, we 

have lost in frequency localization. Projecting the signal on complex exponentials leads to 

good frequency analysis, but no time localization. The poor time localization is the main 

disadvantage of the Fourier transform, making is not suitable for all kind of applications. 

To see how the frequency content of a signal changes over time, we can cut the signal into blocks 

and compute the spectrum of each block. This is the base concept of the Short Time Fourier 

Transform (STFT) introduced in 1946 by Gabor [2], and again in 1977 by J.B. Allen [3], the 

latter giving it a filterbank interpretation. For computing STFT we simply multiply the 

original signal by a window function, which is non-zero for only a short period of time, and 
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then we compute the Fourier Transform of the obtained signal. The result is a two-

dimensional representation of the signal, that can be mathematically written as: 

𝑆𝑇𝐹𝑇{𝑥 𝑡 } ≡ 𝑋 𝜏, 𝜔 = ∫ 𝑥 𝑡 𝜔 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
,                                 (2.5) 

where 𝜔 𝑡  is the window function, commonly a Hann window or a Gaussian centered 

around zero, and 𝑥 𝑡  is the signal to be analyzed. This equation can be interpreted as 

an analysis of the signal by a sliding window in time or by a sliding bandpass filter in 

frequency. A particularity of this transform is the fact that the window is of constant 

length throughout the whole analysis process, meaning that the transform has a fixed 

resolution in time and frequency. 

Time and frequency energy concentrations are restricted by the Heisenberg uncertainty 

principle. If we consider a finite energy function, 𝑓𝜖𝐿2 ℝ   ∫|𝑓 𝑡 |2 𝑑𝑡 < ∞  and we 

consider it centered around zero in time and its Fourier transform 𝐹 𝜔  centered around 

zero in frequency, then the temporal variance, 𝜎𝑡
2(given in eq. 2.6) and the frequency 

variance, 𝜎𝜔
2  (given in eq. 2.7) of the wave function satisfy the condition (2.8): 

𝜎𝑡
2 =

1

‖𝑓‖2
∫ 𝑡2
+∞

−∞
|𝑓 𝑡 |2𝑑𝑡,                            (2.6) 

 

𝜎𝜔
2 =

1

8𝜋3‖𝑓‖2
∫ 𝜔2+∞

−∞
|𝐹 𝜔 |2𝑑𝜔,            (2.7) 

 

𝜎𝑡
2𝜎𝜔

2 ≥
𝜋

2
.                            (2.8) 

‖𝑓‖ denotes the norm of the function f, computed as: √∫ |𝑓 𝑡 |2𝑑𝑡
+∞

−∞
. 

Depending on the time localization that is more suitable for our application, we can 

choose the width of the analysis window, namely a short window for a good time but 

poor frequency localization (suitable for signals with a high frequency content) or a wide 

window for good frequency localization with the price of poorer time localization. 
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2.3 Definition and relations existing between the functions 𝑮 �⃗� , 𝒕 ,

𝑰 �⃗⃗� , 𝒕 , 𝑺 �⃗⃗� ,𝝎  𝐚𝐧𝐝 𝑫 �⃗� ,𝝎  

Considering a particle system as an ensemble of 𝑛𝑡𝑜𝑡particles j, sited in 𝑟 𝑗 𝑡 at time t, 

following Van Hove[5], one can introduce the system time dependent pair correlation 

function G(𝑟 ,t) [16], defined as: 

   𝐺 𝑟 , 𝑡 =
1

𝑛𝑡𝑜𝑡
〈∑ ∫𝑑𝑟 ′ ∙ 𝛿 𝑟 + 𝑟 𝑖 0 − 𝑟 ′ 𝛿 𝑟 ′ − 𝑟 𝑗 𝑡  

𝑁
𝑖,𝑗 〉                 (2.9) 

Where r’ refers to an integration variable and the angle brackets <> denote an ensemble 

average. 𝐺 𝑟 , 𝑡  can be interpreted as the probability to find a particle j at time t at the 

place r if this or another particle 𝑖 was at time 𝑡 = 0 at the origin 𝑟 = 0, sodescribing how 

the correlation between the particle positions evolve with time. The one dimensional 

spatial Fourier Transform,𝐹𝑇𝑟, of the time dependent pair correlation function is called 

the intermediate scattering function 𝐼 �⃗� , 𝑡 [5]: 

     𝐹𝑇𝑟[𝐺 𝑟 , 𝑡 ] = 𝐼 �⃗� , 𝑡       (2.10) 

By introducing the two dimensional space-time Fourier Transform, 𝐹𝑇𝑟,𝑡, one can 

introduce the system scattering law 𝑆 �⃗� , 𝜔 : 

    𝐹𝑇𝑟,𝑡[𝐺 𝑟 , 𝑡 ] = 𝑆 �⃗� , 𝜔       (2.11) 

    𝑆 �⃗� , 𝜔 = ∫ ∫ 𝐺 𝑟 , 𝑡 𝑒−2𝜋𝑖 �⃗� 𝑟+𝜔𝑡 𝑑𝑟𝑑𝑡
+∞

−∞

+∞

−∞
    (2.12) 

In the case of systems which can be regarded as composed of distinguishable particles 

(Boltzmann statistics) the 𝐺 𝑟 , 𝑡 function splits in two parts: 

     𝐺 𝑟 , 𝑡 = 𝐺𝑠 𝑟 , 𝑡 + 𝐺𝑑 𝑟 , 𝑡       (2.13) 

𝐺𝑠 𝑟 , 𝑡 ,where the subscript s stands for “self”, describes the correlation between 

positions of one and the same particles at different times, while 𝐺𝑑𝑖𝑠𝑡 𝑟 , 𝑡 , where the 

subscript d stands for “distinct”, refers to pairs of distinct particles. More precisely, they 

are defined as follows: 

  𝐺𝑠 𝑟 , 𝑡 =
1

𝑛𝑡𝑜𝑡
〈∑ ∫𝑑𝑟 ′ ∙ 𝛿 𝑟 + 𝑟 𝑗 0 − 𝑟 ′ 𝛿 𝑟 ′ − 𝑟 𝑗 𝑡  

𝑛𝑡𝑜𝑡
𝑗=1 〉    (2.14) 

          𝐺𝑑 𝑟 , 𝑡 =
1

𝑛𝑡𝑜𝑡
〈∑ ∫𝑑𝑟 ′ ∙ 𝛿 𝑟 + 𝑟 𝑖 0 − 𝑟 ′ 𝛿 𝑟 ′ − 𝑟 𝑗 𝑡  

𝑛𝑡𝑜𝑡
𝑗≠𝑖=1 〉               (2.15) 

In other terms, 𝐺𝑠 𝑟 , 𝑡 can be interpreted as the probability to find one particle at time t 

at place 𝑟  if the same particle was at time 𝑡 = 0 at 𝑟 = 0. 𝐺𝑑 𝑟 , 𝑡  can be interpreted as 

the probability to find at time t at place r one particle distinct from the one that was at the 
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origin at time 0. More precisely, for short times, the self correlation function 𝐺𝑠 𝑟 , 𝑡  

approximates to a -function, while the distinct correlation function 𝐺𝑑 𝑟 , 𝑡  is 

approximately the radial distribution function. For large times, as 𝑡 → ∞, 𝐺𝑑 𝑟 ,∞ ≈ 𝜌, 

which is the density of system, given by 
𝑛𝑡𝑜𝑡

𝑉
, where 𝑉 is the volume. Similarly, for the 

𝐺𝑠 𝑟 ,∞ =
1

𝑉
, that tends to zero when 𝑉 tends to ∞. In other, words, 𝐺𝑠 𝑟 , 𝑡 → 0 and 

𝐺𝑑 𝑟 , 𝑡 → 𝜌. These qualitative behavior of 𝐺𝑠 𝑟 , 𝑡  and 𝐺𝑑 𝑟 , 𝑡  for isotropic systems, 

i.e. 𝑟 = 𝑟 are reported in Fig.2.1. 

 
Fig.  2.1 Qualitative behavior of 𝐺𝑠 𝑟, 𝑡 , i.e. the self term, and 𝐺𝑑 𝑟, 𝑡 , i.e. the distinct term, for 

severalvalue of t. In the top(a) 𝐺𝑠 𝑟, 𝑡 is shown, in the bottom (b) 𝐺𝑑 𝑟, 𝑡 ; 0 is the system relaxation time. 

 

It results: 

      𝐹𝑇𝑟[𝐺𝑠 𝑟 , 𝑡 ] = 𝐼𝑠 �⃗� , 𝑡      (2.16) 

      𝐹𝑇𝑟[𝐺𝑑 𝑟 , 𝑡 ] = 𝐼𝑑 �⃗� , 𝑡      (2.17) 
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The one dimensional time FT, 𝐹𝑇𝑡, of the intermediate scattering function is the scattering 

function 𝑆 �⃗� , 𝜔 : 

      𝐹𝑇𝑡[𝐼 �⃗� , 𝑡 ] = 𝑆 �⃗� , 𝜔      (2.18) 

It results: 

      𝐹𝑇𝑡[𝐼𝑠 �⃗� , 𝑡 ] = 𝑆𝑠 �⃗� , 𝜔      (2.19) 

      𝐹𝑇𝑡[𝐼𝑑 �⃗� , 𝑡 ] = 𝑆𝑑 �⃗� , 𝜔      (2.20) 

By introducing the two dimensional space-time FT, 𝐹𝑇𝑟,𝑡, one can write: 

      𝐹𝑇𝑟,𝑡[𝐺 𝑟 , 𝑡 ] = 𝑆 �⃗� , 𝜔      (2.21) 

The quantity: 

    𝐷 𝑟 , 𝜔 = 𝐹𝑇𝑡[𝐺 𝑟 , 𝑡 ] = 𝐹𝑇𝑟[𝑆 �⃗� , 𝜔 ] = 𝐹𝑇𝑟,𝑡[𝐼 �⃗� , 𝑡 ]   (2.22) 

is called dynamic correlation function.   

Figure 2.2 summarizes the space and time FT relations existing between the introduced 

functions, i.e. 𝐺 𝑟 , 𝑡 , 𝐼 �⃗� , 𝑡 , 𝑆 �⃗� , 𝜔  and 𝐷 𝑟 ,𝜔 : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Sketch of the one and two dimensional space-time Fourier transform connections among system 

quantities. 
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FTr 

𝑰 𝑸, 𝒕  

𝑆 𝑄, 𝜔  

𝐺 𝑟, 𝑡  

𝐷 𝑟, 𝜔  

FTr 

FTr [S(Q,ω)] = FTr [S(Q)]S(ω) = G(r) ∙ S(ω) = D(r,ω)                

FTt [M(r,ω)] = M(r) FTt [D(ω)] = D(r) ∙ I(t)   = G(r,t)                               

FTt [S(Q,ω)] = S(Q) FTt [S(ω)] = S(Q) ∙ I(t)  = I(Q,t)                                  

FTr [I(Q,t)]   = FTr [I(Q)] I(t)    = G(r) ∙ I(t)   = G(r,t)       
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2.4 Theoretical approach on elastic neutron scattering (EINS) 

 

As already mentioned the scattering law 𝑆 𝑄,𝜔  and the intermediate scattering function 

𝐼 𝑄, 𝑡  are connected by a time Fourier transform [16-21]:                     

                                               𝑆 𝑄,𝜔 =
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
                             (2.23) 

        

                                              𝐼 𝑄, 𝑡 =
1

√2𝜋
∫ 𝑆 𝑄,𝜔 𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞
                              (2.24) 

 

If the introduced functions of two independent variables are separable then they can be 

expressed as a product of two functions each of them depending on only one variable, 

i.e.:  

   S Q,ω = S Q S ω           (2.25) 

   R Q,ω = R Q R ω           (2.26) 

 

On the other hand, as far as the system cross section is concerned, indicating with k0 and 

k1 the incoming and outcoming neutron wavevectors, 𝑏𝛼 and 𝑏β the scattering lengths of 

atom α and β  respectively, |�̅�|
2
= 〈𝑏𝛼

∗𝑏𝛽〉, |b|2̅̅ ̅̅ ̅ = 〈𝑏𝛼
∗𝑏𝛼〉,  σcoh = 4π|�̅�|

2
 and σinc =

4π  |�̅�|
2
− |𝑏|2̅̅ ̅̅ ̅  where σcoh takes into account interference effects among waves 

produced by the scattering of a single neutron from all the nuclei whereas σinc refers to 

single particle properties, the neutron scattering double differential cross section can be 

written as: 

𝑑2𝜎

𝑑Ω𝑑𝜔
=

𝑘1
𝑘0

1

2𝜋
∫ 𝑑𝑡

+∞

−∞

𝑒−𝑖𝜔𝑡
1

𝑁
∑ ∑〈𝑏𝛼

∗𝑏𝛽𝑒
−𝑖𝐐∙𝑹𝛼 0 𝑒−𝑖𝐐∙𝑹𝛽 𝑡 〉

𝑁

𝛽=1

𝑁

𝛼=1

= 

=
𝑘1
𝑘0

1

2𝜋
∫ 𝑑𝑡𝑒−𝑖𝜔𝑡

1

𝑁
[|�̅�|

2
∑ ∑〈𝑒−𝑖𝐐∙𝑹𝛼 0 𝑒−𝑖𝐐∙𝑹𝛽 𝑡 〉

𝛼≠𝛽𝛼

+∞

−∞

+ |𝑏|2̅̅ ̅̅ ̅∑〈𝑒−𝑖𝐐∙𝑹𝛼 0 𝑒−𝑖𝐐∙𝑹𝛼 𝑡 〉

𝛼

] = 

𝑘1
𝑘0

|�̅�|
2
𝑆𝑐𝑜ℎ Q,𝜔 +

𝑘1
𝑘0

|𝑏|2̅̅ ̅̅ ̅𝑆𝑖𝑛𝑐 Q, 𝜔 +
𝑘1
𝑘0

 |�̅�|
2
− |𝑏|2̅̅ ̅̅ ̅ 𝑆𝑖𝑛𝑐 Q,𝜔 = 

𝑘1
𝑘0

|�̅�|
2
𝑆𝑐𝑜ℎ Q,𝜔 +

𝑘1
𝑘0

 |�̅�|
2
− |𝑏|2̅̅ ̅̅ ̅ 𝑆𝑖𝑛𝑐 Q,𝜔 = 
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=
𝑘1
𝑘0

𝜎𝑐𝑜ℎ
4𝜋

𝑆𝑐𝑜ℎ Q,𝜔 +
𝑘1
𝑘2

𝜎𝑖𝑛𝑐
4𝜋

𝑆𝑖𝑛𝑐 Q,𝜔 = 

                                       
k1

 k0
[
σcoh

4π
𝑆𝑐𝑜ℎ Q,ω +

σinc

4π
𝑆𝑖𝑛𝑐 Q,ω ]                  (2.27) 

In our case, due to the high percentage of hydrogen atoms in the investigated  systems  

(H: σcoh = 1,76; σinc = 80,26  only this latter contribution is relevant:  

                                              
d2σ

dΩdω
≅

k1

k0
[
σinc

4π
Sinc Q,ω ]                    (2.28) 

These functions make reference to the system properties and not to measured quantities; 

in fact, it should be taken into account that, for example, when the experimental technique 

gives access to the scattering law one should take into account the less straightforward 

connection with the measured scattering function, which is the convolution of the 

scattering law with the instrumental resolution function. 

Since, as noted above, these functions refer to system properties, and not to the measured 

quantities, the instrumental resolution function R(Q,ω) can be introduced in the ω space 

which is connected to the corresponding time instrumental resolution function by the 

following Fourier transform: 

                                       R Q, t =
1

2π
∫ R Q,ω eiωtdω
+∞

−∞
                    (2.29) 

As a consequence the measured scattering law corresponds to the convolution of the 

scattering law with the resolution function, i.e.:  

                                       SR Q,ω = S Q,ω ⊗ R Q,ω                                           (2.30) 

 

So, from a formal point of view, the convolution of the two function 𝑆 𝑄,𝜔  and 𝑅 𝑄,𝜔  

produces a third function 𝑆𝑅 𝑄,𝜔  which can be viewed as modified version of the 

original function, that is, the 𝑆 𝑄,𝜔  and the ω-inverted 𝑅 𝑄,𝜔  functions when this 

latter is translated. As a consequence for instrumental function 𝑅 𝑄,𝜔  symmetric in ω, 

the convolution coincides with the cross-correlation between  𝑆 𝑄,𝜔  and 𝑅 𝑄,𝜔 . 

By the convolution theorem can be written as: 

 

𝑆𝑅 𝑄, 𝜔 = 𝑆 𝑄, 𝜔 ⊗ 𝑅 𝑄,𝜔 = 

 

                                       =
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
                                    (2.31) 
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Since we are dealing with incoherent scattering, I(Q,t) is an even function of t, as well as 

R(Q,t); therefore their product too. This circumstance allows one to consider the cosine 

Fourier transform, i.e.: 

 

𝑆𝑅 𝑄, 𝜔 = 𝑆 𝑄, 𝜔 ⊗ 𝑅 𝑄,𝜔 = 

 

                                                  
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 =
+∞

−∞
                               (2.32) 

 

𝐹𝑇𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑[𝐼 𝑄, 𝑡 ] = 

 

𝐺𝑎𝑏𝑜𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 [𝐼 𝑄, 𝑡 ] 

In the following the sub-index R indicates that the relative function is affected by the 

instrumental resolution, whereas the absence of this sub-index indicates that the relative 

function is connected only to the sample. 

In the ideal case of purely elastic scattering in which the resolution function is a delta in 

the ω-space and, hence, a constant in the t-space, 

 

𝑅 𝑄,𝜔 = 𝛿 𝜔 ≡ 𝑅 𝑄, 𝑡 = 𝑐𝑜𝑛𝑠𝑡 

we obtain from Eq. (2.32) that the measured scattering law coincides with the scattering 

law:  

𝑆𝑅 𝑄,𝜔 =
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 =

+∞

−∞

 

                                 =
𝑐𝑜𝑛𝑠𝑡.

√2𝜋
∫ 𝐼 𝑄, 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 = 𝑆 𝑄,𝜔 ∙ 𝑐𝑜𝑛𝑠𝑡
+∞

−∞
                          (2.33) 

 

so, by the final value theorem, that say that the signal at the origin in the frequency domain 

equals the signal area in the time domain, we have: 

 

    𝑆𝑅 𝑄, 𝜔 = 0 =
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡 =
+∞

−∞

1

√2𝜋
∫ 𝐼 𝑄, 𝑡 ∙ 𝑅 𝑡 𝑑𝑡
+∞

−∞
      (2.34) 

the measured scattering law 𝑆𝑅 𝑄,𝜔  reduces to a time average of the intermediate 

scattering function 𝐼 𝑄, 𝑡 . This value corresponds to the green dot in figure 2.3. 
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 (2.36 )  

                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 

                                                                                                                                                               

 
                                                                                                                                                                                         

                                 
Fig. 2.3 . 𝑆𝑅

𝑀 as a function of the logarithm of the instrumental resolution 

 

A part from this idea case, in the more general condition in which the resolution function 

in the ω-space has a nonegligible width, the experimentally measured elastic scattering 

law, due to the finite energy instrumental resolution Δω, 𝑆𝑅
𝑀 𝑄  is 

                                                         𝑆𝑅
𝑀 𝑄 = ∫ 𝑆𝑅 𝑄,𝜔 𝑑𝜔

+
∆𝜔𝑅𝐸𝑆

2

−
∆𝜔𝑅𝐸𝑆

2

                          (2.35) 

And hence, 

 

𝑆𝑅
𝑀 𝑄 = ∫ 𝑆 𝑄,𝜔 ⊗ 𝑅 𝑄,𝜔 𝑑𝜔

+
∆𝜔𝑅𝐸𝑆

2

−
∆𝜔𝑅𝐸𝑆

2

= 

∫ [
1

√2𝜋
∫  𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡  𝑒−𝑖𝜔𝑡𝑑𝑡

+∞

−∞

] 𝑑𝜔
+
∆𝜔𝑅𝐸𝑆

2

−
∆𝜔𝑅𝐸𝑆

2

 

In order to show the operation approach of RENS as well as the expected experimental 

output we numerically test the behavior of the measured elastic scattering function versus 

the instrumental energy resolution.  

For the general case evaluation, assuming for example a Gaussian function for the 

resolution in the ω-space, characterized by a resolution time 𝜏𝑅𝐸𝑆 and a Gaussian or 

Lorentzian behaviour with a characteristic relaxation time τ for the intermediate scattering 

function, we operate in the frequency space and evaluate 𝑆𝑅
𝑀 𝑄   as a function of the 
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energy instrumental resolution ∆𝜔. In particular, in order to numerically get the RENS 

output we consider an increasing instrumental resolution function linewidth ∆𝜔 and apply 

(2.36) for determining the value of the definite integral as a function of  ∆𝜔.  

Figure 2.3 shows the result of such a calculation: there is an increasing sigmoid trend 

whose inflection point occurs when the linewidth of the resolution function approaches 

the linewidth of the system scattering law; in other words, in such a semilogarithmic plot 

the inflection point occurs when the instrumental resolution time crosses the system 

relaxation time. Such a result shows the operating way of the RENS approach: from the 

inflection point of EINS profiles versus the logarithm of the energy resolution one can 

extract the system relaxation time. It should be noticed that, in a complementary way, for 

a given fixed instrumental energy resolution function from EINS, starting by (2.36 ): 

𝑆𝑅
𝑀 𝑄 = ∫ [

1

√2𝜋
∫  𝐼 𝑄, 𝑡 ∙ 𝑅 𝑄, 𝑡  𝑐𝑜𝑠𝜔𝑑𝑡
+∞

−∞
] 𝑑𝜔

+
∆𝜔𝑅𝐸𝑆

2

−
∆𝜔𝑅𝐸𝑆

2

≈  𝑆𝑅 𝑄,𝜔 = 0 ∙ ∆𝜔𝑅𝐸𝑆      

                                                                                                                                    (2.37) 

In order to show how the cosine transform acts on the integral function, fig. 2.4 shows 

the cosωt as a function of t in a time interval corresponding to the characteristic time  

of the integral function Iinc Q, t ∙ R Q, t ,  at three different values: ωt = 2π ∙ 0.1, ωt =

2π, ωt = 2π ∙ 10. At ωt = 2π ∙ 0.1, the expansion of the cosine contribution cosωt ≅

1 −
ω2t2

2
≅ e

(
−ω2t2

2
)
furnishes a Gaussian behaviour; at ωt = 2π the cosine contribution 

drastically deviates from the constant behavior; and finally at ωt = 2π ∙ 10 it quickly 

oscillates giving rise to a negligible value for the integral. 

 

 

 

 

 

 
 

 

 

 

Fig. 2.4: cos𝜔𝑡 at three different values: 𝜔𝑡 = 2𝜋 ∙ 0.1, 𝜔𝑡 = 2𝜋, 𝜔𝑡 = 2𝜋 ∙ 10. At 𝜔𝑡 = 2𝜋 ∙ 0.1, the 

expansion of the cosine contribution cosωt ≅ 1 −
ω2t2

2
≅ 𝑒

(
−ω2t2

2
)
furnishes a Gaussian behaviour; at 𝜔𝑡 =

2𝜋 the cosine contribution drastically deviates from the constant behavior; and finally at 𝜔𝑡 = 2𝜋 ∙ 10 it 

quickly oscillates giving rise to a negligible value for the integral. 
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More precisely, by considering a fixed intermediate scattering function Iinc Q, t  (with a 

fixed relaxation time), and a fixed resolution function R Q, t  (with a fixed resolution 

time), fig. 2.5 shows in magenta the integral function, given by the product of the previous 

functions i.e. Iinc Q, t ∙ R Q, t ; in orange the cosωt function at three different values: 

ωt = 2π ∙ 0.1, ωt = 2π, ωt = 2π ∙ 10 is reported; in blue the obtained Iinc Q, t ∙

R Q, t  𝑐𝑜𝑠ωt function; and finally the light blue areas furnish the measured elastic 

contribution.   
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Fig. 2.5. The elastic incoherent neutron scattering evaluated through eqn. 2.36, considering the product of 

a fixed intermediate scattering function Iinc Q, t , a fixed resolution function R Q, t  at three different 

values of the cosωt: ωt = 2π ∙ 0.1, ωt = 2π, ωt = 2π ∙ 10. 
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2.5 RENS 
 

In order to evaluate the behaviour of EINS vs temperature and of RENS vs instrumental 

energy resolution, we have numerically performed the expected experimental outputs, 

namely the measured elastic scattering function as a function of temperature and as a 

function of the instrumental energy resolution. On this purpose we have evaluated 

SR
M Q  in the case in which the scattering law Sinc Q,ω  is a Lorentzian curve, as for 

example it occurs for a simple Brownian translational diffusion process, and consequently 

the intermediate scattering function  Iinc Q, t   is an exponential function with a fixed 

linewidth (see dashed-dotted green curve in fig. 2.6) for three values of the  resolution 

function linewidth (see the dashed blue  curve in fig 2.6). In the same figure in magenta 

the  Iinc Q, t ∙ R Q, t  product is reported. In particular, in order to numerically evaluate 

the RENS response function we have taken into account an increasing instrumental 

resolution function linewidth ΔωRES and then we have applied eqn. 2.37 for determining 

the value of the definite integral as a function of ΔωRES.  

Figure 2.7 shows the result of such a calculation, i.e. SR
M as a function of temperature 

and of logarithm of the instrumental resolution. As it can be seen it shows in both the case 

a sigmoid trend. In the case of RENS the elastically scattered intensity is an increasing 

as a function of the logarithm of ΔωRES with an inflection point which occurs when the 

linewidth of the resolution function approaches the linewidth of the system scattering law; 

in other words the inflection point occurs when the instrumental resolution time crosses 

the system relaxation time. Such results show the operating way of the EINS versus 

temperature and RENS versus instrumental energy resolution approach: from the 

inflection point of EINS profiles versus temperature and versus the logarithm of the 

energy resolution one can extract the system relaxation time. In fact, in a complementary 

way, for a given fixed instrumental energy resolution function, from EINS profiles versus 

temperature one is able to obtain, from the inflection point, the temperature value for 

which the system relaxation time equals the resolution time. 
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Fig 2.6:  SR

M Q  evaluated in the case in which the intermediate scattering function  Iinc Q, t   is an 

exponential with a fixed linewidth for three linewidths of a Gaussian resolution function. 
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Fig 2.7. Measured elastic scattering law SR

M T, ω = 0, ΔωRES  vs. log ΔωRES for different temperature 

values (left side); an inflection point occurs at the instrumental energy resolution value which corresponds 

to the system relaxation time.  Measured elastic scattering law SR
M vs. T for different instrumental energy 

resolution values (right side); an inflection point occurs at a temperature value for which τ=τRES 
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In table 2.1 the values of incoming wavelength, instrumental energy resolution value for 

the elastic peak and geometry for different spectrometers of different neutron scattering 

international large scale facilities are reported. 

 

Spectrometer Instrumental 

energy resolution 

(μeV) 

Incoming 

wavelength (Å) 

Geometry 

IN6@ILL 1 6.30 Backscattering 

IN13@ILL 8 2.23 Backscattering 

IN10@ILL 1 6.30 Backscattering 

IN6@ILL 170 

120 

70 

50 

4.1 

4.6 

5.1 

5.9 

Time of Flight 

IN5@ILL ≈10 ÷ 6000 

100 

1.8 ÷ 20 

(e.g. 5 with 8500 

rpm) 

Time of Flight 

HFBS@NIST 0.9 6.2 Backscattering 

DSC@NIST ≈ 10 ÷ 1000 

50 

2.3 ÷ 10 

(e.g. 5 with 20000 

rpm) 

Time of Flight 

IRIS@ISIS 1 

11 

17.5 

54.4 

Mica 002 

Mica 006 

PG 002 

PG 004 

Backscattering 

SPHERES@JCNS 0.66 6.2 Backscattering 

TOFTOF@JCNS 5 ÷ 5000 1.5 ÷ 16 Time of Flight 

MARS@PSI 1  Backscattering 

FOCUS@PSI ≈ 7 ÷ 1000 

26 

≈ 2 ÷ 16 

(e.g. 11) 

Time of Flight 

 

Table 2.1: Instrumental energy resolution values, incoming wavelengths and instrument geometries for 

different spectrometers at different neutron large scale facilities. 
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Chapter 3 
 

Mean Square Displacement (MSD) 
 

3.1 Brownian motion 
 

Brownian motion is stochastic motion of small particles suspended in a solution. The 

molecules (for example water molecules) constituting the fluid constantly hit the 

immersed objects which results in chaotic and non-directed motions. Atomic 

displacement does not follow a simple trajectory: "collisions" with other atoms render 

atomic trajectories quite complex shaped in space. 

The trajectory followed by an atom in a liquid resembles that of a pedestrian random 

walk. Mathematically this represents a sequence of steps done one after another where 

each step follows a random direction which does not depend on the one of the previous 

step (Markov's chain of events). 

In the case of a one-dimensional system (straight line) the displacement of the atom will 

therefore be either a forward step (+) or a backward step (-). Furthermore it will be 

impossible to predict one or the other direction (forward or backward) since they have an 

equal probability to occur [26]. 

One can conclude that the distance an atom may travel is close to zero. Nevertheless if 

we choose not to sum the displacements themselves (+/-) but the square of these 

displacements then we will end up with a non-zero, positive quantity of the total squared 

distance traveled. 

Consequently this allows to obtain a better evaluation of the real (square) distance 

traveled by an atom. 

These movements can be measured by the mean square displacement (MSD) and the lag 

time ∆𝑡 and is characterized by the diffusion coefficient D which is a measure of the speed 

of diffusion. For three-dimensional brownian motions these terms can be put into an 

equation as follows 

                                                         〈𝑟2〉 = 6 ∙ 𝐷 ∙ ∆𝑡                                                 (3.1) 
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This is only true for isotropic and unrestricted translational diffusion. Brownian motion 

is actually observed for many different dynamical phenomena. Here we concentrate on 

isotropic translational displacements (random walk) but brownian motion can be also of 

rotational, undulating etc. nature. Translational diffusion or random walk in three 

dimensions can mathematically be described by a differential equation:  

                                                             
𝜕𝜌𝑟 

𝜕𝑡
= 𝐷 ∙ ∆𝜌𝑟                                                   (3.2) 

 

Where 𝜌𝑟  is the particle location distribution and Δ is the Laplace-Operator which is a 

second order differential operator. 

In 1905, Einstein published a paper that predicted a relationship between the mean 

squared magnitude of Brownian excursions and the size of molecules [27-28]. Now all 

that remained was to do the experiment. Jean Perrin won the Nobel Prize in 1926 for his 

work confirming Einstein's hypothesis. Since then, a thorough understanding of 

Brownian motion has become essential for diverse fields are ranging from polymer 

physics to biophysics, aerodynamics to statistical mechanics, and even stock option 

pricing.  

Albert Einstein has calculated the diffusion coefficient to for a spherical particle  

𝐷 =
𝑘𝐵𝑇

3 ∙ 𝜋 ∙ 𝜂 ∙ 𝑑
 

where 𝑘𝐵 is the Boltzmann constant, T the temperature, η the viscosity of the medium and 

d the diameter of the diffusing particle. The given relation among diffusion coefficient, 

temperature, viscosity and particle size is only true for isotropic, non-hindered diffusion 

of a spherical particle. The diffusion coefficient therefore gives us information about the 

temperature and viscosity of the system and size and shape of the diffusing particle.  

For two and one dimensions the time dependence of mean square displacements for 

isotropic diffusion differs only in the numerical factor:  

 

2D space: 〈𝑟2〉 = 4 ∙ 𝐷 ∙ ∆𝑡 

1D space: 〈𝑟2〉 = 2 ∙ 𝐷 ∙ ∆𝑡 

 

The diffusion coefficient does not depend on the dimensions in which the diffusion takes 

place. Hindered or restricted diffusion is, for example, the case where the particle has to 

  (3.3)      
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diffuse in a porous or structured environment as in cells. Anisotropic diffusion takes place 

in cases when the particle itself has an asymmetric shape. Then the diffusion coefficient 

is no simple scalar like in eq.3.3 anymore but becomes a complex tensor. 

Consequently this allows to obtain a better evaluation of the real (square) distance 

traveled by an atom. 

Fig 3.1.  Different types of random walk and their corresponding MSD plot. From left to right: (A) partially 

confined random walk (hopping); (B) confined random walk; (C) isotropic random walk. 

3.2 Definition 

We can define the Mean Square Displacement as follow:  

                                        MSD  𝑡 = 〈𝑟2 𝑡 〉 = 〈|𝑟𝑖 𝑡 − 𝑟𝑖 0 |
2〉                              (3.4) 

 

where 𝑟𝑖 𝑡  is the position of the atom i at the time t, and the 〈 〉 represent an average on 

the time steps and/or the particles [29].  

However, during the analysis of the results of molecular dynamics simulations it is 

important to subtract the drift of the center of mass of the simulation box: 

                      MSD  𝑡 = 〈𝑟2 𝑡 〉 = 〈|𝑟𝑖 𝑡 − 𝑟𝑖 0 − [𝑟𝑐𝑚 𝑡 − 𝑟𝑐𝑚 0 ]|2〉              (3.5) 



74 

 

where 𝑟𝑐𝑚 𝑡  represents the position of the center of mass of the system at the time t. 

3.3 Self-Distribution Function Procedure 

The SDF procedure allows the evaluation of both the total and the partial MSDs through 

the total and the partial SDFs. In particular, it has been shown that the MSD is not the 

simple sum of the different partial displacement contributions, but it is the weighed sum 

of the partial MSDs in which the weights are obtained by a fitting procedure of measured 

EINS intensity data.[31,37] The results of such a procedure have been compared with 

other approaches, relative to a spatial analysis, reported in the literature.[54-56] Starting 

from the fact that in the ω-space the experimentally accessible quantity, the measured 

scattering law SR(Q,ω), is the convolution of the scattering law with the instrumental 

resolution function, it is important to clarify how the measured intensity depends on the 

instrumental resolution.[31-37]  

Several contributions reported in the literature [57-60] deal with the effects of the 

instrumental energy resolution on the measured MSD obtained by EINS data. In 

particular, Gabel and Bellissent-Funel [57] have realized a dynamical analysis on C-

PhycoCyanin (CPC) in the presence of trehalose starting from the EINS intensity profiles 

collected with different energy resolutions. In their approach, the analysis of the effects 

of the instrumental resolution is performed on elastic scattering data and shows the 

presence of a quasi elastic contribution in the elastic measured spectra related to non-

Gaussian hydration water motions at temperatures higher than 235 K. 

Moreover, Kneller and Calandrini [58] have estimated the influence of the finite 

instrumental resolution on the elastic intensity for a protein system starting from the 

assumption that, as far as the internal protein dynamics is concerned, the single particle 

motions can be described by fractional Ornstein-Uhlenbeck processes. This study has 

allowed the evaluation of the missing part of the quasi elastic intensity profile, which is 

not accessible because of the finite instrumental resolution. The authors also furnished an 

estimation of the attenuation factor for the observed atomic position fluctuations both 

assuming a Gaussian and a triangular resolution function; as a result, when the quasi 

elastic neutron scattering (QENS) half width at halfmaximum increases to a relatively 

high value, in the lowfrequency region, the measured spectrum differs more and more in 

respect to the ideal one. Finally, Becker and Smith [15] have investigated the effects of 

the energy resolution and of dynamical heterogeneities on EINS spectra for some 
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molecular systems. They considered the convolution of a given QENS scattering law with 

the instrumental resolution function (a rectangular function). The MSD has then been 

calculated by evaluating the second derivative of the measured scattering function; this 

latter consists of two contributions: the first one is connected both to the vibrational and 

to the elastic incoherent structure factor contributions, while the second one is connected 

with resolution effects. 

The SDF procedure is essentially based on the determination of the self-distribution 

function and on its use in the evaluation of the average statistical values of the physical 

quantity of interest 〈A〉 defines as follows [30-36]: 

 

〈𝐴〉 = ∫ 𝐴 r  𝐺𝑠𝑒𝑙𝑓 r  𝑑r 
∞

−∞

 

 

in which the spatial self-distribution function, as a probability density, may be normalized 

to unit 

 

∫ 𝐺𝑠𝑒𝑙𝑓 r  𝑑r 
∞

−∞

= 1 

 

In the specific case of the MSD evaluation, the dynamic observable A corresponds to the 

second power of the displacement, r 2 

 

〈r 2〉 = ∫ r 2𝐺𝑠𝑒𝑙𝑓 r  𝑑r 
∞

−∞

 

 

In the case in which the system can be considered isotropic, the volume integral becomes 

dependent only on the scalar r. In such a case, the normalization condition and the MSD 

become 

 

∫ 4𝜋𝑟2𝐺𝑠𝑒𝑙𝑓 𝑟 𝑑𝑟
∞

−∞

= 1 

 

(3.6)    

 (3.7)    

 (3.8)     

  (3.9)    
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  (3.12)          

〈r 2〉 = ∫ 𝑟2[4𝜋𝑟2𝐺𝑠𝑒𝑙𝑓 𝑟 ]𝑑𝑟
∞

−∞

 

Considering that the self-distribution function can be written as a sum of Gaussian 

functions [31,32], the normalization condition gives the following result [37,38]:  

𝐺𝑠𝑒𝑙𝑓 𝑟 = ∑𝐴𝑛

𝑛

𝐺𝑠𝑒𝑙𝑓 𝑟 = ∑
𝐴𝑛

16 𝜋𝑎𝑛 3 2⁄
𝑒𝑥𝑝 −𝑟2 4𝑎𝑛⁄  

𝑛

 

 

in which ∑ 𝐴𝑛 = 1𝑛 ;  

in addition, the MSD results: 

 

〈r 2〉 = 6∑𝐴𝑛

𝑛

𝑎𝑛 = ∑𝐴𝑛〈r 
2〉𝑛

𝑛

 

in which are present the partial MSDs. This formula highlights that the MSD corresponds 

to a weighted sum of the different displacement contributions present in the system. 

〈r 2〉represents the MSD in 3D space; if  〈𝑟2〉represents the MSD in 1D space, for 

isotropic systems, we have that 

 

〈𝑟2〉 = 1 3⁄ 〈r 2〉 

 

This implies that eq 3.12 in 1D yields 

 

〈𝑟2〉 = 2∑𝐴𝑛

𝑛

𝑎𝑛 = ∑𝐴𝑛〈𝑟
2〉𝑛

𝑛

 

The same result for the MSD in 1D space can be obtained considering directly the scalar 

expression of eq 3.8, that is, the scalar expression of the average statistical values of the 

displacement, 𝑟 2 

 

〈𝑟2〉 = ∫ 𝑟2𝐺𝑠𝑒𝑙𝑓 𝑟 𝑑𝑟
∞

−∞

 

 

In this case, the normalization condition changes and gives the following result: 

(3.10)      

 (3.11)         

  (3.13)         

 (3.14)        

(3.15)         
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      (3.20)          

 

∫ 𝐺𝑠𝑒𝑙𝑓 𝑟 𝑑𝑟
∞

−∞

= 1 

 

𝐺𝑠𝑒𝑙𝑓 𝑟 = ∑𝐴𝑛

𝑛

𝐺𝑠𝑒𝑙𝑓 𝑟 = ∑
𝐴𝑛

2 𝜋𝑎𝑛 1 2⁄
𝑒𝑥𝑝 −𝑟2 4𝑎𝑛⁄  

𝑛

 

in which ∑ 𝐴𝑛 = 1𝑛 . The MSD results 

 

〈𝑟2〉 = 2∑𝐴𝑛

𝑛

𝑎𝑛 = ∑𝐴𝑛〈𝑟
2〉𝑛

𝑛

 

This result is the same as that of eq 3.14, which was obtained from eqs 3.12 and 3.13.  

To adapt the previous definition of the MSD to the case of the EINS experiments, it is 

necessary to consider that the instrumental energy resolution influences the physical 

observables; therefore, eq 3.15 can be rewritten as follows: 

 

〈𝑟2〉𝑅 = ∫ 𝑟2𝐺𝑠𝑒𝑙𝑓 𝑟 𝑑𝑟
∞

−∞

 

 

Starting from this relation in the following, we shall analyze the instrumental energy 

resolution effects on the MSD in the frame of an EINS experiment. 

 

It is possible now to obtain the partial MSD values:  

〈𝑟2〉𝑛 = ∫ 𝑟2𝐺𝑛
𝑠𝑒𝑙𝑓 𝑟 𝑑𝑟 = 2𝑎𝑛

∞

−∞

 

the exponent of each Gaussian being the MSD relative to a particular r-domain and the 

weight An being interpretable as the relative percentage weight. Therefore this procedure 

allows to obtain the autocorrelation function   𝐺𝑠𝑒𝑙𝑓 𝑟, 𝑡   versus r, together with its 

different partial contributions, as well to determine the partial MSDs, their weights and 

the total MSD. 

 

3.4 MSD in translational motions 
 

We shall consider two types of MSD: 

1) the “system MSD” (i.e., 〈〈𝑟 2〉 𝑡 ) 

 (3.16)       

 (3.17)        

 (3.18)    

      (3.19)      
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2) the “measured MSD” (i.e., 〈𝑟 2〉𝑅).  

The first one is a function of time whereas the second one is the MSD value as obtained 

by EINS that is a pure number and not a function of time. 

Infact, remembering eq. 3.19, we can consider two procedures for MSD evaluation. 

 

 the first one is based on the following equation: 

 

= ∫ 𝐹𝑇𝑟{𝐼𝑅 𝑄, 𝑡 }𝑟
2𝑑𝑟

∞

−∞

 

 

 

Starting from the equation: 

                𝑆𝑅 𝑄,𝜔 = 𝑆 𝑄,𝜔 ⊗ 𝑅 𝜔 = ∫ 𝑆 𝑄, 𝜔 − 𝜔′ 𝑅 𝜔′ 𝑑𝜔′∞

−∞
                   (3.22) 

 

that, taking into account eq. 2.1, yields: 

 

𝑆𝑅 𝑄,𝜔 = [
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

] ⊗ 𝑅 𝜔 = 

=
1

√2𝜋
∫ 𝐼 𝑄, 𝑡 𝑒−𝑖 𝜔−𝜔′ 𝑡𝑑𝑡

∞

−∞

𝑅 𝜔′ 𝑑𝜔′ = 

= ∫ 𝐼 𝑄, 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡 [
1

√2𝜋
∫ 𝑒𝑖𝜔

′𝑡
∞

−∞

𝑅 𝜔′ 𝑑𝜔′]
∞

−∞

= 

 

                                            = ∫ 𝐼 𝑄, 𝑡 𝑅 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
                                             (3.23) 

Considering that: 

 

𝑆𝑅 𝑄,𝜔 = ∫ 𝐼 𝑄, 𝑡 𝑅 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

= 𝐹𝑇𝑡{√2𝜋𝐼 𝑄, 𝑡 𝑅 𝑡 } 

1

√2𝜋
𝐹𝑇𝑡{ 𝑆𝑅 𝑄,𝜔 } = 𝐼 𝑄, 𝑡 𝑅 𝑡  

                                               
1

√2𝜋
𝐼𝑅 𝑄, 𝑡 = 𝐼 𝑄, 𝑡 𝑅 𝑡                                           (3.24) 

Now, eq. 3.21 becomes: 

 

〈𝑟 2〉𝑅 = ∫ 𝐹𝑇𝑟{𝐼𝑅 𝑄, 𝑡 }𝑟
2𝑑𝑟

∞

−∞

= 

= √2𝜋∫ 𝐹𝑇𝑟{𝐼 𝑄, 𝑡 𝑅 𝑡 }𝑟
2𝑑𝑟

∞

−∞

= 

 

= √2𝜋∫ 𝐺𝑠𝑒𝑙𝑓 𝑟, 𝑡 𝑅 𝑡 𝑟2𝑑𝑟 =
∞

−∞

 

 

                                                         = √2𝜋𝑅 𝑡 〈𝑟2〉 𝑡                                             (3.25) 

 

     (3.21)    
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 so leads to the following conclusion: 

 

〈𝑟 2〉𝑅 𝑡 = √2𝜋𝑅 𝑡 〈𝑟2〉 𝑡  
 

The MSD obtained by this procedure is a function of time. 

 The second one is based on the following method: 

 

              

 

by referring to the MSD definition: 

  

    

 

in eq. 3.27 apply the integral and multiply by r2 both terms, we have: 

 

∫ 𝐹𝑇𝑟{𝑆𝑅 𝑄,𝜔 = 0 }𝑟2𝑑𝑟
∞

−∞

= ∫ 𝑟2𝑑𝑟
∞

−∞

∫ 𝐺 𝑟, 𝑡 𝑅 𝑡 𝑑𝑡 =
∞

−∞

 

 

= ∫ 𝑅 𝑡 𝑑𝑡
∞

−∞

∫ 𝐺 𝑟, 𝑡 𝑟2𝑑𝑟
∞

−∞

= ∫ 𝑅 𝑡 𝑑𝑡⟨𝑟 2 𝑡 ⟩
∞

−∞

= ⟨�⃗� 𝟐⟩
𝑅

 

 

So we conclude: 

〈𝑟 2〉𝑅 = ∫ 〈𝑟 2〉 𝑡 𝑅 𝑡 𝑑𝑡
∞

−∞

 

The MSD obtained by this procedure is a number. From this equation the measured MSD 

corresponds to the integration in the time domain of the product of the system MSD times 

the resolution function. 

The connection between the two MSD is: 

〈𝑟 2〉𝑅 =
1

√2𝜋
∫ 〈𝑟 2〉𝑅 𝑡 𝑑𝑡

∞

−∞

 

 

Moreover, it depends on the employed instrumental resolution so, if its measurement is 

carried out with instruments having different instrumental resolution, in order to compare 

the data obtained their proper normalization is required. 

(3.30)          

(3.26)           

(3.31)        

Fr{SR Q,ω = 0 } =  ∫ G r, t R t dt
∞

−∞

 

⟨r2⟩ t = ∫ G r, t r2dr
∞

−∞

 

 (3.27)         

(3.28)         

(3.29)        
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Fig 3.2. Normalized time behavior of the system MSD at a fixed τ value, 〈𝑟 2〉 𝑡; 𝜏  (in black); resolution 

function for different 𝜏𝑅𝐸𝑆 values, 𝑅 𝑡; 𝜏𝐼𝑁13  (in red) and 𝑅 𝑡; 𝜏𝐼𝑁10  (in blue); measured MSD 

〈𝑟2〉𝑅evaluated by eq 3.30. 

 

 

Figure 3.2 shows the effect on the measured MSD because of employing the resolution 

function; as it can be seen, at the same system MSD, because of the different employed 

energy resolutions, different measured MSDs correspond. 

 

 

 

 

 

 

 

 

 

 



81 

 

Chapter 4 

Investigated systems and methods 

 
4.1 Proteins and their structures 

Proteins are the largest and most varied class of biological molecules, and they show the 

greatest variety of structures. The function of proteins depends on their structure, and 

defining the structure of individual proteins is a large part of modern Biochemistry and 

Molecular Biology. 

To make a protein, amino acids are connected together by a type of amide bond called a 

“peptide bond”.  This bond is formed between the alpha amino group of one amino acid and 

the carboxyl group of another in a condensation reaction. When two amino acids join, the 

result is called a dipeptide, three gives a tripeptide, etc. Multiple amino acids result in a 

polypeptide (often shortened to “peptide”). Because water is lost in the course of creating the 

peptide bond, individual amino acids are referred to as “amino acid residues” once they are 

incorporated.  Another property of peptides is polarity: the two ends are different. One end 

has a free amino group (called the “N-terminal”) and the other has a free carboxyl group (“C-

terminal”) [43,45]. 

 

 

 

 

 

 

 

 

 

Fig 4.1 A molecule of water is removed from two glycine amido acids to form a peptide bond 

 

In the natural course of making a protein, polypeptides are elongated by the addition of amino 

acids to the C-terminal end of the growing chain. Conventionally, peptides are written N-

terminal first; therefore gly-ser is not the same as ser-gly or GS is not the same as SG. The 

connection gives rise to a repeating pattern of “NCC-NCC-NCC…” atoms along the length 
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of the molecule [48]. This is referred to as the “backbone” of the peptide. If stretched out, the 

side chains of the individual residues project outwards from this backbone. 

Below we will describe the protein structure in terms of four levels (primary to 

quaternary) of increasing complexity. 
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Fig 4.2. Protein structure, from primary to quaternary. 
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4.1.1 Primary Structure of Proteins 

Primary structure is simply the sequence of residues making up the protein [43-47]. Thus 

primary structure involves only the covalent bonds linking residues together. 

 

 

 

Fig 4.3 Primary structure of proteins 

 

The minimum size of a protein is defined as about 50 residues; smaller chains are referred to 

simply as peptides. So the primary structure of a small protein would consist of a sequence of 

50 or so residues. Even such small proteins contain hundreds of atoms and have molecular 

weights of over 5000 Daltons (Da).  

4.1.2 Secondary Structure 

This level of structure describes the local folding pattern of the polypeptide backbone and is 

stabilized by hydrogen bonds between N-H and C=O groups. Various types of secondary 

structure have been discovered, but by far the most common are the orderly repeating forms 

known as the a helix and the b sheet [43]. 

An a helix, as the name implies, is a helical arrangement of a single polypeptide chain, like a 

coiled spring. In this conformation, the carbonyl and N-H groups are oriented parallel to the 

axis. Each carbonyl is linked by a hydrogen bond to the N-H of a residue located 4 residues 

further on in the sequence within the same chain. All C=O and N-H groups are involved in 

hydrogen bonds, making a fairly rigid cylinder. The alpha helix has precise dimensions: 3.6 

residues per turn, 0.54 nm per turn. The side chains project outward and contact any solvent, 

producing a structure something like a bottle brush or a round hair brush [44-47].  

https://swh-schoolworkhelper.netdna-ssl.com/wp-content/uploads/2010/11/Peptide.gif?x37075
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The structure of a b sheet is very different from the structure of an a helix. In a b sheet, the 

polypeptide chain folds back on itself so that polypeptide strands like side by side, and are 

held together by hydrogen bonds, forming a very rigid structure. Again, the polypeptide N-H 

and C=O groups form hydrogen bonds to stabilize the structure, but unlike the a helix, these 

bonds are formed between neighbouring polypeptide (b) strands. Generally the primary 

structure folds back on itself in either a parallel or antiparallel arrangement, producing a 

parallel or antiparallel b sheet. In this arrangement, side chains project alternately upward and 

downward from the sheet. The major constituent of silk (silk fibroin) consists mainly of layers 

of b sheet stacked on top of each another[45]. 

4.1.3 Tertiary Structure 

This level of structure describes how regions of secondary structure fold together – that is, the 

3D arrangement of a polypeptide chain, including a helices, b sheets, and any other loops and 

folds. Tertiary structure results from interactions between side chains, or between side chains 

and the polypeptide backbone, which are often distant in sequence. Every protein has a 

particular pattern of folding and these can be quite complex. 

Whereas secondary structure is stabilized by H-bonding, all four “weak” forces contribute to 

tertiary structure. Usually, the most important force is hydrophobic interaction (or 

hydrophobic bonds) [44-47].  

Fig 4.4. Tertiary structure of proteins 
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Other forces that contribute to tertiary structure are ionic bonds between side chains, hydrogen 

bonds, and van der Waals forces. These bonds are far weaker than covalent bonds, and it takes 

multiple interactions to stabilize a structure. 

There is one covalent bond that is also involved in tertiary structure, and that is the disulfide 

bond that can form between cysteine residues. This bond is important only in non-cytoplasmic 

proteins since there are enzyme systems present in the cytoplasm to remove disulfide bonds. 

4.2.4 Quaternary Structure 

Some proteins are composed of more than one polypeptide chain. In such proteins, quaternary 

structure refers to the number and arrangement of the individual polypeptide chains. Each 

polypeptide is referred to as a subunit of the protein [48]. The same forces and bonds that 

create tertiary structure also hold subunits together in a stable complex to form the complete 

protein. 

Individual chains may be identical, somewhat similar, or totally different. As examples, CAP 

protein is a dimer with two identical subunits, whereas hemoglobin is a tetramer containing 

two pairs of non-identical (but similar) subunits. It has 2 a subunits and 2 b subunits. Secreted 

proteins often have subunits that are held together by disulfide bonds. Examples include 

tetrameric antibody molecules that commonly have two larger subunits and two smaller 

subunits (“heavy chains” and “light chains”) connected by disulfide bonds and noncovalent 

forces [54,57].  

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.5 Quaternary structure of proteins 

 

 

 

 

https://swh-schoolworkhelper.netdna-ssl.com/wp-content/uploads/2010/11/hemoglobin.jpg?x37075
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4.2 Lysozyme 

 
The protein we have studied is Lysozyme.  

Lysozyme is part of the innate immune systema possesses bacteriolytic able to hydrolyze 

peptidoglycan in the cell wall of the bacteria [41]. It is a natural enzyme, found in human 

tears, saliva, and other body fluids, secreted by epithelial cells, macrophages, astrocytes 

and microglia. In high concentration, about 3% from all proteins, Lysozyme is present in 

chicken egg-white[42].  

In viruses (or bacteriophages), Lysozyme is used as an agent to break into the host 

bacterial cell. Lysozyme from the tail of the virus (or bacteriophage) destroys the 

peptidoglycan bacterial cell wall and then virus can injects its DNA. After multiplication 

in bacteria, many Lysozyme molecules are created to lyse the bacterial cell wall and 

release new viruses. 

Lysozyme catalyzes the breakdown of certain carbohydrates found in the cell walls of 

certain bacteria (e.g., cocci). It thus functions, in the case of lacrimal fluid, to protect the 

cornea of the eye from infection [48]. 

Lysozyme retains both anti-oxidant and anti-inflammatory properties, and the level of 

lysozyme has been reported to be increased in Cerebrospinal fluid during 

inflammation.[40] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6 The main chain of lysozyme structure is represented in schematic view - solid ribbon representation. 

Alpha-helices are shown by red colour; beta-strands are coloured blue and irregular loops are shown by 

grey rope. 

http://lysozyme.co.uk/results/lysozyme-solid-ribbon-stereo.php
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Historically, Lysozyme was discovered in 1922 by Alexander Fleming (Fleming A. 

(1922) On a remarkable becteriolytic element found in tissues and secretion. Proc Roy 

Soc Ser B, 93, 306-317.). This enzyme was discovered by accident, which was happen in 

the Fleming's lab. The nasal drippings were accidentally occurring in the petre dish with 

bacterial culture and these cells were lysed. This phenomenon was carefully investigated 

and the main acting enzyme was identified as Lysozyme. 

Lysozyme is 129 aminoacid residues enzyme, hydrolase which catalyzes hydrolysis of 

1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues 

in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins. 

Molecular weight of Lysozyme is an approximately 14.7 kDa. Alternative name for 

Lysozyme are 1,4-N-acetylmuramidase, L-7001, N,O-diacetylmuramidase, PR1-

Lysozyme, Globulin G1, Globulin G, Lysozyme G, Mucopeptide N-

acetylmuramoylhydrolase, Mucopeptide glucohydrolase and Muramidase[48]. 

In 1965 the structure of Lysozyme was solved by X-Ray analysis with 2 angstrom 

resolution by David Chilton Phillips. For many years Lysozyme was the best object for 

X-Ray analysis due to many unique properties of this enzyme. First of all Lysozyme is 

easy to purify from egg-white. Secondly, this protein is very easy to crystallize, which is 

not the case for most of the other proteins. This feature of Lysozyme is widely used for it 

purification. And finally, crystals of Lysozyme diffract X-Ray beam to a very high 

resolution, currently the highest resolution structure, presented in Protein Data Bank, was 

solved at resolution 0.94 Angstrom. 

 

 

Fig. 4.7 Lysozyme crystals 
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Lysozyme belongs to the hydrolases enzymatic class. The hydrolases catalyze the 

hydrolysis or hydrolytic cleavage of a chemical bond by reaction:  

A – B + H2O → A – OH + B – H.  

This class of enzymes is usually classified by nature of the hydrolysed bond, then by 

chemical nature of the substrate, and finally by the enzyme. Despite systematic name for 

hydrolases always include hydrolase, the recommended name is formed by the name of 

the substrate with the suffix -ase. 

Within the class of hydrolases, Lysozyme belongs to the Glycosylases family. Lysozyme 

reaction is the hydrolysis of the beta glycosidic bond between N-acetylglucosamine sugar 

(NAG) and N-acetylmuramic acid sugar (NAM) and therefore it is possible classify it as 

Glycosidases, i.e. enzymes hydrolyzing O- and S-glycosyl with number 17 in this group 

[49,50].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Ball-and-stick representation of the lysozyme and a water molecule structure. In this view all 

protein atoms are shown as balls and bonds between atoms are shown as a stick. Carbon; nitrogen; oxygen 

and sulphur atoms are coloured grey; blue; red and yellow respectively.  

 

We use lysozyme, a relatively small globular protein whose structure and function are 

well studied, so that we can focus on studying its dynamics and hydration effects. 

The incoherent neutron scattering experiments are layers conducted on a dry lysozyme 

sample and on a lysozyme hydrate both in H2O and in D2O. 

http://lysozyme.co.uk/results/lysozyme-ball-stick-stereo.php
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In experiments on a D2O hydrate sample can provide information on protein dynamics 

since neutrons scattered by atomic nuclei are more sensitive to hydrogen atoms than 

deuterium and other atoms in proteins and hydrogen atoms reflect the motions of the side 

chains and backbone to which they are bound. In addition, we measured both H2O 

hydrated sample and D2O hydrated sample and took their difference to obtain the signal 

contributed solely from hydration water. 
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4.3 CHARACTERISTIC OF THE USED SPECTROMETERS 
 

4.3.1 IN10 

The IN10 backscattering spectrometer is designed for inelastic or quasielastic scattering 

experiments requiring very high energy resolution and moderate momentum transfer 

resolution. IN10 owes its high energy resolution to the use of nearly perfect 

backscattering both at the monochromator and at the analyser crystals[51]. 

Fig. 4.9 ILL Spectrometer IN10 scheme 

Is situated at the end of the curved nickel coated neutron guide H15 which views the 

vertical cold source of the ILL [2.24]. The cold neutron beam has a total flux of about 

2.109 neutrons/cm2s with a spectral distribution around 6 Å. The width of the neutron 

guide is 3 cm, the height 20 cm. Only the upper 5 cm of the beam is used for IN10. The 

beam travels along a straight neutron guide section with 3 x 5 cm2cross-section and 10 

meters length. It is followed by a further section with the same width, but 8 cm high and 

6.3 meters long. The neutrons are backscattered from the monochromator which is 

mounted on the piston of a crank shaft velocity drive. The Bragg angle is 89.8°. 
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About 40% of the backscattered monochromatic beam is deflected off a (002) oriented 

graphite crystal (situated just above the incoming primary beam) into a third neutron 

guide (branching-off tube) of 3 x  3 cm2 and 4.25 m length. This guide has a supermirror 

coating in order to reduce transmission losses due to the increased divergency of the beam 

after the deflector. The deflector has an anisotropic mosaic distribution, i.e. ηvertical = 

0.4°, ηhorizontal = 1.2°. 

The neutrons then pass a chopper and a monitor, enter the analyser container and hit the 

sample. The scattered neutrons are analyzed for momentum and energy changes by 

analyser crystals. The analysers consist of single crystal wafers that are glued in the (111) 

or (311) orientation to the surface of spherically curved aluminum plates. These spherical 

segments have a radius of curvature of 1.5 m and are aligned so that neutrons 

backreflected from each one are focussed onto a 3He-detector located near the sample. 

Initially the analyser spheres where covered by small hexagonal single crystals of 1 cm 

diameter and 0.7 mm thickness (see Figures below). All analysers of IN10 were a few 

years ago changed by adopting a new technique to deform large Si-crystals which had 

been developed on IN16. Today the analysers consist of hexagonal silicon single crystal 

slices of 0.5 mm thickness and a diameter of 6 cm. Spectra with up to 8 different 

momentum transfers can be measured simultaneously. An additional set of seven circular 

analyzers centered around the forward transmitted beam covers the small angle region 

(0.07 < Q < 0.3 Å-1). The chopper has a duty cycle of 50% and provides the trigger signal 

for the electronic gate. Neutrons, scattered into the detector directly from the sample, are 

not counted. 
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Fig. 4.10 Schematic drawing of the backscattering spectrometer IN10 for thermal neutrons at the HFR of 

the ILL in Grenoble. 

The graphite crystal, the branching-off-guide and the analyser container with the chopper 

can be rotated around a vertical axis, defined by the crossover of the mid line of the main 

guide and the branching-off-guide, when the wavelength is changed. 

The Doppler velocity of the monochromator is measured with an induction coil and a 

magnetic core, which is rigidly connected to the monochromator. It provides a voltage 

signal directly proportional to the velocity of the monochromator. The output voltage is 

amplified and digitalised. Together with the detector code it defines the channel number 

of the core storage into which the neutrons are sorted. (more information on data 

acquisition here) 

The analyser container can be filled with Argon gas to reduce neutron losses and the 

background. 

The flux at the sample position was 2*10**4 neutrons/s cm**2 with the unpolished 

monochromator. Beam size: 3*3 cm**2. 

The instrument was commissioned in 1974. Subsequently, it became very popular and 

could until recently be considered as the first work horse in neutron backscattering 
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spectroscopy. The majority of publications until about 1995 (see references to chapter 4) 

is based on experiments performed on this machine [51]. 

Cold neutron backscattering has one drawback: the limitation in momentum transfer: 

Q < 2Å-1 for 6 Å neutrons. Therefore the IN10 spectrometer has an additional set of 

Si(311) monochromator and analyzers crystals which permit to access Q values up to 

3.8 Å-1. This setup has been used with success to measure the elastic incoherent structure 

factor of adamantane [4.47]. The problem with this setup is however the low intensity. 

Therefore a dedicated backscattering spectrometer for thermal neutrons, IN13, was 

developed at the ILL and commissioned in 1980. 
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4.3.2 IN13 

IN13 is installed at the thermal neutron guide H24 of the ILL with a total flux of 

5.108 neutrons/cm2s 

 

Fig. 4.11 Schematic drawing of the backscattering spectrometer IN13 for thermal neutrons at the HFR of 

the ILL in Grenoble. 

CaF2 crystals with orientation are used for the monochromator and analyzers yielding a 

final energy of 16.45 meV (λ = 2.23 Å) in  backscattering [52]. The incident energy is 

scanned via thermal expansion of the monochromator crystals (13.5 cm high, 5 cm wide 

and 1 cm thick) which are mounted in a cryofurnace operating with liquid N2 as coolant. 

The temperature of the monochromator can be scanned from 80 K to 720 K continuously 
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with a stability of 0.5 K yielding an energy transfer range from -125 µeV to 300 µeV. 

The analyser crystals are held at room temperature. The monochromator Bragg angle can 

be varied between 89° and 81° with a corresponding energy resolution of the spectrometer 

between 8 µeV and 24 µeV (FWHM). A vertically curved composite graphite crystal (9 

lamella of 5 x 1.5 x 0.4 cm3, mosaic spread 0.4°) focuses the  beam onto the sample. The 

scattered neutrons are analyzed for energy and momentum transfer by a set of seven 

spherically curved composite crystal analyzers (60 cm high, 30 cm wide, radius of 

curvature 1 meter) with individual flat crystals of CaF2  of 2 x 2 x 0.15 cm3. 

An additional set of three circular analyzers centered around the forward transmitted 

beam covers the small angle region (0.15 < Q < 0.5 Å-1). A disk chopper with 4 windows 

and a duty cycle of 33% between the deflector and the sample is used to suppress the 

background of directly scattered neutrons and higher order contaminations [52]. The 

neutrons are counted with a cylindrically shaped polydetector consisting of 32 

vertical 3He detectors in two staggered rows and three end window individual 3He 

counters for the small angle analyzers. 
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Chapter 5 

Result and discussion 
 

5.1 Theoretical results 

 

5.1.1 Gaussian Approximation for MSD evaluation 

In the literature there are several works in which MSD is evaluated. However, the 

calculation is often carried out considering different ranges in Q (ie spatial) and different 

values of energy resolution (ie different resolution times). Furthermore, the data are often 

normalized so as not to make direct or even possible to compare the values obtained with 

different instruments or in different experimental conditions. So is important to examine 

the various possible procedures to perform data normalization and see which does not 

involve a change in the calculation of the mean square displacement [39].  

 

 

 
Fig. 5.1 Gaussian approximation of EINS data 

 

We consider the function: 

𝑆𝑅 = 𝐴𝑒−𝑄
2〈𝑟2〉 

where A = 1 and 〈𝑟2〉 = 0.02 
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Let's take into account how the different normalization procedures applied on SR  

registered intensity affects the MSD evaluation. 

Fig. 5.2  Representation of the function  𝑆𝑅  as a function of Q in a linear-linear plot 
 

5.1.2 Data Normalization criteria 

We show two different ways of dealing with the problem of data normalization: the first 

analyzing the Gaussian function and the second analyzing its logarithm 

5.1.2.1 Normalization performed on the Gaussian function 

5.1.2.1.1 Normalization by multiplication 

For the MSD calculation, representing the function  𝑆𝑅 as a function of Q in a linear-

linear plot and performing a normalization multiplying it by the value n, one gets: 

𝑛𝑆𝑅 = 𝑛𝑒−𝑄
2〈𝑢2〉 

                                                          〈𝑟2〉′𝑅 = 〈𝑟2〉𝑅                                                    (5.1) 
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Fig. 5.3 In magenta representation of the function  𝑆𝑅  as a function of Q; in violet representation of the 

function  n𝑆𝑅  as a function of Q  in a linear-linear plot 

 

 

This transformation, therefore, can be used to achieve the same intensity value when, for 

example, spectra are collected with a different integration times and does not produce any 

change in the evaluation of the MSD 

 

5.1.2.1.2 Normalization by sum 

For the MSD calculation, representing the function 𝑆𝑅 as a function of Q in a linear-

linear plot and adding to it the value 𝑛𝑖, one gets: 

                                                    𝑆𝑅 + 𝑛𝑖 = 𝑒−𝑄
2〈𝑢2〉 + 𝑛𝑖                                          (5.2) 

 

〈𝑟2〉′𝑅 ≈
〈𝑟2〉𝑅
1 + 2𝑛 

 

 

This type of transformation involves, therefore, a change in the value of the MSD and, 

therefore, the procedure is not correct. 
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Fig. 5.4 In magenta representation of the function  𝑆𝑅  as a function of Q; in green representation of the 

function  𝑆𝑅 + 𝑛  as a function of Q  in a linear-linear plot 

 

5.1.2.1.3 Normalization considering two different temperatures 

Representing the function Intensity as a function of Q in a linear-linear plot for values 

obtained, respectively, at two different temperatures (T0 <T); the value of MSD calculated 

for 𝑆𝑅 𝑇 /𝑆𝑅 𝑇0    is: 

 

                                         〈𝑟2〉′𝑅 𝑇 = 〈𝑟2〉𝑅 𝑇 − 〈𝑟2〉𝑅 𝑇0                                     (5.3) 

since: 

 

                                  
𝑆𝑅 𝑇 

𝑆𝑅 𝑇0 
=

𝑒−𝑄2〈𝑟2〉𝑅 𝑇 

𝑒−𝑄2〈𝑟2〉𝑅 𝑇0 
= 𝑒−𝑄

2[〈𝑟2〉𝑅 𝑇 −〈𝑟
2〉𝑅 𝑇0 ]                           (5.4) 

 

This procedure, therefore, would lead to a change in the MSD. 
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Fig. 5.5 In magenta representation of the function  𝑆𝑅 𝑇   as a function of Q; in blue representation of the 

function  𝑆𝑅 𝑇0   as a function of Q; in green representation of the function  SR T /𝑆𝑅 𝑇0   as a function 

of Q  in a linear-linear plot 
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5.1.2.2 Normalization performed on the logarithm of the Gaussian 

function 

As far as the the application of logarithm is concerned, one has: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Representation of the function  𝑙𝑛 𝑆𝑅   as a function of Q2  in a log-lin plot                                               

     

   

5.1.2.2.1   Normalization by multiplication 

                                      

The normalization for a multiplicative factor n, if applied to the logarithm of the function 

𝑆𝑅, turns out to be a tricky procedure since it leads to an incorrect value of the MSD. 

Infact, the normalization of the logarithm according this procedure, implies an elevation 

in the power that comes from a known property of logarithms: 

                                                       𝑛 𝑙𝑛 𝑆𝑅 = 𝑙𝑛 𝑆𝑅 
𝑛                                              (5.5) 

so: 

〈𝑟2〉′𝑅 = 𝑛〈𝑟2〉𝑅 
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Fig. 5.7 In navy representation of the function ln SR   as a function of Q2 ; in orange representation of the 

function n ∙ ln SR   as a function of Q2  in a logarithmic-linear plot   
 

 
5.1.2.2.2 Normalization by the sum of the logarithm 

Adding to the logarithm of the function a value, implies from the graphical point of view 

to obtain a straight line parallel to the previous one; therefore, a translation of the function 

in the plot and therefore the operation is the correct normalization to be performed. This 

is due to the fact that: 

𝑙𝑛 𝑆𝑅 + 𝑙𝑛 𝑛 = ln  𝑛𝑆𝑅  

Based on the properties just stated, also multiplying the argument of the logarithm for a 

factor n, furnishes graphically a straight line parallel to the preceding one and, thus, also 

this procedure is to be considered correct. 
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Fig. 5.8 In navy representation of the function 𝑙𝑛 𝑆𝑅   as a function of Q2 ; in light blue representation of 

the function 𝑙𝑛 𝑆𝑅 ∙ 𝑛   as a function of Q2  in a logarithmic-linear plot  log-lin plot   
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5.1.2.2.3 Normalization by the sum of logarithm argument 

Adding up to the argument of the logarithm a constant term, one notes that the graphic 

representation is no longer a straight line but a curve. Therefore, the normalization 

performed by following this protocol is not a proper procedure. 

              

 
Fig. 5.9 In navy representation of the function 𝑙𝑛 𝑆𝑅   as a function of Q2 ; in lilac representation of the 

function 𝑙𝑛 𝑆𝑅 + 𝑛   as a function of Q2  in a logarithmic-linear plot   

 

Therefore we conclude that, in a linear-linear plot, the only normalization procedure does 

not vary the value of MSD is obtained multiplying the function by the value n and also, 

in a logarithmic-linear plot, adding to the logarithm of the function a value, the 

normalization procedure does not vary the value of MSD and so also multiplying the 

argument of the logarithm for a factor n 

 

5.2 Experimental results and comparison with developed theory 

 

5.2.1 Characteristics of IN10 and IN13 spectrometers for lysozyme 

experiments 

Experimental data were collected at the Institute Laue Langevin (Grenoble, France) by 

the IN13 and IN10 spectrometers. These spectrometers are characterized by a relatively 
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high energy of the incident neutrons (16 meV) and allow to span a quite wide range of 

momentum transfer with two different energy resolutions [51,52]. More specifically, for 

the IN13 spectrometer, the incident wavelength was 2.23 Å, the Q-range was 0.28 ÷ 4.27 

Å-1, and the elastic energy resolution was 8 μeV, which corresponds to an elastic time 

resolution of 516 ps; for the IN10 spectrometer, the incident wavelength was 6.27 Å, the 

Q-range was 0.30 ÷ 2.00 Å-1, and the elastic energy resolution (fwhm) was 1 μeV, which 

corresponds to an elastic time resolution of 4136 ps [25]. Thus, scattering particles which 

move in a time scale much slower than the characteristic time corresponding to the energy 

resolution are seen as elastic scatterers, whereas a decrease of the elastic intensity is 

observed for scattering particles which move faster. This implies that a scattering particle 

which moves in a time scale between the resolution time of IN13 and IN10 contributes as 

an elastic process in the IN13 spectra and as a nonelastic process in the IN10 spectra.  

Partially deuterated lysozymes in dry, in D2O, and in H2O environments at a hydration 

value of h =0.4 (h = water/protein weight fraction) have been employed. The considered 

hydration value has been chosen because the activity of proteins depends crucially on the 

presence of at least a minimum amount of solvent water.[22,23] It is believed that 0.3 g 

of water per gram of protein is sufficient to cover most of the protein surface with one 

single layer of water molecules and to fully activate the protein functionality. In 

particular, for lysozyme, this hydration level was chosen to have a monolayer of water 

covering the protein surface.[24] 

 

Table 5.1 Instrumental characteristics 
 

 

A scattering particle which moves in a time scale between there solution time of IN13 

and IN10 contributes as an elastic process in the IN13 spectra and as a non elastic process 

 

SPECTROMETER 

 

Incident 

wavelength 

 

Q-range 

Instrumental 

energy 

resolution 

(FWHM) 

Instrumental 

time 

resolution 

 

IN10 

 

6.27 Å 

 

0.30 ÷ 2.00 Å-1 

 

1 μeV 

 

4136 ps 

 

IN13 

 

2.23 Å 

 

0.28 ÷4.27 Å-1 

 

8 μeV 

 

516 ps 
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in the IN10 spectra. So because a decrease of the elastic intensity is observed for 

scattering particles which move faster whereas the scattering particles which move in a 

time scale much slower than the characteristic time corresponding to the energy resolution 

are seen as elastic scatterers.  

 

5.2.2 Data obtained through the spectrometers IN10 and IN13 on the 

analyzed samples 

 
The following figures show the EINS data collected by IN10 and IN13 spectrometers. In 

particular in Fig. 5.10, the scattered intensity profile of dry lysozyme mixtures as a 

function of exchanged wavevector Q is shown at different temperature values. 

Subsequently in Fig. 5.11, the scattered intensity profile of hydrated lysozyme (H2O) 

mixtures as a function of exchanged wavevector Q is reported at different temperature 

values. Lastly in Fig. 5.12, the scattered intensity profile of hydrated lysozyme (D2O) 

mixtures as a function of exchanged wavevector Q is shown at different temperature 

values. 

As it can be seen in all three cases, by increasing temperature, the scattered intensity at 

the higher temperature values, generally drops in Q fulfilling a decaying behavior.  
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Fig. 5.10: Elastically scattered intensity profile of dry lysozyme sample as a function of the exchanged 

wavevector Q, in the range between 0.50 and 1,96 Å−1, and at temperature values in the range from 19 K 

to 200 K, for IN10 and in the range between 0.52 and 2,06 Å−1, and at temperature values in the range from 

19 K to 300 K, for IN13. As it can be seen in all two cases, by increasing temperature, the scattered intensity 

at the higher temperature values, generally drops in Q fulfilling a decaying behavior. 
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Fig. 5.11: Elastically scattered intensity profile of hydrated lysozyme (H2O) sample as a function of the 

exchanged wavevector Q, in the range between 0.50 and 1.96 Å−1, and at temperature values in the range 

from 19 K to 200 K, for IN10 and in the range between 0.19 and 4.66 Å−1, and at temperature values in the 

range from 20 K to 308 K, for IN13. As it can be seen in all two cases, by increasing temperature, the 

scattered intensity at the higher temperature values, generally drops in Q fulfilling a decaying behavior. 
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Fig. 5.12 Elastically scattered intensity profile of hydrated lysozyme (D2O) sample as a function of the 

exchanged wavevector Q, in the range between 0.50 and 1.96 Å−1, and at temperature values in the range 

from 20 K to 200 K, for IN10 and in the range between 0.19 and 4.66 Å−1, and at temperature values in the 

range from 19 K to 300 K, for IN13. As it can be seen in all two cases, by increasing temperature, the 

scattered intensity at the higher temperature values, generally drops in Q fulfilling a decaying behavior. 
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Based on what has been seen so far, it can be seen that the IN10 spectrometer allows us 

to analyze the data in a temperature range much wider than the IN13 spectrometer does 

and, on the other hand, the IN13 spectrometer allows us to analyze the data in a Q range 

much wider than the IN10 spectrometer. 

They give us the opportunity to study the same problem from two different angles. 

Below are the graphical representations that show what we have just said. By way of 

example, data on water-hydrated lysozyme were plotted. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 5.13 On the axis of ascites the temperature values T analyzed, on the axis of the ordered values of the 

wavevector Q analyzed with the IN10 spectrometer for water-hydrated lysozyme. We can see how much 

the temperature values are numerically far superior to the values of the wavevector Q. 
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Fig. 5.14 On the axis of ascites the temperature values T analyzed, on the axis of the ordered values of the 

wavevector Q analyzed with the IN13 spectrometer for water-hydrated lysozyme. We can see how much 

the values of the wavevector Q are numerically far superior to the temperature values. 

 
Below a figure that summarizes the capacity of the IN10 spectrometer to conduct a careful 

temperature analysis and the ability of the IN13 spectrometer to conduct a careful 

wavevector Q analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
Fig. 5.15 On the axis of ascites the temperature values T analyzed with the IN10 spectrometer, on the axis 

of the ordered values of the wavevector Q analyzed with the IN13 spectrometer, for water-hydrated 

lysozyme.  
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  (5.6) 

5.2.3 Comparison between the MSD data obtained in experiments 

conducted on lysozyme with IN10 and IN13 spectrometers 

 
By performing EINS experiments which give a direct connection with the scattering law 

evaluated at = 0 , 𝑆𝑅 �⃗� , 𝜔 = 0 , we know that the measured MSD corresponds to the 

integration in the time domain of the product of the system MSD times the resolution 

function. So the relation between the measured MSD (obtained by EINS it depends on 

the employed instrumental resolution) 〈𝑟 2〉𝑅, and the system MSD (function of 

time) 〈𝑟 2〉 𝑡 , is: 

〈𝑟 2〉𝑅 = ∫ 〈𝑟 2〉 𝑡 𝑅 𝑡 𝑑𝑡
∞

−∞
  

One can make the following remarks: 

 Considering two different systems and studying them with the same 

instrumental resolution yields, the comparison between the MSDs measured is:  

 

〈𝑟2〉1,𝑅 − 〈𝑟2〉2,𝑅 = ∫ [〈𝑟2〉1 𝑡 − 〈𝑟2〉2 𝑡 ]𝑅 𝑡 𝑑𝑡
∞

−∞

 

 

So, on two different systems, using the same instrument working at the same resolution, 

the difference between the measured MSD does not correspond to the difference between 

their MSDs. 

 Considering the same system and studying it at different instrumental resolutions 

yields, the comparison between the MSDs measured is: 

〈𝑟2〉1,𝑅 − 〈𝑟2〉2,𝑅 = ∫ 〈𝑟2〉 𝑡 [𝑅1 𝑡 − 𝑅2 𝑡 ]𝑑𝑡
∞

−∞

 

We now compare the measured MSDs temperature behavior obtained for the same 

systems, that is, dry and hydrated (H2O and D2O with h = 0.4) lysozyme, respectively, 

by the IN13 spectrometer working at the energy resolution value of 8 μeV and by the 

IN10 spectrometer working at the energy resolution value of 1 μeV, without and with 

normalization. The MSD values have been obtained by employing the following common 

Q-range: 0.5 ÷ 2.0 Å-1. 

In agreement with: 

 

〈𝑟 2〉𝑅 = ∫ 〈𝑟2〉 𝑡 𝑅 𝑡 𝑑𝑡
∞

−∞

 

 

   (5.7) 
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the MSD evaluated, without normalization, by IN10, in all the temperature ranges, is 

higher in respect to that evaluated by IN13. This is because that even at the lowest 

temperature values, where only vibrational contributions are expected to contribute, the 

measured MSD is the integral of the product between the resolution function and the 

system MSD. 

 

Fig. 5.16 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on dry lysozyme samples without normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.17 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on dry lysozyme samples without normalization. It can be noticed that 

the value of the MSD obtained by the IN10 spectrometer is significantly higher than that achieved by IN13. 
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By proceeding to normalization of data obtained through the two different spectrometers, 

we note that at lower temperatures, the values of MSD are very similar. This is because 

only vibrational motions occur. Approximately in the low temperature range up to T = 80 

K, the system MSD can be considered almost constant 〈𝑟2〉 𝑡 → 〈𝑟2〉 𝑉  and, in such a 

case, the measured MSD by the following equation: 

〈𝑟 2〉𝑅 = ∫ 〈𝑟2〉 𝑡 𝑅 𝑡 𝑑𝑡
∞

−∞

 

results: 

〈𝑟2〉𝑅 = ∫ 〈𝑟2〉 𝑡 𝑅 𝑡 𝑑𝑡
∞

−∞

= ∫ 〈𝑟2〉 𝑉 𝑅 𝑡 𝑑𝑡
∞

−∞

 

 

                                                〈𝑟2〉𝑅 = 〈𝑟2〉 𝑉 ∫ 𝑅 𝑡 𝑑𝑡
∞

−∞
 

So, at the lowest temperature values, where only vibrational contributions are 

expected to contribute, the measured MSD is the integral of the product between the 

resolution function and the system MSD Then, starting from the last equation, it’s 

possible to determine the system MSD at the lowest temperature values 

 

〈𝑟2〉 𝑉 =
〈𝑟2〉𝑅

∫ 𝑅 𝑡 𝑑𝑡
∞

−∞

 

 

What is remarkable is that by applying this procedure to the data collected on the same 

systems by the two spectrometers IN13 and IN10, working at a different energy 

resolution, we obtain at the lowest temperature values the same system MSD value 

 

 

 

 

 

 

 

 

 

 

(5.8) 

(5.9)            
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Fig. 5.18 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on dry lysozyme samples with normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 5.19 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on dry lysozyme samples with normalization. It is possible to see that at 

lower temperatures the MSD values obtained with the two spectrometers are very similar. 
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Fig. 5.20 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on hydrated (H2O) lysozyme samples without normalization. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 5.21 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on hydrated (H2O) lysozyme samples without normalization. 
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Fig. 5.22 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on hydrated (H2O) lysozyme samples with normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.23 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on hydrated (H2O) lysozyme samples with normalization. It is possible to 

see that at lower temperatures the MSD values obtained with the two spectrometers are very similar. 
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Fig. 5.24 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on hydrated (D2O) lysozyme samples without normalization. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 5.25 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on hydrated (D2O) lysozyme samples without normalization. 
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Fig. 5.26 Measured MSDs temperature behavior obtained from data collected by the IN13 and IN10 

spectrometers on hydrated (D2O) lysozyme samples with normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.27 Comparison between the measured MSDs temperature behavior obtained from data collected by 

the IN13 and IN10 spectrometers on hydrated (D2O) lysozyme samples with normalization. It is possible to 

see that at lower temperatures the MSD values obtained with the two spectrometers are very similar. 
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Table 5.2: Vibrational MSDs and their roots, representative of Mean Displacements 

(MDs), for dry and hydrated (H2O and D2O) lysozyme samples 

 
 

 

 

 

 

 

LYSOZYME DRY 

𝐌𝐒𝐃𝐌
𝐈𝐍𝟏𝟎 

 Å2  
𝐌𝐒𝐃𝐌

𝐈𝐍𝟏𝟑 
  Å2  

MSD𝐈𝐍𝟏𝟎 
 Å2  

MSD𝐈𝐍𝟏𝟑 
  Å2  

𝐌𝐃𝐈𝐍𝟏𝟎 
  Å  

𝐌𝐃𝐈𝐍𝟏𝟑 
 Å  

1,241 0,172 0,00029 0,00034 0,017 0,018 

1,228 0,199 0,00030 0,00036 0,017 0,019 

1,251 0,219 0,00030 0,00042 0,017 0,020 

LYSOZYME/H
2
O 

𝐌𝐒𝐃𝐌
𝐈𝐍𝟏𝟎 

 Å2  
𝐌𝐒𝐃𝐌

𝐈𝐍𝟏𝟑 
  Å2  

MSD𝐈𝐍𝟏𝟎 
 Å𝟐  

MSD𝐈𝐍𝟏𝟑 
  Å𝟐  

𝐌𝐃𝐈𝐍𝟏𝟎 
  Å  

𝐌𝐃𝐈𝐍𝟏𝟑 
 Å  

2,165 0,253 0,00052 0,00049 0,023 0,022 

2,471 0,460 0,00060 0,00089 0,024 0,029 

2,853 0,462 0,00069 0,00090 0,026 0,030 

LYSOZYME/D
2
O 

𝐌𝐒𝐃𝐌
𝐈𝐍𝟏𝟎 

 Å2  
𝐌𝐒𝐃𝐌

𝐈𝐍𝟏𝟑 
  Å2  

MSD𝐈𝐍𝟏𝟎 
 Å𝟐  

MSD𝐈𝐍𝟏𝟑 
  Å𝟐  

𝐌𝐃𝐈𝐍𝟏𝟎 
  Å  

𝐌𝐃𝐈𝐍𝟏𝟑 
 Å  

0,897 0,079 0,00022 0,00015 0,015 0,012 

0,748 0,114 0,00018 0,00022 0,013 0,015 

0,832 0,079 0,00020 0,00015 0,014 0,012 
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Table 5.3 Data provided by the spectrometer IN13 
                                   

          DRY                                 H2O                                D2O 

 
T  

(K) 
MSD  
(Å2) 

MSD (N) 
(Å2) 

20,019 0,101 0,013991 

40,41 0,138 0,016354 

60,234 0,131 0,015933 

80,434 0,134 0,016115 

90,54 0,14 0,016472 

100,659 0,145 0,016763 

110,001 0,163 0,017773 

120,453 0,161 0,017664 

140,452 0,16 0,017609 

180,066 0,187 0,019037 

200,191 0,213 0,020317 

 

                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  
(K) 

MSD 
 (Å2) 

MSD (N) 
(Å2) 

19,992 0,107 0,0144 

40,465 0,114 0,014864 

60,261 0,119 0,015186 

80,399 0,123 0,015439 

90,621 0,124 0,015502 

100,674 0,127 0,015688 

110,278 0,133 0,016055 

120,551 0,137 0,016294 

140,071 0,142 0,016589 

160,276 0,145 0,016763 

180,546 0,147 0,016878 

189,994 0,149 0,016993 

200,199 0,151 0,017107 

T  
(K) 

MSD  
(Å2) 

MSD (N) 
(Å2) 

20,003 0,139 0,016413 

40,32 0,158 0,017499 

61,167 0,15 0,01705 

79,759 0,161 0,017664 

89,418 0,165 0,017882 

99,342 0,167 0,01799 

109,386 0,164 0,017828 

119,5 0,162 0,017719 

139,444 0,173 0,01831 

159,003 0,18 0,018677 

179,367 0,186 0,018986 

188,932 0,188 0,019088 

199,633 0,192 0,01929 

209,374 0,193 0,01934 
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Table 5.4 Data provided by the spectrometer IN10 
          

           DRY                                H2O                                D2O                      

       
T 

 (K) 
MSD 
(Å2) 

MSD (N) 
(Å2) 

19,19 0,53 0,011321 

19,853 0,611 0,012156 

20,487 0,571 0,011751 

21,112 0,602 0,012066 

21,731 0,673 0,012758 

22,373 0,668 0,01271 

23,034 0,6 0,012046 

23,677 0,518 0,011193 

24,267 0,657 0,012605 

24,915 0,642 0,01246 

25,557 0,63 0,012343 

26,144 0,633 0,012373 

26,786 0,608 0,012126 

27,429 0,647 0,012509 

28,074 0,576 0,011802 

28,668 0,619 0,012235 

29,315 0,652 0,012557 

29,942 0,631 0,012353 

30,569 0,616 0,012205 

31,181 0,612 0,012166 

31,822 0,625 0,012294 

32,453 0,63 0,012343 

33,101 0,683 0,012852 

33,68 0,621 0,012255 

34,303 0,652 0,012557 

34,955 0,613 0,012176 

35,556 0,612 0,012166 

36,175 0,65 0,012538 

36,825 0,629 0,012334 

37,451 0,587 0,011915 

38,034 0,603 0,012076 

38,664 0,642 0,01246 

39,302 0,608 0,012126 

39,95 0,593 0,011975 

40,537 0,585 0,011894 

41,173 0,615 0,012196 

T  
(K) 

MSD 
(Å2)  

MSD (N) 
(Å2) 

20,183 0,878 0,014572 

20,83 0,908 0,014819 

21,497 0,847 0,014312 

22,085 0,876 0,014555 

22,728 0,879 0,01458 

23,366 0,881 0,014597 

24,007 0,969 0,015308 

24,605 0,859 0,014413 

25,247 0,831 0,014176 

25,891 0,92 0,014916 

26,534 0,922 0,014932 

27,125 0,862 0,014438 

27,76 0,942 0,015093 

28,401 0,866 0,014472 

29,059 0,891 0,014679 

29,658 0,961 0,015245 

30,28 0,919 0,014908 

30,899 0,853 0,014363 

31,504 0,929 0,014989 

32,119 0,883 0,014613 

32,777 0,898 0,014737 

33,408 0,885 0,01463 

34,017 0,93 0,014997 

34,645 0,939 0,015069 

35,256 0,818 0,014065 

35,891 0,991 0,015481 

36,491 0,912 0,014851 

37,13 0,934 0,015029 

37,774 0,887 0,014646 

38,399 0,916 0,014884 

38,964 0,86 0,014422 

39,606 0,948 0,015141 

40,247 0,893 0,014696 

40,833 0,845 0,014295 

41,477 0,885 0,01463 

42,111 0,943 0,015101 

T  
(K) 

MSD 
(Å2) 

MSD (N) 
(Å2) 

19,228 0,589 0,011935 

19,827 0,614 0,012186 

20,477 0,628 0,012324 

21,129 0,579 0,011833 

21,783 0,553 0,011564 

22,386 0,633 0,012373 

23,023 0,554 0,011575 

23,666 0,555 0,011585 

24,299 0,618 0,012225 

24,896 0,578 0,011823 

25,552 0,598 0,012026 

26,199 0,604 0,012086 

26,852 0,577 0,011813 

27,44 0,585 0,011894 

28,074 0,591 0,011955 

28,727 0,62 0,012245 

29,318 0,585 0,011894 

29,96 0,577 0,011813 

30,596 0,599 0,012036 

31,244 0,6 0,012046 

31,841 0,631 0,012353 

32,464 0,569 0,011731 

33,106 0,596 0,012006 

33,745 0,565 0,011689 

34,345 0,632 0,012363 

35 0,627 0,012314 

35,608 0,62 0,012245 

36,24 0,552 0,011554 

36,849 0,626 0,012304 

37,47 0,611 0,012156 

38,108 0,61 0,012146 

38,691 0,588 0,011925 

39,346 0,612 0,012166 

39,98 0,617 0,012215 

40,606 0,624 0,012284 

41,193 0,611 0,012156 
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41,808 0,62 0,012245 

42,429 0,55 0,011533 

43,012 0,62 0,012245 

43,649 0,633 0,012373 

44,286 0,626 0,012304 

44,921 0,569 0,011731 

45,519 0,597 0,012016 

46,15 0,624 0,012284 

46,767 0,659 0,012624 

47,363 0,664 0,012672 

47,998 0,627 0,012314 

48,639 0,623 0,012275 

49,254 0,554 0,011575 

49,838 0,668 0,01271 

50,48 0,571 0,011751 

51,103 0,643 0,01247 

51,744 0,606 0,012106 

52,332 0,613 0,012176 

52,956 0,654 0,012576 

53,588 0,627 0,012314 

54,217 0,608 0,012126 

54,803 0,628 0,012324 

55,455 0,671 0,012739 

56,084 0,626 0,012304 

56,669 0,611 0,012156 

57,286 0,668 0,01271 

57,923 0,591 0,011955 

58,563 0,623 0,012275 

59,141 0,704 0,013048 

59,775 0,628 0,012324 

60,402 0,624 0,012284 

61,035 0,603 0,012076 

61,627 0,572 0,011761 

62,238 0,647 0,012509 

62,879 0,643 0,01247 

63,518 0,612 0,012166 

64,1 0,634 0,012382 

64,728 0,645 0,012489 

65,347 0,648 0,012518 

65,941 0,645 0,012489 

66,569 0,663 0,012662 

67,203 0,637 0,012412 

67,836 0,611 0,012156 

42,743 0,928 0,014981 

43,321 0,872 0,014522 

43,957 0,894 0,014704 

44,581 0,951 0,015165 

45,214 0,915 0,014876 

45,797 0,917 0,014892 

46,428 0,893 0,014696 

47,079 0,88 0,014588 

47,7 0,939 0,015069 

48,303 0,877 0,014563 

48,935 0,943 0,015101 

49,557 0,953 0,015181 

50,184 0,88 0,014588 

50,749 0,911 0,014843 

51,374 0,901 0,014761 

52,02 1,019 0,015698 

52,606 0,898 0,014737 

53,244 0,893 0,014696 

53,861 0,961 0,015245 

54,502 0,864 0,014455 

55,084 0,911 0,014843 

55,714 0,863 0,014447 

56,344 0,924 0,014949 

56,969 0,954 0,015189 

57,55 0,913 0,014859 

58,179 1,016 0,015675 

58,82 0,95 0,015157 

59,412 0,917 0,014892 

60,029 0,905 0,014794 

60,656 0,862 0,014438 

61,285 1,008 0,015613 

61,87 0,913 0,014859 

62,501 0,895 0,014712 

63,133 0,962 0,015253 

63,759 0,865 0,014463 

64,347 0,975 0,015356 

64,972 0,963 0,015261 

65,603 0,931 0,015005 

66,236 0,889 0,014663 

66,813 0,928 0,014981 

67,46 0,896 0,01472 

68,094 0,947 0,015133 

68,686 0,935 0,015037 

41,838 0,539 0,011417 

42,47 0,61 0,012146 

43,114 0,595 0,011996 

43,699 0,628 0,012324 

44,323 0,641 0,012451 

44,958 0,627 0,012314 

45,609 0,586 0,011904 

46,197 0,573 0,011772 

46,836 0,592 0,011965 

47,462 0,61 0,012146 

48,093 0,618 0,012225 

48,67 0,619 0,012235 

49,314 0,609 0,012136 

49,949 0,622 0,012265 

50,512 0,588 0,011925 

51,183 0,612 0,012166 

51,81 0,609 0,012136 

52,433 0,562 0,011658 

53,024 0,627 0,012314 

53,665 0,645 0,012489 

54,298 0,603 0,012076 

54,917 0,561 0,011648 

55,505 0,608 0,012126 

56,139 0,533 0,011353 

56,77 0,609 0,012136 

57,425 0,587 0,011915 

58,015 0,552 0,011554 

58,622 0,605 0,012096 

59,263 0,635 0,012392 

59,852 0,576 0,011802 

60,485 0,618 0,012225 

61,091 0,609 0,012136 

61,734 0,64 0,012441 

62,315 0,643 0,01247 

62,952 0,586 0,011904 

63,604 0,601 0,012056 

64,234 0,652 0,012557 

64,808 0,531 0,011332 

65,442 0,631 0,012353 

66,091 0,633 0,012373 

66,717 0,593 0,011975 

67,283 0,576 0,011802 

67,93 0,615 0,012196 
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68,44 0,666 0,012691 

69,079 0,609 0,012136 

69,699 0,636 0,012402 

70,327 0,636 0,012402 

70,908 0,626 0,012304 

71,535 0,64 0,012441 

72,178 0,676 0,012786 

72,797 0,649 0,012528 

73,397 0,617 0,012215 

74,013 0,598 0,012026 

74,657 0,601 0,012056 

75,285 0,586 0,011904 

75,878 0,583 0,011874 

76,534 0,612 0,012166 

77,174 0,59 0,011945 

77,73 0,631 0,012353 

78,362 0,64 0,012441 

78,993 0,658 0,012615 

79,633 0,643 0,01247 

80,248 0,606 0,012106 

80,882 0,612 0,012166 

81,511 0,645 0,012489 

82,15 0,671 0,012739 

82,74 0,687 0,01289 

83,373 0,608 0,012126 

83,978 0,618 0,012225 

84,551 0,632 0,012363 

85,189 0,63 0,012343 

85,824 0,697 0,012983 

86,489 0,607 0,012116 

87,093 0,615 0,012196 

87,74 0,637 0,012412 

88,386 0,617 0,012215 

89,033 0,639 0,012431 

89,611 0,664 0,012672 

90,254 0,612 0,012166 

90,869 0,615 0,012196 

91,511 0,644 0,01248 

92,115 0,592 0,011965 

92,767 0,564 0,011679 

93,404 0,659 0,012624 

93,993 0,661 0,012643 

94,625 0,537 0,011396 

69,314 0,947 0,015133 

69,921 0,966 0,015284 

70,551 0,911 0,014843 

71,158 0,933 0,015021 

71,774 0,94 0,015077 

72,414 0,929 0,014989 

73,029 0,875 0,014547 

73,654 0,973 0,01534 

74,258 0,895 0,014712 

74,9 0,925 0,014957 

75,513 0,937 0,015053 

76,106 0,873 0,01453 

76,741 0,993 0,015497 

77,373 0,872 0,014522 

77,965 0,956 0,015205 

78,59 0,999 0,015543 

79,248 0,945 0,015117 

79,875 0,964 0,015269 

80,459 0,921 0,014924 

81,11 0,909 0,014827 

81,715 0,912 0,014851 

82,363 0,896 0,01472 

82,944 0,881 0,014597 

83,57 0,939 0,015069 

84,217 0,928 0,014981 

84,858 0,966 0,015284 

85,434 0,868 0,014488 

86,075 0,97 0,015316 

86,716 0,937 0,015053 

87,358 0,922 0,014932 

87,934 0,937 0,015053 

88,575 0,962 0,015253 

89,227 0,929 0,014989 

89,822 1,001 0,015559 

90,447 0,895 0,014712 

91,085 0,99 0,015473 

91,713 0,903 0,014778 

92,329 0,923 0,01494 

92,966 0,921 0,014924 

93,592 0,967 0,015292 

94,239 0,964 0,015269 

94,829 0,92 0,014916 

95,45 0,968 0,0153 

68,573 0,592 0,011965 

69,14 0,571 0,011751 

69,784 0,566 0,0117 

70,402 0,612 0,012166 

71,036 0,598 0,012026 

71,649 0,598 0,012026 

72,281 0,565 0,011689 

72,891 0,576 0,011802 

73,531 0,595 0,011996 

74,146 0,549 0,011523 

74,775 0,576 0,011802 

75,405 0,573 0,011772 

76,03 0,579 0,011833 

76,626 0,595 0,011996 

77,269 0,539 0,011417 

77,911 0,545 0,01148 

78,515 0,567 0,01171 

79,139 0,604 0,012086 

79,768 0,568 0,01172 

80,385 0,555 0,011585 

80,97 0,659 0,012624 

81,644 0,611 0,012156 

82,275 0,58 0,011843 

82,897 0,644 0,01248 

83,488 0,562 0,011658 

84,077 0,679 0,012814 

84,713 0,631 0,012353 

85,349 0,61 0,012146 

85,961 0,572 0,011761 

86,61 0,584 0,011884 

87,242 0,62 0,012245 

87,876 0,567 0,01171 

88,49 0,577 0,011813 

89,132 0,573 0,011772 

89,783 0,607 0,012116 

90,384 0,562 0,011658 

91,017 0,593 0,011975 

91,654 0,584 0,011884 

92,29 0,608 0,012126 

92,885 0,587 0,011915 

93,544 0,651 0,012547 

94,183 0,543 0,011459 

94,807 0,63 0,012343 
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95,266 0,688 0,012899 

95,918 0,623 0,012275 

96,506 0,642 0,01246 

97,172 0,628 0,012324 

97,81 0,643 0,01247 

98,437 0,631 0,012353 

99,024 0,672 0,012748 

99,674 0,653 0,012567 

100,311 0,691 0,012927 

100,964 0,664 0,012672 

101,575 0,65 0,012538 

102,223 0,611 0,012156 

102,87 0,598 0,012026 

103,446 0,647 0,012509 

104,082 0,721 0,013205 

104,736 0,626 0,012304 

105,364 0,625 0,012294 

105,965 0,665 0,012682 

106,625 0,617 0,012215 

107,259 0,642 0,01246 

107,891 0,653 0,012567 

108,494 0,639 0,012431 

109,144 0,685 0,012871 

109,788 0,646 0,012499 

110,37 0,634 0,012382 

111,016 0,6 0,012046 

111,677 0,651 0,012547 

112,323 0,664 0,012672 

112,905 0,646 0,012499 

113,559 0,623 0,012275 

114,219 0,686 0,01288 

114,867 0,634 0,012382 

115,452 0,66 0,012634 

116,092 0,585 0,011894 

116,724 0,637 0,012412 

117,388 0,665 0,012682 

117,996 0,634 0,012382 

118,645 0,613 0,012176 

119,279 0,662 0,012653 

119,876 0,664 0,012672 

120,542 0,659 0,012624 

121,165 0,61 0,012146 

121,85 0,59 0,011945 

96,111 0,961 0,015245 

96,703 0,958 0,015221 

97,338 1,006 0,015598 

97,963 0,926 0,014965 

98,62 0,877 0,014563 

99,208 0,89 0,014671 

99,878 0,986 0,015442 

100,519 0,939 0,015069 

101,129 0,966 0,015284 

101,719 0,921 0,014924 

102,346 0,932 0,015013 

102,995 0,964 0,015269 

103,641 0,893 0,014696 

104,23 0,925 0,014957 

104,895 0,964 0,015269 

105,542 0,884 0,014621 

106,11 0,941 0,015085 

106,769 0,925 0,014957 

107,401 0,948 0,015141 

108,046 0,931 0,015005 

108,627 0,946 0,015125 

109,281 0,956 0,015205 

109,921 0,973 0,01534 

110,584 0,923 0,01494 

111,163 0,917 0,014892 

111,824 0,938 0,015061 

112,453 0,963 0,015261 

113,048 0,968 0,0153 

113,684 0,929 0,014989 

114,319 0,924 0,014949 

114,975 0,891 0,014679 

115,582 0,985 0,015434 

116,217 0,951 0,015165 

116,854 0,925 0,014957 

117,499 1,001 0,015559 

118,091 0,935 0,015037 

118,743 0,97 0,015316 

119,377 0,959 0,015229 

120,014 0,927 0,014973 

120,636 0,896 0,01472 

121,27 0,941 0,015085 

121,919 0,842 0,01427 

122,52 0,926 0,014965 

95,431 0,578 0,011823 

96,053 0,611 0,012156 

96,698 0,6 0,012046 

97,337 0,624 0,012284 

97,94 0,58 0,011843 

98,576 0,628 0,012324 

99,233 0,601 0,012056 

99,796 0,585 0,011894 

100,455 0,636 0,012402 

101,112 0,6 0,012046 

101,739 0,603 0,012076 

102,344 0,61 0,012146 

102,992 0,535 0,011375 

103,631 0,574 0,011782 

104,268 0,607 0,012116 

104,851 0,601 0,012056 

105,505 0,569 0,011731 

106,158 0,626 0,012304 

106,755 0,626 0,012304 

107,404 0,593 0,011975 

108,047 0,616 0,012205 

108,677 0,611 0,012156 

109,295 0,574 0,011782 

109,917 0,62 0,012245 

110,58 0,6 0,012046 

111,237 0,606 0,012106 

111,829 0,57 0,011741 

112,473 0,603 0,012076 

113,12 0,563 0,011669 

113,705 0,577 0,011813 

114,36 0,598 0,012026 

115,012 0,568 0,01172 

115,655 0,584 0,011884 

116,262 0,58 0,011843 

116,906 0,624 0,012284 

117,552 0,555 0,011585 

118,201 0,547 0,011502 

118,799 0,599 0,012036 

119,436 0,617 0,012215 

120,077 0,588 0,011925 

120,682 0,628 0,012324 

121,356 0,587 0,011915 

122,013 0,619 0,012235 
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122,414 0,616 0,012205 

123,051 0,627 0,012314 

123,713 0,629 0,012334 

124,344 0,689 0,012908 

124,95 0,613 0,012176 

125,609 0,655 0,012586 

126,262 0,7 0,013011 

126,859 0,628 0,012324 

127,519 0,689 0,012908 

128,164 0,632 0,012363 

128,774 0,654 0,012576 

129,383 0,692 0,012936 

130,055 0,683 0,012852 

130,708 0,715 0,01315 

131,354 0,676 0,012786 

131,951 0,627 0,012314 

132,598 0,661 0,012643 

133,248 0,663 0,012662 

133,839 0,628 0,012324 

134,483 0,624 0,012284 

135,126 0,608 0,012126 

135,767 0,646 0,012499 

136,393 0,672 0,012748 

137,058 0,639 0,012431 

137,698 0,684 0,012861 

138,34 0,619 0,012235 

138,933 0,712 0,013122 

139,62 0,661 0,012643 

140,277 0,666 0,012691 

140,839 0,678 0,012805 

141,488 0,626 0,012304 

142,183 0,679 0,012814 

142,801 0,713 0,013131 

143,433 0,61 0,012146 

144,078 0,686 0,01288 

144,717 0,697 0,012983 

145,37 0,657 0,012605 

145,956 0,642 0,01246 

146,622 0,652 0,012557 

147,261 0,695 0,012964 

147,884 0,66 0,012634 

148,517 0,657 0,012605 

149,179 0,63 0,012343 

123,16 1,015 0,015667 

123,826 0,958 0,015221 

124,459 1,024 0,015737 

125,054 0,95 0,015157 

125,698 0,949 0,015149 

126,37 0,927 0,014973 

127,008 0,933 0,015021 

127,605 0,957 0,015213 

128,242 0,986 0,015442 

128,891 0,93 0,014997 

129,482 0,98 0,015395 

130,137 0,881 0,014597 

130,795 0,963 0,015261 

131,419 0,956 0,015205 

132,02 0,98 0,015395 

132,68 0,904 0,014786 

133,3 0,913 0,014859 

133,978 0,946 0,015125 

134,574 0,909 0,014827 

135,208 1,01 0,015629 

135,863 0,927 0,014973 

136,45 0,918 0,0149 

137,111 0,932 0,015013 

137,777 0,907 0,01481 

138,429 0,911 0,014843 

139,048 0,97 0,015316 

139,659 0,92 0,014916 

140,309 0,963 0,015261 

140,951 0,982 0,015411 

141,559 0,977 0,015371 

142,207 0,958 0,015221 

142,849 0,986 0,015442 

143,497 0,996 0,01552 

144,103 0,954 0,015189 

144,756 1,003 0,015574 

145,405 0,946 0,015125 

146,003 0,898 0,014737 

146,673 1,013 0,015652 

147,32 0,974 0,015348 

147,983 0,943 0,015101 

148,549 0,948 0,015141 

149,211 0,929 0,014989 

149,875 0,974 0,015348 

122,624 0,57 0,011741 

123,242 0,549 0,011523 

123,895 0,591 0,011955 

124,51 0,586 0,011904 

125,174 0,563 0,011669 

125,773 0,583 0,011874 

126,423 0,572 0,011761 

127,072 0,562 0,011658 

127,724 0,605 0,012096 

128,305 0,636 0,012402 

128,98 0,562 0,011658 

129,634 0,593 0,011975 

130,239 0,589 0,011935 

130,9 0,573 0,011772 

131,527 0,596 0,012006 

132,18 0,593 0,011975 

132,819 0,523 0,011246 

133,433 0,576 0,011802 

134,078 0,612 0,012166 

134,717 0,621 0,012255 

135,316 0,582 0,011864 

135,981 0,605 0,012096 

136,635 0,606 0,012106 

137,222 0,567 0,01171 

137,863 0,567 0,01171 

138,526 0,643 0,01247 

139,19 0,582 0,011864 

139,81 0,571 0,011751 

140,486 0,6 0,012046 

141,082 0,634 0,012382 

141,731 0,552 0,011554 

142,364 0,602 0,012066 

143,002 0,582 0,011864 

143,648 0,616 0,012205 

144,256 0,595 0,011996 

144,902 0,618 0,012225 

145,575 0,587 0,011915 

146,205 0,547 0,011502 

146,823 0,6 0,012046 

147,458 0,611 0,012156 

148,12 0,634 0,012382 

148,79 0,556 0,011596 

149,385 0,601 0,012056 
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149,831 0,637 0,012412 

150,444 0,691 0,012927 

151,096 0,682 0,012843 

151,765 0,612 0,012166 

152,39 0,678 0,012805 

152,981 0,636 0,012402 

153,659 0,696 0,012974 

154,309 0,661 0,012643 

154,974 0,71 0,013104 

155,571 0,616 0,012205 

156,251 0,688 0,012899 

156,884 0,692 0,012936 

157,484 0,642 0,01246 

158,166 0,687 0,01289 

158,809 0,692 0,012936 

159,496 0,662 0,012653 

160,094 0,658 0,012615 

160,725 0,686 0,01288 

161,379 0,678 0,012805 

162,051 0,638 0,012421 

162,671 0,685 0,012871 

163,318 0,693 0,012946 

163,951 0,687 0,01289 

164,593 0,679 0,012814 

165,244 0,682 0,012843 

165,904 0,657 0,012605 

166,556 0,642 0,01246 

167,147 0,684 0,012861 

167,8 0,663 0,012662 

168,486 0,712 0,013122 

169,128 0,666 0,012691 

169,742 0,616 0,012205 

170,396 0,668 0,01271 

171,059 0,656 0,012595 

171,671 0,677 0,012795 

172,33 0,689 0,012908 

173,004 0,673 0,012758 

173,671 0,673 0,012758 

174,277 0,714 0,01314 

174,938 0,62 0,012245 

175,591 0,666 0,012691 

176,258 0,709 0,013094 

176,882 0,647 0,012509 

150,536 0,969 0,015308 

151,143 1,019 0,015698 

151,79 0,97 0,015316 

152,434 0,901 0,014761 

153,032 0,97 0,015316 

153,676 1,006 0,015598 

154,323 0,962 0,015253 

154,983 0,987 0,01545 

155,601 0,946 0,015125 

156,233 0,957 0,015213 

156,904 0,931 0,015005 

157,549 0,995 0,015512 

158,142 1,047 0,015912 

158,797 0,969 0,015308 

159,477 0,991 0,015481 

160,093 0,923 0,01494 

160,705 0,95 0,015157 

161,364 0,976 0,015363 

162,068 0,906 0,014802 

162,683 0,926 0,014965 

163,3 0,919 0,014908 

163,965 1,038 0,015844 

164,617 0,99 0,015473 

165,228 0,992 0,015489 

165,879 0,942 0,015093 

166,539 0,99 0,015473 

167,166 0,976 0,015363 

167,817 0,974 0,015348 

168,434 0,925 0,014957 

169,122 0,983 0,015418 

169,732 1,02 0,015706 

170,369 0,894 0,014704 

171,026 0,962 0,015253 

171,71 0,991 0,015481 

172,326 0,957 0,015213 

172,961 0,979 0,015387 

173,662 0,941 0,015085 

174,242 0,943 0,015101 

174,898 0,976 0,015363 

175,55 0,989 0,015465 

176,201 0,918 0,0149 

176,831 0,942 0,015093 

177,516 1,035 0,015821 

150,062 0,56 0,011637 

150,7 0,569 0,011731 

151,312 0,586 0,011904 

151,973 0,588 0,011925 

152,617 0,616 0,012205 

153,242 0,553 0,011564 

153,862 0,593 0,011975 

154,509 0,612 0,012166 

155,183 0,602 0,012066 

155,823 0,596 0,012006 

156,431 0,583 0,011874 

157,094 0,621 0,012255 

157,731 0,579 0,011833 

158,365 0,588 0,011925 

159,022 0,597 0,012016 

159,683 0,588 0,011925 

160,342 0,57 0,011741 

160,955 0,611 0,012156 

161,622 0,587 0,011915 

162,262 0,59 0,011945 

162,908 0,598 0,012026 

163,532 0,565 0,011689 

164,216 0,636 0,012402 

164,841 0,604 0,012086 

165,435 0,585 0,011894 

166,107 0,652 0,012557 

166,774 0,622 0,012265 

167,45 0,566 0,0117 

168,041 0,604 0,012086 

168,692 0,542 0,011449 

169,382 0,582 0,011864 

170,041 0,614 0,012186 

170,626 0,575 0,011792 

171,272 0,614 0,012186 

171,939 0,595 0,011996 

172,569 0,594 0,011985 

173,23 0,589 0,011935 

173,892 0,585 0,011894 

174,556 0,559 0,011627 

175,149 0,595 0,011996 

175,852 0,548 0,011512 

176,497 0,591 0,011955 

177,157 0,583 0,011874 



129 

 

                

       

 

 

 

 

177,549 0,682 0,012843 

178,208 0,734 0,013323 

178,806 0,638 0,012421 

179,502 0,655 0,012586 

180,165 0,683 0,012852 

180,797 0,621 0,012255 

181,409 0,68 0,012824 

182,061 0,712 0,013122 

182,735 0,654 0,012576 

183,392 0,67 0,012729 

184,01 0,675 0,012777 

184,702 0,663 0,012662 

185,337 0,661 0,012643 

185,995 0,692 0,012936 

186,677 0,657 0,012605 

187,318 0,683 0,012852 

187,987 0,662 0,012653 

188,618 0,68 0,012824 

189,291 0,671 0,012739 

189,977 0,689 0,012908 

190,608 0,732 0,013305 

191,245 0,712 0,013122 

191,908 0,68 0,012824 

192,557 0,671 0,012739 

193,193 0,675 0,012777 

193,859 0,65 0,012538 

194,539 0,665 0,012682 

195,227 0,739 0,013369 

195,808 0,705 0,013057 

196,499 0,676 0,012786 

197,181 0,669 0,01272 

197,842 0,674 0,012767 

198,467 0,644 0,01248 

199,138 0,739 0,013369 

199,811 0,682 0,012843 

200,471 0,677 0,012795 

178,146 0,894 0,014704 

178,804 0,989 0,015465 

179,412 0,958 0,015221 

180,088 0,984 0,015426 

180,733 0,98 0,015395 

181,389 1,009 0,015621 

182,037 0,962 0,015253 

182,679 0,99 0,015473 

183,35 0,88 0,014588 

183,975 0,989 0,015465 

184,63 1,001 0,015559 

185,266 0,984 0,015426 

185,942 0,944 0,015109 

186,538 0,989 0,015465 

187,205 0,965 0,015277 

187,889 0,974 0,015348 

188,534 1,013 0,015652 

189,153 0,974 0,015348 

189,808 0,989 0,015465 

190,48 0,918 0,0149 

191,109 0,945 0,015117 

191,76 0,995 0,015512 

192,406 0,978 0,015379 

193,082 0,93 0,014997 

193,698 0,995 0,015512 

194,351 1,008 0,015613 

195,029 1,006 0,015598 

195,696 0,987 0,01545 

196,299 1,032 0,015798 

196,979 0,992 0,015489 

197,633 0,941 0,015085 

198,245 1,014 0,01566 

198,906 0,964 0,015269 

199,591 1,045 0,015897 

200,262 0,99 0,015473 

200,856 0,993 0,015497 

201,551 0,963 0,015261 

177,751 0,617 0,012215 

178,442 0,546 0,011491 

179,113 0,594 0,011985 

179,769 0,586 0,011904 

180,394 0,614 0,012186 

181,043 0,596 0,012006 

181,708 0,606 0,012106 

182,331 0,561 0,011648 

182,971 0,611 0,012156 

183,678 0,614 0,012186 

184,324 0,596 0,012006 

184,967 0,604 0,012086 

185,628 0,595 0,011996 

186,3 0,601 0,012056 

186,979 0,536 0,011385 

187,592 0,533 0,011353 

188,284 0,603 0,012076 

188,941 0,572 0,011761 

189,583 0,585 0,011894 

190,258 0,59 0,011945 

190,907 0,62 0,012245 

191,58 0,603 0,012076 

192,194 0,582 0,011864 

192,858 0,654 0,012576 

193,564 0,578 0,011823 

194,232 0,56 0,011637 

194,847 0,574 0,011782 

195,526 0,58 0,011843 

196,155 0,606 0,012106 

196,782 0,591 0,011955 

197,445 0,592 0,011965 

198,078 0,61 0,012146 

198,779 0,595 0,011996 

199,431 0,619 0,012235 

200,1 0,57 0,011741 
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Conclusions 
 

In the present thesis the attention is focused to the Mean Square Displacement (MSD) 

experimental determination from the neutron intensity data scattered according to the 

wavevector Q at different energy-resolution values. The data analyzed were collected in 

previous Elastic Incoherent Neutron Scattering measure carried out at the Large Scale 

Facility of the Institut Laue Langevin (ILL) on dry and hydrated lysozyme.  

The instruments used were the IN10 and IN13 spectrometers. These spectrometers are 

characterized by a relatively high energy of the incident neutrons (16 meV) and allow to 

span a quite wide range of momentum transfer with two different energy resolutions. 

More specifically, for the IN13 spectrometer, the incident wavelength was 2.23 Å, the Q-

range was 0.28 ÷ 4.27 Å-1, and the elastic energy resolution was 8 μeV, which corresponds 

to an elastic time resolution of 516 ps; for the IN10 spectrometer, the incident wavelength 

was 6.27 Å, the Q-range was 0.30 ÷ 2.00 Å-1, and the elastic energy resolution (fwhm) 

was 1 μeV, which corresponds to an elastic time resolution of 4136 ps. 

From this study it was deduced that the Mean Square Displacement obtained with the 

IN10 spectrometer is always higher than that obtained with IN13 spectrometer. Thus, at 

a higher resolution, a smaller Mean Square Displacement corresponds and vice versa at a 

lower resolution a larger Mean Square Displacement corresponds.  

Furthermore, the validity limits of Gauss's approximation for MSD evaluation has been 

also theoretically investigated. The data, appropriately normalized, has been analyzed 

according to the wave vector exchanged at different temperatures in order to extract the 

values of the Mean Square Displacement to the two different resolutions. There are 

several papers in the literature in which Mean Square Displacement is evaluated. 

However, calculation is often made taking into account different Q ranges and different 

energy resolution values (ie different resolution times). Furthermore, the data is often 

normalized so that it does not make direct or even possible comparison between the values 

obtained with different instruments or in different experimental conditions. 

It is therefore important to examine the various possible procedures for normalizing the 

data and see what does not change the calculation of Mean Square Displacement. 
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The comparison, in particular, has been performed at very low temperatures (T < 80 K). 

In such a case occur only vibrational motions and the MSD system can be considered 

almost constant <r 2> (t) → <r 2>(V). 

In particular it has been shown that even though a normalization consisting of a 

multiplication of intensity data does not produce any change in MSD, the same procedure 

can not be applied directly when data logarithms are considered in a Guinier plot. 

The systems investigated were dry and hydrated lysozyme (H2O and D2O). Lysozyme is 

part of the innate immune systema possesses bacteriolytic able to hydrolyze 

peptidoglycan in the cell wall of the bacteria. It is a natural enzyme, found in human tears, 

saliva, and other body fluids, secreted by epithelial cells, macrophages, astrocytes and 

microglia. It causes the bacterial wall of some bacteria to reduce the surface negative 

electrical charge so as to make the phagocytosis of the bacterium easier. 

For this type of study, a wide range of experimental techniques is usually employed. 

Indeed, the simultaneous use of several experimental techniques, affecting several regions 

of the energy-momentum plan, is valuable in studying and understanding this complex 

phenomenology which affects systems characterized by a dynamic structure that can be 

parameterized by means of appropriate space-time scales. 
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