Pacific Journal of Mathematics

COMMUTATORS WITH POWER CENTRAL VALUES ON A LIE IDEAL

Luisa Carini and Vincenzo De Filippis

Volume 193 No. 2 April 2000

COMMUTATORS WITH POWER CENTRAL VALUES ON A LIE IDEAL

Luisa Carini and Vincenzo De Filippis

Let R be a prime ring of characteristic $\neq 2$ with a derivation $d \neq 0$, L a noncentral Lie ideal of R such that $[d(u), u]^n$ is central, for all $u \in L$. We prove that R must satisfy s_4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and $[d([x, y]), [x, y]]^n$ is central, for all $x, y \in R$.

Let R be a prime ring and d a nonzero derivation of R. A well known result of Posner [14] states that if the commutator $[d(x), x] \in Z(R)$, the center of R, for any $x \in R$, then R is commutative.

In [11] C. Lanski generalizes the result of Posner to a Lie ideal. To be more specific, the statement of Lanski's theorem is the following:

Theorem ([11, Theorem 2, page 282]). Let R be a prime ring, L a non-commutative Lie ideal of R and $d \neq 0$ a derivation of R. If $[d(x), x] \in Z(R)$, for all $x \in L$, then either R is commutative, or char(R) = 2 and R satisfies s_4 , the standard identity in 4 variables.

Here we will examine what happens in case $[d(x), x]^n \in Z(R)$, for any $x \in L$, a noncommutative Lie ideal of R and $n \ge 1$ a fixed integer.

One cannot expect the same conclusion of Lanski's theorem as the following example shows:

Example 1. Let $R = M_2(F)$, the 2×2 matrices over a field F, and take L = R as a noncommutative Lie ideal of R. Since $[x, y]^2 \in Z(R)$, for all $x, y \in R$, then also $[d(x), x]^2 \in Z(R)$, for all $x \in R$.

We will prove that:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a noncentral Lie ideal of R, d a nonzero derivation of R such that $[d(u), u]^n \in Z(R)$, for any $u \in L$. Then R satisfies s_4 .

We will proceed by first proving that:

Lemma 1.1. Let R be a prime ring of characteristic different from 2, L a noncentral Lie ideal of R, d a nonzero derivation of R, $n \ge 1$. If d satisfies $[d(u), u]^n = 0$, for any $u \in L$, then R is commutative.

We then examine the case R is a 2-torsion free semiprime ring. The results we obtain are:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]),[x,y]]^n=0$, for any $x,y\in R$. Then there exists a central idempotent element e of U such that on the direct sum decomposition $eU\oplus (1-e)U$, d vanishes identically on eU and the ring (1-e)U is commutative.

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]),[x,y]]^n \in Z(R)$, for any $x,y \in R$. Then there exists a central idempotent e of U such that, on the direct sum decomposition $U = eU \oplus (1-e)U$, the derivation d vanishes identically on eU and the ring (1-e)U satisfies s_4 .

1. The case: R prime ring.

In all that follows, unless stated otherwise, R will be a prime ring of characteristic $\neq 2$, L a Lie ideal of R, $d \neq 0$ a derivation of R and $n \geq 1$ a fixed integer such that $[d(x), x]^n \in Z(R)$, for all $x \in L$.

For any ring S, Z(S) will denote its center, and [a,b] = ab - ba, $[a,b]_2 = [[a,b],b]$, $a,b \in S$. In addition s_4 will denote the standard identity in 4 variables.

We will also make frequent use of the following result due to Kharchenko [8] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided ideal of R. Let $f(x_1, \ldots, x_n, d(x_1, \ldots, x_n))$ a differential identity in I, that is

$$f(r_1,\ldots,r_n,d(r_1),\ldots,d(r_n))=0 \quad \forall r_1,\ldots,r_n\in I.$$

One of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that d = ad(q) and d(x) = ad(q)(x) = [q, x], for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1,\ldots,r_n,[q,r_1],\ldots,[q,r_n])=0;$$

2) or I satisfies the generalized polynomial identity

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=0.$$

Lemma 1.1. Let R be a prime ring of characteristic different from 2, U a noncentral Lie ideal of R, d a nonzero derivation of R and $n \ge 1$. If $([d(u), u])^n = 0$, for any $u \in L$, then R is commutative.

Proof. Since we assume that $\operatorname{char}(R) \neq 2$, by a result of Herstein [6], $L \supseteq [I, R]$, for some $I \neq 0$, an ideal of R, and also L is not commutative. Therefore we will assume throughout that $L \supseteq [I, R]$. Without loss of generality we can assume L = [I, I].

Hence $[d([x,y]),[x,y]]^n=0$, for any $x,y\in I$, then I satisfies the differential identity

$$f(x, y, d(x), d(y)) = [[d(x), y] + [x, d(y)], [x, y]]^n = 0.$$

If the derivation d is not inner, by Kharchenko's theorem [8], I satisfies the polynomial identity

$$f(x, y, t, z) = [[z, y] + [x, t], [x, y]]^n = 0$$

and in particular, for z = 0,

$$[[x,t],[x,y]]^n = 0.$$

Since the latter is a polynomial identity for I, and so for R too, it is well known that there exists a field F such that R and F_m satisfy the same polynomial identities (see [7, page 57, page 89]). Let e_{ij} the matrix unit with 1 in (i,j)-entry and zero elsewhere. Suppose $m \geq 2$. If we choose $x = e_{11}, y = e_{21}, t = e_{12}$, then we get the contradiction

$$0 = [[e_{11}, e_{12}], [e_{11}, e_{21}]]^n = [e_{12}, -e_{21}]^n = (-1)^n e_{11} + e_{22} \neq 0.$$

Therefore m = 1 and so R is commutative.

Let now d be an inner derivation induced by an element $A \in Q$, the Martindale quotient ring of R. Then, for any $x,y \in I$, $([A,[x,y]]_2)^n = 0$. Since by [2] I and Q satisfy the same generalized polynomial identities, we have $([A,[x,y]]_2)^n = 0$, for any $x,y \in Q$. Moreover, since Q remains prime by the primeness of R, replacing R by Q we may assume that $A \in R$ and C is just the center of R. Note that R is a centrally closed prime C-algebra in the present situation [4], i.e., RC = R. By Martindale's theorem in [13], RC (and so R) is a primitive ring which is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. Since R is primitive then there exist a vector space V and the division ring D such that R is dense of D-linear transformation over V.

Assume first that $\dim_D V \geq 3$.

Step 1.

We want to show that, for any $v \in V$, v and Av are linearly D-dependent. Since if Av = 0 then $\{v, Av\}$ is D-dependent, suppose that $Av \neq 0$. If v and Av are D-independent, since $\dim_D V \geq 3$, then there exists $w \in V$ such that v, Av, w are also linearly independent. By the density of I, there exist $x, y \in I$ such that

$$xv = 0$$
, $xAv = w$, $xw = v$
 $yv = 0$, $yAv = 0$, $yw = w$.

These imply that

$$[A, [x, y]]_2 v = -v$$
 and $0 = ([A, [x, y]]_2)^n v = (-1)^n v$,

which is a contradiction.

So we can conclude that v are Av are linearly D-dependent, for all $v \in V$.

Step 2.

We show here that there exists $b \in D$ such that Av = vb, for any $v \in V$. Now choose $v, w \in V$ linearly independent. Since $\dim_D V \geq 3$, there exists $u \in V$ such that v, w, u are linearly independent. By Step 1, there exist $a_v, a_w, a_u \in D$ such that

$$Av = va_v$$
, $Aw = wa_w$, $Au = ua_u$ that is $A(v + w + u) = va_v + wa_w + ua_u$.

Moreover $A(v+w+u) = (v+w+u)a_{v+w+u}$, for a suitable $a_{v+w+u} \in D$. Then $0 = v(a_{v+w+u} - a_v) + w(a_{v+w+u} - a_w) + u(a_{v+w+u} - a_u)$ and, because v, w, u are linearly independent, $a_u = a_v = a_v = a_{v+w+u}$. This completes the proof of Step 2.

Let now $r \in R$ and $v \in V$. By Step 2, Av = vb, r(Av) = r(vb), and also A(rv) = (rv)b. Thus 0 = [A, r]v, for any $v \in V$, that is [A, r]V = 0. Since V is a left faithful irreducible R-module, [A, r] = 0, for all $r \in R$, i.e., $A \in Z(R)$ and d = 0, which contradicts our hypothesis.

Therefore $\dim_D V$ must be ≤ 2 . In this case R is a simple GPI ring with 1, and so it is a central simple algebra finite dimensional over its center. From Lemma 2 in [10] it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the same generalized polynomial identity of R.

If we assume $k \geq 3$, by the same argument as in Steps 1 and 2, we get a contradiction.

Obviously if k = 1 then R is commutative. Thus we may assume $R \subseteq$ $M_2(F)$, where $M_2(F)$ satisfies $([A, [x, y]]_2)^n = 0$.

Since for any $a, b \in M_2(F)$, $[a, b]^2 \in Z(R)$ then it follows easily that $([A,[x,y]]_2)^2 = 0$, for any $x,y \in M_2(F)$. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. If we choose $x = e_{12}, y = e_{21}$ then we get:

$$[A, e_{11} - e_{22}]_2 = \begin{bmatrix} 0 & 4a_{12} \\ 4a_{21} & 0 \end{bmatrix}$$
$$0 = ([A, e_{11} - e_{22}]_2)^2 = \begin{bmatrix} 16(a_{12}a_{21}) & 0 \\ 0 & 16(a_{12}a_{21}) \end{bmatrix}.$$

Therefore either $a_{12} = 0$ or $a_{21} = 0$. Without loss of generality we can pick $a_{12} = 0.$

Now let $[x, y] = [e_{11}, e_{12} + e_{21}] = e_{12} - e_{21}$. In this case we have:

$$[A, e_{12} - e_{21}]_2 = \begin{bmatrix} 2(a_{22} - a_{11}) & -2a_{21} \\ -2a_{21} & 2(a_{11} - a_{22}) \end{bmatrix}$$
$$\left(\begin{bmatrix} 2(a_{22} - a_{11}) & -2a_{21} \\ -2a_{21} & 2(a_{11} - a_{22}) \end{bmatrix} \right)^2 = 0$$

that is

$$4(a_{21})^2 + 4(a_{11} - a_{22})^2 = 0$$
$$(a_{21})^2 = -(a_{22} - a_{11})^2$$
 (1).

On the other hand if $[x, y] = [e_{11}, e_{12} - e_{21}] = e_{12} + e_{21}$ then

$$([A, e_{12} + e_{21}]_2)^2 = \begin{bmatrix} 2(a_{11} - a_{22}) & -2a_{21} \\ 2a_{21} & 2(a_{22} - a_{11}) \end{bmatrix}$$
$$\left(\begin{bmatrix} 2(a_{11} - a_{22}) & -2a_{21} \\ 2a_{21} & 2(a_{22} - a_{11}) \end{bmatrix} \right)^2 = 0$$

that is

$$4(a_{22} - a_{11})^2 - 4(a_{21})^2 = 0$$
$$(a_{21})^2 = (a_{22} - a_{11})^2$$
 (2).

(1) and (2) imply that $a_{21} = 0$ and $a_{11} = a_{22}$ which means that A is a central matrix in $M_2(F)$, $A \in F$ and d = 0, a contradiction. Therefore k = 1, i.e., R is commutative.

Lemma 1.2. Let $R = M_k(F)$, the ring of $k \times k$ matrices over a field F of characteristic $\neq 2$. If $q \neq 0$ is a noncentral element of R such that $([q, [x, y]]_2)^n \in F$, for any $x, y \in R$, then $k \leq 2$.

Proof. Suppose $k \geq 3$. Let i, j, r be distinct indices and $q = \sum a_{mn}e_{mn}$, with $a_{mn} \in F$. For simplicity we assume that i = 1, j = 2, r = 3. If we choose $[x, y] = [e_{12}, e_{23} - e_{31}] = e_{13} + e_{32}$, then

$$[q,[x,y]]_2 = a_{21}e_{11} + a_{21}e_{22} - 2a_{21}e_{33} + \sum_{n \neq 1} \gamma_n e_{1n} + \sum_{m \neq 2} \delta_m e_{m2}$$

with $\gamma_n, \delta_m \in F$, and

$$([q,[x,y]]_2)^n = (a_{21})^n e_{11} + (a_{21})^n e_{22} + (-2a_{21})^n e_{33} + \sum_{n \neq 1} \alpha_n e_{1n} + \sum_{m \neq 2} \beta_m e_{m2}$$

with $\alpha_n, \beta_m \in F$. Since by assumption $([q, [x, y]]_2)^n \in F$, then $\alpha_n = \beta_m = 0$, for all m, n, and $(a_{21})^n = (-2a_{21})^n = 0$, i.e., $a_{21} = 0$. In a similar way we may conclude that $a_{ij} = 0$, for any $i \neq j$. Therefore if $k \geq 3$, q is a diagonal matrix, $q = \sum_t a_{tt} e_{tt}$, with $a_t \in F$.

If we show that q is a central matrix, then we get a contradiction to our assumption and so k must be less or equal than 2.

Let
$$[x, y] = [e_{ij} - e_{ji}, e_{jj}] = e_{ij} + e_{ji}$$
. Therefore $[q, [x, y]]_2 = 2(a_{ii} - a_{jj})e_{ii} + 2(a_{jj} - a_{ii})e_{jj}$

and

$$([q, [x, y]]_2)^n = 2^n (a_{ii} - a_{jj})^n e_{ii} + 2^n (a_{jj} - a_{ii})^n e_{jj}.$$

Since $([q, [x, y]]_2)^n \in F$ and $k \geq 3$, it follows that $a_{ii} = a_{jj}$. Thus q is a central matrix.

Notice that if n=1 then by using the same argument and choosing $[x,y]=e_{12}$, we get $N=[q,[x,y]]_2=-2e_{12}qe_{12}$, which has rank 1 and so it cannot be central in $M_k(F)$, with $k\geq 2$. This implies that if n=1 then k=1, and R must be a commutative field. The proof of Lemma 1.2 is now complete.

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a noncentral Lie ideal of R, d a nonzero derivation of R such that $[d(u), u]^n \in Z(R)$, for any $u \in L$. Then R satisfies s_4 .

Proof. Let I be the nonzero two-sided ideal of R such that $0 \neq [I, R] \subseteq L$ and J be any nonzero two-sided ideal of R. Then $V = [I, J^2] \subseteq L$ is a Lie ideal of R. If, for every $v \in V$, $[d(v), v]^n = 0$, by Lemma 1.1, R is commutative. Otherwise, by our assumptions, $J \cap Z(R) \neq 0$. Let now K be a nonzero two-sided ideal of R_Z , the ring of the central quotients of R. Since $K \cap R$ is an ideal of R then $K \cap R \cap Z(R) \neq 0$, that is K contains an invertible element in R_Z , and so R_Z is simple with 1.

Moreover we may assume L = [I, I]. For any $x, y \in I$, $[d([x, y]), [x, y]]^n \in Z(R)$, i.e.,

$$[[d([x,y]), [x,y]]^n, r] = 0$$
 for any $x \in R$.

Thus I satisfies the differential identity

$$f(x, y, r, d(x), d(y)) = [[[d(x), y] + [x, d(y)], [x, y]]^n, r] = 0.$$

If the derivation is not inner, by [8], I satisfies the polynomial identity

$$f(x, y, r, z, t) = [[[t, y] + [x, z], [x, y]]^n, r] = 0$$

and in particular, for z = 0,

$$[[[t,y],[x,y]]^n,r]=0.$$

In this case we know that there exists a field F such that R and F_m satisfy the same polynomial identities. Thus $[[t, y], [x, y]]^n$ is central in F_m . Suppose $m \ge 3$ and choose $x = e_{32}, y = e_{33}, t = e_{23}$.

$$[t, y] = e_{23}, [x, y] = -e_{32}$$
$$[[t, y], [x, y]] = -e_{22} + e_{33}$$
$$[[t, y], [x, y]]^n = (-1)^n e_{22} + e_{33} \notin Z(R)$$

contrary to our assumptions. This forces $m \leq 2$, i.e., R satisfies s_4 .

Notice that in the case n = 1, [[t, y], [x, y]] must be central in F_m . But if $m \ge 2$ and $t = e_{11}$, $y = e_{12}$, $x = e_{21}$, we get the contradiction $[[t, y], [x, y]] = 2e_{12} \notin Z(R)$. Therefore m must be equal to 1 and R is commutative.

Now let d be an inner derivation induced by an element $A \in Q$. By localizing R at Z(R) it follows that $([A, [x, y]]_2)^n \in Z(R_Z)$, for all $x, y \in R_Z$.

Since R and R_Z satisfy the same polynomial identities, in order to prove that R satisfies $S_4(x_1, x_2, x_3, x_4)$, we may assume that R is simple with 1 and $[R, R] \subseteq L$.

In this case, $([A, [x, y]]_2)^n \in Z(R)$, for all $x, y \in R$. Therefore R satisfies a generalized polynomial identity and it is simple with 1, which implies that Q = RC = R and R has a minimal right ideal. Thus $A \in R = Q$ and R is simple artinian that is $R = D_k$, where D is a division ring finite dimensional over Z(R) [13]. From Lemma 2 in [10] it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the generalized polynomial identity $[([A, [x, y]]_2)^n, z] = 0$. By Lemma 1.2, if $n \ge 2$ then $k \le 2$ and R satisfies s_4 , also if n = 1 then k = 1 and R must be commutative.

2. The case: R semiprime ring.

In all that follows R will be a 2-torsion free semiprime ring. We cannot expect the same conclusion of previous section to hold, as the following example shows:

Example 2. Let R_1 be any prime ring not satisfying s_4 and $R_2 = M_2(F)$, the ring of 2×2 matrices over the field F. Let $R = R_1 \oplus R_2$, d a nonzero derivation of R such that d = 0 in R_1 . Consider L = [R, R]. It is a noncentral Lie ideal of R. Let $r_1, s_1 \in R_1, r_2, s_2 \in R_2, u = [(r_1, r_2), (s_1, s_2)]$. Therefore $d(u) = (0, d([r_2, s_2]))$ and $[d(u), u] = (0, [d([r_2, s_2]), [r_2, s_2]])$. Since $[d([r_2, s_2]), [r_2, s_2]]^2 \in Z(R_2)$, then

$$[d(u), u]^2 = (0, [d([r_2, s_2]), [r_2, s_2]])^2 = (0, [d([r_2, s_2]), [r_2, s_2]]^2) \in Z(R)$$

but R does not satisfy s_4 .

The related object we need to mention is the left Utumi quotient ring U of R. For basic definitions and preliminary results we refer the reader to [1], [5], [9].

In order to prove the main result of this section we will make use of the following facts:

Claim 1 ([1, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the whole U.

Claim 2 ([3, p. 38]). If R is semiprime then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Claim 3 ([3, p. 42]). Let B be the set of all the idempotents in C, the extended centroid of R. Assume R is a B-algebra orthogonal complete. For any maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant under any derivation of R.

We will prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]),[x,y]]^n=0$, for any $x,y\in R$. Then there exists a central idempotent element e of U such that on the direct sum decomposition $eU\oplus (1-e)U$, d vanishes identically on eU and the ring (1-e)U is commutative.

Proof. Since R is semiprime, by Claim 2, Z(U) = C, the extended centroid of R, and, by Claim 1, the derivation d can be uniquely extended on U. Since U and R satisfy the same differential identities (see [12]), then $[d([x,y]),[x,y]]^n = 0$, for all $x,y \in U$. Let B be the complete boolean algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra orthogonal complete (see [3, p. 42, (2)] of Fact 1]), by Claim 3, MU is a prime ideal of U, which is d-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by d on \overline{U} . For any $\overline{x}, \overline{y} \in \overline{U}$, $[\overline{d}([\overline{x},\overline{y}]),[\overline{x},\overline{y}]]^n=0$. In particular \overline{U} is a prime ring and so, by Lemma 1.1, $\overline{d}=0$ in \overline{U} or \overline{U} is commutative. This implies that, for any maximal ideal M of B, $d(U) \subseteq MU$ or $[U,U] \subseteq MU$. In any case $d(U)[U,U] \subseteq MU$, for all M. Therefore $d(U)[U,U] \subseteq \bigcap_M MU=0$.

By using the theory of orthogonal completion for semiprime rings (see [1, Chapter 3]), it follows that there exists a central idempotent element e in U such that on the direct sum decomposition $eU \oplus (1-e)U$, d vanishes identically on eU and the ring (1-e)U is commutative.

We come now to our last result:

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]),[x,y]]^n \in Z(R)$, for any $x,y \in R$. Then there exists a central idempotent e of U such that, on the direct sum decomposition $U = eU \oplus (1-e)U$, the derivation d vanishes identically on eU and the ring (1-e)U satisfies s_4 .

Proof. By Claim 2, Z(U) = C, and by Claim 1 d can be uniquely defined on the whole U. Since U and R satisfy the same differential identities, then $[d([x,y]), [x,y]]^n \in C$, for all $x, y \in U$. Let B be the complete boolean algebra of idempotents in C and M any maximal ideal of B. As already pointed out in the proof of Theorem 2.1, U is a B-algebra orthogonal complete and by Claim 3, MU is a prime ideal of U, which is d-invariant. Let \overline{d} the derivation induced by d on $\overline{U} = U/MU$. Since $Z(\overline{U}) = (C + MU)/MU = C/MU$, then $[\overline{d}([x,y]), [x,y]]^n \in (C + MU)/MU$, for any $x, y \in \overline{U}$. Moreover \overline{U} is a prime ring, hence we may conclude, by Theorem 1.1, that $\overline{d} = 0$ in \overline{U} or \overline{U} satisfies s_4 . This implies that, for any maximal ideal M of B, $d(U) \subseteq MU$ or $s_4(x_1, x_2, x_3, x_4) \subseteq MU$, for all $x_1, x_2, x_3, x_4 \in U$. In any case $d(U)s_4(x_1, x_2, x_3, x_4) \subseteq \bigcap_M MU = 0$. From [1, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R, such that there exists a central idempotent e of U such that d(eU) = 0 and (1 - e)U satisfies s_4 .

References

- [1] K.I. Beidar, W.S. Martindale and V. Mikhalev, *Rings with generalized identities*, Pure and Applied Math., Dekker, New York, 1996.
- [2] C.L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
- [3] _____, Hypercentral derivations, J. Algebra, **166** (1994), 34-71.
- [4] J.S. Erickson, W.S. Martindale III and J.M. Osborn, *Prime nonassociative algebras*, Pacific J. Math., 60 (1975), 49-63.
- [5] C. Faith, Lecture on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, 49, Springer Verlag, New York, 1967.
- [6] I.N. Herstein, Topics in ring theory, Univ. Chicago Press, 1969.
- [7] N. Jacobson, PI-algebras, an introduction, Lecture notes in Math., 441, Springer Verlag, New York, 1975.
- [8] V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), 155-168.
- [9] J. Lambek, Lecture on Rings and Modules, Blaisdell Waltham, MA, 1966.
- [10] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118(3) (1993), 731-734.
- [11] _____, Differential identities, Lie ideals and Posner's theorems, Pacific J. Math., 134(2) (1988), 275-297.
- [12] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
- [13] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.

[14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.

Received August 19, 1998 and revised November 20, 1998.

DIPARTIMENTO DI MATEMATICA ED APPLICAZIONI UNIVERSITÀ DI PALERMO 90123 PALERMO ITALY

E-mail address: lcarini@dipmat.unime.it

DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI MESSINA 98166 MESSINA ITALY

 $\hbox{\it E-mail address: } {\bf enzo@dipmat.unime.it}$