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Some techniques for the construction of
hyperpath-designs - a survey

Mario Gionfriddo1, Giovanni Lo Faro2 and Salvatore Milici3

Abstract. Given an hypergraph H(3), uniform of rank 3, an H(3)-decomposition of the

complete hypergraph K
(3)
v is a collection of hypergraphs, all isomorphic to H(3), whose

edge-sets partition the edge-set of K
(3)
v . An H(3)-decomposition of K

(3)
v is also called

an H(3)
-design. In every decomposition, the hypergraphs of the partition are said to be

the blocks of the system. Every decomposition is said to be balanced if the number of

blocks containing any given vertex is a constant. In this paper, we give some construction

for P (3)(1, 5)-designs, balanced P (3)(1, 5)-designs, P (3)(2, 4)-designs, balanced P (3)(2, 4)-

designs, all systems which we will say to belong to the class of the hyperpath-designs.

1. Introduction

Let � ·K(3)
v = (X, E) be the complete hypergraph, uniform of rank 3, defined in

a vertex set X = {x1, x2, · · · , xv}, in which every edges has multiplicity �.

Let H(3) be a subhypergraph of �K(3)
v . An H(3)-decomposition of �K(3)

v is a pair

⌃ = (X,B), where B is a partition of the edge set of � ·K(3)
v into subsets all of which

yield subhypergraphs all isomorphic to H(3). An H(3)-decomposition ⌃ = (X,B)
of �K(3)

v is also called an H(3)-design of order v and index � and the classes of the
partition B are said to be the blocks of ⌃ [1].

The concept of H(3)-decomposition is the natural generalization to uniform hy-
pergraphs of rank 3 of the more classical G-decomposition of the complete graph Kv

or G-designs [1],[9],[10]. Much work about G-designs has been done in the recent
past, with many interesting results and open problems, which can be found in the
literature. In what follows, we consider H(3)-design, where H(3) is mainly one of
the following path-hypergraphs or hyperpaths.
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- P (3)(2, 4): it is the hyperpath having four vertices x1, x2, x3, x4 and edges
{x1, x2, x3}, {x2, x3, x4}; it will be denoted by [x1, (x2, x3), x4];

- P (3)(1, 5): it is the hyperpath having five vertices x, y1, y2, y3, y4 and edges
{x, y1, y2}, {x, y3, y4}; it will be denoted by [y1, y2, (x), y3, y4].

The spectrum of these H(3)-designs has been determined in [3]. Precisely:

Proposition 1. A P (3)(1, 5)-design of order v exists if and only if: v ⌘ 0 mod 2,
or v ⌘ 1 mod 4, v � 5.

Proposition 2. A P (3)(2, 4)-design of order v exists if and only if: v ⌘ 0 mod 2,
or v ⌘ 1 mod 4, v � 4.

Let H(3) be an uniform hypergraph of rank 3, with n vertices. An H(3)-design
⌃ = (X,B) is said to be balanced if all the vertices of ⌃ have the same degree d(x).
Observe that if H(3) is regular, then the correspondent H(3)-designs are always
balanced, hence the notion of balanced H(3)-design becomes meaningful only for a
non-regular hypergraph H(3).

Example 1.
Let ⌃ = (X,B) be the P (3)(1, 5)(v)-design of order v = 5, defined in X = {0, 1, 2, 3,
4}, having the blocks:

B1 = [2, 3, (0), 1, 4] , B2 = [3, 4, (1), 2, 0] , B3 = [4, 0, (2), 3, 1] ,

B4 = [0, 1, (3), 4, 2], B5 = [1, 2, (4), 0, 3] .

Every vertex of ⌃ has degree 5. We can verify that ⌃ is a balanced P (3)(1, 5)(v)-
design of order v = 5.

⇤

Example 2.
Let C be the collection of the following P (3)(1, 5)s defined in X = Z6:

C1 = [1, 2, (0), 3, 4] , C2 = [1, 3, (0), 4, 5] , C3 = [1, 4, (0), 2, 5] ,

C4 = [1, 5, (0), 2, 3] , C5 = [3, 5, (0), 2, 4] , C6 = [1, 3, (2), 4, 5] ,

C8 = [2, 4, (1), 3, 5] , C8 = [1, 2, (5), 3, 4] , C9 = [2, 3, (4), 1, 5] ,

C10 = [2, 5, (3), 1, 4] .

If ⌃=(X, C), then we can verify that ⌃ is a P (3)(1, 5)-design of order v = 6. Further
we can see that the vertex 0 has degree d(0) = 5, while the vertex 1 has degree
d(1) = 8. Therefore, ⌃ it is not a balanced design.

⇤

Example 3.
Let ⌃ = (X,D) be the P (3)(2, 4)(v)-design of order v = 4, defined in X =
{0, 1, 2, 3}, having the blocks:

D1 = [2, (0, 1), 3] , D2 = [0, (2, 3), 1] .

It is immediate to see that ⌃ is a balanced P (3)(2, 4)-design of order v = 4.
⇤
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Let ⌃ = (X,B) be an H(3)-design, where H(3) = (Y, E) = [x, y, · · · , z] . An au-
tomorphism defined in ⌃ is a bijection ' : X ! X such that: 1) B with vertices
x, y, · · · , z belongs to B if and only if '(B) with vertices '(x),'(y), · · · ,'(z) be-
longs to B; 2) {x, y, z} is an edge (triple) of E if and only if {'(x),'(y),'(z)} is an
edge of '(E).

An H(3)-design of order v is cyclic if it admits an automorphism that is a per-
mutation consisting of a single cycle of length v.

In this paper we give a survey of constructions concerning P (3)(2, 4)-designs and
P (3)(1, 5)-designs, also in the case that they are balanced and/or cyclic.

Observe that, in what follows, for a given non-empty set X of cardinality v odd,
we will call pseudo-factorization of Kv, defined in X, a partition of the edge-set
of Kv in v classes, everyone defining a colouring class in an edge-colouring of Kv

by v colours. In the case v even, F2(X) will indicate any 1-factor belonging to an
1-factorization of Kv, defined in X.

2. P (3)(2, 4)-designs

Observe that, among all the H(3) subhypergraphs of K(3)
v with two edges,

P (3)(2, 4)s have the minimum number of vertices. It is easy to see that:

Theorem 2.1. If ⌃ = (X,B) is a P (3)(2, 4)-design of order v, then:

(1) B =
v(v � 1)(v � 2)

12
;

(2) v ⌘ 0 mod 2 or v ⌘ 1 mod 4, v � 4.

The following constructions permit to determine the spectrum of P (3)(2, 4)-designs.

CONSTRUCTION v = 4h ! v0 = 4h+ 1.

Let ⌃ = (X,B) be a P (3)(4, 2)-design of order v = 4h, h � 1, defined in X.
Further, let X = {1, 2, · · · , 4h}, X 0 = {1} [X, where 1 2 X 0 �X.
Define a P3-design of order v0 = 4h+ 1, as follows.
Let � = (X, C) be a P3-design of order v = 4h. For every block [a, b, c] 2 C, consider
the hyperpath P (3)(2, 4) defined as follows: [a, (1, b), c]. Then, if:

⇧ = {[a, (1, b), c] : [a, b, c] 2 C} ,

and B0 = B [ ⇧, it is possible to verify that ⌃0=(X 0,B0) is a P (3)(4, 2)-design of
order v = 4h+ 1.

⇤

CONSTRUCTION v = 4h+ 1 ! v0 = 4h+ 2.

Since for every h 2 N, h � 1 there exist P3-design of order v = 4h+1, it is possible
to go on exactly as in the previous construction.

⇤

CONSTRUCTION v0 = 4h, v00 = 4k ! v = 4h+ 4k.

Let X1 = {x1, x2, · · · , x4h}, h � 1, X2 = {y1, y2, · · · , y4k}, k � 1, X1 \X2 = ;.
Further, let ⌃1 = (X1,B1) be a P (3)(2, 4)-design of order v0 = 4h, h � 1, defined
in X1, and let ⌃2 = (X2,B2) be a P (3)(2, 4)-design of order v00 = 4k defined in X2.
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For every pair xi, xj 2 X1, xi 6= xj , define:

⇧{x
i

,x
j

} = {[y0, (xi, xj), y
00] : {y0, y00} 2 F2(X2)} ,

and, for every pair yi, yj 2 X2, yi 6= yj , define:

⇧{y
i

,y
j

} = {[x0, (yi, yj), x00] : {x0, x00} 2 F2(X1)} .

Then, if:

B0 = B1 [ B2

[

{x
i

,x
j

}✓X1

⇧{x
i

,x
j

}
[

{y
i

,y
j

}✓X2

⇧{y
i

,y
j

} ,

it is possible to verify that ⌃0 = (X 0,B0) is a P (3)(4, 2)-design of order v = 4h+ 4k
⇤

The previous constructions, together with the existence of a P (3)(2, 4)-design of
order 4 (Example 3), prove that:

Theorem 2.2. There exist P (3)(2, 4)-designs of order v for every v ⌘ 0 mod 2
oppure v ⌘ 1 mod 4, v � 4.

3. P (3)(1, 5)-designs

There is only a class of H(3), subhypergraphs of K(3)
v , with two edges and five

vertices: they are the hyperpaths of type P (3)(1, 5).
It is easy to see that:

Theorem 3.1. If ⌃ = (X,B) is a P (3)(1, 5)-design of order v, then:

(1) B =
v(v � 1)(v � 2)

12
;

(2) v ⌘ 0 mod 2 or v ⌘ 1 mod 4, v � 5.

We have:

Theorem 3.2. There exist P (3)(1, 5)-designs of order v = 5 and of order v = 6.

Proof. See Example 1 and Example 2.
⇤

Theorem 3.3. There exist P (3)(1, 5)-designs of order v = 8.

Proof. Let ⌃ = (X,B) be a P (3)(1, 5)-design of order v = 6, defined in X =
{1, 2, 3, 4, 5, 6} and let 11,12 be two distinct elements not belonging to X. Let
X 0 = X [ {11,12}. If C is the family of P (3)(1, 5)s defined as follows:

[1,12, (11), 2, 3], [2,12, (11), 3, 1], [3,12, (11), 1, 2] ,

[4,11, (12), 1, 2], [5,11, (12), 2, 3], [6,11, (12), 3, 1] ,

[3, 5, (11), 4, 6], [2, 6, (11), 4, 5], [1, 4, (11), 5, 6] ,

[3, 5, (12), 4, 6], [2, 6, (12), 4, 5], [1, 4, (12), 5, 6] ,

[1, 5, (11), 4, 2], [1, 6, (11), 3, 4], [2, 5, (11), 3, 6] ,

[1, 5, (12), 4, 2], [1, 6, (12), 3, 4], [2, 5, (12), 3, 6] ,
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then, the system ⌃0 = (X 0,B0), where B0 = B [ C, is a P (3)(1, 5)-design of order
v0 = 8. Observe that ⌃, which could contain a P (3)(1, 5)-design of order 5, is
contained in ⌃0.

⇤

Theorem 3.4. If there exists a P (3)(1, 5)-design of order v = 10, then there exist
P (3)(1, 5)-designs of order v0 = 12.

Proof. Let ⌃ = (X,B) be a P (3)(5, 1)-design of order v = 10, defined in X =
{0, 1, 2, · · · , 9} and let 11,12 be two distinct elements not belonging to X. Let
X 0 = X [ {11,12}. If C is the family of P (3)(1, 5)s defined as follows:

[1,12, (11), 2, 9], [2,12, (11), 1, 0], [3,12, (11), 4, 7] ,

[4,12, (11), 5, 6], [5,12, (11), 3, 8] ,

[6,11, (12), 4, 7], [7,11, (12), 1, 0], [8,11, (12), 2, 9] ,

[9,11, (12), 3, 8], [10,11, (12), 5, 6]

[1, 2, (11), 3, 9], [4, 8, (11), 5, 7], [6, 0, (11), 1, 3] ,

[2, 0, (11), 4, 9], [5, 8, (11), 6, 7] ,

[1, 2, (12), 3, 9], [4, 8, (12), 5, 7], [6, 0, (12), 1, 3] ,

[2, 0, (12), 4, 9], [5, 8, (12), 6, 7] ,

[1, 4, (11), 2, 3], [5, 9, (11), 6, 8], [7, 0, (11), 1, 5] ,

[2, 4, (11), 3, 0], [6, 9, (11), 7, 8] ,

[1, 4, (12), 2, 3], [5, 9, (12), 6, 8], [7, 0, (12), 1, 5] ,

[2, 4, (12), 3, 0], [6, 9, (12), 7, 8] ,

[1, 6, (11), 2, 5], [3, 4, (11), 7, 9], [8, 0, (11), 1, 7] ,

[2, 6, (11), 3, 5], [4, 0, (11), 8, 9] ,

[1, 6, (12), 2, 5], [3, 4, (12), 7, 9], [8, 0, (12), 1, 7] ,

[2, 6, (12), 3, 5], [4, 0, (12), 8, 9] ,

[1, 8, (11), 2, 7], [3, 6, (11), 4, 5], [9, 0, (11), 2, 8] ,

[1, 9, (11), 3, 7], [5, 0, (11), 4, 6] ,

[1, 8, (12), 2, 7], [3, 6, (12), 4, 5], [9, 0, (12), 2, 8] ,

[1, 9, (12), 3, 7], [5, 0, (12), 4, 6] ,
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and B0 = B[C, then the system ⌃0 = (X 0,B0) is a P (3)(1, 5)-design of order v = 12.
⇤

CONSTRUCTION v = 4h ! v0 = 4h+ 1.

Let ⌃ = (X,B) be a P (3)(1, 5)-design of order v = 4h, h � 2, defined in X = Z4h.
Let X 0={1} [X, where 1 2 X 0 �X.
Further, let F={F1, F2, · · · , F4h�1} be a factorization defined in X. Since every
factor Fi 2 F has cardinality |Fi| = 2h, it is possible to define a partition of every
Fi into h classes {Ci,1, Ci,2, · · · , Ci,h}, where every class is formed by two disjoint
pairs. Let

⇧ = {[x0, x00, (1), y0, y00] : {x0, x00}, {y0, y00} 2 Ci,j , i = 1, · · · , 4h�1, j = 1, · · · , h} .

If B0 = B[⇧, it is possible to verify that ⌃0=(X 0,B0) is a P (3)(1, 5)-design of order
v0 = 4h+ 1.

⇤

CONSTRUCTION v = 4h+ 1 ! v0 = 4h+ 2.

Let ⌃ = (X,B) be a P (3)(1, 5)-design of order v = 4h + 1, h � 1, defined in
X = Z4h+1. Let X 0 = {1} [X, where 1 2 X 0 �X.
Let F⇤={F1, F2, · · · , F4h+1} be a pseudo-factorization defined in X. Since every
Fi has cardinality |Fi| = 2h, it is possible to go on as in the previous construction.
In other words, define a partition of every Fi into h classes of two disjoint pairs, say
{Ci,1, Ci,2, · · · , Ci,h}, and construct the family ⇧ = {[x0, x00, (1), y0, y00] : {x0, x00},
{y0, y00} 2 Ci,j , i = 1, · · · , 4h + 1, j = 1, · · · , h}. At last, if B0 = B [ ⇧, then the
system ⌃0 = (X 0,B0) is a P (3)(1, 5)-design of order v = 4h+ 2.

⇤

The previous constructions and results prove that:

Theorem 3.5. There exist P (3)(2, 4)-designs or order v for every v ⌘ 0 mod 2
oppure v ⌘ 1 mod 4, v � 4.

4. The matrix M(v)

In what follows we will use the matrix M(v), where v = 3h + 1 or v = 3h + 2,
for some positive integer h, defined in Zv = {0, 1, 2, · · · , v � 1} and constructed as
follows.

For the uses and more details about this matrix see [1] and also [5],[7],[8]. This
matrix M(v) is useful to construct balanced, and then cyclic, H(3)-designs.

Let v ⌘ 1, 2 mod 3. M(v) is a matrix having 3 columns, associated with v, such
that:
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M(v) =

2

6666666666666666666666664

(1, 1) (1, v � 2) (v � 2, 1)
(1, 2) (2, v � 3) (v � 3, 1)
(· · · ) (· · · ) (· · · )
(· · · ) (· · · ) (· · · )

(1, v � 3) (v � 3, 2) (2, 1)
(2, 2) (2, v � 4) (v � 4, 2)
(· · · ) (· · · ) (· · · )

(2, v � 5) (v � 5, 3) (3, 2)
(3, 3) (3, v � 6) (v � 6, 3)
(· · · ) (· · · ) (· · · )

(3, v � 7) (v � 7, 4) (4, 3)
(· · · ) (· · · ) (· · · )
(· · · ) (· · · ) (· · · )
(h, h) (h, v � 2h) (v � 2h, h)

(h, v � 2h� 1) (v � 2h� 1, h+ 1) (h+ 1, h)

3

7777777777777777777777775

.

Observe that:

1) if v = 3h+ 1, the last row begin with the pair (h, h);

2) if v = 3h+ 2, the last row begin with the pair (h, h+ 1).

We can see that, for any triple T = {x, y, z} ✓ Zv, with x < y < z and y � x =
a, z� y = b, there exists a row of M(v) containing the pair (a, b). Further, if we fix
any pair (a, b) of M(v) and write any triple T = {x, y, z}, with y�x = a, z�y = b,
i.e. such that its elements have di↵erences a, b, then T can be obtained from
C = (0, a, a + b) by translation of blocks: this means that there exists an i 2 Zv

such that x = i, y = a+ i, z = y + b. Thus, if x is added to the elements of C, one
obtains T . Therefore, for every x, y, z 2 {0, 1, 2, · · · , v � 1}, with x < y < z, every
of the pairs (y� x, z � y), (z � y, v+ x� z), (v+ x� z, y� x) determines the triple
T = {x, y, z}. For this reason, any two pairs, from the same row, in the matrix M
are said to be equivalent among them.

In what follows, fixed v = 3h+1 or v = 3h+2, we will indicate by Ri, for every
i = 1, 2, · · · , h, the set of rows of M(v) having in the first column the pairs:

(i, i), (i, i+ 1), · · · , (i, v � 1� 2i) .

If |Ri| = mi, it is possible to calculate the number m = m1+m2+ · · ·+mh of rows
of M(v).

Theorem 4.1. Let v = 3h+1 or v = 3h+2 and let M(v) be the matrix associated
with v. Then:

1 ) mi = v � 3i, for every i = 1, 2, · · · , h;

2 ) m =
h(2v � 3h� 3)

2
;

3 ) v = 3h+ 1 =) m =
h(3h� 1)

2
; v = 3h+ 2 =) m =

h(3h+ 1)

2
.

Proof. It is easy to see that, for every i = 1, 2, · · · , h, one has: mi =
v � (1 + 2i)� (1� i) = v � 3i.
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Further, from 1), it follows that:

m = m1 +m2 + · · ·+mh = (v � 3) + (v � 6) + · · ·+ (v � 3h) =

= hv � 3(1 + 2 + · · ·+ h) = hv � 3h(h+ 1)

2
= h · 2v � 3(h+ 1)

2
.

The statement 3) follows directly from 2).
⇤

It is immediate that an H(3)-design of order v = 3h + 1 or v = 3h + 2, h � 1,
constructed by the matrix M(v), is balanced and also cyclic.

5. Balanced P (3)(1, 5)-designs

In this section we see some results about the existence of balanced P (3)(1, 5)-
designs. If B=[b, c, (a), d, e] is a P (3)(1, 5) defined in Zv, we call translates of B all
hypergraphs P (3)(1, 5) of the form Bi=[b + i, c + i, (a + i), d + i, e + i], for every
i 2 Zv. We say also that the hypergraph B is a base-block having the hypergraphs
Bi as translates. To have more details about the subject contained in this section
see [5].

If [b, c, (a), d, e] is a path-hypergraph or hyperpath P (3)(1, 5) and ⌃ = (X,B) is a
P (3)(1, 5)-design, for every vertex x 2 X, the parameter Cx is the number of blocks
of B in which x occupies one of the central positions a, while Lx is the number of
blocks in which x occupies one of the lateral positions b, c, d, e. If d(x) is the degree
of x, then d(x) = Cx + Lx.

At first, we see some necessary conditions.

Theorem 5.1. If ⌃ = (X,B) is a balanced P (3)(1, 5)-design of order v, then for
every x 2 X :

d(x) =
5(v � 1)(v � 2)

12
; Cx =

(v � 1)(v � 2)

12
; Lx =

(v � 1)(v � 2)

3
.

Proof. Let ⌃ = (X,B) be a balanced P (3)(1, 5)-design of order v.
For every vertex x 2 X, the degree of x is a constant: d(x) = D. Considering that
the number of positions that a vertex can occupy in a block of ⌃ is five, it follows:
5 · |B| = D · v, from which:

D =
5(v � 1)(v � 2)

12
.

Further, considering that: 1) every vertex x 2 X is contained in (v � 1)(v � 2)/2
triples of X; 2) in any block, the number of triples intersecting in the center is 2;
3) in any block, the number of triples containing a lateral vertex is 1; it follows:

Cx + Lx =
5(v � 1)(v � 2)

12
;

2 · Cx + Lx =
(v � 1)(v � 2)

2
.

Hence:

Cx = C =
(v � 1)(v � 2)

12
, Lx = L =

(v � 1)(v � 2)

3
.

which completes the proof.
Observe that it is possible to arrive at the same result considering that the total
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number of central positions in ⌃ is |B| = v(v � 1)(v � 2)/12 and every vertex must
occupy these positions C times.

⇤
Theorem 5.2. If ⌃ = (X,B) is a balanced P (3)(1, 5)-design of order v, then:

v ⌘ 1 or 2 or 5 or 10, mod 12 , v � 5 .

Proof. The statement follows from the previous Theorem, considering that the
number (v � 1)(v � 2) must be a multiple of 3 · 4 and v � 5.

⇤
Therefore, given a balanced P (3)(1, 5)-design ⌃, two parameters C and L are de-
fined: the constant degrees Cx and Lx, respectively, of the vertices x of ⌃.

The following Theorems permit to determine completely the spectrum of balanced
P (3)(1, 5)-designs. We will see how they can be proved. The whole proofs can be
found in [5].

Theorem 5.3. For every v ⌘ 1 mod 12, v � 13, there exist balanced P (3)(1, 5)-
designs of order v.

Proof. Observe that, for v = 12k + 1, k � 1, we are in the case v = 3h + 1,
for some even number h = 4k. Therefore, in the set M 0 = {m1 = 12k � 2,m3 =
12k � 8, · · · ,mh�1 = 4} the elements are all even numbers, while in the set M 00 =
{m2 = 12k� 5,m4 = 12k� 11, · · · ,mh = 1} the elements are all odd numbers and
|M 00 = 2k. This permits to define in X = Zv the base-blocks, whose translates give
the blocks of the P (3) � (1, 5)designs of order v = 12k + 1 [5].

⇤
In what follows, the same technique of the previous Theorem is used, with con-

venient changes.

Theorem 5.4. For every v ⌘ 5 mod 12, v � 5, there exist balanced P (3)(1, 5)-
designs of order v.

Proof. Observe that, for v = 12k+5, k � 0, we are in the case v = 3h+2, for some
odd number h = 4k+1. As in the previous Theorem, inM 0 = {m1,m3, · · · ,mh = 2}
the elements are all even numbers, in M 00 = {m2,m4, · · · ,mh�1 = 5} the elements
are all odd numbers and |M 00| = 2k. Therefore, this permits to define inX = Zv the
base-blocks and to construct the blocks of the P (3)(1, 5)-designs of order v = 12k+5
[5].

⇤
Theorem 5.5. For every v ⌘ 2 mod 12, v � 14, there exist balanced P (3)(1, 5)-
designs of order v.

Proof. Observe that, for v = 12k + 2, k � 1, we are in the case v = 3h + 2,
for some even number h = 4k. In this case, in M 0 = {m1,m3, · · · ,mh�1 = 5} the
elements are all odd numbers, in M 00 = {m2,m4, · · · ,mh = 2} the elements are all
even numbers and |M 00| = 2k. This permits to define in X = Zv the base-blocks,
whose translates give the blocks of the P (3)(1, 5)-designs of order v = 12k + 2 [5].

⇤
Theorem 5.6. For every v ⌘ 10, mod 12, v � 10, there exist balanced P (3)(1, 5)-
designs of order v.
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Proof. Observe that, for v = 12k + 10, k � 0, we are in the case v = 3h + 1,
for some odd number h = 4k + 3. In this case, in M 0 = {m1,m3, · · · ,mh = 1} the
elements are all odd numbers, in M 00 = {m2,m4, · · · ,mh�1 = 4} the elements are
all even numbers and |M 0| = 2k+2. Also here, this permits to define in X = Zv the
base-blocks and to construct the blocks of the P (3)(1, 5)-designs of order v = 12k+1
[5].

⇤
Conclusive result:

Theorem 5.7. There exist balanced P (3)(1, 5)-designs of order v if and only if
v ⌘ 1, or 2, or 5, or 10, mod 12, v � 5.

Proof. Collecting together all the previous Theorems, the statement follows.
⇤

6. Balanced P (3)(2, 4)-designs

In this section we examine the spectrum of balanced P (3)(2, 4)-designs. Let
[a, (b, c), d] be an hyperpath of type P (3)(2, 4). To have more details about the
subject contained in this section see [8].

If ⌃ = (X,B) is a P (3)(2, 4)-design, for every vertex x 2 X we will indicate by
Cx the number of blocks of B in which x occupies one of the central positions b, c
and by Lx the number of blocks in which x occupies one of the lateral positions
a, d. If d(x) is the degree of x, then of course d(x) = Cx + Lx.

Theorem 6.1. If ⌃ = (X,B) is a balanced P (3)(2, 4)-design of order v, then for
every x 2 X.

d(x) =
(v � 1)(v � 2)

3
; Cx = Lx =

(v � 1)(v � 2)

6
.

Proof. Let ⌃ = (X,B) be a balanced P (3)(2, 4)-design of order v.
Considering that the number of positions that a vertex can occupy in a block of ⌃
is four, it follows: 4 · |B| = D · v. From which: D = (v� 1)(v� 2)/3. Further, since
every vertex is contained in (v � 1)(v � 2)/2 triples of X, it follows that:

Cx + Lx =
(v � 1)(v � 2)

3
; 2 · Cx + Lx =

(v � 1)(v � 2)

2
.

Hence: Cx = Lx = (v � 1)(v � 2)/6, which completes the proof.
⇤

Observe that it is possible to arrive at the same result considering that the total
number of central positions in ⌃ is 2 · |B| = v(v�1)(v�2)/6 and every vertex must
be occupy these positions C times.

⇤
Theorem 6.2. If ⌃ = (X,B) is a balanced P (3)(2, 4)-design of order v, then:

1) v ⌘ 2 or 4, mod 6, for v even, v � 4;

2) v ⌘ 1 or 5, mod 12, for v odd, v � 5.

Proof. The statement follows from the previous Theorem, considering also that
the spectrum of P (3)(2, 4)(v)-designs is v even, v � 4, or v ⌘ 1, mod 4, v � 5.

⇤
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Theorem 6.3. There exist balanced P (3)(2, 4)-designs of order v, for every v ⌘ 2
or 4, mod 6, v � 4.

Proof. Let v ⌘ 2 or 4, mod 6, for v � 4. It is well-known that for such a v there
exist Steiner quadruple systems. Let ⌃ = (X,B) be an SQS(v). For every block
B = {x1, x2, x3, x4} 2 B, define the two P (3)(2, 4): P1 = [x1, (x2, x3), x4], P2 =
[x2, (x1, x4), x3]. The collection of all the P (3)(2, 4)s so obtained, generates a
P (3)(2, 4)-design of order v having all the vertices with degree (v � 1)(v � 2)/3.

⇤
The following Theorems permit to determine completely the spectrum of balanced
P (3)(2, 4)-designs. Also here, we give the main points of the proofs, which can be
found with all the details in [8].

- The case v = 12h+ 1
Also here, if B=[a, (b, c), d] is an hypergraph P (3)(2, 4) defined in Zv, its translates
are all hypergraphs Bi=[a+ i, (b+ i, c+ i), d+ i], for every i 2 Zv. The hypergraph
B will be called base-block, having Bi as translates.

Theorem 6.4. There exist balanced P (3)(2, 4)-designs of order v, for every v ⌘
1 mod 12, v � 13.

Let v ⌘ 1 mod 12, v � 13. We write v = 12h + 1 and note that v = 3k + 1, with
k = 4h. Let X = Zv = {0, 1, 2, · · · , v � 1}.
In general, let v ⌘ 1 mod 12, v � 13. We write v = 12h+1 and note that v = 3k+1,
with k = 4h. Let X = Zv = {0, 1, 2, · · · , v � 1}.. Consider M(v). By this matrix,
which has an even number of rows, we can choose conveniently the triples, so to
define h(12h+1) base-blocks and construct a P (3)(2, 4)-design of order v = 12h+1,
which will result balanced.

⇤
We see a particular case: Construction of a balanced P (3)(2, 4)-design of order
v = 13.
Base-blocks defined in X = Z13:

B1 = [0, (1, 2), 12] , B2 = [0, (1, 3), 11] , B3 = [0, (1, 4), 10] , B4 = [0, (1, 5), 9] ,

B5 = [0, (1, 6), 9] , B6 = [0, (1, 7), 12] , B7 = [0, (1, 8), 12] , B8 = [0, (4, 5), 1] ,

B9 = [0, (6, 8), 12] , B10 = [0, (6, 9), 12] , B11 = [0, (2, 4), 7] .

If B is the collection of all the translates of the base-blocks B1, B2, · · · , B11, it is
possible to verify that ⌃ = (X,B) is a P (3)(2, 4)-design of order v = 13, in which
every vertex x 2 X belongs to 44 blocks and this implies that ⌃ is balanced.

⇤
- The case v = 12h+ 5
Let v ⌘ 5 mod 12, v � 5. We write v = 12h + 5 and note that v = 3k + 2, with
k = 4h+ 1.
Let X = Zv = {0, 1, 2, · · · , v � 1}.
Let v � 17. Also here, if consider M(v), which has an even number of rows, by
this matrix we can choose conveniently the triples, so to define (3h + 1)(4h + 1)
base-blocks and construct a P (3)(2, 4)-design of order v = 12h+5, which will result
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balanced.
If v = 5, the blocks: [i, (1+ i, 2+ i), 4+ i], for every i = 0, 1, 2, 3, 4, define a balanced
P (3)(2, 4)-designs of order v = 5.

⇤

7. Systems of index � = 2

In this section we examine the existence of hyperpath-design of type P (3)(2, 4)
and P (3)(1, 5) having index � = 2.

It is immediate to prove that:

Theorem 7.1. If ⌃ = (X,B) is a P (3)(2, 4)-design or a P (3)(1, 5)-design of order
v and index � = 2, then:

(1) B =
v(v � 1)(v � 2)

6
;

(2) v � 4 for P (3)(2, 4)-designs;

(3) v � 5 for P (3)(1, 5)-designs.

Now, we examine the following constructions.

CONSTRUCTION v = 4h+ 3 ! v0 = 4h+ 7, for P(3)(2,4)-designs.

Let ⌃ = (X,B) be a P (3)(2, 4)-design of order v = 4h+ 3, h � 1, and index � = 2
defined in X = Z4h+3 = {1, 2, · · · , 4h+ 3}. Further, let Y = {↵,�, �, �}, such that
X \ Y = ;, and

B0 = {[�, (↵,�), �](2), [↵, (�, �),�](2)} ,

where the symbol (2) means that the block has multiplicity two, i.e. it is repeated
two times in the family B0. Obviously, ⌦ = (X [ Y,B0) is a P (3)(2, 4)-design of
order v = 4 and index � = 2.

Define a P3-design of order v0 = 4h+ 7 and index 2, as follows.
For every pair of distinct vertices a, b of Y , let

⇧(a, b) : [0, (a, b), 1], [1, (a, b), 2], · · · , [4h, (a, b), 4h+ 1], [4h+ 1, (a, b), 0] ;

and for every pair of distinct vertices x, y of X, let

⇧(x, y) : [↵, (x, y),�], [�, (x, y), �], [�, (x, y), �], [�, (x, y),↵] .

If
⇧ =

[

a,b2Y

⇧(a, b) , ⇧0 =
[

x,y2X

⇧(x, y) ,

and X 0 = X [ Y , B0 = B [ ⇧ [ ⇧0, it is possible to verify that ⌃0=(X 0,B0) is a
P (3)(2, 4)-design of order v = 4h+ 7 and index � = 2.

⇤

CONSTRUCTION v = 4h+ 2 ! v0 = 4h+ 3, for P(3)(1,5)-designs.

Let ⌃ = (X,B) be a P (3)(1, 5)-design of order v = 4h + 2, h � 1, and index
� = 2 defined in X = Z4h+2. Further, let 1 /2 X and X 0 = X [ {1}. Define a
1-factorization F = {F1, F2, · · · , F4h+1} of X. For every 1-factor

Fi = {{xi,1, yi,1}, {xi,2, yi,2}, · · · , {xi,2h+1, yi,2h+1} ,

consider the following family G(Fi) of P (2)(1, 5):
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[xi,1, yi,1, (1), xi,2, yi,2],

[xi,2, yi,2, (1), xi,3, yi,3] ,

.................................

[xi,2h, yi,2h, (1), xi,2h+1, yi,2h+1],

[xi,2h+1, yi,2h+1, (1), xi,1, yi,1].

If B0 = B [ G, where

G =
4h+1[

i=1

G(Fi) ,

then ⌃0 = (X 0,B0) is a P (3)(1, 5)-design of order v = 4h+ 3 and index � = 2.

Theorem 7.2. There exists a P (3)(2, 4)-design of order v = 7 and index � = 2.

Proof. We use the matrix M(7) defined in Z7.
Observe that the ordered pairs in the first column are:

(1, 1), (1, 2)(1, 3)(1, 4)(2, 2) .

This permits to define the following base-blocks:

[2, (0, 1), 6], [3, (0, 1), 5], [6, (0, 3), 5], [6, (0, 2), 4], [5, (0, 1), 4] .

If X = Z7 and B is the family of all the translates of the above base-blocks, then
we can verify that ⌃ = (X,B) is a P (3)(2, 4)-design of order v = 7 and index � = 2.

⇤
Theorem 7.3. (1) For every v � 4, there exists a P (3)(2, 4)-design of order v and
index � = 2. (2) For every v � 5, there exists a P (3)(1, 5)-design of order v and
index � = 2.

Proof. For every v even or v ⌘ 1 mod 4, there exist P (3)(2, 4)-designs and
P (3)(1, 5)-designs, of order v and index 1, with v � 4 and v � 5, respectively.
Therefore, systems of the same type with index � = 2 can be obtained by a repeti-
tion of blocks.
Consider the case v = 4h+ 3, for any h � 1.

By Construction v0 = 4h + 2 �! v0 + 1, for P (3)(1, 5)-designs, it follows that
there are P (3)(1, 5)-designs of order v = 4h+ 3 and index � = 2.

By Construction v0 = 4h + 3 �! v0 + 4, for P (3)(2, 4)-designs and the previous
Theorem, it follows that there are P (3)(2, 4)-designs of order v = 4h+ 7 and index
� = 2.

⇤

8. Systems of index � � 3

For � � 3, it is immediate to prove that:

Theorem 8.1. If ⌃ = (X,B) is a P (3)(2, 4)-design or a P (3)(1, 5)-design of order
v and index � � 3, then:

(1) B =
� · v(v � 1)(v � 2)

12
;
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(2) if � is odd, then v is even, or v ⌘ 1 mod 4, v � 4;

(3) if � is even, then v � 4 for P (3)(2, 4)-designs, v � 5 for P (3)(1, 5)-designs.

For the su�ciency:
- in the case � odd, � � 3, it is possible to determine the spectrum of these H(3)-
designs by P (3)(2, 4)-designs or P (3)(1, 5)-designs of index one, which exist for every
v even, or v ⌘ 1 mod 4, v � 4, by a repetition of blocks, giving to each block
multiplicity �;

- in the case � even, � � 4, it is possible to determine the spectrum by P (3)(2, 4)-
designs or P (3)(1, 5)-designs of index two, which exist respectively for every v � 4
and v � 5 , by a repetition of blocks, giving to each block multiplicity �/2.
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