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Rate of entropy model for 
irreversible processes in living 
systems
R. Zivieri   1,2, N. Pacini3, G. Finocchio2 & M. Carpentieri4

In living systems, it is crucial to study the exchange of entropy that plays a fundamental role in the 
understanding of irreversible chemical reactions. However, there are not yet works able to describe 
in a systematic way the rate of entropy production associated to irreversible processes. Hence, here 
we develop a theoretical model to compute the rate of entropy in the minimum living system. In 
particular, we apply the model to the most interesting and relevant case of metabolic network, the 
glucose catabolism in normal and cancer cells. We show, (i) the rate of internal entropy is mainly due to 
irreversible chemical reactions, and (ii) the rate of external entropy is mostly correlated to the heat flow 
towards the intercellular environment. The future applications of our model could be of fundamental 
importance for a more complete understanding of self-renewal and physiopatologic processes and 
could potentially be a support for cancer detection.

The irreversible processes in living systems are fundamental for determining the autopoietic life development 
and lead to entropy production in living systems1–3. Examples of irreversible chemical reactions that repre-
sent basic processes both for prebiotic life and for life development and maintenance are sodium/potassium 
pump, β-oxidation of fatty acids, protein catabolic process, glucose catabolism, etc. The full understanding of the 
non-equilibrium thermodynamics of irreversible reactions is important for the origin and the maintenance of 
life4, 5. Very interestingly, while mechanical phenomena are invariant under time-reversal symmetry, thermody-
namic ones introduce an arrow of time breaking this symmetry. This behaviour is naturally linked to the concept 
of entropy6 that, according to its first definition by Clausius and Boltzmann7, 8, describes the thermodynamics of 
catabolic processes.

Recent works have shown that there is a link between the irreversible processes in the metabolic network, 
such as glucose catabolism, and epigenetic and gene network9–13, and that the entropy definition introduced by 
Clausius and Boltzmann7, 8 is equivalent to Shannon information entropy14–19. Since the 20 s20, 21, it is known that 
almost all cancer cells show a deep alteration of their metabolic networks with a marked shift towards the lactic 
acid fermentation or aerobic glycolysis at the expense of oxidative phosphorylation (OXPHO). Interestingly, the 
relation between the glucose catabolism and the gene and epigenetic network strengthens during the cancer 
development22–28, likewise there has been a wide use of the intensity of aerobic glycolysis in diagnostics with 
correlations to cancer prognosis29–31.

Although it is well-known the crucial role played by irreversible reactions in living systems, a self-consistent 
description of the calculation of the entropy exchanges between the cell and the environment is missing. This 
is because the quantitative description of cell thermodynamics is still incomplete. Furthermore, the important 
quantitative aspects related to the time behaviour of entropy have not been taken into account. Indeed, it has 
emphasized the exergy concept regardless of the ATP yield and of coupling between exo- and endo-ergonic 
reactions32, 33. In other words, the concept of rate of entropy is different from the concepts of finite variations of 
entropy and Gibbs free energy between reactants and products. Moreover, some in vitro experiments and bio-
physical theoretical investigations have proved that the heat flow is not only the simple effect of degradation of 

1Department of Physics and Earth Sciences and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della 
Materia, Unit of Ferrara, University of Ferrara, via G. Saragat 1, Ferrara, I-44122, Italy. 2Department of Mathematical 
and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le F. D’Alcontres, 31, 98166, 
Messina, Italy. 3Department of General Surgery and Senology, University Hospital Company, Policlinico Vittorio 
Emanuele, via S. Citelli 6, 95124, Catania, Italy. 4Department of Electrical and Information Engineering, Politecnico 
di Bari, via E. Orabona 4, Bari, I-70125, Italy. Correspondence and requests for materials should be addressed to R.Z. 
(email: roberto.zivieri@unife.it)

Received: 30 March 2017

Accepted: 17 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-8507-402X
mailto:roberto.zivieri@unife.it


www.nature.com/scientificreports/

2SCIENtIFIC RePorts | 7: 9134  | DOI:10.1038/s41598-017-09530-5

energy but plays also an important role in the ionic transport and in the interactions among biomolecules such 
as DNA, proteins and so on34–36.

Here, we formulate a model relying on the Clausius definition of entropy and on Prigogine’s approach able to 
give a full thermodynamic description of the rate of entropy density production associated to irreversible chemi-
cal processes in living systems. This model considers: i) the time dependence of the entropy exchanges in the cell 
and out of it, and ii) the effect of the cell size on the rate of entropy density production. We apply the model to 
the glucose catabolism in a typical human tissue represented by breast cells. The choice of glucose catabolism is 
essentially twofold. First, several recent works have shown its important role for the different pathways driving 
cancer development37–39. Second, the glucose catabolism is, among the irreversible reactions occurring in cells, 
the one having the highest frequency of occurrence and the largest entropy production40. The key result of our 
work on glucose catabolism is that the diffusion of chemical species gives the largest contribution to the rate of 
internal entropy density both in normal and cancer cells, while the rate of external entropy density, mainly due to 
heat diffusion, has an enhancement in cancer cells. Although most of cancer therapy is mainly pharmacological, a 
wider knowledge of the physical processes like, for example, the observation of temperature differences between 
the intracellular and the intercellular environment is important for developing new prospects in cancer detec-
tion41–43. This latter aspect is widely coherent with the experimental trials and clinical data, and could open new 
perspectives on the hyperthermia cancer therapy44, 45.

Model for the calculation of the rate of entropy in living systems.  We have studied the cell as an 
open thermodynamic system in local equilibrium. Hence, starting from Prigogine’s approach46 combined with 
diffusion equations valid for heat and mass transport, we have computed the rate of entropy density production 

=r ds dt/  for a cell with s entropy density and t time (see Methods). The exchange of entropy occurs at two differ-
ent levels, in the cell interior and with the intercellular environment, hence = +r r ri e where =r ds dt/i i  is the rate 
of internal entropy density production (RIEDP) where the subscript “i” denotes internal and =r ds dt/e e  is the rate 
of external entropy density production (REEDP) where the subscript “e” denotes external. To calculate ri we have 
made the following main assumptions:

	 (i)	 Cells are assumed of cubic shape having volume Vcell = L3 with L the side of the average cube;
	(ii)	 Flows are along a preferential direction (1D approximation) (x direction here);
	(iii)	 Irreversible processes start in the centre of the cytoplasm region, namely for x = L/2;
	(iv)	 Cross-effects in determining either the heat flow or the mass flow are absent;
	(v)	 The volume of the cell nucleus is negligible.

The model is applicable to any kind of chemical reaction involved in the metabolic cellular activity of living 
systems.

Assumption (i) allows the study of cells of various shapes (e.g. spherical, cylindrical, elliptical and so on) rep-
resented as cubes having volumes equivalent to those of the specific shape studied. In particular, assumption (i) 
applies to several epithelium tissues like, for example, the breast epithelium and the exocrine glands epithelium 
whose shape is columnar47. As cellular processes occur prevalently along a preferential direction48, typically 
assumption (ii) is valid in real systems. Assumption (iii) is supported by the fact that mytochondria, where most 
of the catabolic processes in normal and cancer cells occur (e.g. Krebs cycle, β-ossidation and part of protein 
catabolism), are approximately placed in the perinuclear region49. Moreover, in cancer cells also lactic acid fer-
mentation takes place in the mytocondrial region. However, note that in some cases a few catabolic reactions like, 
for instance chemotaxis, occur in cell peripheral zones. In these specific cases, it would be enough to make a 
translation of the origin of L/2 to the cell border. Assumption (iv) is consistent in the presence of polarization 
effects occurring in cells48, 50. Assumption (v) is reasonable in most of the cells being the volume of the nucleus 
much smaller than Vcell

49. By taking into account all the above assumptions, we have computed 
= + +r x t r x t r x t r x t( , ) ( , ) ( , ) ( , )i i Q i D i r  where ri Q (x,t) is due to heat flow with the subscript “Q” labelling heat, 

ri D (x,t) is caused by molecules diffusion with the subscript “D” standing for diffusion and ri r (x,t), with the sub-
script“r” indicating reactions, is directly related to irreversible chemical reactions. All terms are products between 
thermodynamic forces and flows generated by them. In explicit form, for any irreversible reactions, the contribu-
tion due to heat flow ri Q (x,t) is given by
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2  is the temperature distribu-

tion (see Supplementary information, Section 2, equation (S3) and equation (S5)) showing that the temperature 
inside the cell has a weak spatial dependence coherently with the data obtained by means of fluorescent tech-
nique43. The cosine series at the numerator results both from the calculation of the thermodynamic force calcu-
lated as the gradient of the inverse of the temperature distribution and the heat flow proportional to the spatial 
derivative of T (x,t) (see Supplementary information, Section 2, equation (S6) and equation (S7), respectively).

Instead, for every irreversible process, ri D (x,t) takes the form
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, N is the number of chemical species involved in the reaction and µ = τ− − +x t u e( , )k k

x L L t( /2 / / ) 

is the kth chemical potential with uk the partial molar energy, Dk is the corresponding mass diffusion coefficient 
and Nm k is the number of moles of the kth chemical species. It is − −e x L L( /2)/  ( − −e L x L( /2 )/ ) for 0 ≤ x ≤ L/2 (L/2 ≤ x 
≤ L). The cosine series at the numerator results from the thermodynamic force evaluated as the gradient of the 
ratio between the chemical potential and the temperature distribution, while the Gaussian distribution comes 
from the diffusion flow proportional to the derivative of the number of moles per unit volume (see Supplementary 
information, Section 2, equation (S11) and equation (S15), respectively).

Finally, ri r (x,t) is
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0, kkin is the pathway kinetic constant of the given irreversible process with “kin” standing for 

kinetic, νk are stoichiometric coefficients, µ = τ− − +x t u e( , )k k
x L L t( /2 / / ) is the chemical potential of the kth species. 

Here p = 0, 1, 2, q = 0, 1, 2 and p + q = 1, 2 for first- and second-order irreversible chemical reactions, respectively 
and N

V
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) is the molar concentration of reagent A (B) taking the volume of the solution equal to Vcell. The 

dependence on the chemical potential and on the molar concentrations at the numerator results from the defini-
tion of affinity and of the velocity of the given reaction (see Supplementary information, Section 2, equation 
(S20), equation (S21) and equation (S22), respectively). For the detailed derivation of equations (1–3), see 
Supplementary Information, Section 2.

We now discuss r x t( , )e  calculated by taking into account assumptions (i), (ii) and (v). We express 
= +r x t r x t r x t( , ) ( , ) ( , )e eQ e exch , where re Q (x,t) is the contribution due to heat released by the cell in the inter-

cellular environment, while re exch (x,t), with “exch” standing for exchanges, is the one related to exchanges of 
matter with the intercellular environment.

The derivation of re Q (x,t) lies on simple thermodynamic considerations. Specifically, we have used the first 
principle of thermodynamics for the expression of the heat released, the solution of heat equation in the intercel-
lular environment (see Supplementary information, Section 3 equation (S29)) and exploiting the analogy of the 
behaviour of the cellular system mainly composed by water with that of an ideal gas. As in the case of a monoa-
tomic gas, we derive the cell internal energy starting from its partition function that has a direct thermodynamic 
relation with the internal energy. It turns out that re Q (x,t) reads
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of the products in every irreversible process.
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, where x0 is a characteristic length of the order of the size of the normal cell, T0 is the max-

imum intercellular temperature, dτ1 is a characteristic time of the order of the inverse of kkin, Npr is the number of 
products of the irreversible chemical process with “pr” indicating products and d Ne m k is the variation of the num-
ber of moles of the products of the irreversible reaction. To derive equation (5) we have substituted the intercellu-
lar temperature distribution determined by solving the heat equation in the intercellular environment with no 
boundary conditions and the expression of the chemical potential. For the detailed calculations leading to equa-
tions (4) and (5), respectively see Supplementary Information, Section 3 for the detailed.

As expected, equations (1)–(5) do not fulfil the time-reversal symmetry = −r x t r x t( ( , ) ( , )) and this is an 
elegant demonstration of the irreversible nature of spontaneous processes occurring in living systems. Finally, 
note that the model developed for a single cell can be extended to a tissue by generalizing equations (1)–(5) to the 
number of cells composing it and by considering their mutual interactions but this is outside the scope of this 
work.

Application of the rate of entropy model to glucose catabolism in normal and cancer breast 
cells.  We have applied the general model, described in the previous section, to glucose catabolism in a typical 
epithelial breast tissue. In a cell, the glucose catabolism is an essential step in the production of ATP for energy 
purposes. In general, in differentiated cells there is the production of about 80–90% of the ATP through OXPHOs, 
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while in undifferentiated cells or cancer cells, where there is a prevalence of lactic acid fermentation, this ratio 
can considerably change and sometimes it can even invert. In the same interval of time the major rapidity of the 
fermentation process produces a high amount of ATP, as long as a high uptake of glucose and a high expression 
and activity of lactic acid dehydrogenase, conditions that are present in the predominantly fermentative cellular 
systems. In addition, there is a major number of processed molecules through the fermentative way in order to 
maintain a sufficient stock of ATP. In normal cells, the glucose catabolism is 80% through OXPHOs and 20% 
through lactic acid fermentation, while in cancer cells 90% occurs through lactic acid fermentation and 10% 
through OXPHOs20, 21.

We show the representative cell (either normal or cancer) in the form of a cubic cell of average side L and the 
glucose catabolism process in Fig. 1 where JQ is the internal heat flow and JD is the internal diffusion flow.

In the numerical calculations, we have taken the typical sizes of epithelial cells of human breast tissue (normal 
or cancer). Specifically, we have employed an average size L = 10 μm for the normal cell and L = 20 μm for the 
cancer cell51. Moreover, the membrane between the cell and the intercellular environment is of the order of a few 
Angstroms and it is much smaller than the cell size so that it can be neglected. In addition, for the same tissue 
we have taken an average size of the intercellular space about 0.2–0.3 μm between two adjacent normal cells and 
about 1.5 μm between two cancer cells52. Within the 1D model employed the flows and the thermodynamic 
forces generating the flows occur along the x direction in the cytoplasm and on both sides. Indeed, according to 
assumption iii), we have considered that all processes originate in the centre of the cell at x = L/2 for values of y 
and z coordinates corresponding to cytoplasm region.

We distinguish between two kinds of reactions. The first one refers to the cell respiration process involv-
ing the catabolism of glucose (C6H12O6) via the oxygen molecule (O2) and consists of: (a) glycolysis (b) Krebs 
cycle and (c) oxidative phosphorylation. The general balancing of all reactions is summarized in the simple form 
C6H12O6 + 6O2 → 6 CO2 + 6 H2O leading to the formation of carbon dioxide (CO2) and water (H2O). The second 
process is the lactic acid fermentation process with no Krebs cycle and oxidative phosphorylation. The corre-
sponding reaction leads to the formation of lactic acid ions (C3H5 O3

−) and is summarized in the simple form 
C6H12O6 → 2 C3H5 O3

− + 2 H+. For our purposes, we have not considered the NAD+/ NADH and purine nucle-
otides such as ATP/ADP/AMP53 because their concentrations vary within small ranges and do not affect the 
calculation of the RIEDP and REEDP. Furthermore, the oxide/reduction reactions of NAD+/NADH are reversible 
and the reactions leading to ATP synthesis molecule are not spontaneous and processes irreversible54, 55. For the 
sake of simplicity, note that here we describe the stoichiometric balancing of the above reactions by considering 
one mole of glucose even though during the glucose catabolism the range of glucose concentration in a single cell 
is between pico- and micromoles.

Results
Numerical calculation of the rate of internal entropy density production for breast cells.  
Figure 2 shows the RIEDP calculated for a normal and cancer breast cell as a function of the spatial coordinate 
and time56 obtained by using the chemical potentials and diffusion coefficients in Tab.1. The use of the chemical 
potential at standard conditions shown in Table 1 in the numerical calculations is justified by the fact that, within 
the ideal gas description of a cell, the temperature dependent chemical potential μ (T) is very close to the μ at 
standard conditions from the Gibbs-Duhem relation being the pressure inside a cell close to the atmospheric 
pressure.

We have chosen the time interval of 1000 μs because it a typical internal time57 for most biological processes. 
ri Q, was calculated using equation (1) taking K = 0.600 J/(m s K), κH20 = 0.143 ×10−6 m2/s, the thermal diffusivity 
in water and p = 0.85 (0.90) for normal (cancer) cells21, 38. ri D was calculated according to equation (2), while ri r 
was calculated according to equation (3) applied to glucose catabolism (see Supplementary Information, 
Section 2, equations (S17) and (S26), respectively for more details). In addition, Nresp = 4 (Nferm = 3) is the number 
of chemical species involved in the respiration (fermentation) process, wresp = 0.8 (wferm = 0.2) with “resp” (“ferm”) 
labelling respiration (fermentation) are the corresponding weights of the respiration (fermentation) processes for 
a normal cell and wresp = 0.1 (wferm = 0.9) for a cancer cell37–39. We have also taken the pathway kinetic constants 

Figure 1.  Cell representation and balancing of glucose catabolism. (a) Sketch of the cubic cell according to the 
cyto-morphological features of the epithelial tissue chosen as the reference tissue in our theoretical model. (b) 
Schematics of main pathways of glucose catabolism. The internal heat flow and the mass diffusion flow start in 
the cytoplasm region for x = L/2 and are along + x and −x directions as shown by the yellow arrows.
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kkin
resp = 10−4/s and kkin

ferm = 10−5/s and both processes, in general, are first-order chemical reactions57. In addition, 
we have used τ = 10−4 s as typical cell decay time and =N 1m C H O6 12 6

 for both respiration and fermentation 
processes.

ri Q shown in Fig. 2a and b has a strong variation going towards cell borders and quickly decreases with time. ri 

D depicted in Fig. 3c and d exhibits a significant magnitude close to the centre of the cell and strongly decreases 
towards the border and with increasing time. ri r displayed in Fig. 2e and f is maximum close to the centre of the 
cell, slightly reduces the amplitude towards the cell border and strongly decreases with increasing time especially 

Figure 2.  Calculated RIEDP during glucose catabolism for a breast cell. (a) RIEDP associated to heat flow for 
a normal cell. (b) RIEDP associated to heat flow for a cancer cell. (c) RIEDP related to matter diffusion for a 
normal cell. (d) RIEDP related to matter diffusion for a cancer cell. (e) RIEDP due to irreversible reactions for a 
normal cell. (f), RIEDP due to irreversible reactions for a cancer cell.

Chemical species Chemical potential μ (kJ/mole) T = 298 K, p = 1 atm Diffusion coefficient D in H2O (m2/s) T = 298 K, p = 1 atm

C6H12O6 −917.44 6.73 × 10−10

O2 16.44 21.00 × 10−10

CO2 −385.99 19.20 × 10−10

H2O −237.18 21.00 × 10−10

Lactate ion 
C3H5O3

− −516.72 9.00 × 10−10

H+ aqueous 
solution 0 45.00 × 10−10

Table 1.  Chemical potentials and diffusion coefficients for the chemical species involved in glucose catabolism 
for cell respiration and lactic acid fermentation. The data are from G. Job and R. Rüffler, Physikalische Chemie, 
Vieweg + Teubner Verlag Springer (2011).
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in a normal cell. Both riD and rir are much greater than ri Q and are about two order of magnitude greater in a nor-
mal cell with respect to a cancer cell.

Numerical calculation of the rate of external entropy density production for breast cells.  
Figure 3 displays calculated re Q and re exch for a normal and a cancer breast cell starting from the cell border to 
the border of the adjacent cell taking into account the typical size of the intercellular space for this tissue, namely 
about 0.2 – 0.3 μm for a normal cell and about 1.5 μm for a cancer cell52.

re Q was calculated according to equation (4) applied to glucose catabolism, while re exch was calculated accord-
ing to equation (5) applied to glucose catabolism (see Supplementary information, Section 3, equation (S32) and 
equation (S36), respectively). The parameters used in the numerical calculations are kB = 1.3805 × 10−23 J/K, Nmpr resp = 12,  
the number of moles of the products of respiration, Nmpr resp = 4, the number of moles of the lactic acid fermen-
tation reaction. In addition, like for the calculation of the rate of internal entropy density production we have 
taken wresp = 0.8 (wferm = 0.2), the corresponding weights of the respiration (fermentation) processes for a normal 
cell and wresp = 0.1 (wferm = 0.9) for a cancer cell37–39. The trend of re Q and re exch for cancer cells is suitable to the 
observations29, 30, 32.

As shown in Fig. 3a and b, re Q increases as a function of x for vanishing time and decreases with increasing 
time. re exch displayed in Fig. 3c and d does not vary appreciably as a function of x and decreases with increasing 
time. The magnitude of re Q is much larger than the corresponding re exch and this behaviour is enhanced in cancer 
cells where re Q is about one order of magnitude larger than in normal cells.

Discussion
According to the described model, we can draw important conclusions about the cell behaviour during glucose 
catabolism in terms of entropy production. While ri is mainly due to matter exchanges, the greatest contribution 
to re comes from the heat irreversible release. Moreover, the amount of re is greater for a cancer cell and, due to the 
minor volume of a normal cell, ri is on average greater for a normal cell. In contrast, re is greater in a cancer cell 
due to the larger contribution of re Q because of the prevalence of the dependence on the spatial coordinate with 
respect to that on the cell volume.

Note that we have applied the model to the particular case of cells belonging to breast tissue but it would be 
still valid if applied to different tissues characterized by other volume ratios between normal and cancer cells and 
easily extended to staminal cells that are of much smaller size.

As shown in Figs 2 and 3 for the epithelium breast normal and cancer cells, we have proved that 
= +r x t r x t r x t( , ) ( , ) ( , )i e  tends towards a minimum value with increasing time such that the cell reaches a state 

of global equilibrium in accordance with the minimum dissipation Prigogine’s theorem. Moreover, looking espe-
cially at Fig. 2 displaying r x t( , )i , the rate of entropy density production tends to its minimum value more slowly 
in a cancer cell with respect to a normal cell. This is a key point because it demonstrates that the tendency to sta-
bility or equivalently to global equilibrium is slower in a cancer cell. We can easily prove the fulfilment of the 
minimum dissipation Prigogine’s theorem calculating r x t( , ) for the other irreversible reactions via equations 
(1–5). So far, there has been an application of this theorem to the uptake of the oxygen molecule in cells that is 
proportional to the released heat. However, albeit partially correct, this application does not take into account the 

Figure 3.  Calculated REEDP during glucose catabolism for a breast cell. (a) REEDP associated to heat flow for a 
normal cell as a function of the spatial and time coordinates. (b) REEDP associated to heat flow for a cancer cell. 
(c) REEDP due to exchange of matter for a normal cell. (d) REEDP due to exchange of matter for a cancer cell.

http://3
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weight of glycolysis and of lactic acid fermentation or of other chemical reactions involving oxygen consumption. 
Instead, our model overcomes these limits encompassing quantitatively all those aspects and is not restricted to 
oxygen molecule consumption. We emphasize that the minimum dissipation of entropy is necessary to establish 
a condition compatible with the behaviour of Gibbs free energy in living systems because of the thermodynamic 
relation among free energy, enthalpy and entropy.

At the same time, we believe that the model, although giving general relations, represents a starting point and 
the results obtained are only an indication of what could occur in a specific calculation. Moreover, note that the 
calculated rates of entropy are not purely theoretical but strongly depend on consolidated experimental data like, 
for example, the frequency of occurrence of an irreversible process, the cellular volume and the average intercel-
lular size. We wish that some experiments along this direction will be carried out to verify the importance of the 
calculations because we believe that measurements of the rate of entropy could bring new fundamental knowl-
edge in the field shedding light on the important role played by metabolic, epigenetic and gene networks in living 
systems. For example, the number of moles of chemical species appearing in the main pathways like OXPHO 
and lactic acid fermentation can be carefully measured, e.g in vitro/in vivo via imaging techniques by means of 
Nuclear Magnetic Resonance or Positive Emission Tomography (PET). This leads to a quantitative estimate of the 
rate of entropy due to mass transport opening the root for new measurements in cell biology. Note that the model 
can be applied to surfaces of internal parenchyma generalizing the rate of entropy relations found for a single 
cell to agglomerates of cells displayed with PET technique. On the other hand, measurements done by means of 
microcalorimetry technique may be employed to quantify the heat flow.

As the glucose catabolism is strongly correlated with the development of cancer and self-renewal processes, 
the described model, if validated by specific and real measures of glucose absorption29, 30 could introduce a new 
way to quantify the glucose catabolism in relation to the exchange of entropy occurring during this irreversible 
process.

Moreover, the interplay between the glucose uptake or production of lactate ion and the rate of entropy might 
be particularly important for clinical studies on cancer development and self-renewal process58. It is also interest-
ing to note that the developed formalism might be used also for electrophysiological processes with special regard 
to ionic fluxes. These processes have a crucial role in the development and progression of neoplastic processes 
and, in addition, the modulation of ionic currents might modulate the patterns of metabolic network42, 59.

In summary, although the thermodynamics of irreversible processes introduced by De Donder and subse-
quently developed by Prigogine is, often, regarded as mainly theoretical and speculative, it could play a crucial 
role in describing a unified phenomenological paradigm of biological systems. More precisely, when modern 
biology faces the challenge of a systemic vision of life in terms of interactions among complex networks, the study 
of the rate of entropy represents a starting point able to reveal the phenomenological and unitary feature of life. 
Indeed, our results show that the study of the rate of entropy density production open new perspectives in mod-
ern biology giving a simple picture of irreversible processes in living systems.

Methods
Basic principles.  Let us consider an open system (cell) that exchanges energy and matter with the environ-
ment. For a system in local equilibrium but not in global equilibrium, it is convenient to define an entropy density 

=s S V/ cell with = +s s si e where si is the internal entropy density (subscript “i” indicates internal), se the external 
entropy density (subscript “e” indicates external) and Vcell the volume of the cell. The entropy density infinitesimal 
variation = +ds ds dsi e includes the contribution dsi related to internal irreversible processes and dse associated 
to the external exchanges of heat and matter with the intercellular environment. To fully describe the temporal 
evolution, it is useful to define the rate of entropy density production in a time interval dt in the form 

= +r ds dt ds dt/ /i e . This quantity gives a direct measure of irreversible processes.

Rate of internal entropy density production.  First, we express in a time interval dt the rate of internal 
entropy density production =ri

ds
dt

i  giving the amount of local increase of entropy inside a cell that can be 
regarded as a continuous system. In a compact form43

∑ ∑
µ
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( )

( ) 1
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D k
j

M
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1 1

Here, the first term on the second member is associated with the internal flow = + ∑ = uJ J Ju Q k
N

k D k1 , with N the 
number of chemical species, getting contributions from irreversible heat flow JQ and diffusion flow JD k and driven 
by the heat thermodynamic force = ∇ −, t T , tF x x( ) ( ( ))u

1. The second term is related to the diffusion flow JD k 
and is driven by the matter thermodynamic force = ∇

µ( ), tF x( )k
t

T , t

x

x

( , )

( )
k  with µk the chemical potential of the kth 

chemical species.
Finally, the last term is associated with irreversible reactions being M the number of chemical reactions with 

the thermodynamic force represented by the affinity ν µ= − ∑ =A t tx x( , ) ( , )j k
N

jk k1  with νjk the stoichiometric 
coefficients, and the corresponding flow by the velocity of the jth reaction =

ξ
vj V

d

dt
1
cell

j  with ξd j the variation of the 
jth degree of advancement.

Rate of external entropy density production.  We express, in the same time interval dt the rate of exter-
nal entropy density production =re

ds
dt

e  giving the amount of local increase of entropy outside the cell corre-
sponding to the intercellular environment. In its general form
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r t
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dt
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ic cell ic 1

pr

here, = + p
V

dQ
dt

du
dt V

dV
dt

1 1

cell cell
 according to the first principle of thermodynamics. = +dQ dU pdV  with dQ the 

infinitesimal heat transfer, =du dU
V
1  the infinitesimal variation of the internal energy density u (dU is the infin-

itesimal variation of the internal energy U), p the pressure and dV the infinitesimal variation of the volume V. In 
addition, T , tx( )ic  is the intercellular temperature distribution and deNm k the variation of the number of moles of 
the kth chemical species with Npr the number of products of the irreversible reaction (“pr” indicates products) due 
to exchange of matter with the intercellular environment.

The first term on the second member expresses the heat flow outside the cell, while the second one results 
from the exchange of matter with the intercellular environment.

Diffusion equations.  In order to find the heat and mass flow appearing in the expression of the RIEDP given 
in equations (1) and (2), we employ the well-known heat and mass transport equations. We consider a rectangular 
frame xyz with the origin in the center of the cell and we suppose that the flow direction is along x (see Fig. 1).

Concerning the heat diffusion, it is mainly due to a conduction transport neglecting the convection transport 
present to a much lesser extent inside a typical cell and the term of heat source. Hence, it is

κ
∂

∂
= ∇

T t
t

T tx x( , ) ( , ) (8)
2

where the solution T(x,t) is the temperature distribution function depending on both spatial and time variable, 
κ =

ρ
K

cs
 is the thermal diffusivity (m2 s−1) with K the thermal conductivity expressed in J m−1 s−1 K−1) and sup-

posed uniform, cs the specific heat expressed in J Kg−1 K−1 and ρ the density expressed in Kg m−3. The flow 
J tx( , )Q  is proportional to the spatial derivative of T tx( , ).

Analogously, the mass transport equation or Fick’s second diffusion law reads

∂
∂

= ∇
n t

t
D n tx x( , ) ( , ) (9)

2

where, the solution n tx( , ) is the concentration of molecules, a distribution function depending both on spatial 
and time variables and D is the diffusion coefficient (m2 s−1) supposed uniform. The flow J tx( , )D  is proportional 
to the spatial derivative of n tx( , ).
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1. OVERVIEW 

 

    We restrict ourselves to the study of the thermodynamics in the single cell representing an open 

thermodynamic system. Since we are dealing with phenomena taking place locally and under 

conditions of local equilibrium inside and outside a typical cell, all intensive and extensive 

thermodynamic variables have a space and time dependence [S1]. On this basis, it is useful to define 

the rate of entropy density production, i er r r  , where ir  is the rate of internal entropy density 

production (RIEDP) and er  the rate of external entropy density production (REEDP). Starting from 

the definition of the entropy density 
cell

S
s

V
  with i es s s    where is  is the internal entropy density, 

es  the external entropy density and cellV  the volume of the cell it is possible to compute r. 

     In the next two sections, we give the details about the calculation of ir  and er , respectively valid 

for any irreversible processes occurring in a cell, either normal or cancer. The calculation lies on 

thermodynamic arguments combined with heat and mass transport equations. The expressions are 

general and valid for any irreversible chemical process and we then apply them to glucose catabolism.   

      To calculate the rate of entropy density production, for the sake of convenience and without loss 

of generality, we represent the cell (either normal or cancer) as a cube of volume 3

cellV L  taking as 

reference the breast epithelium tissue. Here, L is the average size with L = 10 m for a typical normal 

cell and L = 20 m for a cancer cell [S2] and we assume that the flows occur mainly along the x 

direction within a 1D model (see Fig. 1 in the main text). In the numerical calculations shown in the 

following we assume that all irreversible processes take place at x = L/2 and for values of y and z 

corresponding to the region of the cytoplasm where glucose catabolism occurs (see the main text for 

more details).  

     To describe the glucose catabolism we recall the two reactions described in detail in the main text, 

namely the respiration process and the lactic acid fermentation process involving glucose (C6H12O6) 

catabolism. The respiration process is summarized as C6H12O6 + 6O2   6 CO2 + 6 H2O leading to 

the formation of carbon dioxide (CO2) and water (H2O).  The lactic acid fermentation process leads 

to the formation of two lactic acid ions (C3H5 O3-) and two protons (H+) and is summarized in the 
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simple form C6H12O6   → 2 C3H5 O3- + 2 H+ [S3, S4] (for a more detailed discussion on this point 

see the main text). 

 

2. RATE OF INTERNAL ENTROPY DENSITY PRODUCTION 

 

    We define the space and time dependent RIEDP  
 i

i

ds ,t
r ,t

dt


x
x  (with = ( , , )x y zx and t the 

time) giving the amount of local increase of entropy in continuous thermodynamic systems. In our 

special case, we consider a cell (either normal or cancer) and the RIEDP associated to irreversible 

processes occurring inside it. 

   In order to do that, we recall its general expression in terms of heat flow and mass flow (see 

Methods): 

      
 

 
 

 
 
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x x x
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   Here, 
 
1

T ,t

 
  
 x

  is the thermodynamic force leading to the internal energy flow 

1

N

u Q k D k

k

u


J = J J with QJ the heat flow, ku  the partial molar energy and D kJ the diffusion flow of 

the kth chemical species with N the number of chemical species. In particular, 
k

m k T

u
u

n

 
  
  

is 

expressed in J/mole with u the energy density expressed in J/m3,  

 

m k

m k

N
n

V
  the number of moles 

per unit volume of the kth species with  m kN  the number of moles. Instead, 
 

 

,k t

T ,t

 
  
 

x

x
  is the kth 

thermodynamic force giving rise to the diffusion flow   ,D k tJ x .  Finally,  jA ,tx  is the affinity of 

the jth chemical reaction and v j  is the velocity of reaction with M the number of chemical reactions.  

    It is possible to identify three different contributions to the RIEDP: 1) the one associated to heat 

transport; 2) the one related to molecules diffusion and 3) the one due to irreversible chemical 

reactions. The second and third contributions are those due to mass transport. The heat transport is 
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caused by the temperature gradient inside the human cell. Within this model, we do not include the 

term 
 

 
1

1 N

k D k

k

u ,t
T ,t 

 
  
 

 J x
x

  that expresses the thermodynamic force due to temperature 

distribution gradient inside the cell and the corresponding mass flow. In this way, we do not take into 

account the contribution to the rate of internal entropy density caused by diffusion of chemical species 

whose flow results from the temperature distribution gradient.    

 

A. RATE OF INTERNAL ENTROPY PRODUCTION ASSOCIATED TO HEAT 

TRANSPORT 

 

   First, we derive the RIEDP associated to heat transport related to the flow  Q ,tJ x  within our 

model. In its general form:                                                   

                                                    = ,                                                          (S2)iQ Q Qr ,t t ,tx F x J x                                                                  

    Here,  
 

1
,Q t

T ,t

 
   

 
F x

x
 is the thermodynamic force. In our 1D model, without loss of 

generality, flows are assumed along x; hence, = ( ,0,0)xx , î
x





 ,    T ,t T x,tx  and 

( ,0,0)Q QJJ . Heat flow occurs symmetrically with respect to x = L/2 along the two directions (x 

and –x). 

   To calculate the heat flow, we make the assumption that heat diffusion is mainly due to a conduction 

transport neglecting, in a first approximation, the convection transport present to a much lesser extent 

inside a typical cell. The heat transport equation in the 1D case, neglecting the term of heat source, 

takes the well-known form: 

                                                       
   2

2

, ,
                                                            (S3)

T x t T x t

t x


 


 
                                                               

    Here, the solution to Equation (S3) T (x,t) is the temperature distribution function depending both 

on spatial and time variable, and, for a given material,  = K/(cs) is the thermal diffusivity in m2 /s 

with K the thermal conductivity in J/ (m s K), cs the specific heat in J /(Kg K) and  the density in Kg/ 
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m3. Both K and   are assumed uniform throughout the cell. We impose the following initial and 

boundary conditions on the temperature distribution: 

                                         
 

   

0,0   for 0         initial condition
                       (S4)

0, , 0 for  >0    boundary conditions 

T x T x L

T t T L t t

  


 

                                   

   This choice is not restrictive because the temperature vanishes only exactly at the cell border due 

to the boundary conditions corresponding to the cell membrane and has a weak dependence on x 

inside the cell. However, note that the temperature on the cell membrane is not zero as inferred from 

the expression of the temperature distribution in the intercellular environment (see paragraph B for 

details) obtained in the absence of boundary conditions. The solution to equation (S3) taking into 

account the initial and boundary conditions expressed by equation (S4) reads                                                       

                                          
 

 
2

2

2
2 1

0

1

sin 2 1
4

,                                          
2 1

(S5)
n t

L

n

n x
T L

T x t e
n








  



  
  

  
 

 
 

                                                     

   A graphical solution to equations (S4) and (S5) of the temperature distribution (in Kelvin, K) inside 

the cell is shown in Fig. S1a and Fig.S1b as a function of x and of t with t ranging from 0 to 1000 s, 

a typical cell time interval. In the numerical calculations, we have taken the initial temperature T0 = 

310 K and, taking into account that the cytoplasm is mainly composed by water, we have used the 

thermal diffusivity of water, viz. H20   =   0.143 10-6 m2/s. The temperature is almost uniform and, 

on average, about T0 especially for the initial instant of times (see Fig.S1c and Fig.S1d). The 

temperature vanishes only at the border corresponding to the cellular membrane for t > 0 because of 

the boundary condition of equation (S4). 
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Figure S1. Temperature distribution inside a human cell according to equations (S4) and (S5). (a) 

Temperature distribution inside a normal cell as a function of the spatial coordinate and time. (b) 

Temperature distribution inside a cancer cell as a function of the spatial coordinate and time. (c) 

Temperature as a function of the spatial coordinate in a normal cell. (d) Temperature as a function of 

the spatial coordinate in a cancer cell. 

 

    For the 1D case  ,0,0Q QFF  with     
1

ˆ, ,
t

Q x t T x t e i
x


  

 
F  expressed in 1/ (m K) where an 

exponential time decay depending on a typical decay time   has been included to describe the time 

evolution of the force. Hence, by inserting the solution to heat equation given in equation (S5), we 

get 

                       

 
 

 
 

2
2

2

2
2

2

2 1

2 1

2

0 2 1

1

cos 2 1

1 1 ˆ,                        (S6)
4

1
sin 2 1

2 1

t
n t

L

n

Q

n t
L

n

n x e e
L

x t i
T L

n x e
n L















   



  



  
     

 
            





F                             
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    Fig. S2 displays the force expressed in equation (S6) for a normal and a cancer cell with  = 10-4 s 

a typical cell decay time. In the interval 0  x  L/2 we have taken the modulus of FQ to have the 

force positive in the whole interval. The force becomes greater passing from the center to the border 

and reduces its magnitude with increasing time. This force is only due to the internal temperature 

distribution and it is the same for all chemical species. 

 

Figure S2. Force associated to internal heat flow calculated by means of equation (S6) as a function 

of the spatial coordinate and of time. (a) Force inside a normal cell. (b) Force inside a cancer cell.  

 

    Within the 1D model, the heat flow per unit time and area expressed in J/ (m2 s) is  ,0,0Q QJJ

with
1 Q

Q

dX
J

A dt
 , QdX the heat flow and A is the cell area. According to Fourier law, the heat flow per 

unit time and per unit area along x is  
 ,

,Q

T x t
J x t K

x


 


. The minus sign on the second member only 

indicates that heat flows from the region at higher temperature corresponding to the cell centre to the 

region at lower temperature close to the cell membrane, namely in the direction along which the 

temperature decreases (in this case it is symmetrical along +x and –x). Explicitly                              

                                    
 

2
2

2
2 1

0

1

1 ˆ, 4 cos 2 1                          (S7)
n t

L
Q

n

x t p K T n x e i
L L


  



  
    

   
J                                            

   Here, p denotes the frequency of occurrence of the irreversible reaction. In Fig. S3, we display the 

bidirectional heat flow per unit time and area given in equation (S7) for both the normal and the 

cancer cell referred to glucose catabolism. For 0   x  L/2 we have plotted the modulus of the heat 

flow to have JQ positive in the whole interval. In the numerical calculations we have taken K = 0.600 
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J/ (m s K) and, for the case of glucose catabolism, p = 0.90 for cancer cells and p = 0.85 for normal 

cells [S5] (see the main text for more details). The trend of JQ is symmetric with respect to the centre 

for the two types of cells, is less sharp for a cancer cell especially for t ranging between 0 and 100 s 

and tends to zero with increasing time. 

                                            

                   

Figure S3. Internal heat flow per unit time and area calculated according to equation (S7) plotted as 

a function of the spatial coordinate and of time. (a) Heat flow inside a normal cell. (b) Heat flow 

inside a cancer cell.  

    

     The RIEDP due to the heat flow and expressed in J/ (m3 K s), via equation (S6) and equation (S7), 

is                              

                       

 
 

 
 

2
2

2

2
2

2

2

2 1

2 1

2 2

2 1

1

cos 2 1

,                                                    

1
sin 2 1

2 1

(S8)

t
n t

L

n

i Q

n t
L

n

n x e e
L

r x t p K
L

n x e
n L















   



  



   
         


   
         





                                               

     From equation (S8), it turns out that  , 0iQr x t  .  Equation (S8) is equation (1) of the main text.    

     Note that both the numerator and the denominator can be written in terms of the product of two 

identical series, namely 



9 
 

 
 

 
 

 
 

 
 

2 2 2
2 2 2

2 2 2

2
2

2

2

2 1 2 1 2 1

1 1 1

2

2 1

1

cos 2 1 cos 2 1 cos 2 1

1 1
sin 2 1 s

2 1 2 1

  
  




  



       

  
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

           
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   
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      
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 
n t n t

L L

n n

n x e n x e
L n L

 

 

B. RATE OF INTERNAL ENTROPY DENSITY PRODUCTION DUE TO DIFFUSION 

PROCESS 

 

From equation (S1), we express the contribution to RIEDP related to diffusion process via the term                                            

                                                  2

 

1

,                                                 (S10)
N

i D k D k

k

r ,t t ,t


x = F x J x                                  

   The thermodynamic force that gives rise to matter (chemical species) flow is

   
 

 
2 ,

,
k

k

t
t

T ,t

 
   

 

x
F x

x
 . 

   2
,k tF x  is a new force depending on the chemical species k that 

determines diffusion flow and is expressed in J/(mole m K). Within this description in terms of 

densities, in chemical reactions 
k

m k T

u
u

n

 
  
  

is the partial molar energy of the kth chemical species 

expressed in J/mole with u the energy density expressed in J/m3, nm k = Nm k /V the number of moles 

per unit volume of the kth species with Nm k the number of moles. Instead, the chemical potential of 

the kth chemical species is determined as  
 

,

,
,k

m k T P

g t
t

n


 
  
  

x
x  where g = G/V is the Gibbs free 

energy density at constant pressure and G is the Gibbs free energy. According to its general definition 

given above, the chemical potential depends on the temperature and on the pressure. 

     For the 1D case,  (2) (2)

k k ,0,0FF  with 
 

 
(2)

,
ˆk

k

x t
i

x T x,t

 
     

F . Here,    | / 2|/ /
,

x L L t

k kx t u e



  

  

is the time and space dependent chemical potential of the kth chemical species with   a typical cell 

decay time; ku is the chemical potential calculated at x = L/2, where it is assumed that the glucose 

catabolism takes place, that is equal to the partial molar energy.  According to this form, the chemical 
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potential decreases passing from the center to the border of the cell and decreases with increasing 

time.  For every irreversible reaction and for every chemical species  (2) ,k x tF  is 

   

   
 

 
 

 
 

2 2
2 2

2 2

2
2

2

2
2

0

2 1 2 1
/ 2 / /

1 1

2

2 1

1

1 1
,

4

1 1
sin 2 1 cos 2 1

2 1

1
sin 2 1

2 1

k

n t n t
x L L t L L

k

n n

n t
L

n

x t
T L

u e n x e n x e
n L L

n x e
n L

 
 








 





    
  

 

  



  

                                
                

 



F

ˆ             (S11)i








              

   

   Here, 
   / 2 / / 2 /

( )
x L L L x L

e e
   

 for L/2  x  L (0  x  L/2) and the plus (minus) sign in the second 

term on the second member is for L/2  x  L (0  x  L/2). The trend of 
 2

kF is very similar for the 

different chemical species with a strong variation throughout the cell especially for small time. 

    In our 1D model, also the diffusion of molecules inside the cell occurs symmetrically along the x 

direction (x and –x flow), namely ( ,0,0)D k D kJJ  where 
D k

D k

dX
J

dt
 with dX D k the diffusion flow of 

molecules. JD k is the mass diffusion flow for the kth chemical species per unit time crossing a surface 

of area A = L2 perpendicular to the diffusion direction. It is proportional to the spatial derivative of 

nm (x,t), the number of moles of chemical species per unit volume (moles/m3
) where nm (x,t) is 

generically expressed as a concentration, namely as nm (x,t) = Nm(x,t) /V with Nm the number of moles 

and V the volume of the solution. The diffusion equation written in the 1D case and under the 

assumption of uniform diffusion takes the form:                                               

                                         
   2

2

, ,
                                                                 (S12) m k m k

k

n x t n x t
D

t x

 


 
                                                            

Here, Dk is the diffusion coefficient (m2/s) of the kth chemical species. Under the initial and boundary 

conditions applied to chemical species                                 

                      

                         
   

 

,0                    initial condition
                               (S13)

, 0 for  >0    boundary condition 
      

m k

m k

n x x

n x t t




 

                                       

we get the most simple solution to Equation (S12) in the form of a Gaussian distribution function 
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                                             

2

2

41
,                                                                       

4
(S14)k

L
x

m k D t

m k

k

N
n x t e

A D t

 
 

 


                                                                    

   According to the initial condition in Equation (S13), it is reasonably assumed that a pulse of solute 

at t = 0 is present at a given point x that in our special case corresponds to the center of the cell x = 

L/2. In the special case, the solutes are the molecules that take part either in the cell respiration or in 

the lactic acid fermentation process. The boundary condition  , 0n x t   is realistically satisfied 

for a value of x close to the cell membrane.  

    The mass diffusion flow JD k per unit time of the kth molecule (number of moles Nm k of the 

molecule per unit time crossing the surface of area A perpendicular to the flow) expressed in 

moles/(m2 s) takes the form  
 ,

,
m k

D k k

n x t
J x t D

x


 


 .  The minus sign only indicates that diffusion is 

from the region at higher concentration to that at lower concentration. Unlike the heat flow, the mass 

diffusion flow has a dependence on the chemical species considered. Explicitly, by performing the 

spatial derivative of Equation (S15), we get:                                       

                                        
 

2

3
2

2
/ 21 4 ˆ,                                           

4
(S15)

m k k

L

D k
k

x

N x L D t
x t e i

A D t

 
 
 
 





 J                                                       

Here, the plus (minus) sign is referred to the diffusion flow either along +x (L/2  x  L) or along x 

(0  x  L/2) being the flow bidirectional.  

    In Fig. S4, we draw the diffusion flow expressed in equation (S15) for the reagents of the 

respiration process, viz. one mole of glucose (Nm C6H12O6 = 1) and six moles of oxygen (Nm O2 = 6) in 

both a normal and a cancer cell. We have carried out the calculations taking the diffusion coefficients 

from Tab.1 of the main text. For both chemical species the flow is of comparable magnitude, exhibits 

a peak close to the centre of the cell, with a broader distribution close to the centre in a normal cell 

especially in the first instants of time, and then a decrease going towards the border and with 

increasing time.                                                  
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Figure S4. Diffusion flow of the reagents involved in the glucose catabolism according to equation 

(S15). (a) Diffusion flow of one mole of glucose molecule in a normal cell. (b) Diffusion flow of one 

mole of glucose molecule in a cancer cell. (c) Diffusion flow of six moles of oxygen molecule in a 

normal cell.  (d) Diffusion flow of six moles of oxygen in a cancer cell.   

 

    In Fig. S5, we show the diffusion flow of the products of the respiration process in a normal and 

in a cancer cell. The behaviour is very similar to that of the reagents.  
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Figure S5. Diffusion flow of the products of the respiration in a cell according to equation (S15). (a) 

Diffusion flow of six moles of carbon dioxide molecule in a normal cell. (b) Diffusion flow of six 

moles of carbon dioxide molecule in a cancer cell. (c) Diffusion flow of six moles of water in a normal 

cell. (d) Diffusion flow of six moles of water in a cancer cell. 

 

   Fig. S6 displays the diffusion of the products of the lactic acid fermentation. Because of the large 

value of the diffusion constant, the diffusion flow of the hydrogen ions is significant throughout the 

cell during the first instants of times. Also for these chemical species, there is a decrease of the 

diffusion flow with increasing time. 
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Figure S6. Diffusion flow of the products of the lactic fermentation process according to equation 

(S15). (a) Diffusion flow of two moles of lactate ions in a normal cell. (b) Diffusion flow of two 

moles of lactate ions in a cancer cell. (c) Diffusion flow of two moles of hydrogen ions in a normal 

cell. (d) Diffusion flow of two moles of hydrogen ions in a cancer cell. 

 

 

    By means of equations (S11) and (S15), we get the general expression of ri D (x,t) valid for any 

irreversible processes, viz. 
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                  (S16)



 

after having neglected the term proportional to the sine series at the numerator that is much smaller 

than the one proportional to the cosine series. Equation (S16) is equation (2) of the main text.  

    In particular, equation (S16) applied to glucose catabolism in normal and cancer cells reads 
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with wresp and wferm the probability weights associated to respiration and fermentation processes, 

respectively with wferm = 1wresp and Nresp and Nferm the corresponding numbers of chemical species 

and  , 0i Dr x t  .      

 

C. RATE OF ENTROPY DENSITY PRODUCTION DUE TO IRREVERSIBLE CHEMICAL 

REACTIONS 

 

   We now study the term contributing to the RIEDP due to the irreversible chemical reactions. From 

Equation (S1) this contribution takes the general form:                                                                                   

                                      
 

 
1

1
, v                                                         (S18)

M

i r j j

j

r t A ,t
T ,t 

 x x
x

                                                     

Here, the subscript “r” stands for reactions, the affinity of the jth reaction reads

   
1

N

j k j k

k

A ,t ,t 


 x x  with k j the stoichiometric coefficients, N is the number of chemical 
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species,  k ,t x  is the space and time dependent chemical potential and 
cell

1
v

j

j

d

V dt


  is the velocity 

of the jth reaction, viz. the derivative of the jth degree of advancement jd  with respect to time 

divided by cellV . In this framework, the affinity plays the role of the thermodynamic force and the 

velocity that of the corresponding thermodynamic flow associated to irreversible reactions. 

   In our analysis, we set M = 1 for every chemical reaction and we assume that flows of molecules 

are along the x direction so that                                                                             

                                              
 

  1 (S19)
1

, v                                                        i rr x t A x,t
T x,t

  

The affinity of every irreversible reactions taking place in the cell cytoplasm takes the form 

                                                 
 | |/ /

2

1

                                                   (S20)

N
Lx L t

k k

k

A x,t u e



  



                                                    

and is expressed in J/moles. Instead, the corresponding velocity is 
cell

1
v 0

d

V dt


  with d the 

variation of the degree of advance of the reaction and is in moles/ (m3 s). Irreversible chemical 

reactions occurring in cells are either second-order or first order. The most general expression of the 

velocity (rate) for a second-order reaction of the form l A + m B  f C with l, m and f the number of 

moles of A, B and C, respectively is                                                             

                                                    kin A Bv = k                                                                          (S21)n n  

where, 0

kin 0

aE

RT
k K e



   is the kinetic constant (subscript “kin” stands for kinetic) of the velocity of 

the reaction expressed in 1/(M s) where M is the molarity, Ea the activation energy and R = 8.314472 

J/(mole K) the gas constant with K the pre-exponential factor and nA = Nm A/V (nB = Nm B/V) is the 

molar concentration of reagents A (B) with Nm A (Nm B) the number of moles of A (B). The velocity 

depends on the molar concentration of the two chemical species expressed by the reagent A and B. If 

B = 0 (A = 0) the velocity of a second-order reaction reduces to 2

kin Av = k n  ( 2

kin Bv = k n ). Instead, in a 

first-order reaction velocity depends only on the molar concentration of a reagent                                                                     

                                                     kin Av = k                                                                          (S22)n  

 with kkin expressed in 1/s. 
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   Combining equations (S19), (S20) and the expression of the velocity of a reaction (equation (S21) 

and (S22)), we write down the RIEDP due to irreversible chemical reactions 

                         

 

 
 

2
2

2

| |/ /
2

kin A reag B reag

1

0 cell

2 1

1

1 1
,                         (S23)
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Here p=0, 1, 2, q = 0, 1, 2 and p + q = 1, 2 for first- and second-order irreversible chemical reactions, 

respectively and Nm A reag/Vcell (Nm B reag/Vcell) is the molar concentration of reagents A and B, 

respectively taking the volume of the solution equal to Vcell. 

 

    We now apply this formalism to glucose catabolism given by a sequence of reactions of glucose 

catabolism, either as respiration or as lactic acid fermentation process, classified as first-order.  For 

this special case, we write 6 12 6 6 12 6 6 12 6

cell

/1
v 0

C H Om C H O c C H O
d N dn

V dt dt


     being

6 12 6 6 12 6

/
C H Om C H O cd N d 

with 
6 12 6

1
C H Oc    the glucose stoichiometric coefficient and 

6 12 6 6 12 6

cell

1
0C H O m C H Od n dN

V
  the 

variation of glucose molarity (variation of the concentration of glucose moles in the solution of 

volume equal to cellV ) with 
6 12 6m C H ON  the number of moles of glucose (alternatively, one could choose 

2
1

6

Odn

dt
  with 

2On  the molar concentration of the oxygen, the second reagent of the glycolytic 

process).  In the special case, 
6 12 6

 1m C H ON   and 
6 12 6

1m C H OdN    in all studied reactions.  

    Specifically, 6 12 6

6 12 6
/

C H O

m C H O AN N N   where 6 12 6C H O
N is number of glucose molecules and NA = 

6.02 1023 is the Avogadro number. Explicitly, the affinity of glucose catabolism reads                              

                         
   

resp  ferm
| |/ / | |/ /

2 2
resp ferm

1 1

                         (S24)

N N
L Lx L t x L t

k k k k

k k

A x,t w u e w u e
 

 
     

 

 
    

 
                                             

Here, wresp and wferm are the probability weights associated to respiration and fermentation processes, 

respectively with wferm = 1wresp and Nresp and Nferm are the corresponding numbers of chemical 

species.  
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    In Fig. S7, we plot the affinity for a normal cell (panel (a)) and for a cancer cell (panel (b)). In the 

numerical calculations, we have taken the following parameters: wresp = 0.8 (0.1) and wferm = 0.2 (0.9) 

for a normal (cancer) cell 5,  = 10-4 s,     kkin = 10-4/s for normal cells and kkin = 10-5/s for cancer cells 

[S6]. The values used for the chemical potentials at x = L/2 and t = 0 (partial molar energy) of the 

different chemical species are the ones in Table 1 of the main text.  

    In both cases, the affinity tends to zero with increasing time as should be expected for every 

thermodynamic system moving towards equilibrium. Looking at Fig. S7, it turns out that the affinity 

for a normal cell is one order of magnitude greater than the corresponding one for a cancer cell. This 

means that the thermodynamic force associated to the glucose catabolism reaction in a cancer cell is 

weaker with respect to that of the corresponding normal cell.                                                                     

 

 

Figure S7. Affinity for a cell calculated by means of equation (S24). (a) Affinity for a normal cell. 

(b) Affinity for a cancer cell. 

 

    Like for other first-order reactions, we write the velocity of the glucose catabolism in the form                                                                                                                       

                                                   
kin 6 12 6

resp (ferm)v                                                                     (S25)C H Ok n                                                                         

with 
kin

resp (ferm)k 0  the pathway “kinetic constant” of the respiration (fermentation) process expressed 

in 1/s. 

   For the case of glucose catabolism that can be regarded as a first-order reaction, equation (S23) 

becomes 
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26)                       

      

by taking into account the mixed nature of glucose catabolism occurring in both types of cells (both 

respiration and fermentation process). Here, 

 2L x

Le




 for 0    x  L/2 and 

 2x L

Le




for L/2   x  L and

 , 0i rr x t  . The subscript r stands for “irreversible reactions”. Equation (S26) is equation (3) of 

the main text. 

     For both normal and cancer cell, it is always  lim , 0i
t

r x t


 , namely each contribution to the 

RIEDP vanishes when the thermodynamic system reaches the global equilibrium.  

 

 

 3. RATE OF EXTERNAL ENTROPY DENSITY PRODUCTION 

 

     The human cell (either normal or cancer cell) behaves like an open thermodynamic system. This 

means that it exchanges energy and matter with the intercellular environment. In this respect, it is 

useful to define the rate re (x,t) of external entropy density production (REEDP) giving the amount of 

local entropy density outside a cell in the intercellular environment. Specifically, the REEDP has a 

contribution related to heat diffusion linked to energy exchange between the cell and the intercellular 

environment and a contribution due to matter exchange with the intercellular environment in terms 

of variation of the number of moles. No terms related to diffusion flow are present. Like for the 

calculation of the RIEDP due to heat flow, for the calculation of the REEDP we reasonably suppose 

that the temperature of the intercellular environment is spatially non-uniform and has a time 

dependence seeking for a solution to the heat equation free from boundary conditions.  
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     Strictly speaking, for a thermodynamic system the infinitesimal entropy density exchanged 

between the cell and the environment due to heat release is  cell ic

1

,
e Q

dQ
ds

V T x t
 , where  dQ = dU + 

p dV is the infinitesimal heat transfer with U the internal energy, p the pressure and Tic (x,t)  the space 

and time dependent intercellular temperature distribution where the subscript “ic” stands for 

intercellular. Therefore, the external contribution to the infinitesimal entropy density consists of two 

terms, viz. dse= dseQ + dse r with dse r the mass contribution associated to irreversible exchanges of 

molecules with the intercellular environment.  

    In our 1D model, we express the REEDP as      exch, , ,e e Q er x t r x t r x t   where  ,e Qr x t  is the 

REEDP associated to heat flow, while  exch ,er x t  is due to exchanges of matter of the cell with the 

intercellular environment where the subscript “exch” stands for exchange. This scheme is valid for 

both a normal and a cancer cell.  

Explicitly                                                                                  

       
 
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 
 
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ic cell ic 1
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

 
   

 
                

Here, u= U/Vcell is the internal energy density. The second term on the second member expresses the 

matter flow with the external environment being e m kd N the variation of the number of moles of the 

products of the catabolic reaction and Npr is the number of chemical species of products. By neglecting 

the small cell volume variation occurring during the entropy transfer (dV/dt 0) we get                                                                                 

                               
 

 

 
 

pr

ic 1

,1
, ,                                   (S28)
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

 
 
 
 


                                    

 

A. RATE OF EXTERNAL ENTROPY DENSITY PRODUCTION ASSOCIATED TO HEAT 

FLOW 

       

    In an open thermodynamic system like the human cell (either normal or cancer), part of the entropy 

exchanged with the extracellular environment is proportional to the variation of produced heat 
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according to the entropy definition in a thermodynamic system and cannot be calculated according to 

the internal heat flow valid for determining the RIEDP. 

     Keeping in mind that water is the main component of a human cell, from a thermodynamic point 

of view a cell (either normal or cancer cell) can be described as a fluid. Moreover, irreversible 

chemical reactions occur in a vapor phase where vapor is a substance that is a mixture between a 

gaseous and a liquid phase at room temperature. Hence, without loss of generality, we describe heat 

exchange with the environment in a way similar to heat exchange for an ideal gas. Owing to this 

thermodynamic analogy, the cell energy is thus equivalent to the gas kinetic energy. Hence, in the 

thermodynamic limit, namely ideally assuming that the volume increases with the number of 

molecules that in a cell is very high, the cell energy has a continuous spectrum of values. Its 

derivation, in the simplest picture, starts from the partition function of a monoatomic gas. Note that 

water in the gaseous phase behaves not like a monoatomic gas but like a triatomic gas. However, 

without loss of generality, the kinetic energy due to the rotation and vibration of water molecules 

typical of polyatomic molecules is much smaller than the translational kinetic energy that is instead 

associated to heat flow and this justifies the analogy with a monoatomic gas where only translational 

degrees of freedom are present. Moreover, within this description we do not take into account also 

the potential energy due to intermolecular forces among water molecules that does not play a role in 

heat flow. Straightforwardly, the partition function Z of an ideal monoatomic gas, that is equivalent 

within this description to the cell partition function, is expressed by the well-known formula 
3

2Z A T  

where A = V cell (2 kB m) 3/2/h3 with kB = 1.3805  10-23 J/K the Boltzmann constant, m the mass and 

h the Planck constant [S7]. From the well-known relation between the average energy and the partition 

function, viz. 2

B ln
d

E k T Z
dT

  we get U (x, t) = 3/2 N kB T (x, t), where the internal energy is a 

thermal energy and has a space and time dependence getting its largest contribution from kinetic 

energy. Here, U = N E  being N the number of molecules carrying the kinetic energy (translational 

and vibrational) and N = Nm NA where Nm is the number of moles of the products of glucose catabolism 

(respiration process for the normal cell and lactic fermentation for the cancer cell) and NA = 6.02 

1023 molecules is the Avogadro number. As expected, the internal energy of the cell due to heat 

exchange with the intercellular environment turns out to be proportional to T and depends on time t 

via the temperature.  

     We write down the well-known fundamental solution to the heat equation (equation (S3)) obtained 

with no boundary conditions since we are considering the intercellular environment and we are 
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making some consideration about the finite heat quantity flowing towards the intercellular 

environment, viz.                                                            

                                                  
 

2

4ic 0
ic ,                                                    (S29)

4










x L

tT x
T x t e

t
                                                       

   Here, x > L, Tic is the maximum intercellular temperature and x0 is a characteristic length in the 

intercellular environment over which the temperature varies. In the model calculations, we have taken 

the realistic value x0 = 10 nm such that the temperature in the intercellular space at the border with 

the cell and especially at the initial instant of times when the release of heat takes place is about 310 

K. We show the temperature distribution in the intercellular environment of both a normal and a 

cancer cell in Fig. S8.  

    Although in some cancer tissues the separation between adjacent cells vanishes because of the 

tumor, we have taken the value of the separation of about 0.2-0.3 m between two adjacent normal 

cells and about 1.5 m between two cancer cells considering the typical values for the epithelial cells 

of human breast tissue [S8]. There is a maximum temperature close to the border between the cell and 

the intercellular environment and Tic tends to decrease slightly by going away from the cell. Of course, 

for a realistic description we should take into account also the temperature distribution of the adjacent 

cell (not shown) but it would be outside the aims of this approach that focuses on the thermodynamic 

behaviour of a single cell. 

 

 

Figure S8. Intercellular temperature distribution calculated according to equation (S3) and expressed 

in equation (S29). (a) Temperature distribution in the intercellular environment for a normal cell. (b) 

Temperature distribution in the intercellular environment for a cancer cell. 
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The time derivative, calculated via the expression U (x, t) = 3/2 N kB Tic (x,t), reads approximately   

      
 

2

ic

2

cell

 , 4, 1 3

2 8
B

T x t x L td u x t
k N

dt V t t

 

 


  taking into account that, for x large and small t ,   (x-

L)2  >> 2t  .  The REEDP related to heat transport from the cell to the intercellular environment is 

approximately 

                                                              
 

 

 

ic

,1
,                                                         (S30)
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du x t
r x t
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We substitute 
 ,du x t

dt
 getting                                        

                                     
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2
A pr

B 2
cell

1 3
,                                                                

8
 (S31)



m
eQ

N N x L
r x t k

V t                                                          

  where, Nm pr are the number of moles of the products for the studied irreversible chemical reaction. 

Equation (S31) is general and valid for describing eQr  associated to external heat transport due to 

irreversible processes in normal and cancer cells.  Equation (S31) is equation (4) of the main text. If 

applied to glucose catabolism we need to take into account the weights associated to respiration and 

fermentation processes yielding                                                                   

                        

                   
 

   
2

A pr resp resp pr ferm ferm

B 2
cell

1 3
,                                     

8
 (S32)



 m m

eQ

N N w N w x L
r x t k

V t                                              

 pr resp pr fermm mN N is the number of moles of the products in respiration (fermentation) process. 

 

B. IRREVERSIBLE EXCHANGES WITH THE INTERCELLULAR ENVIRONMENT 

 

      The REEDP due to mass transport related to irreversible exchanges with the intercellular 

environment for any irreversible reaction occurring either in a normal or in a cancer cell is                                                                      
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                

where e m kd N is the variation of the number of moles of the kth product of the irreversible reaction 

with the subscript “e” indicating external and Npr is the number of products with “pr” labelling 

products. 

     Substituting the expressions of the intercellular temperature distribution  ic ,T x t given in equation 

(S29), of the chemical potential    | / 2|/ /
,

x L L t

k kx t u e



  

 and inserting the time d1 that is a 

characteristic time of the order of the inverse of kink , we get     
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Equation (S34) is equation (5) of the main text. 

    In particular, for glucose catabolism re exch takes the general form                                                         
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T x t V dt dt                  

    Here, Npr resp (Npr ferm) is the number of products of respiration (fermentation) and deNm k resp (deNm k 

ferm) is the variation of the number of moles moles of the products in the respiration (fermentation) 

process. 

    Substituting the expressions of  ic ,T x t expressed in equation (S29) and of the chemical potential 

we get                       
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where, d1 (d2) is a characteristic time such that 1/ d1  (1/ d2) is about 10-5/s (10-4/s), namely of the 

order of the pathway kinetic constant of the glucose catabolism reaction in both processes. 
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   By analysing the behaviour of the three contributions to REEDP it is  lim , 0e
t

r x t


 . Hence, we 

have proved that the equilibrium state of an open thermodynamic system like a cell (either normal or 

cancer), where irreversible processes take place, implies the minimization of both ri and re with 

increasing time and its vanishing in the limit of infinite time. 
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