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1 Introduction

The study of the existence and the multiplicity of solutions for second order Hamiltonian
systems of type

− ü(t) = ∇F(t, u(t)), (1.1)

has been widely investigated in these latest years, see [1–6,9–12,15,18–22,24–26,28–30,32–51].
Because of its variational structure, the florid minimax methods for critical point theory,

particularly with its linking theorems (see [23, 27, 31–33]) represents a fruitful tool in order to
approach problem (1.1).

Recently, in [34], the following system

−ü(t) = B(t)u(t) +∇V(t, u(t)),

has been studied, where
u(t) = (u1(t), . . . , un(t))

is a map from I := [0, T] to Rn such that each component uj(t) is a periodic function in H1

with period T, and the function V(t, x) = V(t, x1, . . . , xn) is continuous from Rn+1 to R with

∇V(t, x) = ∇xV(t, x) = (∂V/∂x1, . . . , ∂V/∂xn) ∈ C(Rn+1, Rn).
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For each x ∈ Rn, the function V(t, x) is periodic in t with period T.

By assuming that the elements of the symmetric matrix B(t) are to be real-valued functions
bjk(t) = bkj(t) and that

(B1) each component of B(t) is an integrable function on I, i.e., for each j and k, bjk(t) ∈ L1(I),

it was possible to exploit the property that there is an extension of the operator

D0u = −ü(t)− B(t)u(t)

having a discrete, countable spectrum consisting of isolated eigenvalues of finite multiplicity
with a finite lower bound −L

−∞ < −L ≤ λ0 < λ1 < λ2 < · · · < λl < · · ·

(cf. [30]).

Here, inspired by the arguments adopted in [34], we consider the following problem−ü(t) + B(t)u = µ∇V(t, u),

u(T)− u(0) = u̇(T)− u̇(0) = 0,
(1.2)

where B is a symmetric matrix valued function satisfying an elliptic condition (see next as-
sumption (B3)) and µ is a positive real parameter. In particular, first we simply require a suit-
able behaviour of the potential V(t, ·) near zero in order to establish the existence of positive
interval of parameters for which problem (1.2) admits at least one qualified non trivial solu-
tion (see Theorem 3.1). Then, assuming in addition that V(t, ·) satisfies different conditions
at infinity, a second non trivial solution is assured (see Theorems 3.2–3.4). The multiplicity
results are obtained combining a linking theorem for functionals depending on a parameter
with a monotonicity trick.

2 Variational setting and preliminary results

In the sequel we will assume the following conditions on the matrix valued function B

(B2) B(t) =
(
bij(t)

)
is a symmetric matrix with bij ∈ L∞(I).

(B3) There exists a positive function γ ∈ L∞(I) such that

B(t)x · x ≥ γ(t)|x|2

for every x ∈ Rn and a.e. t in I.

Thus
γ(t)|x|2 ≤ B(t)x · x ≤ Λ(t)|x|2,

for every t ∈ I and x ∈ Rn, where Λ(t) ∈ L∞(I). Following the notation of [29], let H1
T be the

Sobolev space of functions u ∈ L2(I, Rn) having a weak derivative u̇ ∈ L2(I, Rn). It is well
known that H1

T, endowed with the norm

‖u‖H1
T

:=
(∫ T

0
|u(t)|2 dt +

∫ T

0
|u̇(t)|2 dt

)1/2

,
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is a Hilbert space, compactly embedded in C0(I, Rn) and C∞
T ⊂ H1

T.
Because of the previous conditions, it is possible to introduce on H1

T the following inner
product

(Du, v) =
∫ T

0
B(t)u(t) · v(t) dt +

∫ T

0
u̇(t) · v̇(t) dt,

for every u, v ∈ H1
T. The norm induced by (Du, v) is

d(u)1/2 :=
(∫ T

0
B(t)u(t) · u(t) dt +

∫ T

0
|u̇(t)|2 dt

)1/2

.

In fact, we have the following lemma.

Lemma 2.1. d(·)1/2 is a norm on H1
T. There is a constant c0 > 0 such that

‖x‖2
∞ ≤ c0d(x), x ∈ H1

T.

Remark 2.2. For an explicit estimate of the constant c0 we refer to [12, 21, 29].

A solution of problem (1.2) is any function u0 ∈ C1(I, Rn) such that u̇0 is absolutely
continuous, and satisfies

−ü0 + B(t)u0 = µ∇V(t, u0) a.e. in I,

and
u0(T)− u0(0) = u̇0(T)− u̇0(0) = 0.

It follows that, if we put λ = 1/µ, a critical point of the functional

Gλ(u) = λd(u)− 2
∫

I
V(t, u) dt, 0 < λ < ∞

is a solution of (1.2) where the system takes the form

λDu(t) = ∇V(t, u(t)). (2.1)

We introduced the parameter λ to make use of the monotonicity trick. This requires us to
work in an interval of the parameter λ, and it allows us to obtain solutions under very weak
hypotheses. However, we obtain solutions only for almost every value of the parameter. We
can then obtain solutions for all values of the parameter by introducing appropriate mild
assumptions.

In proving the theorems, we shall make use of the following results of linking. Let E be
a reflexive Banach space with norm ‖ · ‖. The set Φ of mappings Γ(t) ∈ C(E× [0, 1], E) is to
have following properties:

a) for each t ∈ [0, 1), Γ(t) is a homeomorphism of E onto itself and Γ(t)−1 is continuous on
E× [0, 1)

b) Γ(0) = I

c) for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for all u ∈ E and Γ(t)u→ u0 as
t→ 1 uniformly on bounded subsets of E.
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d) For each t0 ∈ [0, 1) and each bounded set A ⊂ E we have

sup
0≤t≤t0

u∈A

{‖Γ(t)u‖+ ‖Γ−1(t)u‖} < ∞.

A subset A of E links a subset B of E if A ∩ B = φ and, for each Γ(t) ∈ Φ, there is a t ∈ (0, 1]
such that Γ(t)A ∩ B 6= φ.

Define
Gλ(u) = λI(u)−J (u), λ ∈ Λ,

where I ,J ∈ C1(E, R) map bounded sets to bounded sets and Λ is an open interval contained
in (0,+∞). Assume one of the following alternatives holds.

(H1) I(u) ≥ 0 for all u ∈ E and I(u) + |J (u)| → ∞ as ‖u‖ → ∞.

(H2) I(u) ≤ 0 for all u ∈ E and |I(u)|+ |J (u)| → ∞ as ‖u‖ → ∞.

Moreover assume that

(H3) there are sets A, B such that A links B and

a0 := sup
A
Gλ ≤ b0 := inf

B
Gλ

for each λ ∈ Λ. a(λ) := infΓ∈Φ sup 0≤s≤1
u∈A
Gλ(Γ(s)u) is finite for each λ ∈ Λ.

Theorem 2.3. Assume that (H1) (or (H2)) and (H3) hold. Then for almost all λ ∈ Λ there exists a
bounded sequence uk(λ) ∈ E such that

‖G ′λ(uk)‖ → 0, Gλ(uk)→ a(λ) as k→ ∞.

For a proof, cf. [33].

3 Statement of the theorems

Theorem 3.1. Assume

1. There are a function b(t) ∈ L1(I) and positive constants m and θ < 2 such that

2V(t, x) ≤ b(t)|x|θ , |x| ≤ m, x ∈ Rn.

2. There is a constant M > K0 = c0mθ−2‖b‖1 such that

lim inf
c→0

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 > Mλ0, (3.1)

where ϕ is an eigenfunction of D corresponding to the first eigenvalue λ0.

Then the system (2.1) has a nontrivial solution uλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0

for each λ ∈ (K0, M).
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Theorem 3.2. Assume that hypotheses (1) and (2) of Theorem 3.1 are satisfied in addition to

lim inf
c→∞

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 > Mλ0. (3.2)

Then the system (2.1) has two nontrivial solutions uλ, vλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0, Gλ(vλ) > 0

for almost all λ ∈ (K0, M).

Theorem 3.3. Assume that hypotheses (1) and (2) of Theorem 3.1 are satisfied. Moreover,

(3) The function V is such that

V(t, x)/|x|2 → ∞, as |x| → ∞, (3.3)

uniformly with respect to t.

(4) There is a function W(t) ∈ L1(I) such that

2V(t, x)− 2V(t, rx) + (r2 − 1)x · ∇xV(t, x) ≤W(t), t ∈ I, x ∈ Rn, r ∈ [0, 1].

Then the system (2.1) has two nontrivial solutions uλ, vλ satisfying

d(uλ) < m2/c0, Gλ(uλ) < 0, Gλ(vλ) > 0

for each λ ∈ (K0, M).

Theorem 3.4. The conclusions of Theorem 3.3 hold if we replace Hypothesis (4) with:
There are a constant C and a function W(t) ∈ L1(I) such that

H(t, θx) ≤ C(H(t, x) + W(t)), 0 ≤ θ ≤ 1, t ∈ I, x ∈ Rn,

where
H(t, x) = ∇xV(t, x) · x− 2V(t, x).

4 Proofs of the theorems

Before giving the proofs, we shall prove a few lemmas.

Lemma 4.1. If (3.4) holds, then∫
I
[2V(t, u)− 2V(t, ru) + (r2 − 1)u · ∇uV(t, u)] ≤ C, u ∈ H1

T, r ∈ [0, 1], (4.1)

where the constant C does not depend on u, r.

Proof. This follows from (3.4) if we take u = x.

Lemma 4.2. If u satisfies G′λ(u) = 0 for some λ > 0, then there is a constant C independent of u, λ, r
such that

Gλ(ru)− Gλ(u) ≤ C (4.2)

for all r ∈ [0, 1].
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Proof. From G′λ(u) = 0 one has that

(G′λ(u), g)/2 = λ(Du, g)−
∫

I
g · ∇uV(t, u) = 0

for every g ∈ H1
T. Take

g = (1− r2)u.

Then we have

Gλ(ru)− Gλ(u) = λ(r2 − 1)(Du, u) +
∫

I
[2V(t, u)− 2V(t, ru)] dt

=
∫

I
[2V(t, u)− 2V(t, ru) + ((r2 − 1)u · ∇uV(t, u)] dt

≤ C

by Lemma 4.1.

Proof of Theorem 3.1. Fix λ ∈ (K0, M), put r2 = m2/c0 and define

Br = {u ∈ H1
T : d(u) ≤ r2}, ∂Br = {u ∈ H1

T : d(u) = r2}.

We claim that
inf

u∈∂Br
Gλ(u) > 0. (4.3)

Indeed, let δ > 0 be such that K0 < K0 + δ < λ < M, then for every u ∈ ∂Br one has

Gλ(u) ≥ λd(u)−
∫

I
b(t)|u(t)|θ ≥ λm2/c0 −mθ‖b‖1 ≥ δm2/c0,

and (4.3) holds. On the other hand, from (3.1), fixed ε ∈
(
0, Mλ0 − 2

∫
I V(t, cϕ)/c2‖ϕ‖2

2
)
, there

exists σ̄ > 0 such that
2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 > Mλ0 + ε

for every |c| < σ̄. Hence, for c sufficiently small one has cϕ ∈ Br, as well as

Gλ(cϕ) = c2‖ϕ‖2
2(λλ0 − 2

∫
I
V(t, cϕ)/c2‖ϕ‖2

2)

≤ c2‖ϕ‖2
2(Mλ0 − 2

∫
I
V(t, cϕ)/c2‖ϕ‖2

2)

≤ −c2‖ϕ‖2
2ε < 0.

For each λ let µ(λ) = infBr Gλ. Then −∞ < µ(λ) < 0. There is a minimizing sequence
(uk) ⊂ Br such that Gλ(uk) → µ(λ). Consequently, there is a renamed subsequence such that
uk ⇀ u ∈ H1

T and uk → u ∈ L∞(I). Thus

λd(uk)→ µ(λ) + 2
∫

I
V(t, u) dt.

Also λd(u) ≤ lim inf λd(uk) = µ(λ) + 2
∫

I V(t, u) dt, namely Gλ(u) ≤ µ(λ) < 0 and u /∈ ∂Br.
Hence, u is in the interior of Br and we have G′λ(u) = 0.
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Proof of Theorem 3.2. First observe that, if we define

I(u) = d(u), J (u) =
∫

I
V(t, u) dt

for every u ∈ H1
T one has that Gλ = Gλ. Hence, taking in mind that I(u) ≥ 0 for all u ∈ H1

T,
it is clear that (H1) holds. Moreover, as in the proof of Theorem 3.1, take r2 = m2/c0. Then

ν(λ) = inf
∂Br

Gλ > 0, λ ∈ (K0, M).

By hypothesis, there are c1, c2 such that c1ϕ ∈ Br and c2ϕ /∈ Br with Gλ(ci ϕ) < 0, i = 1, 2. The
set A = (c1 ϕ, c2ϕ) links B = ∂Br (cf., e.g., [32]). Applying Theorem 2.3, for almost every λ we
obtain a bounded sequence (yk) ⊂ H1

T such that

Gλ(yk)→ a(λ) := inf
Γ∈Φ

sup
0≤s≤1, u∈A

Gλ(Γ(s)u) ≥ ν(λ), G′λ(yk)→ 0.

Since the sequence is bounded, there is a renamed subsequence such that yk ⇀ y ∈ H1
T and

yk → y ∈ L∞(I). Since G′λ(yk)→ 0, we have

λd(yk, v)−
∫

I
∇V(t, yk)v(t)→ 0.

In the limit this gives G′λ(y) = 0. We also have λd(yk)→
∫

I ∇V(t, y)y = λd(y). Consequently,
we have Gλ(yk) = λd(yk)− 2

∫
I V(t, yk)→ λd(y)− 2

∫
I V(t, y) = Gλ(y) showing that Gλ(y) =

a(λ) ≥ ν(λ) > 0. The proof is completed taking uλ as already assured by Theorem 3.1 and
vλ = y.

5 The remaining proofs

Proof of Theorem 3.3. Note that (3.3) implies (3.2). By Theorem 3.2, for a.e. λ ∈ (K0, M), there
exists uλ such that G′λ(uλ) = 0, Gλ(uλ) = a(λ) ≥ ν(λ) > 0. Let λ satisfy K0 < λ < M.
Choose λn → λ, λn > λ such that there exists un satisfying

G′λn
(un) = 0, Gλn(un) = a(λn) ≥ ν(λn) > 0.

Therefore, ∫
I

2V(t, un)

d(un)
dt < M.

Now we prove that {un} is bounded in H1
T. If ‖un‖H1

T
→ ∞, let ũn = un/d1/2(un). Then

d(ũn) = 1 and there is a renamed subsequence such that ũn → ũ weakly in H1
T, strongly in

L∞(I) and a.e. in I. Let Ω0 ⊂ I be the set where ũ 6= 0. Then |un(t)| → ∞ for t ∈ Ω0. If Ω0

had positive measure, then, observing that (3.3) and the continuity of V assure the existence
of β ∈ R such that

V(t, x) ≥ β

for every (t, x) ∈ I ×Rn, we would have

M >
∫

I

2V(t, un)

d(un)
dt =

∫
Ω0

2V(t, un)

d(un)
+
∫

I\Ω0

2V(t, un)

d(un)
dt

≥
∫

Ω0

2V(t, un)

|un|2
|ũn|2dt +

∫
I\Ω0

2β

d(un)
dt.
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At this point, we obtain a contradiction passing to the lim inf and applying the Fatou lemma,
since from (3.3) it is clear that for every t ∈ Ω0, 2V(t,un)

|un|2 |ũn|2 → +∞ as n→ ∞. This shows that
ũ = 0 a.e. in I. Hence, ũn → 0 in L∞(I). For any s > 0 and hn = sũn, we have∫

I
V(t, hn) dt→

∫
I
V(t, 0) dt. (5.1)

Take rn = s/d1/2(un)→ 0. By Lemma 4.2

Gλn(rnun)− Gλn(un) ≤ C. (5.2)

Hence,
Gλn(sũn) ≤ C + Gλn(un) = C + a(λn) ≤ C + a(M). (5.3)

But

Gλn(sũn) = λns2(Dũn, ũn)− 2
∫

I
V(t, sũn)

≥ s2λd(ũn)− 2
∫

I
V(t, sũn)

→ λs2

by (5.1). This implies
Gλn(sũn)→ ∞ as s→ ∞,

contrary to (5.3).
This contradiction shows that ‖un‖H1

T
≤ C. Then there is a renamed subsequence such

that un → u weakly in H1
T, strongly in L∞(I) and a.e. in I. It now follows that for the bounded

renamed subsequence,

G′λ(un)→ 0, Gλ(un)→ lim
n→∞

a(λn) ≥ ν(λ).

We can now follow the proof of Theorem 3.2 to obtain the desired solution.

Proof of Theorem 3.4. We follow the proof of Theorem 3.3 until we conclude that ũn → 0 in
L∞(I) as a consequence of the fact that we assume that ‖un‖H1

T
→ ∞. We define θn ∈ [0, 1] by

Gλn(θnun) = max
θ∈[0,1]

Gλn(θun).

For any c > 0 and hn = cũn, we have∫
I
V(t, hn) dt→

∫
I
V(t, 0) dt ≤ 0.

Thus, for every fixed c > 0, if n is large enough one has that 0 < c/d1/2(un) < 1 and

Gλn(θnun) ≥ Gλn((c/d1/2(un))un) = Gλn(cũn) = c2λnd(ũn)− 2
∫

I
V(t, hn) dt,

so that
lim inf

n→∞
Gλn(θnun) ≥ c2λ,

namely, limn→∞ Gλn(θnun) = ∞. If there is a renamed subsequence such that θn = 1 for every
n, then

Gλn(un)→ ∞. (5.4)
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If 0 ≤ θn < 1 for all n, then we have (G′λn
(θnun), θnun) = 0. Indeed, defined h(θ) = Gλn(θun)

for every θ ∈ [0, 1], one has
d
dθ

h(θ) = (G′λn
(θun), un)

.
Hence, if θn = 0 then (G′λn

(θnun), θnun) = 0 · d
dθ h(0) = 0. Otherwise, if 0 < θn < 1, being

h(θn) = maxθ∈[0,1] h(θ), one has

(G′λn
(θnun), θnun) = θn ·

d
dθ

h(θn) = 0.

Therefore, ∫
I

H(t, θnun) dt =
∫

I

(
∇V(t, θnun)θnun − 2V(t, θnun)

)
dt

= Gλn(θnun)−
1
2
(G′λn

(θnun), θnun)

= Gλn(θnun)→ ∞.

By hypothesis,

Gλn(un) =
∫

I
H(t, un)

≥
∫

I
H(t, θnun) dt/C−

∫
I
W(t) dt→ ∞.

Thus, (5.4) holds in any case. But

Gλn(un) = a(λn) ≤ a(M) < ∞.

This contradiction shows that ‖un‖H1
T
≤ C. It now follows that for a renamed subsequence,

G′λ(un)→ 0, Gλ(un)→ lim
n→∞

a(λn) ≥ ν(λ).

We can now follow the proof of Theorem 3.2 to obtain the desired solution.

6 Some examples

Here we show that the assumptions required in the main theorems are naturally satisfied in
many simple and meaningful cases.

For simplicity, in the following, we suppose that n = 1, I = [0, π] and B(t) ≡ 1 for all
t ∈ I while α, β ∈ L1(I) are two positive functions. A direct computation shows that the
eigenvalues of D, with periodic boundary conditions, are

λl = 4l2 + 1.

Hence, λ0 = 1 and the corresponding eigenfunctions are constants.

Example 6.1. Put
V(t, x) = α(t)|x|θ
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for every t ∈ I, x ∈ R, with 1 ≤ θ < 2. Then all the assumptions of Theorem 3.1 are satisfied.
Indeed, condition (1) holds with b(t) = 2α(t) and for every m > 0. Moreover, if ϕ(t) = k for
every t ∈ I, with k ∈ R \ {0}, one has ‖ϕ‖2

2 = k2π and

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = ‖b‖1|ck|θ−2/π,

showing (2), since lim infc→0 2
∫

I V(t, cϕ)/c2‖ϕ‖2
2 = +∞.

Finally, observe that in this case the interval of the parameter λ for which the conclusions
of Theorem 3.1 hold is (0,+∞).

Example 6.2. Let g : R→ R be a positive and continuously differentiable function such that

L = lim
x→∞

g(x) > c0π

and
2g(1) + g′(1) = 2g(−1)− g′(−1) = θ,

where 1 ≤ θ < 2. Put

F(x) =

{
|x|θ if |x| ≤ 1

x2g(x) if |x| > 1.

Then, the function
V(t, x) = α(t)F(x)

for every t ∈ I, x ∈ R satisfies all the assumptions of Theorem 3.2. Indeed, arguing as in the
previous example, we see that conditions (1) and (2) hold with m = 1. Moreover, for |c| large
enough one has

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = 2‖α‖1g(ck)/π.

Hence,

lim inf
c→∞

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = 2‖α‖1L/π > 2‖α‖1c0 = K0

and condition (3.2) holds.

Example 6.3. Assume that α, β ∈ L∞(I) and put

V(t, x) = α(t)|x|θ + β(t)|x|τ

for every t ∈ I, x ∈ R with 1 ≤ θ < 2 < τ. Then all the assumptions of Theorem 3.3 are
satisfied. Indeed, condition (1) holds with b(t) = 2(α(t) + β(t)) and m = 1. Moreover, if
ϕ(t) = k for every t ∈ I, with k ∈ R \ {0}, one has

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = 2(‖α‖1|ck|θ−2 + ‖β‖1|ck|τ−2)/π.

Hence
lim inf

c→0
2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = +∞

and (2) is verified. It is an easy matter to verify that condition (3) holds. Finally, if

Vr(t, x) = 2V(t, x)− 2V(t, rx) + (r2 − 1)x · ∇xV(t, x)
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for every t ∈ I, x ∈ R and r ∈ [0, 1], then, exploiting the choice of θ and τ and observing that
2− τ + τr2 − 2rτ ≤ 0, we see that there exists C > 0 independent from t, x and r, such that

Vr(t, x) = 2α(t)|x|θ(1− rθ) + 2β(t)|x|τ(1− rτ) + (r2 − 1)[α(t)θ|x|θ + β(t)τ|x|τ]
= α(t)|x|θ(2− θ + θr2 − 2rθ) + β(t)|x|τ(2− τ + τr2 − 2rτ) < C,

namely (3.4) holds.

We conclude with a further example that points out how Theorem 3.3 applies to functions
that do not satisfy the well known Ambrosetti–Rabinowitz condition.

Example 6.4. Let α ∈ L∞(I) and put

V(t, x) = α(t)|x|2 ln2 |x|

for all t ∈ I and x ∈ R (with the meaning V(t, 0) = 0). Since

lim
x→0
|x|2−θ ln2 |x| = 0

for every 0 < θ < 2, it is clear that condition (1) holds with b(t) = α(t) and m small enough.
Moreover, if as usual ϕ(t) = k for t ∈ I and k ∈ R \ {0}, one has

lim inf
c→0

2
∫

I
V(t, cϕ)/c2‖ϕ‖2

2 = lim inf
c→0

2‖α‖1 ln2 |ck|/π = +∞,

and hence (2) is verified. It is simple to check that (3) holds. Finally, if Vr is defined as in the
previous example, for r ∈ (0, 1] one has

Vr(t, x) = 2α(t)|x|2
[
ln2 |x| − r2 ln2 |rx|+ (r2 − 1)(ln2 |x|+ ln |x|)

]
= 2α(t)|x|2

[
−r2 ln2 r− 2r2 ln r ln |x|+ r2 ln |x| − ln |x|

]
≤ 2α(t)|x|2 ln |x|

[
r2 − 1− 2r2 ln r

]
.

Since r2 − 1− 2r2 ln r ≤ 0 for every r ∈ [0, 1], there exists C > 0 independent from t, x and r
such that

Vr(t, x) < C.

For r = 0 one has
V0(t, x) = −2α(t)|x|2 ln |x|.

Thus, in any case, (3.4) holds.
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