Medical Principles and Practice

Med Princ Pract DOI: 10.1159/000486573 Received: September 24, 2017 Accepted: January 3, 2018 Published online: January 3, 2018

Tache Noire in a Patient with Acute Q Fever

Vito Fiore^a Fabiola Mancini^c Alessandra Ciervo^c Paola Bagella^a Francesca Peruzzu^a Giuseppe Nunnari^d Giovanni Andrea Deiana^b Giovanni Rezza^b Sergio Babudieri^a Giordano Madeddu^a

Units of ^aInfectious Diseases and ^bNeurology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, ^cDepartment of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, and ^dDivision of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy

Significance of the Study

• Tache noire is the pathognomonic sign of Mediterranean spotted fever (MSF), caused by *Rickettsia conorii*, and of MSF-like illness, but it is not a clinical feature of Q fever. We report a rare case of Q fever with tache noire.

Keywords

Tache noire · Q fever · Mediterranean spotted fever

Abstract

Objective: To describe a rare case of acute Q fever with tache noire. **Clinical Presentation and Intervention:** A 51-year-old man experienced acute Q fever showing tache noire, generally considered a pathognomonic sign of Mediterranean spotted fever (MSF) and MSF-like illness, but not a clinical feature of Q fever. The patient was treated with doxycycline 100 mg every 12 h. **Conclusion:** In the Mediterranean area, tache noire should be considered pathognomonic of MSF but it should not rule out Q fever. Clinical diagnosis should be supported by accurate laboratory diagnostic tests to guide proper management.

Published by S. Karger AG, Basel

Introduction

Coxiella burnetii is an obligate, intracellular gramnegative bacterium which infects several vertebrate species. In humans, it is the causative agent of Q fever. Q fever may be transmitted via inhalation of contaminated aerosols and ingestion of contaminated milk. The possibility of C. burnetii also being transmitted to humans via ticks was reported in 1947 [1]. Q fever is endemic in large parts of Europe, and studies conducted between 1970 and 2009 showed that 10–30% of rural populations in different countries have antibodies against C. burnetii, as highlighted by the ECDC technical report in 2010 [2]. Acute Q fever has a sudden onset, with fever, headache, chills, cough, and myalgia being the most common symptoms. The clinical picture includes flu-like illness, pneumonia, and hepatitis.

KARGER

mercial purposes requires written permission.

Table 1. Serology tests performed on a patient with tache noire during acute Q fever

Serology test	First evaluation (at time of first visit)	Second evaluation (after 2 weeks)
Rickettsia spp. ¹ Anaplasma phagocytophilum ² Ehrlichia canis ³ Bartonella henselae ⁴ Coxiella burnetii ⁵	IgM <1:64 IgG <1:128 IgM <1:20 IgG <1:40 IgM <1:20 IgG <1:40 IgM <1:20 IgG <1:40 IgM 1:50 phase I antigen IgG: 1:50 phase II antigen	IgM <1:64 IgG <1:128 IgM <1:20 IgG <1:40 IgM <1:20 IgG <1:40 IgM <1:20 IgG <1:40 IgG 1:320 phase II antigen IgG 1:80 phase I antigen

 $^{^1}$ Cut-off: IgM 1:64, IgG 1:128; 2 cut-off: IgM 1:20, IgG 1:40; 3 cut-off: IgM 1:20, IgG 1:40; 4 cut-off: IgM 1:20, IgG 1:40; 5 cut-off: IgM and IgG: 1:50 phase I and II antigens.

Fig. 1. a Tache noire at the lower medial surface of the right leg surrounded by circular erythema. **b** Complete remission after 14 days of doxycycline treatment.

Tache noire is considered a pathognomonic sign of Mediterranean spotted fever (MSF) and MSF-like illness, which are transmitted by ticks, but it is not considered a clinical feature of Q fever.

Case Report

We report a case of acute Q fever with tache noire in a 51-year-old man from Sassari, Northwestern Sardinia, where Q fever represents 8% of acute febrile illnesses in the spring/summer period [3].

The patient lived in a periurban area, and was referred to the Infectious Disease Unit of the University of Sassari in June 2012, with a low fever (37.5°C), headache, general malaise, myalgia, and a nonproductive cough which had started 7 days before. Physical examination revealed a dark crusty skin lesion compatible with inoculation eschar, surrounded by edema and a circular erythema (Fig. 1). No maculopapular rash was present. The patient recalled

a tick bite. Cardiopulmonary and abdominal physical examinations were normal. Laboratory results showed a relative lymphomonocytosis and a slight increase in C-reactive protein. The remaining parameters were within the normal range. Based on a clinical suspicion of MSF-like illness, the patient was started on doxycycline 100 mg every 12 h.

Serological analyses for all *Rickettsia* spp., *Anaplasma phagocytophilum*, *Ehrlichia canis*, *Bartonella henselae*, and *C. burnetii* were performed by immunofluorescence antibody assay (IFA) at the first clinical evaluation, and then repeated after 2 weeks. Enzyme-linked immunosorbent assay (ELISA) for *Rickettsia conorii* and *Borrelia* spp. was also performed. The first sample showed anti-*Coxiella* IgG phase II and I antibody titer of 1:50, but the second test was clearly positive, with an antibody titer >6 times higher than in the previous test (anti-*Coxiella* IgG phase II = 1:320 and phase I = 1:80). The search for other antibacterial antibodies was negative in both samples (Table 1), as were the ELISA for *R. conorii* and *Borrelia* spp.

Additionally, a skin biopsy of the tache noire collected in PBS buffer and a whole-blood sample were obtained prior to antibiotic therapy. DNA was extracted for genomic detection of *Rickettsia*, using molecular methods based on real-time PCR. The primers (forward) TCGCAAATGTTCACGGTA CTTT and (reverse) TCGTGCATTTCTTTCCATTGTG were used to identify the genus *Rickettsia* that includes the spotted fever group (SFG) and the typhus group (TG), and to amplify the gene *gltA* which codes for the citrate synthase enzyme [4]. All of these tests were negative.

The patient completed a 14-day course of doxycycline at home, with complete clinical remission (Fig. 1).

Discussion

Our case suggests that *C. burnetii* was the etiological agent in a patient with tache noire and suspected MSF-like illness. This finding has important clinical implications. Rickettsioses are endemic in Sardinia, where MSF is a common summertime fever mostly caused by *R. conorii*, and sometimes by *R. monacensis* [5]. Thus, Q fever was, to some extent, an unexpected diagnosis in a patient with fever and tache noire. In particular, this case suggests

that tache noire, generally considered to be the pathognomonic sign of *Rickettsia* infection, may also be seen in acute Q fever.

Differential diagnosis is important, as infections due to *C. burnetii* have a different clinical management from other Rickettsioses in terms of the duration of therapy, particularly if complicated. In our case, a misdiagnosis of Q fever would have led to a shorter antibiotic treatment, with the possible occurrence of further complications and the potential risk of developing a chronic infection.

Q fever is not usually considered as being a tick-borne disease; however, several published studies suggest that *C. burnetii* may indeed be found in ticks in Mediterranean countries, including Italy. For example, in a study conducted in Algeria, 268 ticks were evaluated, using real-time PCR, standard PCR, and sequencing, for the presence of *Bartonella* spp., *Rickettsia* spp., *Borrelia* spp. and *C. burnetii*. DNA from *C. burnetii* was identified in 3/19 (15.8%) *Ixodes vespertilionis* ticks [6], and a study conducted in Sardinia found evidence of *C. burnetii* infection in ticks from mammal hosts [7].

Finally, ticks seem to play a fundamental role in the spread of *C. burnetii* among various vertebrates, such as rodents, lagomorphs, and wild birds, as reviewed by Por-

ter et al. [8], highlighting, again, the need for more knowledge about the role of these arthropods in the natural cycle of *C. Burnetii*, particularly concerning the possible transmission of Q fever to humans.

Q fever is considered to be an airborne zoonotic disease, but ticks such as *Rhipicephalus microplus* or *R. sanguineus* are also suspected to be involved in Q fever epidemiology as potential vectors [9]. We do not know what species of tick was involved in our case, but given its countrywide distribution, we speculate that *R. sanguineus* may have been responsible.

In conclusion, in the Mediterranean area tache noire should be considered pathognomonic of MSF, but its presence should not rule out a diagnosis of Q fever, and the possibility of concomitant or consecutive infections should also be considered [10]. Of course, clinical diagnosis should be supported by accurate laboratory diagnostic tests in order to rapidly differentiate between possible pathogens and to guide a proper management.

Disclosure Statement

The authors report no conflicts of interest.

References

- 1 Eklund CM, Parker RR, Lackman DB: A case of Q fever probably contracted by exposure to ticks in nature. Public Health Rep 1947;62: 1413–1416.
- 2 Technical Report: Risk Assessment on Q Fever. Stockholm, European Centre for Disease Prevention and Control. 2010.
- 3 Madeddu G, Fiore V, Mancini F, et al: Mediterranean spotted fever-like illness in Sardinia, Italy: a clinical and microbiological study. Infection 2016;44:733–738.
- 4 Paris DH, Blacksell SD, Stenos J, et al: Realtime multiplex PCR assay for detection and differentiation of rickettsiae and orientiae.

- Trans R Soc Trop Med Hyg 2008;102:186–193.
- 5 Madeddu G, Mancini F, Caddeo A, et al: *Rickettsia monacensis* as cause of Mediterranean spotted fever-like illness, Italy. Emerg Infect Dis 2012;18:702–704.
- 6 Leulmi H, Aouadi A, Bitam I, et al: Detection of *Bartonella tamiae*, *Coxiella burnetii* and *Rickettsiae* in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasit Vectors 2016;9:27.
- 7 Satta G, Chisu V, Cabras P, et al: Pathogens and symbionts in ticks: a survey on tick species distribution and presence of tick-trans-

- mitted micro-organisms in Sardinia, Italy. J Med Microbiol 2011;60:63–68.
- 8 Porter SR, Czaplicki G, Mainil J, et al: Q Fever: current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol 2011;2011:248418.
- 9 Duron O, Sidi-Boumedine K, Rousset E, et al: The importance of ticks in Q fever transmission: what has (and has not) been demonstrated? Trends Parasitol 2015;31:536–552.
- 10 Rolain JM, Gouriet F, Brouqui P, et al: Concomitant or consecutive infection with *Coxiella burnetii* and tickborne diseases. Clin Infect Dis 2005;40:82–88.