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ABSTRACT

Temperature is a concept common to all thermodynamic ap-
proaches. Different approaches may consider temperature from
different perspectives. For instance, in rational thermodynam-
ics, it is considered as a primitive quantity. In extended ther-
modynamics, temperature is assumed to depend also on the
fluxes. In statistical theories, temperature may be related to the
form of the distribution functions. In theories with internal vari-
ables, each variable could have in principle its own temperature.
Thus, a comparative discussion of the several thermodynamic
approaches requires as a preliminary condition to compare and
clarify the role of temperature. In this contribution we discuss
different definitions of non-equilibrium temperature in systems
with internal variables, that may be measured only by suitable
methods and cannot be controlled with the same immediateness
as in the case of classical variables.

In equilibrium thermodynamics, there are different defini-
tions of temperature (thermometric, caloric, entropic, kinetic,
vibrational, configurational, fluctuational, and so on) and they
lead to the same value. Here, we focus our attention on:
i)empirical (or thermometric) temperature, based on the zeroth
law; ii) entropic temperature, defined by the second law of ther-
modynamics as

1
T
≡̇

(
∂S
∂U

)
, (1)

whereS is the entropy of the system; iii) caloric temperature,
based on the first law of thermodynamics and called caloric,
because it uses the so-called caloric equation. For instance

U = U(T,V,Ni), (2)

with V the volume,Ni the number of particles of the speciesi
andU the internal energy defined by the first principle.

The aim of this paper is to discuss these three temperatures in
different thermodynamic approaches in non-equilibrium steady
states, in presence of an external energy flux and to find the
transformation laws relating the several temperatures. In equi-
librium states all the above definitions of empirical, caloric and
entropic temperatures lead to same valueT. Out of equilibrium,
equipartition is not to be expected and then in non-equilibrium
steady states, when, for instance, the system is crossed by an

energy flux and the variables do not depend on time, these tem-
peratures are different from each other.

As an example, in a system composed of matter and radia-
tion, a thermometer with purely reflecting walls will give the
temperature of matter, as it will be insensitive to radiation. In
contrast, a thermometer with perfectly black walls will yield
a temperature related both to matter and radiation. In equilib-
rium, both thermometers will give the same temperature, but in
a non-equilibrium steady state (for instance, with photons trans-
mitting heat and colliding against the particles of a gas) these
thermometers will give different temperatures.

Another situation with several -or many-temperatures arises
in mixtures of gases with internal degrees of freedom and at
high temperatures, as in the entry of spaceships into a plane-
tary atmosphere. In such a case, one may have different kinetic
temperatures for different gases, and different electronic tem-
peratures (related to the relative occupancy of electrons at the
several energy levels), and different vibrational and rotational
temperatures. All these temperatures may be experimentally
obtained by means of spectrometric methods, by measuring the
intensity of the spectral lines emitted by the gases.

These different temperatures yields a very rich information
about the system: about their internal energy transfers and their
internal energy contents for the several degrees of freedom.
Thus, one of the aims of this contribution is finding the trans-
formation laws relating several thermometric, entropic, caloric
and other temperatures in systems in equilibrium steady state
submitted to given energy flux.

First, we present an example related to a statistical approach,
a two level system withN1 particles at level 1 (with energyE1)
andN2 particles at level 2 (with energy 2). For instance, this
example could refer to electrons in two electronic levels. In an
equilibrium state we define a caloric temperatureT as

kBT ≡ N1

N
E1 +

N2

N
E2, (3)

with N the total number of particlesN = N1 + N2, andkB the
Boltzmann constant. The thermometric temperature is defined
by

kBT ≡ E2−E1

ln(N1/N2)
. (4)



The entropy has the form

S=−k

(
N1

N
ln N1/N+

N2

N
ln N2/N

)
, (5)

and the entropic temperature is given by

1
T

=
(

∂S
∂U

)
=

∂
∂U

[
−kB

(
N1

N
ln N1/N+

N2

N
ln N2/N

)]
, (6)

In non-equilibrium steady states,for the same two-level sys-
tem, submitted to an external energy flux, we obtain the fol-
lowing relations for non-equilibrium temperatures thermomet-
ric, caloric and entropic, respectively:

Tneq,th = T
1

1− ln[1+(γ/α)q]
E2−E1

kBT
, (7)

whereT is the equilibrium temperature,α andβ are the transi-
tion rates from 1 to 2 and from 2 to 1 respectively, andγ is the
energy absorption coefficient ofN1 particles.

Tneq,cal = T
α+β

α+β+ γq
E1 +(α+ γq)β−1E2

E1 +αβ−1E2
. (8)

The entropy in presence ofq takes the form

S= Seq−kB
γ2

β2

[
N
N1

+
N
N 2

]
q2, (9)

with Seq the entropy at equilibrium and this leads to the follow-
ing non-equilibrium entropic temperature

1
Tneq,entr

=
1
T

+kB
γ2

β2

1
(E1−E2)N

[
N2

N2
1

− N2

N2
2

]
q2. (10)

These three temperatures are different from each other and
are related to the equilibrium temperatureT. Analogous re-
sults are obtained in the same statistical approach for a three-
level system, withN1,N2 andN3 particles at levels 1, 2 and 3
with energiesE1 < E2 < E3, and possible internal transitions
1→ 2→ 3→ 1 in presence of an external energy fluxq. In
kinetic theory in the case of an ideal gas, at equilibrium state
the caloric temperature concides with the kinetic temperature
through the relation

3
2

kBT =<
1
2

mC2 >, (11)

where m and C are the mass and the velocity intensity of a gas
particle. In non-equilibrium states, we have to consider the dis-
tribution function

f (r ,C, t) = feq(r ,C, t)[1+Φ], (12)

with feq the equilibrium distribution function andΦ a non-
equilibrium contribution. The ”entropy”s obtained from the
H-function has the form

s= seq− 1
2

kB

∫
feqΦ2dC, (13)

with s the entropy per unit volume andseq local-equilibrium
entropy. In presence of a heat flux, the entropy has the form,

up to the second order in the heat flux,

s= seq− τ
2λT2 q ·q, (14)

whereτ is the collision time andλ the thermal conductivity.
Then, we obtain the following non-equilibrium entropic tem-
perature

1
Tneq,ent

=
1
T

+
2
5

nm
p3T

q ·q. (15)

This non-equilibrium temperature corresponds to the kinetic
temperature in the plane perpendicular to the heat flux. Thus,
if the heat flux is in the z direction, we find the following rela-
tions

<
1
2

mC2
x >=<

1
2

mC2
y >=

1
2

kBTneq,ent <
1
2

kBT

and

<
1
2

mC2
z >=

1
2

kB(3Tneq,ent−2T) >
1
2

kBT. (16)

In the framework of continuum thermodynamics we discuss the
caloric and entropic non-equilibrium temperatures in a crys-
tal with defects of dislocation in non-equilibrium steady states,
when it is crossed by a given energy flux. We have in mind, for
instance, the walls of a fusion nuclear reactor, which are submit-
ted to an intense neutron flux supplied by the nuclear reaction.
The local structure of dislocations lines, which form a network
of very thin capillary tubes disturbing the otherwise perfect pe-
riodicity of the crystal lattice is described by the dislocation core
tensorai j , its fluxVi jk and a field sourceAi j . ai j gives the local
density of the dislocation channels along several directions [5].
Assuming that The evolution equation for the tensorial internal
variable is the following

dai j

dt
+Vi jk,k = Ai j . (17)

whereai j is the dislocation core tensor,Vi jk is its flux andAi j

is a field source. The tensorai j , introduced by Maruszewski

[5], . Assuming for the dislocation fluxVi jk =−D
∂ai j
∂xk

, with D a
diffusion coefficient for dislocations andAi j is the net formation
tensor (formation- destruction)of dislocations lines, we obtain

dai j

dt
−D∇2ai j = Ai j ,eq+ α̃qiq j , (18)



whereAi j ,eq is the net formation at equilibrium andqiq j is a
second contribution related to thermal stresses. The equilibrium
temperature and the non-equilibrium entropic temperatures are
defined by

θ−1
eq ≡̇

(
∂s
∂u

)

q=0
; θ−1

neq≡̇
(

∂s
∂u

)

q 6=0
. (19)

The quantityθ−1
neq can be expanded around the reciprocal

equilibrium temperature obtaining the following result in the
first approximation

θ−1
neq= θ−1

eq −θ−2
eq

∂θeq

∂ai j
∆ai j , (20)

with

∆ai j = ai j (q 6= 0)−ai j (q = 0). (21)

Then, in the first approximation, the non-equilibrium tempe-
ratureθneq will be related to the equilibrium temperature as

θneq=
θeq

1−θ−1
eq

∂θeq
∂ai j

∆ai j

≈ T

(
1+T−1

(
∂T
∂ai j

)
∆ai j

)
=

T +
(

∂T
∂ai j

)
∆ai j . (22)

To define the caloric of temperature related to the internal vari-
able ai j , first we consider the caloric equation of state at the
equilibrium: Udis = U (ai j (T,εkl),T,εkl), where we have taken
in consideration that at equilibrium the internal variable de-
pends on temperature and the stress tensor. Then, we define
the caloric non-equilibrium temperature fieldTneq related toai j

in a steady state, assuming that out the equilibrium the internal
energy has the same form as in equilibrium in presence ofq.

Udis(ai j (Tneq,εkl ,q = 0),Tneq,εkl) ≡̇Udis(ai j (T,εkl ,q),T,εkl)) .
(23)

Then, in the first approximation the non-equilibrium caloric
temperature will be related to equilibrium temperature by

Tneq= T +
(

∂T
∂Udis

)
∆Udis = T +

(
1

cdis

)
∆Udis, (24)

wherecdis is the specific heat associated to the changes of the
internal energy of dislocation lines, per unit volume. we see
that in this order of approximation both non-equilibrium tem-
peratures (entropic and caloric) coincide.

In [1] it was seen that in the case of a crystal with disloca-
tions, the entropy flux has the form

JS
k = θ−1qk−πi j θ−1Vi jk , (25)

where the variableπi j is the conjugate toai j and it was been
proposed to define the reciprocal of non-equilibrium thermody-
namic temperature as the coefficient linking the heat fluxq with

the entropy fluxJS. Based on the idea of perfect interfaces be-
tween systems, in which both the heat flux and the entropy flux
would be continuous, Muller gave the definition of the so-called
”coldness”, namely, of the reciprocal of absolute temperature.
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