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Metamaterials can be engineered to interact with waves in entirely new ways, finding application

on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials

can be used in large-scale experiments for filtering and manipulating seismic waves (seismic meta-

materials). Here, we propose seismic isolation based on a device that combines some properties of

seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation

positioned right below the building for isolation purposes. The concepts on which this solution is

based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for

compression (shear) effects. In other words, this paper introduces a different approach to seismic

isolation by using certain principles of seismic metamaterials. The experimental demonstrator

tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap,

it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a

path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves,

achieving higher efficiency compared to traditional seismic insulators and passive energy-

dissipation systems. VC 2018 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5018005

I. INTRODUCTION

The concept of metamaterials has emerged in recent

years for developing materials with unique properties not

generally found in nature. Although the idea was developed

originally in the context of electromagnetic field theory,1,2 a

subfield focusing on elastic metamaterials seems to be prom-

ising for medical applications, seismology, superlenses,

imaging, etc.3 Elastic metamaterials with appropriate locally

resonant structures can filter the energy of propagating

waves with frequencies in a stopband region. The first exper-

imental evidence of this property is found in Liu et al.,4 who

fabricated sonic crystals with a simple microstructure unit

consisting of a lead sphere with the coating of an elastically

soft material (i.e., silicon rubber) that exhibited a main stop-

band frequency region tuned near the resonant frequency of

400 Hz. Acting as internal resonators, the lead spheres had a

constant spatial lattice that was two orders of magnitude

smaller than the relevant wavelength at the resonant fre-

quency. The use of metamaterials to manipulate seismic

waves, which are characterized by volume [primary (P) and

secondary (S)] and surface (Rayleigh and Love) waves, has

been demonstrated for Rayleigh-type waves through a series

of full-scale experiments.5–7 Basically, it has been shown

that seismic metamaterials with sub-wavelength local reso-

nators can be designed to have a negative mass density and/

or a negative Young’s modulus as a way to control elastic

wave propagation within the frequency range of seismic

waves (<50 Hz). In particular, Brûl�e et al.5 reported modify-

ing the seismic energy distribution in the presence of a regu-

lar mesh of vertical cylindrical voids. Colombi et al.6

pointed out that trees in a forest can be used as natural meta-

materials, and other proposed approaches involve developing

large-scale phononic metamaterials.8,9

The aforementioned research focused on controlling the

propagation of seismic waves to protect the critical infrastruc-

ture via a seismic invisibility cloak. However, such solutions

require an amount of space that is comparable to the region

being cloaked, and they were developed mainly for surface

seismic waves. A different approach has been proposed,10 in

which a vibrating barrier in the form of a dummy building

absorbs a significant portion of the dynamic energy of a seis-

mic wave. Meanwhile, other strategies for vibration control

based on seismic isolation (SI) devices lead to significant

advantages from a strong reduction in seismic vulnerability

due to modifying the dynamic structural characteristics by (i)

increasing the dissipative properties of the structure and/or (ii)

altering its rigidity and thereby shifting the structural frequen-

cies. However, standard isolation strategies perform less well

in protecting tall buildings or if the soil below the building is

soft.11 In addition, for civil engineering applications, seismic

isolation should work for frequencies below 10 Hz.12

Here, we introduce the concept of a “composite

foundation” (CF) that integrates the physics of seismica)Email: gfinocchio@unime.it
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metamaterials based on the concept of periodic mass-in-

mass systems directly with the foundation of a building, cre-

ating on-site filters that reduce the energy transferred from a

seismic wave to the building at frequencies in the range of

the first vibration mode of the building itself. The use of CFs

represents a new paradigm for designing seismic protec-

tion.13 We focus on S-waves because of the fact that their

relatively high amplitudes are often associated with basin

resonances and other ground-filtering mechanisms (e.g.,

Love waves). Our results introduce a new way to design seis-

mic insulation by using the fundamental properties of seis-

mic metamaterials.

II. MATERIALS AND METHODS

A. Composite foundation

A sketch of the device under investigation is shown in

Fig. 1. It comprises four reinforced concrete plates with a

square cross-section of side 1 m and a thickness of 20 cm

[Fig. 1(a)]. Each plate is disconnected from the others by

means of an ultralow damping surface realized by a suitable

combination of layers of steel and Teflon [Fig. 1(a)]. Each

plate has a matrix of nine cylindrical inclusions with a regu-

lar spatial distribution and a center-to-center distance

dC¼ 30 cm between adjacent inclusions. Mechanical connec-

tions comprising rubber with low Young’s modulus and a

steel tube are fixed at the four corner inclusions (diameter of

15 cm) to connect neighboring plates [Fig. 1(b)]. The other

inclusions are used to host steel cylinders and rubbers (rub-

ber #1) as shown in Fig. 1(c) to allow them to act as internal

resonators. Along with the damping due to the rubber, the

presence in the CF of spatially ordered local resonators with

a dimension smaller than the wavelength of propagating

waves allows sub-wavelength wave manipulation similar to

that reported previously.4 Figure 2 shows schematically an

example of a CF below a building for the purpose of protec-

tion. The plates with internal resonators are sandwiched

between a load-distribution plate and a foundation plate to

give a more-uniform load distribution on the CF and hence

improve its dynamic response.

B. Equivalence of composite foundations with
periodic mass-in-mass systems

The working principle behind CFs is that of a periodic

mass-in-mass system14–18 without a damper, as discussed

below in detail. Considering the dynamical system in Fig.

1(d), the total energy Ej of element j is given by the sum of

kinetic (Ej
K) and potential (Vj

P) energies

FIG. 1. Schematics of composite foundation (CF) studied herein. (a) Plates and a magnified view of their disconnection element. (b) Spatial distribution of res-

onators and the detail of the elastomeric element used to connect different plates. (c) Example of a resonator and an elastomeric element separating the steel

resonator mass from the concrete plate. (d) A schematic of a periodic mass-in-mass system with the indication of mi, me, ki, and ke; ue and ui are the displace-

ments of the external and internal masses, respectively, while L is the spatial period of the CF in the vertical direction (see also Table I).

FIG. 2. Schematic of CF (plates with

resonators) below a building that is

being protected. This device is clearly

a part of the foundation itself and is

located between a load-distribution

plate and a foundation plate.
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where m and k are the mass and the spring constant, respec-

tively, of the mass-in-mass system, the subscripts i and e
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By considering the harmonic wave solution (Bloch’s theo-

rem) for element j, the generic solution of Eq. (2) is

ujþn
i ¼ Bie

iðqxþnqL�xtÞ;

ujþn
e ¼ BeeiðqxþnqL�xtÞ;

8<
: (3)

where q is the wave number, x is the angular frequency, L is

the periodic spatial constant of the mass-in-mass system, and

Bi and Be are complex numbers that account for any offset

phase between the two solutions. In Fourier space, the j � 1
and jþ 1 generic solutions can be written in terms of the j
generic solution

uj�1
1 �� > Uj

1eið�qLÞ;

ujþ1
1 �� > Uj

1eiðqLÞ:

(
(4)

Combining Eqs. (2)–(5) with some trivial mathematical steps

gives the dispersion relationship of a periodic mass-in-mass

system14,17

memix
4 � kiðme þ miÞ þ 2kemið1� cos qLÞ½ �x2

þ 2kekið1� cos qLÞ ¼ 0: (5)

The links between the discrete elements of the mass-in-mass

system and the properties of the CF (periodicity along the

vertical direction) are given in Table I. Considering the

experimental parameters of the CF under test, the elements

of the equivalent mass-in-mass system are me¼ 317 kg,

mi¼ 245 kg, ke¼ 155� 103 N/m, ki¼ 1080� 103 N/m (see

Table I, right-hand column), and L¼ 0.2 m. The dispersion

relationship computed as the roots of Eq. (1) shows a

bandgap that begins at a frequency fBG;i near 5 Hz, where

fBG;i ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðme þ miÞ½ �

memi

s
(6)

and stops at a frequency fBG;f near 14 Hz, where
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1
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The results in Fig. 3 show that the analytical results [as

computed with Eq. (1)] agree well with numerical computa-

tions of a full three-dimensional finite-element model of a

CF comprising four plates that was discretized with tetrahe-

dral finite elements (see the inset of Fig. 3 for the discretiza-

tion used for the simulations). The device is considered to be

a linear system19–21 in which the plates are separated by an

ideal disconnection element that simulates zero damping

between the plates. This approximation is reasonable consid-

ering that the experimental data show a damping coefficient

of around 3%. In addition, low damping does not modify the

dispersion relationship.

C. Experimental system

A schematic of the measurement system and a photo-

graph of the CF described above are shown in Figs. 4(a) and

4(b), respectively, with the key elements indicated; see also

Figs. 1(a)–1(c). The input displacement is applied to the sec-

ond plate (layer 2) by an MTS 204.71 actuator (Fig. 4). The

bottom plate (fixed layer), which is disconnected via a low-

damping multilayer from the second plate, is necessary for

reducing the friction as much as possible. In a real building,

it is necessary to use a load-distribution plate and a founda-

tion plate to separate the active region of the CF (see Fig. 2).

The measurement system is equipped with sensors to register

(i) the displacement and the acceleration of each plate and

(ii) the accelerations of the internal resonators. The data-

acquisition system has 12 acceleration channels for layers

1–4, two voltage channels for the actuator, four channels for

the slab displacements, 16 voltage channels for the resonator

accelerometers (four plates, two resonators per plate, and

two in-plane acceleration components), and eight voltage

channels for the additional low-cost slab accelerometers,

making a total of 42 channels with a sampling frequency of

100 Hz.
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In detail, the plate displacements are acquired by four

RDP LDC500A displacement transducers. These are induc-

tive displacement sensors with integrated signal conditioning

to output a voltage signal. These sensors were selected for

their dynamic range when coupled with an electrodynamic

actuator and a signal generator. This is a key aspect for cor-

rect measurements because the transducer is of the spring-

return type, making it essential to verify that no detachment

occurs between the sensor tip and the plate when the CF

moves. The plate accelerations are measured by four PCB

Piezotronics 356B18 triaxial accelerometers, exhibiting a

sensitivity of 1000 mV/g and a frequency range of

0.5–3000 Hz. These accelerometers are based on a piezoelec-

tric sensor element with built-in conditioning microelectron-

ics and are characterized by high sensitivity and low spectral

noise.22 Because there is little space between the resonators

and the concrete plate, the resonators are monitored during

the test by using a special resin to glue the accelerometers to

the upper surfaces of the resonators. For this application, the

accelerometers “sacrificial,” low-cost MEMS accelerometers

are used. The selected accelerometers are Analog Devices

model ADXL337, with a sensitivity of 300 mV/g and a volt-

age output. The printed circuit boards of these accelerome-

ters are glued to the resonators with the interposition of

insulation boards for short-circuit protection. We instrument

two resonators per concrete plate and use four additional

ADXL337 accelerometers to read the plate accelerations, in

parallel to the four PCB Piezotronics triaxial accelerometers

for redundancy and comparison purposes.

III. RESULTS

Figure 5 summarizes the main results of the experimen-

tal measurements in response to a time-domain input dis-

placement of the form u0 sin ðxtÞ with a nominal u0

¼ 3.5 mm. This signal is applied to layer 1 at different fre-

quencies ranging from 0.5 to 8 Hz. The sensors T1–T4, as

indicated in the inset of Fig. 5(a), register a time-domain sig-

nal at the same frequency as that of the input signal, while

the signal amplitude depends on the input frequency. Figure

5(a) shows the transfer function of the CF computed as the

ratio of (i) the displacement amplitude measured by the sen-

sor T4 to (ii) the input signal measured by T1. As the fre-

quency approaches the beginning of the theoretical bandgap

at 5 Hz (see Fig. 3), the signal propagating through the CF is

attenuated. The attenuation coefficient as a function of fre-

quency is shown in Fig. 5(b) (circles) as computed directly

from the transfer function of Fig. 5(a) [see also Eq. (3)]. For

completeness, Fig. 5(b) also shows the theoretical attenua-

tion coefficient (solid line) displayed up to 8 Hz computed as

the imaginary part of the wave vector qL given by

qL ¼ a cos 1� memix4 � x2kiðme þ miÞ
2x2kemi � 2keki

� �
: (8)

Figures 5(c) and 5(d) show the time-domain traces as mea-

sured by sensors T1–T4 for input frequencies of 2 and

6 Hz, respectively. The data show clearly that inside the

bandgap (6 Hz), the displacement is attenuated and the sig-

nal amplitude at T4 is reduced by more than 50% com-

pared to the input signal at T1. Experiments performed

with an additional weight of 1000 kg on top of the upper

slab showed results that were quantitatively similar to

those in Fig. 5. It should also be noted that any vibration

of the building sitting on the CF will also be filtered at

frequencies within its bandgap.

FIG. 3. Dispersion curve computed from the dispersion relationship [Eq.

(1); solid lines] for periodic mass-in-mass systems (L¼ 0.2 m, mi¼ 317 kg,

me¼ 245 kg, ke¼ 155� 103 N/m, and ki¼ 1080� 103 N/m) and three-

dimensional finite-element simulations (squares). The inset shows the three-

dimensional finite-element discretization scheme used for the CF in which

four plates are separated by an ideal disconnection plane.

TABLE I. Conversion of parameters of the mass-in-mass system and the

composite foundation (CF).

Mass-in-mass Composite foundation Conversion factors

me Reinforced-concrete plate Vp

(plate volume),

qc (concrete density)

me ¼ qc � Vp

qc ¼ 2400 kg=m3

Vp ¼ 13:21� 10�2 m3

mi Steel cylinder nc

(number of cylinders),

Vc (cylinder volume),

qs (concrete density)

mi ¼ nc � qs � Vc

nc ¼ 5

qs ¼ 7800 kg=m3

Vc ¼ 6:28� 10�3m3

ke Rubber #1 (connection) Ere

(Young’s modulus of rubber),

Are (area of external

element’s rubber),

Lre (length of external

element’s rubber)

ke ¼ 2
Ere � Are

Lre

Ere ¼ 1:8� 106Pa

Are ¼ 3:75� 10�3m2

Lre ¼ 8:75� 10�2m

ki Rubber #2 (connection)

Eri (Young’s modulus

of rubber),

Ari (area of internal

element’s rubber),

Lri (length of internal

element’s rubber),

nc (number of cylinders)

ki ¼ nc
Eri � Ari

Lri

nc ¼ 5

Eri ¼ 1:80� 106Pa

Ari ¼ 3:00� 10�3m2

Lri ¼ 2:50� 10�2m
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We consider the above results as proof of concept of the

working principle of this CF (see the supplementary material

for a video of the dynamic measurements). Even though the

experimental study was performed by applying the displace-

ment along one particular direction, we stress that because of

the symmetry of the CF, its transfer function is independent

of the S-wave polarization; in other words, it exhibits an iso-

tropic response in the plane for its horizontal component.

To test the robustness of the CF, it was also subjected to

an up-down chirp signal (for more than 10 min) character-

ized by a frequency that first increased from f0¼ 1 Hz to

fM ¼ 10 Hz (Df ¼ 9 Hz) and then decreased to f0 in T¼ 10 s

supðtÞ ¼ u0ðxÞ sin x0tþ Dx
T

t2
� �

t 2 0;
T

2

� �
;

sdownðtÞ ¼ u0ðxÞ sin xMt� Dx
T

t2

� �
t 2 T

2
; T

� �
:

8>>><
>>>:

(9)

Figure 6 shows the time-domain displacements of layers T1

and T4 for a complete cycle of the input signal. As the input

frequency increases and approaches the bandgap, the dis-

placement in layer T4 becomes less than that in layer T1.

The frequency-dependent displacement in layer T4 (from a

maximum of 6.6 mm at 1 Hz to a minimum of 3.8 mm at

10 Hz) is due to the limited dynamical response of the MTS

actuator.

IV. DISCUSSION

In general, CFs differ markedly from ordinary seismic iso-

lation devices. The seismic isolation property relates mainly to

the ultralow-damping surface between different plates, whereas

the additional key property coming from the metamaterial is

the dissipation process due to the internal resonance (internal

mass and spring), which is f ¼ 1
2p

ffiffiffiffi
ki

mi

q
¼ 9.2 Hz in the present

case [see Eq. (6)]. In particular, a CF acts as a filter with

marked attenuation over a designed frequency range (bandgap),

whereas a classical SI device introduces a shift in the natural

oscillation periods of the building. This is a very important fea-

ture for buildings with long vibration periods: such buildings

FIG. 4. (a) Schematic of the measure-

ment system used for dynamic charac-

terization of CF. (b) Photograph of CF

under test, with main parts of the mea-

surements system indicated. The

device comprises four layers that are

free to move over a fixed slab. Each

layer is disconnected from others by an

ultralow damping surface composed of

steel (top surface) and steel/Teflon

(bottom surface). All sensors used in

the tests were sampled with a National

Instruments system comprising a PXI-

1052 chassis, a PXI-8110 embedded

controller, a PXI-4498 board with 16

simultaneous sampling channels with

24-bit resolution to acquire the PCB

Piezotronics accelerometer signals and

a PXI-6289 board with 32 channels

with 18-bit resolution for all voltage-

output instruments, i.e., loads and

spans at the MTS actuators, plate dis-

placements for each layer, and resona-

tor accelerations.
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receive no advantage from traditional seismic isolation,

whereas the CF filtering effect can indeed be effective.

Therefore, metamaterial-based isolation is expected to have bet-

ter isolation characteristics and be more widely applicable com-

pared to standard SI.

To compare the dynamical properties of a CF with and

without resonators from a theoretical perspective, it is suffi-

cient to consider a mass–spring periodic chain that is charac-

terized by simpler expressions for the dispersion relationship

and the attenuation coefficient, namely,

mex2 þ 2keð1� cos qLð ÞÞ ¼ 0;

qL ¼ a cos 1� mex2

2ke

� �
:

8><
>: (10)

The mass–spring periodic chain exhibits only a Bragg region

(dissipation mechanism due to the rubber) starting at a fre-

quency around 8 Hz and in which the attenuation coefficient

increases monotonically with no resonance. In other words,

the internal resonance of the mass-in-mass periodic chain

gives rise to a more-efficient attenuation mechanism that

starts at a lower frequency than the mass–spring periodic

chain (4.5 Hz as opposed to 8 Hz).

We also wish to stress that this seismic metamaterial

does not exhibit a “negative refraction index.” Rather, the

effective mass depends on the frequency and becomes nega-

tive for frequencies within the bandgap.14,17 In addition, the

amount of physical space required for SI is comparable with

FIG. 5. (a) Transfer function of CF under test computed as the ratio of (i) the signal amplitude measured by T4 to (ii) that measured by T1 at different input fre-

quencies. Inset: indication of the link between sensors T1–T4 and plates (T1 and T4 correspond to the input and output displacements, respectively). (b)

Comparison between the theoretical attenuation coefficient (solid line) and the experimental one (green squares) computed from the data in (a) as a function of the

input frequency. (c) and (d) Time-domain traces measured by sensors T1 and T4 at points A (2 Hz, acoustic branch) and B (6 Hz, bandgap) as indicated in (a).

FIG. 6. Time-domain traces measured by sensors T1 (black line) and T4

(red line) for an input up/down chirp signal applied to layer 1. The signal

frequency increases from 1 Hz to 8 Hz.
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the size of the building itself, which is a key issue for any

future commercialization (see Fig. 2).

V. SUMMARY AND CONCLUSIONS

New buildings should be developed to reduce shaking-

related damage. To that end, we propose herein the concept

of a CF with two properties, namely, the local resonance and

a dual-stiffness structure,23 i.e., large (small) rigidity for

compression (shear) effects. This new design paradigm of

CF retains the resistance of a standard foundation to a verti-

cal load (i.e., a building on top), while offering the advantage

of filtering the energy of S-waves propagating through it

with frequencies within its bandgap. Specifically, our data

show that S-waves with frequencies greater than 4.5 Hz (the

starting frequency of the theoretical bandgap) are attenuated

and that the device studied herein can filter more than 50%

of the wave energy within that bandgap. We argue that this

fundamental result on S-wave filtering could be the basis for

designing a new generation of building-protection devices24

that join seismic metamaterial concepts applied to surface

and volume seismic waves. A challenge in developing this

concept into a widespread alternative to standard foundations

in new buildings will be to design a CF whereby the main

resonance frequency of the building and the amplification

region of the soil response are both within the bandgap.

SUPPLEMENTARY MATERIAL

See supplementary material for a video of the dynamic

measurements of the CF.
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