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1. Introduction

The modeling of intelligent, complex systems is a very active research
field which motivated many studies in recent years due to its relevance in
life-sciences [1]. In this respect, a very important role is played by collec-
tive learning, not only in biological systems but in the field of social sciences
as well [2, 3]. In order to describe the complexity of the interactions for
large systems of living entities, applied mathematicians developed different
approaches ranging from kinetic and statistical mechanics models to stochas-
tic methods and Monte Carlo simulations [4, 5, 6, 7]. In particular, in the
framework of the so-called kinetic theory for active particles [KTAP theory]
[8], several interesting models were obtained in a variety of different fields
such as social systems [9], spread of epidemics [10], micro-scale darwinian
evolution [11] and collective learning processes [12, 13, 14]. More recently,
the KTAP theory has been extended to model interactions of groups of in-
dividuals localized on networks in order to describe social phenomena such
as for example, population migration [15], opinion formation [16, 17, 18] or
specific problems of political economy [19]. Moreover, a network representa-
tion of complex learning systems has been presented in [20, 21] and applied
to describe learning processes that take place in a classroom. It is the aim of
this paper to analyze the emerging properties in a population of interacting
entities characterized by a microscopic learning dynamics and distributed
over a network connecting a certain number of nodes. A particular topology
of the network is considered by introducing a special node having the role
of ”leader”, i.e. influencing all the other nodes of the network, although not
being influenced in turn.
In the mathematical framework of the KTAP theory, living entities are called
active particles: their microscopic state is modeled by a scalar variable called
activity which is assumed to be heterogeneously distributed among the parti-
cles. The activity represents the ability of each individual to express a given
strategy, which, in the case under analysis, is the ability to learn.
In the following we divide the complex system in different populations, math-
ematically characterized as functional subsystems, localized in the different
nodes of the network. Conservation of the size of the population on each
node is assumed; the case in which migration phenomena among the nodes
are allowed [1], is discussed as a research perspectives. In Sec.2 the refer-
ence mathematical formalism is introduced and applied to a network of living
entities characterized by different abilities to learn. Interactions of the indi-
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viduals among them induce a learning process which can improve the level of
knowledge of the individuals involved, but also in some cases be misleading
and reduce it. Sec.3 is devoted to the solution of the initial value problem
for the mathematical model introduced. Next, a specific learning dynamics
on the network is discussed in Sec.4. Numerical simulations are provided in
Sec.5 expecially focusing on the effect of the network structure on the emerg-
ing behaviours of the system. Finally, research perspectives are outlined in
Sec.6.

2. Mathematical Framework

In the following we introduce the essential aspects of the reference mathe-
matical formulation and specialize them to the case of living entities interact-
ing on a network. Moreover, we characterize the properties of the network
and of the nonlinear interactions involved in the learning dynamics of the
complex system under study.

2.1. Mathematical Representation

The hallmarks of the KTAP theory are the following:

• The overall system is subdvided into functional subsystems constituted
by entities, called active particles,whose individual state is called ac-
tivity;

• the state of each functional subsystem is defined by a suitable, time
dependent, probability distribution over the activity variable;

• interactions are modeled by games, more precisely stochastic games
[17], where the state of the interacting particles and the output of the
interactions are known in probability;

• the evolution of the above mentioned probability distributions is ob-
tained by a balance of particles within elementary volumes of the space
of the microscopic states,where the dynamics of the inflow and the out-
flow of particles is determined by the interactions at the microscopic
scale.

In particular, in the complex system under analysis, each of the active
particles expresses a learning strategy at any given instant of time. The
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active particle’s strategy is represented by a scalar variable u ∈ Du ⊂ R,
called activity, which is heterogeneously distributed among the particles. A
discrete normalized domain is assumed for the activity variable on which it

takes m discrete states, i.e. Du =
{
u1 = 0, . . . , ur =

r − 1

m− 1
, . . . , um = 1

}
,

ranging from the worst learning activity u1 = 0 to the best one um = 1.
We introduce n subsystems characterized by the same activity variable u,

although it will be expressed on each subsystem in different ways by means of
different parameters and/or different initial conditions. On each subsystem
a time evolving discrete probability on the active variable is introduced

f i
r = f i(ur, t) : Du × [0, Tmax]→ [0, 1], i = 1, . . . , n, r = 1, . . . ,m, (1)

which has been normalized with respect to the constant size of the population;
Tmax is the observation time. The following probability property holds

m∑
r=1

f i
r = 1, ∀ i = 1, . . . , n ∀t ≥ 0

on each subsystem in each instant of time. The notation f i = (f i
1, . . . , f

i
m)

will be used in the following for the probability on the i− th node; on each
node we introduce the first moment of the distribution

M(i)[f(t)] =
m∑
r=1

urf
i
r(t), ∀i = 1, . . . , n.

In the present model we consider two kinds of interactions:

• binary interactions (between pairs of particles),

• multiple interactions (between a particles and a node).

Binary interactions involve only the microscopic scale: a candidate par-
ticle acquires in probability the microstate of the test active particle, rep-
resentative of the system, due to an interaction with a field active particle.
Multiple interactions instead, involve both the microscopic and the macro-
scopic scale (micro-macro interactions). Indeed in this case the candidate
active particles interacts with a node. The state of the latter is represented
by the first moment of the probability distribution taken over the particles
microstates of the corresponding node, defined in [3]. We may say that at
each interaction the active particle plays a stochastic game whose payoff,
given only in probability, is given by the acquired microstate.
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2.2. Network structure

We introduce now a network structure in the population of active particles
by considering interactions among the subsystems [1, 7].

By using the language of graph theory, each subsystem is represented by
a node (vertex of the graph) and the interaction between any pair of nodes is
represented by an arrow which is bidirectional, whenever the nodes influence
each other (undirected graph), or in one direction only whenever one node
influence the other but it is not subject to the influence of the other node in
turn (directed graph).
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Figure 1: Directed graph (on the left of the figure) and undirected graph (on the right of
the figure).
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Figure 2: Network topology
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Dashed lines are used to represent the general topology of one ’leader’
node and n− 1 ’follower’ nodes.

In all the ’follower’ nodes, we model the effects on the candidate active
particle due to two phenomena:

1. binary interactions with field active particles within the subsystem to
which the candidate active particle belongs;

2. influence of the mean activities of the other nodes of the network.

In the ’leader’ node, only binary interactions among the field active par-
ticles within the subsystem are allowed, modeling the fact that the active
particles of this node are not influenced by the activity of the other nodes.

2.3. Interactions

A very important aspect of the learning dynamics [4, 9] is that the inter-
actions are nonlinearly additive: in fact, the result of the interaction between
a pair of active particles is nonlinearly dependent not only on the states of
the two particles, but also on the states of all the particles in an interaction
domain. Due to the topology of our network, we have a different phenomenol-
ogy of interactions according to whether the node we are considering is the
leader node or one of the followers.
In the following we do not take into consideration proliferative and/or de-
structive interactions. Then we obtain the following general form of kinetic
equation governing the evolution in time of the probability (1)

d

dt
f i
r(t) = J i

r[f
i](t) + J i

r [f1, . . . , fn](t), ∀i = 1, . . . , n, ∀r = 1, . . . ,m, (2)

where each term on the right hand side represents the gain and loss in the
microstates due to the two different phenomena listed above, respectively.
In particular, the nonlinear operator J i

r corresponds to interactions involving
pairs of active particles in the i− th node and J i

r characterizes the influence
of the mean activities of all the nodes of the network on the candidate active
particle; square parentheses are used to denote the nonlinear dependence of
the terms on the probabilities.

In order to derive explicit expressions for the quantities entering Eq.(2)
we need to specify:

• ηijhk — encounter rate between pairs of active particles of the i−th node
with activity uh and of j − th node with activity uk, respectively;
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• Bij
hk(r)[f i] = Bij[f i](uh → ur |uh, uk) — transition probability function,

on the i− th node, defining the probability for a candidate active par-
ticle characterized by uh to move to ur due to an interaction with a
field active particle characterized by uk belonging to the j − th node;

• η̃ijh — influence rate due to the mean value of the j − th node on an
active particle uh belonging to the i− th node;

• B̃ij
h (r)[f i] = B̃ij[f i](uh → ur;uh,M(j)) — transition probability function

on the i− th node, defining the probability for a candidate active par-
ticle characterized by uh to move to ur due to an influence of the mean
activity of the j − th node.

Both the transition probability densities satisfy the probability property

m∑
r=1

Bij
hk(r) = 1 ∀i, j = 1, . . . , n, ∀h, k = 1, . . . ,m,

m∑
r=1

B̃ij
h (r) = 1 ∀i, j = 1, . . . , n, ∀h = 1, . . . ,m,

on each node of the network.

Remark 1. It is worth mentioning here that no migrations among the nodes
are modeled.

It there follows that the explicit expression of Eq.(2) takes the form

d

dt
f i
r(t) =

n∑
j=1

m∑
h,k=1

Bij
hk(r)[f i] ηijhk f

i
h(t) f j

k(t)− f i
r(t)

n∑
j=1

m∑
k=1

ηijrk f
j
k(t)

+
n∑

j=1

m∑
h=1

B̃ij
h (r)[f i] η̃ijh f

i
h(t)M(j)−f i

r(t)
n∑

j=1

η̃ijr M(j),

i = 1, . . . , n, j = 1, . . . ,m

(3)

3. Qualitative analysis

In this section we take into account the initial value (I.V.) problem for
Eq. (3) and we show that the solution of such I.V. problem exists and is a
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positive, regular function of time, of class C1 ([0, T ]).
We start with

d

dt
fir(t) = Qi [f ] (t) = J i

r[f
i](t) + J i

r [f1, . . . , fn](t)

fir(0) = fi(0, ur), i = 1, . . . , n; r = 1, . . . ,m,
(4)

where

J i
r[f

i](t) =
n∑

j=1

m∑
h,k=1

Bij
hk(r)[f i] ηijhk f

i
h(t) f j

k(t)− f i
r(t)

n∑
j=1

m∑
k=1

ηijrk f
j
k(t),

and

J i
r [f1, . . . , fn](t) =

n∑
j=1

m∑
h=1

B̃ij
h (r)[f i] η̃ijh f

i
h(t)M(j)−f i

r(t)
n∑

j=1

η̃ijr M(j),

i = 1, . . . , n, r = 1, . . . ,m

We introduce the space

X =
{
f i : [0, T ]→ R, f i ∈ C1([0, T ]), i = 1, . . . , n; T > 0

}
characterized with the norm:

‖f i‖X =
m∑
r=1

∣∣f i
r(t)
∣∣.

Moreover, we define the Banach space X = Xn equipped with the norm:

‖f‖X =
n∑

i=1

‖f i(t)‖X ,

and set:

X+ =
{
f ∈ X | f i ≥ 0, i = 1, . . . , n

}
.

The following theorem states a result of local existence and uniqueness for
the solution of the I.V. problem (4).
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Theorem 3.1. Consider the I.V. problem (4) with f0 = {f 1(0, u), . . . , fn(0, u)} ∈
X+. Assume that

ηijhk ≥ 0, η̃ijh ≥ 0, Bij
hk(r) ≥ 0, B̃ij

h (r) ≥ 0, (5)

m∑
r=1

Bij
hk(r) = 1 ∀i, j = 1, . . . , n, ∀h, k = 1, . . . ,m,

m∑
r=1

B̃ij
h (r) = 1 ∀i, j = 1, . . . , n, ∀h = 1, . . . ,m,

hold, together with the following hypotheses:

• The encounter rates ηijhk and η̃ijh satisfy the following conditions:

m∑
r=1

ηijhk ≤ C,
m∑
r=1

η̃ijh ≤ C̃,

∀h, k = 1, . . . , n ∀i, j ∈ {1, . . . ,m} and ∀f ∈ X with C and C̃ positive
constants;

• ∀f ∈ X, ∀g ∈ X the probabilities Bij
hk(r) and B̃ij

h (r) and the encounter
rates ηijhk and η̃ijh are Lipschitz continuous in X, that is, ∀ h, k ∈
{1, . . . ,m} it results
n∑

i,j=1

m∑
r=1

| Bij
hk(r) [f ]−Bij

hk(r) [g] | ≤ L1‖f − g‖X,

n∑
i,j=1

m∑
r=1

| B̃ij
h (r) [f ]− B̃ij

h (r) [g] | ≤ L̃1‖f − g‖X,

n∑
i,j=1

m∑
r=1

| ηijhk [f ]− ηijhk [g] | ≤ L2‖f − g‖X,

n∑
i,j=1

m∑
r=1

| η̃ijh [f ]− η̃ijh [g] | ≤ L̃2‖f − g‖X,

with L1, L̃1, L2 and L̃2 positive constants.

Then, there exist T > 0 and a unique solution f(t) in X for the I.V. problem
(4) on the time interval [0, T ]. Moreover f(t) ∈ X+, t ∈ [0, T ].
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Proof. We start observing that, since the interactions are assumed number
conservative, see (5), it results that:

d

dt

m∑
r=1

f i
r(t) = 0 ,

which implies:

‖f(t)‖X = ‖f(0)‖X, for any t ≥ 0. (6)

Therefore the solution of (4), if it exists, remains bounded in X for any time
t ≥ 0. The latter observation assures that the operator Qi [f ] (t) in the right
hand side of (4) is a closed map in X. Let us now prove that Qi [f ] (t) is
Lipschitz continuous in X, i.e. given ‖f‖X ≤ M and ‖g‖X ≤ M it follows
that:

‖Qi [f ] (t)−Qi [g] (t)‖X ≤ L‖f − g‖X (7)

with L a positive constant depending on M.
Following the same lines of the proof of the theorem in [14, 22], considering
that Qi [f ] (t) = J i

r[f
i](t) + J i

r [f1, . . . , fn](t) we can prove (7). Then, the
existence of a unique solution f(t) in X, local in time, to (4) follows. Non
negativity of such a solution is easily obtained observing that the components
f i
r(t) of the solution satisfy the condition:

f i
r ≥ 0 ∀i = 1, . . . , n and ∀r = 1, . . . ,m (8)

when f(0) ∈ X+. We set:

Ri(f, f)(t) =
n∑

j=1

m∑
h,k=1

(
ηijhkB

ij
hk(r) [f ] f i

h(t)f j
k(t) + η̃ijh B̃ij

h (r) [f ] f i
h(t)f j

k(t)
)
,

S(f)(t) =
n∑

k=1

m∑
j=1

(
ηijrkf

j
k(t) + η̃ijr M(j)

)
.

Equation (3) can be rewritten as

d

dt
f i
r(t) + f i

r(t)S(f)(t) = Ri(f, f)(t). (9)
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Now we call

λ(t) =

∫ t

0

S(f)(t
′
)dt

′
.

If f i
r is solution of (9), it then follows

d

dt
(exp(λ(t))f i

r(t)) = exp(λ(t))Ri(f, f)(t)

which implies

f i
r(t) = exp(−λ(t))f i

r(0) +

∫ t

0

[
exp(λ(t

′
))Ri(f, f)(t

′
)
]
dt

′
. (10)

The relation (10) allows us to conclude that, given f(0) ∈ X+ and the pos-
itivity of the integral function, the function f i

r(t) satisfies the condition of
non-negativity (8) in its domain of existence. Moreover, when (8) is used
together with (6), we obtain that the solution to (4) is uniformly bounded
on any compact time interval [0, T ], T > 0. This latter observation leads
immediately to the following result of global existence of the solution in X+

Theorem 3.2. Consider the I.V. problem (4) under the assumptions of the
theorem 3.1. Then the solution f(t) exists for any finite time t ≥ 0.

4. A specific model of learning dynamics on networks

We introduce now a phenomenological learning dynamics in a population
structured in a network of three nodes where i = 1 denotes the leader node
and i = 2, 3 denote the follower nodes. For a specific model one needs to
introduce given probability transitions characterising the stochastic micro-
scopic interactions among the active particles. Due to the particular network
topology we have introduced, we need three probability transitions: on the
leader node, on the follower nodes and on the whole network.

4.1. TRANSITION PROBABILITY DENSITIES
Binary interactions

We first consider the transition probability densities Bij
hk [f i] due to mi-

croscopic interactions. Such interactions take place both between particles
belonging to the same subsystem and between particles of different subsys-
tems.
The tables below report some of the most relevant interaction rules.
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The leader node is characterized by the property that its particles do not
change their level of knowledge when interacting with particles belonging to
the follower nodes. On the other hand, when a candidate particle uh of the
leader node interacts with a field particle uk in the same node, in the case
uh < uk, with uh ≥ M(1), the probability of the transition uh → uh+1 in-
creases as the distance |uh − uk| decreases.
When instead uh < uk, with uh < M(1), the probability of the transition
uh → uh+1 increases as the distances |M(1)−uh| and |uh−uk| increase. When
uh ≥ uk the microscopic state of the candidate particle does not change. In
other words, for the particles belonging to the leader node no regressions
of the level of knowledge are allowed. The corresponding tables are shown
below.

LEADER - LEADER

uh < uk



uh ≥M(1)


B11

hk(r = h) = |uh − uk|
B11

hk(r = h+ 1) = 1− |uh − uk|
B11

hk(r 6= h, r 6= h+ 1) = 0

uh <M(1)


B11

hk(r = h) = 1−
∣∣M(1) − uh

∣∣+ |uh − uk|
2

B11
hk(r = h+ 1) =

∣∣M(1) − uh
∣∣+ |uh − uk|
2

B11
hk(r 6= h, r 6= h+ 1) = 0

uh ≥ uk

{
B11

hk(r = h) = 1

B11
hk(r 6= h) = 0

LEADER - SUBSYSTEM 2{
B12

hk(r = h) = 1

B12
hk(r 6= h) = 0

LEADER - SUBSYSTEM 3{
B13

hk(r = h) = 1

B13
hk(r 6= h) = 0
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Next, we consider the microscopic interactions between particles of the
node i = 2 with particles of the leader node i = 1. We always assume that
the level of knowledge uk (leader node) is higher than uh (follower node). We
first look at the case uh ≥ M(2): if uk ≥ M(1), then we have the transition
uh → uh+1; if uk < M(1), then the probability of the transition uh → uh+1

decreases as the distance |M(2) − uh| increases. Let as now look at the case
uh <M(2): when uk ≥M(1), then the probability of the transition uh → uh+1

increases as the distance |M(2) − uh| increases. When instead uk < M(1),
the candidate particle is encouraged to improve its level of knowledge by the
driving effects of the two distances |M(2) − uh| and |uh − uk|. The related
probability transition densities are reported below.

SUBSYSTEM 2 - LEADER

h = m

{
B21

hk(r = m) = 1

B21
hk(r 6= m) = 0

h 6= m



uh ≥M(2)


uk ≥M(1)

{
B21

hk(r = h+ 1) = 1

B21
hk(r 6= h+ 1) = 0

uk <M(1)


B21

hk(r = h) =
∣∣M(2) − uh

∣∣
B21

hk(r = h+ 1) = 1−
∣∣M(2) − uh

∣∣
B21

hk(r 6= h, r 6= h+ 1) = 0

uh <M(2)



uk ≥M(1)


B21

hk(r = h) = 1−
∣∣M(2) − uh

∣∣
B21

hk(r = h+ 1) =
∣∣M(2) − uh

∣∣
B21

hk(r 6= h, r 6= h+ 1) = 0

uk <M(1)


B21

hk(r = h) = 1−
∣∣M(2) − uh

∣∣ · |uh − uk|
B21

hk(r = h+ 1) =
∣∣M(2) − uh

∣∣ · |uh − uk|
B21

hk(r 6= h, r 6= h+ 1) = 0

uh = uk

{
B21

hk(r = h) = 1

B21
hk(r 6= h) = 0

The next table reports the transition probability densities B22
hk [f i] related

to interactions between active particles localized in the second node (i = 2).
In the case uh < uk, with uh ≥ M(2) the level of knowledge uh tends to
increase, uh → uh+1, as the distance |uh − uk| decreases and it tends to
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remain the same otherwise. For uh < uk, with uh < M(2), the transition
uh → uh+1 is favoured by an increasing value of the two distances |uh − uk|
and |M(2) − uh|.
The situation is instead different in the second part of the table, when the
level of knowledge of the candidate particle uh is bigger than that of the
field particle uk. In this case indeed, there is a possibility of a regression,
due to misleading informations which can reduce the level of knowledge. For
uh > uk, when uh ≥M(2), we see that uh can either stay the same or decrease:
the probability of the transition uh → uh−1 increases as the distance |uh−uk|
increases. Instead, when uh <M(2), also the distance |M(2)−uh| plays a role
and the regression uh → uh−1 is favoured by a decrease of the two distances
|M(2) − uh| and |uh − uk|.

SUBSYSTEM 2 - SUBSYSTEM 2

uh < uk



uh ≥M(2)


B22

hk(r = h) = |uh − uk|
B22

hk(r = h+ 1) = 1− |uh − uk|
B22

hk(r 6= h, r 6= h+ 1) = 0

uh <M(2)


B22

hk(r = h) = 1−
∣∣M(2) − uh

∣∣+ |uh − uk|
2

B22
hk(r = h+ 1) =

∣∣M(2) − uh
∣∣+ |uh − uk|
2

B22
hk(r 6= h, r 6= h+ 1) = 0

uh > uk



uh ≥M(2)


B22

hk(r = h− 1) = |uh − uk|
B22

hk(r = h) = 1− |uh − uk|
B22

hk(r 6= h, r 6= h+ 1) = 0

uh <M(2)


B22

hk(r = h− 1) = 1−
∣∣M(2) − uh

∣∣+ |uh − uk|
2

B22
hk(r = h) =

∣∣M(2) − uh
∣∣+ |uh − uk|
2

B22
hk(r 6= h− 1, r 6= h) = 0

uh = uk

{
B22

hk(r = h) = 1

B22
hk(r 6= h) = 0

When we consider binary interactions between particles belonging to the
follower nodes 2 and 3, we assume that the transition probability densities
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B23
hk [f i] only depend on the distance |uh − uk|.

Indeed, for uh < uk, a small value of this distance tends to keep uh fixed; as
the distance increases, then the transition uh → uh+1 is favoured. In the case
uh ≥ uk, we see instead the possibility of a regression, uh → uh−1, which is
induced by a growth of the distance |uh − uk|.
The corresponding table is shown below.

SUBSYSTEM 2 - SUBSYSTEM 3

uh < uk


B23

hk(r = h) = 1− |uh − uk|
B23

hk(r = h+ 1) = |uh − uk|
B23

hk(r 6= h, r 6= h+ 1) = 0

uh ≥ uk


B23

hk(r = h− 1) = |uh − uk|
B23

hk(r = h) = 1− |uh − uk|
B23

hk(r 6= h, r 6= h− 1) = 0

The microscopic interactions corresponding to candidate particles belong-
ing to the node 3 can be discussed along the same lines as the previous ones
and will not be reported here.
We then turn our attention to the transition probability densities correspond-
ing to the micro-macro interactions between a particle and a node.
Particles belonging to the leader node can change their state uh only under
the influence of their own node. Indeed, the tables below show that the tran-
sition probability density B̃11

hk [f i] depends only on the distance |M(1) − uh|
when is uh < M(1), with the transition uh → uh+1 which is favoured as the
distance increases. Otherwise, the level of knowledge does not change. Sim-
ilarly there is no change of uh due to the influence of the follower nodes 2
and 3.
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4.2. TRANSITION PROBABILITY DENSITIES
Multiple interactions

LEADER - LEADER

uh <M(1)


B̃11

hk(r = h) = 1−
∣∣M(1) − uh

∣∣
B̃11

hk(r = h+ 1) =
∣∣M(1) − uh

∣∣
B̃11

hk(r 6= h, r 6= h+ 1) = 0

uh ≥M(1)

{
B̃11

hk(r = h) = 1

B̃11
hk(r 6= h) = 0

LEADER - SUBSYSTEM 2{
B̃12

hk(r = h) = 1

B̃12
hk(r 6= h) = 0

LEADER - SUBSYSTEM 3{
B̃13

hk(r = h) = 1

B̃13
hk(r 6= h) = 0

The situation is of course different when we turn our attention to the
micro-macro interactions between a candidate particle belonging to the node
i = 2 and the three nodes in the network.
In the first table below we have reported the transition probability densities
due to the influence of the leader node on the candidate particle uh. For this
case no possibility of regression of the level of knowledge is allowed. The
transition uh → uh+1 is favoured by an increase of the distance |M(1) − uh|
when uh ≥M(2); in the case uh <M(2), the same transition is induced by an
increase of both the distances |M(1) − uh| and |M(2) − uh|.

16



SUBSYSTEM 2 - LEADER

uh ≥M(2)


uh ≥M(1)

{
B̃21

hk(r = h) = 1

B̃21
hk(r 6= h) = 0

uh <M(1)


B̃21

hk(r = h) = 1− |M(1) − uh|
B̃21

hk(r = h+ 1) = |M(1) − uh|
B̃21

hk(r 6= h, r 6= h+ 1) = 0

uh <M(2)



uh ≥M(1)

{
B̃21

hk(r = h) = 1

B̃21
hk(r 6= h) = 0

uh <M(1)


B̃21

hk(r = h) = 1− |M
(1) − uh|+ |M(2) − uh|

2

B̃21
hk(r = h+ 1) =

|M(1) − uh|+ |M(2) − uh|
2

B̃21
hk(r 6= h, r 6= h+ 1) = 0

Next, the candidate particle uh belonging to the node 2, is under the
influence of its own node. Then we have a possible transition uh → uh+1,
in the case uh < M (2), with a probability which increases as the distance
|M (2) − uh| increases.
We also have a possible transition uh → uh−1, in the case uh > M (2), again
with a probability which increases as the distance |M (2) − uh| increases.
Of course in the case uh = M (2) the level of knowledge does not change. The
corresponding table is shown below.

SUBSYSTEM 2 - SUBSYSTEM 2

uh <M(2)


B̃22

hk(r = h) = 1−
∣∣M(2) − uh

∣∣
B̃22

hk(r = h+ 1) =
∣∣M(2) − uh

∣∣
B̃22

hk(r 6= h, r 6= h+ 1) = 0

uh >M(2)


B̃22

hk(r = h− 1) =
∣∣M(2) − uh

∣∣
B̃22

hk(r = h) = 1−
∣∣M(2) − uh

∣∣
B̃22

hk(r 6= h, r 6= h+ 1) = 0

uh = M(2)

{
B̃22

hk(r = h) = 1

B̃22
hk(r 6= h) = 0
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The next table refers to the transition probability densities due to the
influence of the node i=3 on the candidate particle uh belonging to the node
i = 2. It can be discussed along the same lines as the previous table.

SUBSYSTEM 2 - SUBSYSTEM 3

uh <M(3)


B̃23

hk(r = h) = 1−
∣∣M(3) − uh

∣∣
B̃23

hk(r = h+ 1) =
∣∣M(3) − uh

∣∣
B̃23

hk(r 6= h, r 6= h+ 1) = 0

uh ≥M(3)


B̃23

hk(r = h− 1) =
∣∣M(3) − uh

∣∣
B̃23

hk(r = h) = 1−
∣∣M(3) − uh

∣∣
B̃23

hk(r 6= h, r 6= h− 1) = 0

Similar tables to the ones reported above, can be obtained for the transi-
tion probability densities of a candidate particle belonging to the node i = 3
and interacting with the three nodes of the network.
Before closing this section, we need to define the encounter rates for the
model under study. We choose them to be characteristic of the nodes but
independent of the activity.
Accordingly, for the micro-micro interactions we write:

ηijhk = ηij0 ∀ i, j = 1, . . . , 3 ∀h, k = 1, . . . ,m (11a)

and for the micro-macro interactions:

η̃ijh = η̃ij0 ∀ i, j = 1, . . . , 3 ∀h = 1, . . . ,m (11b)

5. Simulations and numerical results

The kinetic model defined by Eq.3, characterized by the stochastic in-
teraction rules given through the transition probability densities specified in
section 4, is now solved numerically for different initial configurations and
for different values of the encounter rate. In the following we consider two
sets of simulations. We start by including in the model only the micro-
scopic interactions: in other words, only the first two terms in the right
hand side of Eq.3 are taken into account. In Fig.3-5 the initial (left) and
final (right) configurations of the distribution functions f i (u), i = 1 . . . , 3,
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Figure 3: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. η110 = η220 = η230 = η320 = η330 = 0.8,
η120 = η210 = η130 = η310 = 0 η̃ij0 = 0, i, j = 1, . . . , 3.
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Figure 4: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. η110 = η130 = η220 = η230 = η310 = η320 =
η330 = 0.8, η120 = η210 = 0,η̃ij0 = 0, i, j = 1, . . . , 3.
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Figure 5: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. η110 = η130 = η220 = η310 = η330 = 0.8,
η120 = η210 = 0, η230 = η320 = 0.4, η̃ij0 = 0, i, j = 1, . . . , 3.
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Figure 6: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. ηij0 = η̃ij0 = 0.8, i, j = 1, . . . , 3.
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Figure 7: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. η110 = η130 = η220 = η310 = η330 = η̃110 =
η̃130 = η̃220 = η̃310 = η̃330 = 0.8, η120 = η210 = η̃120 = η̃210 = 0, η230 = η320 = η̃230 = η̃320 = 0.4.
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Figure 8: Initial (left) and asymptotic (right) configurations of the distribution functions
f i (u) versus u for i = 1, . . . , 3 from top to bottom. η110 = η130 = η220 = η310 = η330 = η̃110 =
η̃130 = η̃220 = η̃310 = η̃330 = 0.8, η120 = η210 = η̃120 = η̃210 = 0.2, η230 = η320 = η̃230 = η̃320 = 0.
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are shown versus the level of knowledge u. In Fig.3 we have not consid-
ered microscopic interactions between the particles of the follower nodes and
those of the leader node. We observe that the leader node has of course
its autonomous evolution, while the third node has a regression, due to the
microscopic interactions with the particles of the second node. (In this case
we put η230 = η320 = η110 = η220 = η330 = 0.8, η120 = η210 = η130 = η310 = 0). In
Fig.4 we show the results obtained when to the interactions of the previous
case we add the microscopic interactions between particles of the third node
and the leader. In other words we now put η130 = η310 = 0.8 leaving all the
others ηij0 the same values as in the previous case. We now see a remarkable
change in the final configurations of f 2 (u) and f 3 (u): the third node has
a direct connection with the leader and tends to follow it in its evolution,
on the other hand the microscopic interaction with the second node (not
directly connected) with the leader, has a damping effect on the growth of
the level of knowledge of the third node. The final configuration of the two
follower nodes is the same, under the strong influence of the leader. A similar
situation is presented in Fig.5, where we have still η130 = η310 = 0.8 but the
encounter rate between the two follower nodes is smaller: η230 = η320 = 0.4.
In the second set of simulations we consider the effects of all the interactions
involved on the network. In other words the micro-macro interactions are
now included which in turn implies that all the terms in the right hand side
of Eq.3 are taken into account.
We start with Fig.6 where the evolution of f 2 (u) and f 3 (u) from the initial to
the final configuration shows a very strong ”follow the leader” effect. Indeed,
in this case al the ηij0 , i, j = 0, . . . , 3 and the η̃ij0 , i, j = 1 . . . , 3 are fixed at the
value 0.8. The ”follow the leader” effect is still evident in Fig.7, although now
f 2 (u) and f 3 (u) have different final configurations with lower levels of knowl-
edge than in the previous case. Indeed in this case the particles of the node
i = 2 have no interactions with the leader node (η120 = η210 = η̃120 = η̃210 = 0)
but they have interaction rate η230 = η320 = η̃230 = η̃320 = 0.4. All the other
interaction rates are the same as in Fig.6.
Finally, in Fig.8 it is shown the case where the two follower nodes are totally
disconnected between them (η230 = η320 = η̃230 = η̃320 = 0). Their parti-
cles though have microscopic and macro-micro interactions with particles
belonging to the leader node. The distribution functions f 2 (u) and f 3 (u)
have different final (”follow the leader”) configurations, essentially due to
the different values of the encounter rates (η120 = η210 = η̃120 = η̃210 = 0.2) and
(η130 = η310 = η̃130 = η̃310 = 0.8).
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6. Conclusions and perspectives

The learning dynamics on network described in this paper is determined
by the interactions (binary and multiple) among the individuals. The leader
has a strong influence on the evolution of the system, since it can induce a
change in the level of knowledge of the other individuals, without changing
its own.
From the social point of view [23] it would be of interest to develop an
application of the model to a problem of support/opposition formation in
political choices, where the role of the leader is to influence other’s people
opinions. In such context, we could of course include the phenomenon of
people migration among the nodes of the network, as an effect of opinion
changes. Moreover, we look forward the extension of our study in order to
describe open systems in the sense of including in the model external effects
such as the role of the Media. Also, inspired by Ref.[24], it would be of great
interest to consider learning propagation on contact networks characterized
by different leaders. In such case of course, we should include in our model
also suitable interactions between the two networks. We plan to address this
problem in a near future.
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