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MAGNETIC DOMAIN WALL MOTION
IN NANOSCALE MULTIFERROIC DEVICES

UNDER THE COMBINED ACTION OF MAGNETOSTRICTION,
RASHBA EFFECT AND DRY-FRICTION DISSIPATION

GIANCARLO CONSOLO a AND GIOVANNA VALENTI b∗

ABSTRACT. The one-dimensional propagation of magnetic domain walls in a ferromag-
netic nanostrip is investigated analytically in the framework of the extended Landau-Lifshitz-
Gilbert equation. In particular, this study focuses on the characterization of the domain wall
motion in the presence of stresses induced by a piezoelectric actuator, Rashba spin-orbit-
torque due to structural inversion asymmetry and dry-friction dissipation accounting for
structural disorder into the crystal lattice. By adopting the formalism of travelling waves and
using realistic assumptions on the parameters here involved, it has been possible to deduce
an explicit analytical expression of the DW velocity in the steady regime. It is also proven
that the depinning threshold and the Walker breakdown, representing the boundaries of such
a dynamical regime, are both affected by the strength of magnetostriction, Rashba field and
dry-friction. Moreover, it is observed that the Rashba effect can also modify the domain wall
mobility as well as the direction of propagation. The results here obtained are in qualitative
good agreement with recent numerical simulations and experimental observations.

1. Introduction

Manipulation of the domain wall (DW) propagation in ferromagnetic nanostrips is
nowadays attracting a lot of interest from both physical and technological viewpoints. Many
efforts have been indeed made to exploit DW dynamics in several contexts such as sensors,
logic gates, spin-wave filters and memories (Allwood 2005; Parkin et al. 2008; Weiler et al.
2009; Boulle et al. 2011).

The working principle behind any of these devices is typically the interaction among
an electric current, a magnetic field and the magnetization state of single or multi-layer
structures which gives rise to Spin-Transfer Torque (STT) and Spin-Orbit Torque (SOT)
phenomena (Liu et al. 2011; Miron et al. 2011; Wang and Manchon 2012; Manchon et al.
2015; Pylypovskyi et al. 2016; Xu et al. 2016). The STT originates when a spin-polarized
current crosses a DW and transfers its angular momentum to the internal structure of the
DW, thereby pushing it along the direction of the current flow (Zhang and Li 2004; Thiaville
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A3-2 G. CONSOLO AND G. VALENTI

et al. 2005; Tatara et al. 2007; Koyama et al. 2011). The SOT has been observed in systems
lacking of inversion symmetry where the electronic energy bands are split by spin-orbit
coupling. In these structures, a charge current passing through a ferromagnet (or a bilayer
ferromagnet/heavy metal) generates a non-equilibrium spin density via the inverse spin
galvanic effect which is able to exert a torque on the local magnetization of the ferromagnet.
The origin of SOT could be due to two phenomena: Rashba and spin-Hall effects. In
particular, the exploration of Rashba coupling is nowadays drawing particular attention
for the possibility to build up low-energy spintronic devices (Miron et al. 2011; Wang and
Manchon 2012; Manchon et al. 2015; Pylypovskyi et al. 2016; Xu et al. 2016).

Besides these current-induced phenomena, it has been demonstrated that the position of
a magnetic DW can be also manipulated via the magneto-elastic field. However, since the
weak ferromagnetism at room temperature of natural multiferroics limits their applications,
a strategy employed to achieve a significant magneto-electric coupling consists of exploiting
the inverse magneto-electric effect by depositing or gluing a magnetic system onto a
piezoelectric actuator. The heterostructure so obtained realizes a voltage controlled magnetic
system where the strains generated by an electric field into the piezoelectric layer are
efficiently transferred onto the ferromagnet (Liu et al. 2010; Bryan et al. 2012; Lei et al.
2013; Ranieri et al. 2013; Zighem et al. 2013; Brandl et al. 2014; Hu et al. 2016; Mathurin
et al. 2016).

On the other hand, the characterization of realistic magnetic devices needs to account also
for the damping effects arising from structural disorder such as inhomogeneities, impurities
and crystallographic defects. These anisotropic dissipation mechanisms can be described
by means of a rate-independent dry friction contribution (Baltensperger and Helman 1993;
Podio-Guidugli and Tomassetti 2002; Tiberkevich and Slavin 2007; Consolo et al. 2012;
Consolo and Valenti 2012, 2017).

The purpose of this work is to investigate analytically the DW dynamics obtained when
all the above mentioned effects act together on a ferromagnetic nanostrip. As known, the
magnetization dynamics occurring in such a system are well described by the Extended
Landau-Lifshitz-Gilbert (ELLG) equation which characterizes the precessional motion
of the magnetization vector about the direction of the effective field in the presence of
concurrent dissipative phenomena: the intrinsic Gilbert damping torque and the current-
induced spin-transfer-torque (Landau and Lifschitz 1935; Gilbert 1955; Schryer and Walker
1974; Berger 1984; Puliafito and Consolo 2012; Consolo et al. 2014a; Consolo et al. 2014b).
In the present framework, the magneto-elastic effect enters the governing equation as an
additive contribution to the effective field, the Rashba effect gives rise to a field-like term
and a spin-torque-like term whereas the dry-friction dissipation is added to the Gilbert
damping torque.

Owing to the complexity of the resulting ELLG equation, the solution is generally
found via numerical simulations (Shu et al. 2004; Baňas 2008; Lei et al. 2013; Liang et al.
2014; Mballa-Mballa et al. 2014; Hu et al. 2016; Mathurin et al. 2016). Nevertheless,
in this work, we aim to describe analytically the one-dimensional DW motion under the
following assumptions: the magnetostrictive layer is isotropic; the piezoelectric-induced
strains are spatially uniform and fully transferred into the ferromagnetic layer; the dry-
friction coefficient depends linearly on the piezoelectric-induced strains and the Rashba
SOT does not substantially modify the classical Walker solution. Let us emphasize that, in
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FIGURE 1. Schematics of the multiferroic device consisting of a thin magne-
tostrictive ferromagnetic nanostrip placed on the top of a thick piezoelectric
layer.

spite of these simplifying assumptions, the resulting DW dynamics are still quite rich and in
qualitative agreement with experimental observations.

The manuscript is organized as follows.
In Section 2 we build up a 1D model based upon the ELLG equation for the description

of the DW motion in ferromagnetic nanostrips under the simultaneous influence of magnetic
fields, spin-polarized currents, Rashba and magneto-elastic effects. In such a model,
dissipation is account for by a standard linear Gilbert damping and a nonlinear dry-friction
term. Then, the explicit analytical expression of the main characteristic parameters involved
into the steady dynamical regime are derived by adopting a travelling wave ansatz.

In Section 3, we use realistic values for the parameters in order to evaluate numerically
the analytical results deduced in Section 2. In particular, we aim to elucidate the functional
dependence of the characteristic parameters on the piezo-induced strains and the Rashba
field as well as to quantify the role played by these contributions into the steady DW
dynamics.

In Section 4, we address some concluding remarks.

2. The mathematical 1D model

Let us consider a nanoscale multiferroic device composed by a thin magnetostrictive
ferromagnet (FM) placed on the top surface of a thick piezoelectric (PE) actuator, as
sketched in Fig. 1.

The FM layer is designed as a nanostrip of length L, width w and thickness d along
ex,ey,ez axes, respectively, with L ≫ w > d. This layer is subject to an external bias
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magnetic field hext = (hx,hy,hz) and is traversed by an electric current density J flowing
along the major axis ex. These driving sources are assumed to be constant in time and
uniform in space. Two magnetic domains are nucleated at the edges of the FM layer and the
resulting DW, which at equilibrium is located at the center of the structure, can be shifted
along the nanostrip axis ex via the external magnetic field and/or the electric current.

The PE layer serves as an actuator that deforms upon the application of an electric voltage
imposed between two lateral electrodes. This voltage generates an electric field directed
along the axis ey which induces, in turn, an elongation or a compression of the PE width
wPE depending on the sign of the applied voltage. Owing to the elastic properties of the
PE layer, the elongation (compression) along the ey axis is accompanied by a compression
(elongation) in the two orthogonal directions. However, since the PE thickness along the axis
ez is quite large, the corresponding strain component is usually neglected. For simplicity, all
the shear strains are also disregarded . According to these assumptions, the only non-null
planar strain components are ε

(PE)
xx and ε

(PE)
yy that are related to each other via the Poisson

ratio ν (Weiler et al. 2009; Zighem et al. 2013).
The one-dimensional DW motion occurring at mesoscale in the FM layer can be described

through the ELLG equation (Landau and Lifschitz 1935; Gilbert 1955; Schryer and Walker
1974; Berger 1984; Puliafito and Consolo 2012; Consolo et al. 2014a; Consolo et al. 2014b):

•
m= tpre + tstt + tra + td (1)

where m(x, t)= M(x, t)/MS represents the normalized magnetization vector with MS the
saturation magnetization and the over-dot denotes the partial time derivative.

In detail, the first term tpre on the right-hand side of (1) defines the undamped pre-
cessional torque induced by the effective magnetic field he f f which, in turn, accounts
for the contributions arising from external hext , exchange hexc, demagnetizing hdmg and
magnetoelastic hmel fields (Zhu et al. 2001; Zhang and Chen 2005):

tpre = γhe f f∧m (2a)

he f f = hext +hexc +hdmg +hmel (2b)

where γ = MSµ0γe is a constant expressed in terms of the magnetic permeability of the
vacuum µ0 and of the gyromagnetic ratio γe = ge/me, being g the Landè factor, e the
electron charge and me the electron mass.

The exchange field hexc can be written as:

hexc = A
∂ 2m
∂x2 (3)

being A = 2Aex
µ0M2

S
related to the exchange constant of the material Aex through A = 2Aex

µ0M2
S

.

The demagnetizing field hdmg can be safely approximated by:

hdmg =−Nx (m · ex)ex −Ny (m · ey)ey −Nz (m · ez)ez (4)
where the demagnetizing factors Nx, Ny, Nz are constrained by the normalization condition
Nx +Ny +Nz = 1.

Moreover, if we consider the Hooke law as the linear constitutive assumption relating
stress and strain in the FM, the magnetoelastic field hmel reads:
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hmel =
1

µ0M2
s
C(ε − ε

µ)
∂εµ

∂m
(5)

where, in the case of an isotropic material, the elastic stiffness tensor C can be expressed as:

C=

⎡⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12
c12 c11 c12 0
c12 c12 c11

c11−c12
2 0 0

0 0 c11−c12
2 0

0 0 c11−c12
2

⎤⎥⎥⎥⎥⎥⎥⎦ (6)

being c11 and c12 the two independent elastic constants in the Voigt notation.
In (5), ε and εµ denote the total strain tensor and the stress-free magnetostriction strain

tensor, respectively, which are assumed to be spatially homogeneous. The magnetostriction
strain tensor εµ is given by:

ε
µ =

3
2

λS

(
m⊗m−1

3
I
)
, (7)

λS being the saturation magnetostriction constant, I the identity tensor and the symbol ⊗
representative of the tensor product. About the total strain tensor ε , it can be hypothesized
that, since the FM layer is affixed to the top xy face of the PE actuator, the planar strains ε

(PE)
xx

and ε
(PE)
yy are fully transferred from the PE to the FM, namely εxx = ε

(PE)
xx and εyy = ε

(PE)
yy .

Moreover, owing to the small thickness of the FM layer, its free upper surface and the
negligible shear strain in the plane xy, it is also reasonable to assume that the FM layer is in
a plane bitension stress state characterized by (Lei et al. 2013; Hu et al. 2016; Mathurin
et al. 2016):

εxy = εxz = εyz = 0 , (8a)

εzz =−c12

c11
(εxx + εyy) =−c12

c11
(1− v)εyy . (8b)

The second torque term tstt appearing in (1) accounts for the spin-transfer torque generated
by the current flow and includes the adiabatic and non-adiabatic contributions responsible
for the DW distortion and motion, respectively (Zhang and Li 2004; Thiaville et al. 2005).
It reads:

tstt = u0

[
−∂m

∂x
−η

∂m
∂x

∧m
]

J (9)

with η the phenomenological non-adiabatic parameter and u0 = gµBP/(2eMs), being µB
the Bohr magneton and P the polarization factor of the current.

The third term tra in (1) describes the current-induced Rashba effect that enters the
governing equation both as a field-like term and as a spin-transfer-torque-like term. In fact,
it is given by:

tra = γα̂ra [ey ∧m+ηm∧(m∧ey)]J (10)

being α̂ra =
αRP

µ0µBM2
S

with αR the parameter that measures the strength of the Rashba spin-

orbit-torque.
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Finally, the torque term td in (1), accounting for the intrinsic dissipative phenomena,
includes the classical Gilbert damping torque (Gilbert 1955) augmented by a non linear
contribution arising from a rate-independent dry friction (Baltensperger and Helman 1993;
Podio-Guidugli and Tomassetti 2002; Tiberkevich and Slavin 2007; Consolo et al. 2012;
Consolo and Valenti 2012, 2017), namely:

td = αG

(
m∧ •

m
)
+m∧

(
γαD|

•
m|−1 •

m
)

(11)

The phenomenological dimensionless parameters αG and αD describe the strength of linear
and nonlinear dissipation, respectively. As known from literature, the dry-friction term can
mimic the pinning effects due to the presence of crystallographic defects or inhomogeneities
into the FM layer. Moreover, this term can also account, at least in principle, for the
magnification of such pinning effects caused by the piezo-induced stress. Therefore, it
is reasonable to assume that the dry-friction coefficient depends upon the piezo-strain,
αD = αD (εyy), as conjectured in our previous work (Consolo and Valenti 2017).

To analytically gain insight into DW dynamics, we substitute the explicit expressions of
the above defined torques into the ELLG equation (1) which, in polar coordinates, becomes:

sinθ
•
ϕ −

[
αG + γαD

(
•
θ

2
+ sin2

θ
•
ϕ

2
)−1/2

]
•
θ

= γ

{
−A

∂ 2θ

∂x2 +Asinθ cosθ

(
∂ϕ

∂x

)2

−hx cosθ cosϕ −hy cosθ sinϕ +hz sinθ

+

[
Nx cos2

ϕ +Ny sin2
ϕ −Nz

− 3λS

µ0M2
s

c11 − c12

c11

[
c11

(
εxx cos2

ϕ + εyy sin2
ϕ
)
+ c12 (εxx + εyy)

]]
sinθ cosθ

− α̂raJ cosθ sinϕ −ηα̂raJ cosϕ

}
−u0J sinθ

∂ϕ

∂x
+ηu0J

∂θ

∂x
, (12a)

[
αG + γαD

(
•
θ

2
+ sin2

θ
•
ϕ

2
)−1/2

]
sinθ

•
ϕ +

•
θ

= γ

{
Asinθ

∂ 2ϕ

∂x2 +2Acosθ
∂θ

∂x
∂ϕ

∂x
+hy cosϕ −hx sinϕ

+

[
Nx −Ny +

3λS

µ0M2
s
(c11 − c12)(εyy − εxx)

]
sinθ cosϕ sinϕ −ηα̂raJ cosθ sinϕ

}
−ηu0J sinθ

∂ϕ

∂x
−u0J

∂θ

∂x
, (12b)

where θ and ϕ are the polar and azimuthal angles, respectively, so that the unit magnetization
vector m can be expressed as m = (cosϕ sinθ ,sinϕ sinθ ,cosθ).

In order to describe the dynamical regime characterized by a steady motion of the DW
along the nanostrip axis ex with constant velocity v, let us introduce the travelling wave
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ansatz for the polar angle θ = θ (x− vt) whereas the azimuthal angle is assumed to be
constant in time and uniform in space ϕ = ϕ0 (Schryer and Walker 1974).

Under these assumptions, the system (12) reduces to:

[αGv−ηu0J]θ ′+ α̂D = γ

{
−Aθ

′′−hx cosθ cosϕ0 −hy cosθ sinϕ0 +hz sinθ

− α̂raJ cosθ sinϕ0 −ηα̂raJ cosϕ0 + sinθ cosθ

[
Nx cos2

ϕ0 +Ny sin2
ϕ0 −Nz

− 3λS

µ0M2
s

(c11 − c12)

c11

[
c11

(
εxx cos2

ϕ0 + εyy sin2
ϕ0

)
+ c12 (εxx + εyy)

]]}
, (13a)

(u0J− v)θ
′ = γ

{
hy cosϕ0 −hx sinϕ0 + α̂raJ cosϕ0 −ηα̂raJ cosθ sinϕ0

+

[
(Nx −Ny)+

3λS

µ0M2
s
(c11 − c12)(εyy − εxx)

]
sinθ cosϕ0 sinϕ0

}
, (13b)

where the prime denotes the derivative with respect to the travelling wave variable ξ = x−vt
and α̂D = γαDsign(vθ ′).

It is straightforward to see that eq. (13b) can be recast as:

θ
′ = Γ

(
sinθ + Γ̃cosθ + Γ̂

)
(14)

with:

Γ =
γ

u0J− v

[
Nx −Ny

2
+

3λS

2µ0M2
s
(c11 − c12)(εyy − εxx)

]
sin2ϕ0 , (15a)

Γ̃ =− ηα̂ra[
Nx −Ny +

3λS
µ0M2

s
(c11 − c12)(εyy − εxx)

]
cosϕ0

J =−Γ̃1J , (15b)

Γ̂ =
hy cosϕ0 −hx sinϕ0 + α̂ra cosϕ0J[

Nx −Ny +
3λS

µ0M2
s
(c11 − c12)(εyy − εxx)

]
sinϕ0 cosϕ0

= Γ̂0 + Γ̂1J , (15c)

where Γ−1 has the dimension of length while Γ̃ and Γ̂ are dimensionless parameters.
Then, inserting (14) into (13a), after some algebra, leads to:

Psinθ +Qcosθ +Rsinθ cosθ +S sin2
θ +T = 0 (16)

where:

P = Γ(αGv−ηu0J)− γ

(
hz +AΓ

2
Γ̂Γ̃

)
, (17a)

Q = ΓΓ̃(αGv−ηu0J)+ γ

(
hx cosϕ0 +hy sinϕ0 +AΓ

2
Γ̂+ α̂raJ sinϕ0

)
, (17b)

R = γ

{
AΓ

2
(

1− Γ̃
2
)
+Nz −Ny sin2

ϕ0 −Nx cos2
ϕ0

+
3λS

µ0M2
s

(
c11 − c12

c11

)[
c11

(
εxx cos2

ϕ0 + εyy sin2
ϕ0

)
+ c12 (εxx + εyy)

]}
, (17c)
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S =−2γAΓ
2
Γ̃ , (17d)

T = ΓΓ̂(αGv−ηu0J)+ α̂D + γ

(
AΓ

2
Γ̃+ηα̂raJ cosϕ0

)
. (17e)

Furthermore, taking into account some previous results (Consolo et al. 2012; Consolo
and Valenti 2012, 2017), the expression of the DW width δ = Γ−1 can be deduced from
(17c) by imposing R = 0. Thus, we have:

δ
−2 = Γ

2 =
1

A
(

1− Γ̃2
){Nx cos2

ϕ0 +Ny sin2
ϕ0 −Nz

− 3λS

µ0M2
s

(c11 − c12)

c11

[
c11

(
εxx cos2

ϕ0 + εyy sin2
ϕ0

)
+ c12 (εxx + εyy)

]}
. (18)

Comparing (18) with the expression found in (Consolo and Valenti 2017), we notice that
the presence of the Rashba field reduces, via the coefficient Γ̃, the DW width.

As it can be proven, a meaningful solution of eq. (14) satisfying the symmetry condition
θ(0) = π/2 is admitted for

⏐⏐⏐Γ̂2 − Γ̃2
⏐⏐⏐< 1 only and it can be expressed as (Podio-Guidugli

and Tomassetti 2002; Consolo and Valenti 2012, 2017):

θ (ξ ) = 2arctan
Fk2 exp

(
Γ

√
1+ Γ̃2 − Γ̂2ξ

)
− k1

F exp
(

Γ

√
1+ Γ̃2 − Γ̂2ξ

)
−1

(19)

with:

F =
1+

(
Γ̂− Γ̃

)(
1− Γ̃

)
−
(

Γ̂− Γ̃+1
)√

1+ Γ̃2 − Γ̂2(
Γ̂− Γ̃

)(
Γ̂+1

) , (20a)

k1 =
−1+

√
1+ Γ̃2 − Γ̂2

Γ̂− Γ̃
, (20b)

k2 =
−1−

√
1+ Γ̃2 − Γ̂2

Γ̂− Γ̃
. (20c)

Remark 1. Let us point out that, in the limit
⏐⏐⏐Γ̃⏐⏐⏐ → 0,

⏐⏐⏐Γ̂⏐⏐⏐ → 0, we obtain the classical

Walker solution representing a 180◦ Bloch DW with θ (ξ )≃ π for ξ →+∞ and θ (ξ )≃ 0
for ξ →−∞ (Schryer and Walker 1974). On the other hand, from (14) it is easy to see that,
when

⏐⏐⏐Γ̃⏐⏐⏐ and
⏐⏐⏐Γ̂⏐⏐⏐ increase, the magnetic domains at the boundaries of the nanostrip are

not anymore aligned with the ez axis so that the solution deviates away from the classical
one. Therefore, without loss of generality, hereafter we limit our discussion to the cases⏐⏐⏐Γ̃⏐⏐⏐ ≃ 0,

⏐⏐⏐Γ̂⏐⏐⏐ ≃ 0 that can be easily achieved by using realistic values for the parameters.
Consequently, the DW width (18) exhibits a weak dependence on the Rashba field as well
as on the piezo-strains as it was proven in our previous work (Consolo and Valenti 2017).
For this reason, the DW width δ = Γ−1 is treated as a constant, as usual in literature.

Under the above mentioned hypothesis, taking into account that the coefficients P,Q,T
(see (17a), (17b), and (17e)) do not depend on θ , and averaging the equation (16) over
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the range 0 ≤ θ ≤ π , the following expression of the DW velocity in the steady regime is
obtained:

v =
1

αGΓ

(
2+πΓ̂0 +πΓ̂1J

){2γhz +
[
u0Γη

(
2+πΓ̂0

)
−ηγπα̂ra cosϕ0 −2γAΓ

2
Γ̂0Γ̃1

]
J

+ Γ̂1Γ

(
ηπu0 −2γAΓΓ̃1

)
J2 −πα̂D

}
. (21)

In order to investigate how each driving source affects the DW velocity, let us now
characterize the dynamics obtained when the magnetic field hext and the electric current J
act separately.

In the absence of electric current, the DW velocity exhibits the expected linear depen-
dence on the z-component of the magnetic field responsible for the DW motion, being the
Rashba effect null (Consolo and Valenti 2017).

On the contrary, in the absence of external magnetic field, the presence of the Rashba
field makes the coefficient Γ̂1 ̸= 0 so that the dependence of velocity on electric current
becomes nonlinear. Moreover, taking into account (15b)-(15c), the Rashba field also affects
the modulus and the sign of the DW mobility. In particular, at the critical value α̂ra = α̂∗

ra
given by:

α̂
∗
ra =

πu0

[
Nx −Ny +

3λS
µ0M2

s
(c11 − c12)(εyy − εxx)

]
cosϕ0

2γAΓ
(22)

the DW reverses its direction of motion so that a forward (backward) propagating DW is
observed for α̂ra < α̂∗

ra (α̂ra > α̂∗
ra). Let us also point out that the reversal of the propagation

direction also affects the parameter α̂D, while the travelling profile θ(ξ ) is unchanged.
As known, the steady dynamical regime can only take place in a well defined range of the

external sources. The lower bound of such a range, named depinning threshold, corresponds
to the minimum value of the magnetic field/electric current necessary to overcome the static
friction. From eq. (21), it can be expressed as:

J = 0 =⇒ h(DEP)
z =

π

2γ
α̂D , (23a)

hext = 0 =⇒ for α̂ra ≶ α̂
∗
ra,

J(DEP) =
1

2Γ̂1Γ

(
ηπu0 −2γAΓΓ̃1

){η (γπα̂ra cosϕ0 −2u0Γ)

±
√

η2 (γπα̂ra cosϕ0 −2u0Γ)2 +4πα̂DΓ̂1Γ

(
ηπu0 −2γAΓΓ̃1

)}
. (23b)

As it can be observed, in the case of magnetic-field-driven motion, the nonlinear dry
dissipation provides the only contribution to the depinning threshold. On the contrary,
for a current-driven motion, such a threshold is also affected by Rashba field and piezo-
induced strains, irrespective of the existence of a functional dependence between strain and
dry-friction.
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A3-10 G. CONSOLO AND G. VALENTI

The upper bound of the steady motion range, named Walker Breakdown (WB), is deduced
from (15a) and leads to the following restrictions to the DW velocity:

J = 0 =⇒ v ≤ ṽ (24a)

hext = 0 =⇒
{

v ≤ u0J+ṽ for α̂ra < α̂∗
ra

v ≥ u0J−ṽ for α̂ra > α̂∗
ra

(24b)

ṽ =
γ

2Γ

⏐⏐⏐⏐Nx −Ny +
3λS

µ0M2
s
(c11 − c12)(εyy − εxx)

⏐⏐⏐⏐ (24c)

Therefore, by comparing (21) with (24a) and (24b), we deduce the WB values for
external field and current density:

h(WB)
z =

π

2γ
α̂D +

αGΓ

(
2+πΓ̂0

)
ṽ

2γ
, (25a)

for α̂ra < α̂
∗
ra ⇒

J(WB)
upper =

1

2Γ̂1Γ

[
πu0 (η −αG)−2γAΓΓ̃1

]{2u0Γ(αG −η)+ηγπα̂ra cosϕ0 +παGΓ̂1Γṽ

+

[(
2u0Γ(αG −η)+ηγπα̂ra cosϕ0 +παGΓ̂1Γṽ

)2

+4Γ̂1Γ(πα̂D +2αGΓṽ)
(

πu0 (η −αG)−2γAΓΓ̃1

)]1/2}
, (25b)

for α̂ra > α̂
∗
ra ⇒

JWB
lower =

1

2Γ̂1Γ

[
πu0 (η −αG)−2γAΓΓ̃1

]{2u0Γ(αG −η)+ηγπα̂ra cosϕ0 −παGΓ̂1Γṽ

−
[(

2u0Γ(αG −η)+ηγπα̂ra cosϕ0 −παGΓ̂1Γṽ
)2

+4Γ̂1Γ(πα̂D −2αGΓṽ)
(

πu0 (η −αG)−2γAΓΓ̃1

)]1/2}
. (25c)

Summarizing, a steady motion can only originate if the strength of the external source is
greater than the propagation threshold (23) but smaller than the WB limit (25a), (25b). In
particular, the maximum value of the electric current which allows a steady motion is given
by J(WB)

upper or J(WB)
lower , depending on the direction of propagation.

Let us finally notice that, since depinning threshold and WB conditions are both affected
by Rashba, magnetoelastic and dry-friction, the whole steady dynamical regime can be
modulated via current-induced spin-orbit-torque effects and/or via applied stresses, in
accordance with experimental observations (Miron et al. 2011; Ranieri et al. 2013).
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3. Numerical results

In order to estimate quantitatively the physical quantities introduced in the previous
Section, we now present a numerical illustrative example by using realistic parameters
extracted from literature.

About the PE layer, we consider that the in-plane strain difference
⏐⏐⏐ε(PE)

yy − ε
(PE)
xx

⏐⏐⏐ =⏐⏐εyy − εxx
⏐⏐ lies in the range

[
0,10−3

]
whereas the Poisson ratio is equal to ν = 0.39 (Lei

et al. 2013; Zighem et al. 2013; Mathurin et al. 2016).
About the FM material, we consider a metallic ferromagnetic nanostrip having length

L = 20 µm, width w = 160 nm and thickness d = 1 nm so that the constraint L >> w > d
is satisfied. The set of parameters includes: saturation magnetization MS = 1×106 A/m,
exchange constant Aex = 1×10−11 J/m, dimensionless Gilbert damping constant αG = 0.1,
demagnetizing factors Nx = 0.8011, Ny = 0.0011 and Nz = 0.1978, current polarization
factor P = 0.5, non-adiabatic coefficient η = 0.4, elastic constants c11 = 237 GPa and
c12 = 117 GPa, saturation magnetostriction λS = 20 ppm (Chen et al. 2002; Yamanouchi
et al. 2011; Lei et al. 2013), ϕ0 = 10◦ and the Rashba parameter αR lies in the range
[0,2.0]×10−30 Jm. According to this set of parameters, the DW width is δ = Γ−1 ≈ 5nm.

Moreover, since the aim of this work is to emphasize the role of the current-induced
STT and SOT effects, the external magnetic field hext is neglected. On the other hand, DW
dynamics driven by the sole magnetic field have been already investigated in a previous
work (Consolo and Valenti 2017).

Let us firstly analyze the piezo-strain dependence of the dimensionless parameters Γ̃ and
Γ̂, defined in (15b)-(15c), which are strictly related to Rashba and magnetoelastic effects. As
shown in Fig. 2, these quantities exhibit a weak dependence on the in-plane strain difference
εyy − εxx and their values satisfy the required constraints

⏐⏐⏐Γ̂2 − Γ̃2
⏐⏐⏐< 1 and

⏐⏐⏐Γ̃⏐⏐⏐ , ⏐⏐⏐Γ̂⏐⏐⏐≃ 0.

We now investigate the traveling wave profile (19) obtained by using the values of Γ̃ and
Γ̂ reported in Fig. 2. As shown in Fig. 3, being θ (−∞)≈ 0 and θ (+∞)≈ π , the solution
approximates quite well the Walker profile, so that we can safely treat it as a classical
180◦ Bloch DW.

To quantify the extreme of the interval in which the steady dynamical regime takes place,
in agreement with our previous conjecture (Consolo and Valenti 2017), we assume a linear
dependence of the dry-friction coefficient on the in-plane strain difference, namely:

α̂D = γ
[
α̂0 + α̂1 (εyy − εxx)

]
sign

(
vθ

′) (26)

where α̂0 and α̂1 are arbitrary constants. In particular, the first term measures the structural
disorder resulting from the fabrication process of the FM material whereas the second one
mimics the amplification of such disorder due to piezo-strains.

In order to evaluate the lower bound of the steady regime, in Fig.4 we represent the
depinning current density J(DEP) as a function of the piezo-strain for several values of
the Rashba parameter satisfying α̂ra < α̂∗

ra. From this figure we notice that the depinning
current is shifted upwards with the increase of both Rashba field and piezo-strains. These
fields thus contribute in amplifying the pinning effects that prevent the DW from moving
(Tatara et al. 2006).
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FIGURE 2. In-plane strain difference dependence of the parameters Γ̃ (solid line)
and Γ̂ (dashed line). The parameters used are: αR = 0.3×10−30 Jm and J = 1
A/µm2.
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FIGURE 3. Traveling wave profile obtained by using the values of Γ̃ and Γ̂

reported in Fig. 2

The upper limit to the forward steady motion, given by the Walker Breakdown condition
J(WB)

upper, is represented in Fig.5. Results indicate that the Rashba field and the piezo-strains
extend the steady regime towards larger values of the input current, allowing in turn the
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FIGURE 4. In-plane strain difference εyy − εxx dependence of depinning current
density J(DEP) for different values of the Rashba parameter αR. The parameters
here involved are: J = 1 A/µm2, γα̂0 = 2.5×108 s−1 and γα̂1 = 5×1010 s−1.

DW velocity to achieve larger values. However, the shift of the WB condition appears to be
much more dependent upon the strength of the Rashba field rather than the magnetoelastic
one. For instance, if αR = 0.3×10−30Jm, the WB limit is about 3 times larger than the one
obtained in the absence of Rashba contribution whereas it varies by less than 1% in the
whole range of piezo-strains.

We now inspect the dependence of the steady DW velocity obtained by fixing the piezo-
strains and varying the Rashba contribution (see Fig.6a) and vice versa (see Fig.6b). In
detail, from a direct inspection of Fig.6a we notice that the Rashba field affects the depinning
threshold, the DW mobility and the direction of motion. In fact, in the regime of forward
propagation (v ≥ 0) and for a fixed value of electric current, the increase of the Rashba field
leads to a reduction of the DW mobility. On the other hand, a greater Rashba field allows to
achieve larger values of the steady DW velocity, being the corresponding upper WB limit
shifted upward.

If the Rashba parameter overcomes the critical value α̂∗
ra (corresponding to αR = 1.25×

10−30Jm), the DW mobility changes sign and the direction of propagation is consequently
reversed. In this case, the upper bound of the steady regime is given by J(WB)

lower . As a
consequence of that, the increase of the Rashba parameter leads now to an increase of the
DW mobility and larger DW velocities (in absolute value) can be achieved by applying
smaller current values.

Finally, the investigation carried out by fixing the Rashba parameter and varying the
in-plane piezo-strains (see Fig.6b) allows to conclude that the piezo-strains don’t play any
significant role in determining the DW mobility but they shift the DW motion towards
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larger values of the input stimulus, as expected from the working principle behind a friction
mechanism.

It is worthy noticing that our results are in qualitative good agreement with both numerical
(Martinez and Finocchio 2013) and laboratory observations (Miron et al. 2011; Ranieri et al.
2013).

Remark 2. The analytical results presented in the previous Section describe the steady
DW dynamics observed in metal or semiconductor ferromagnets. The numerical results
shown in this Section depict the behavior of a metallic ferromagnet but can be used, at
qualitative level, for a semiconductor as well. The most remarkable difference between
them is that, since a semiconductor has typically a much smaller saturation magnetization
value, it exhibits a significantly larger sensitivity of the characteristic parameters on the
applied stresses. A quantitative comparison on the piezo-induced strain dependence of
depinning threshold and Walker breakdown field/current for these materials can be found in
Consolo and Valenti (2017).

4. Conclusions

In this work, the one-dimensional motion of magnetic DW driven by the simultaneous
action of external magnetic field, spin-polarized current, Rashba effect and magnetostriction
has been theoretically described in a bilayer piezoelectric/magnetostrictive nanostructure
exhibiting crystallographic defects.

This study has been carried out by assuming that the FM material is isotropic; the biaxial
in-plane strains are spatially uniform and fully transferred from the PE actuator to the
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FIGURE 6. Steady DW velocity as a function of current density obtained by (a)
fixing the piezo-strains and varying the Rashba parameter or (b) fixing the Rashba
parameter and varying the piezo-strains.

FM layer and there exists a linear dependence between piezo-induced strains and the dry-
friction coefficient. Moreover, in order to recover a Walker-like solution, the dimensionless
coefficients Γ̂ and Γ̃, directly related to the Rashba field, have been constrained to satisfy
the conditions:

⏐⏐⏐Γ̂2 − Γ̃2
⏐⏐⏐< 1 and

⏐⏐⏐Γ̃⏐⏐⏐ , ⏐⏐⏐Γ̂⏐⏐⏐≃ 0.
Under such assumptions, an explicit expression for the steady DW velocity has been

deduced. To the best of our knowledge, such an investigation has been so far undertaken via
numerical tools only.
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Our results have pointed out that the linearity between the DW velocity and the driving
sources is preserved by dry friction and magnetoelastic contributions whereas a nonlinear
behavior is induced by the Rashba effect. Moreover, it has been observed that the Rashba
field acts as an additional degree of freedom which can be used to modify the DW mobility
as well as the propagation direction. On the other hand, both Rashba and magnetoelastic
fields have been found to affect the depinning threshold and the WB condition which delimit
the steady regime.

Our results are also in qualitative agreement with numerical and experimental observa-
tions.
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