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Abstract: We investigate ideals of vertex covers for the edge ideals associated to considerable classes of connected graphs

with loops and exhibit algebraic information about them, such as the existence of linear quotients, the computation of

invariant values, and the Cohen–Macaulay property. These algebraic procedures are good instruments for evaluating

situations of minimal node coverings in networks.
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1. Introduction

This article is devoted to study canonical properties of monomial ideals arising from remarkable classes of graphs

with loops using computational and algebraic methods, in order to give analytic models of a network and of its

connectivity. More precisely, the ideals of vertex covers for the edge ideals related to certain so-called graphs

K′ -type are examined and useful algebraic properties of them are considered.

Let G be any graph on vertex set [n] = {v1, . . . , vn} , set of edges E(G), set of loops L(G). An

algebraic object attached to G is the edge ideal I(G), a monomial ideal of the polynomial ring in n variables

R = K[X1, . . . , Xn] , K a field.

If G is a loopless graph, I(G) is generated only by squarefree monomials XiXj such that {vi, vj} ∈
E(G), i ̸= j . However, if G has loops, among the generators of I(G) there are nonsquarefree monomials X2

i

such that {vi, vi} ∈ L(G), for some i = 1, . . . , n .

The ideal of vertex covers Ic(G) of I(G) represents the algebraic transposition of the concept of (minimal)

vertex cover of a graph G . It is defined to be the ideal of R generated by all monomials Xi1 · · ·Xir such that

(Xi1 , . . . , Xir ) is an associated minimal prime ideal of I(G).
This terminology is intended to emphasize that a minimal prime ”covers” or contains all the monomials

in I(G); sometimes, in particular situations, I(G) reflects properties of Ic(G), so that it is sufficient to study

I(G) for stating properties of Ic(G).
In [8] a significative class of edge ideals was introduced associated to connected loopless graphs H

on vertex set [n] = {v1, . . . , vn} formed by the union of a complete graph Km , m < n, on vertex set

[m] = {vα1 , . . . , vαm}, 1⩽α1<α2<. . .<αm=n and of star graphs with centers the vertices of Km .
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Starting from H and adding loops to some nodes, it was also considered a larger class of connected graphs

with loops K′ .

The ideals of vertex covers for the class of edge ideals associated to H and K′ were described by using

results about ideals of vertex covers for the edge ideals associated to the complete and the star graphs that

make them up.

The explicit description of the generators of the ideals of vertex covers for the class of edge ideals associated

to K′ was obtained by generalizing a fundamental property about the structure of such ideals.

In the present paper we investigate the ideals Ic(K′) in order to highlight some algebraic aspects of them.

In particular, we show in what cases the ideal of vertex covers Ic(K′) admits linear quotients, and

write them explicitly; we compute standard algebraic invariants of Ic(K′) such as projective dimension, depth,

Krull dimension, and Castelnuovo–Mumford regularity, and we establish suitable conditions such that Ic(K′)

is a Cohen–Macaulay ideal. For details, see [3, 5–7]. The study of such facts is devoted to find useful tools for

improving actual critical situations for the connections in the fields of communications and transport, specifically

about minimal node covering.

We treat an optimization problem for the widespread deployment of police patrols on the main crossroads

of a big city, in order to control all the streets and residential areas by standard routes.

We will show what should be the minimum number of patrols needed to cover adequately the areas

around the intersections of the center and suburbs.

To perform this, a model of an appropriate graph with loops is given.

2. Ideals of vertex covers for graphs K′ -type

Let us recall algebraic definitions and notations.

Let R = K[X1, . . . , Xn] be a polynomial ring in n variables over an arbitrary field K such that

degXi = 1, for i = 1, . . . , n .

For any monomial ideal I of R , let G(I) denote the unique minimal set of monomial generators for I .

Definition 2.1 A vertex cover of I⊂R is a subset C of {X1, . . . , Xn} such that each u ∈ G(I) is divided by

some Xi ∈ C . C is called minimal if no proper subset of C is a vertex cover of I .

Let h(I) denote the minimal cardinality of the vertex covers of I .

Definition 2.2 I ⊂ R is said to have linear quotients if there is an ordering u1, . . . , ut of the monomials

belonging to G(I) such that the colon ideal (u1, . . . , uj−1) : (uj) is generated by a subset of {X1, . . . , Xn} , for
j = 2, . . . , t .

Remark 2.1 In [1], Conca and Herzog proved that an ideal generated in the same degree that has linear

quotients admits a linear resolution.

Let I ⊂ R have linear quotients with respect to the ordering u1, . . . , ut of the monomials of G(I). Let qj(I)

be the number of variables required to generate the ideal (u1, . . . , uj−1) : (uj).

Set q(I) = max2⩽j⩽t qj(I).
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Remark 2.2 The integer q(I) is independent of the choice of the ordering of the generators that gives linear

quotients [4].

Let us now give information on graphs and their ideals.

Let G be a connected graph on vertex set [n] = {v1, . . . , vn} . We indicate E(G) =
{
{vi, vj} | vi ̸= vj

vertices of G
}

the set of edges of G and L(G) =
{
{vi, vi} | vi any vertex of G

}
the set of loops of G . Hence

{vi, vj} is an edge joining vi to vj and {vi, vi} is a loop of the vertex vi .

If L(G) = ∅ , G is said to be a simple or loopless graph.

A complete graph on vertex set [m] = {v1, . . . , vm} , denoted by Km , is a connected graph for which

there exists an edge for all pairs {vi, vj} of vertices of it. K ′
m denotes a complete graph with loops on vertex

set [m] .

A star graph on vertex set [n] =
{
{vi}, {v1, . . . , vi−1, vi+1, vn}

}
with center vi , denoted by star i(n), i =

1, . . . , n , is a complete bipartite graph of the form K1, n−1 . star ′i(n) denotes a star graph with loops on vertex

set [n] of center vi .

If R = K[X1, . . . , Xn] such that each variable Xi corresponds to the vertex vi of G , the edge ideal I(G)
of G is the monomial ideal

(
{XiXj | {vi, vj} ∈ E(G)} ∪ {X2

i | {vi, vi} ∈ L(G)}
)
⊂ R .

Definition 2.3 A subset C of [n] = {v1, . . . , vn} is said a minimal vertex cover of G if:

(i) every edge of G is incident with one vertex in C , and

(ii) no proper subset of C satisfies (i).

If C verifies condition (i) only, C is called a vertex cover of G and it is said to cover all the edges of G .

The smallest number of vertices in any minimal vertex cover of G is called the vertex covering number.

Remark 2.3 There exists a one to one correspondence between minimal vertex covers of G and minimal prime

ideals of I(G) . In fact, ℘ is a minimal prime ideal of I(G) if and only if ℘ = (C) , for some minimal vertex

cover C of G . Thus I(G) has primary decomposition (C1) ∩ · · · ∩ (Cr) , where C1, . . . , Cr are the minimal

vertex covers of G .

Definition 2.4 The ideal of vertex covers of the edge ideal I(G) , denoted by Ic(G) , is the ideal of R generated

by all the monomials Xi1 · · ·Xir such that (Xi1 , . . . , Xir ) is an associated prime ideal of I(G) .

Note that if {vi, vi} ∈ L(G) and vi belongs to a vertex cover of the graph, {vi, vi} can be thought to preserve

the minimality.

The following generalizes the property for loopless graphs given in [10]

Property 2.1 Ic(G) =
( ∩

{vi,vj}∈E(G)

i ̸=j

(Xi, Xj)
)
∩

(
Xk | {vk, vk} ∈ L(G), k ̸= i, j

)
.

In [8] relevant wide classes of squarefree edge ideals associated to connected graphs were examined, in

particular those associated to loopless graphs H on n vertices that consist of a union of a complete graph
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Km , m < n, and m star graphs with centers at the vertices of Km ; and, starting from these ones, those

associated to graphs K , obtained from H by adding loops on some vertices of Km , called graphs K -type.

From now on, we deal with the ideal of vertex covers for the class of connected graphs K′ also introduced

in [8], namely the graphs K′ -type.

More precisely, K′ is the graph with loops on vertex set [n] = {v1, . . . , vn} union of : (i) a complete graph

Km ,m < n , with vertices vα1
, . . . , vαm

, 1 ⩽ α1 < α2 < . . . < αm = n ; (ii) star graphs starαi(αi − αi−1) with

vertices vαi−1+1, . . . , vαi , ∀ i = 1, . . . ,m , the index α0 means 0.

Note that the graphs K′ -type are larger than the graphs K -type, because K′ may have loops on vertices

not belonging to Km .

The edge ideal of K′ is: I(K′) = (Xα1Xα2 , . . . , Xα1Xαm , Xα2Xα3 , . . . , Xα2Xαm , . . . , Xαm−1Xαm , X1Xα1 ,

X2Xα1 , . . . , Xα1−1Xα1 , Xα1+1Xα2 , Xα1+2Xα2 , . . . , Xα2−1Xα2 , . . . , Xαm−1+1Xαm , . . . , Xαm−1Xαm , X2
t1 , . . . , X

2
tl
)

⊂ R = K[X1, . . . , Xn], . with {t1, . . . , tl} ⊆ {1, . . . , n}.

Remark 2.4 I(K′) has no linear quotients, because there is not an ordering of the monomials f1, . . . , fs of

G(I(K′)) such that (f1, . . . , fj−1) : (fj) is generated by a subset of {X1, . . . , Xn} , for 2 ⩽ j ⩽ s .

However, there exists a subgraph K of K′ whose loops lie only on the vertices belonging to Km , such

that I(K) has linear quotients.

According to Remark 2.1, I(K) has a linear resolution.

In general this is false for I(K′) .

The structure of the ideal of vertex covers for graphs K′ -type is obtained by using the description of the ideals

of vertex covers for the complete graph with loops and the star graph with loops that make it up.

Lemma 2.1 Let K ′
m be a complete graph on vertex set [m] = {v1, . . . , vm} having loops on v1, v3, vm−1 . The

ideal of vertex covers of I(K ′
m) is generated at most by m− 1 monomials. In particular,

(a) if there are loops in all the vertices, Ic(K
′
m) = (X1X2 · · ·Xm),

(b) if there are loops in r < m vertices, vt1 , . . . , vtr , {t1, . . . , tr} ⊆ {1, . . . ,m},

Ic(K
′
m) has m−r generators and it is(

{Xσ1 · · ·Xσm−1 | σj= tj , ∀ j=1, . . . , r; σi ∈ {1, . . . ,m}\ {t1, . . . , tr},∀ i ̸=j}
)
.

Lemma 2.2 Let star ′n(n) be a star graph on vertex set [n] = {v1, . . . , vn} having loops. The ideal of vertex

covers of I(star ′n(n)) is generated at most by two monomials. In particular,

(a) if the loops are in the vertices v1, . . . , vn−1 , Ic (star
′
n(n)) = (X1 · · ·Xn−1),

(b) if the loops are in v3, vn−2 , Ic (star
′
n(n)) = (X1 · · ·Xn−1, X3Xn−2Xn),

(c) if there are loops in the center and in the vertices vt1 , . . . , vts , {t1, . . . , ts} ⊆ {1, . . . , n−1} , Ic (star
′
n(n)) =

(Xt1 · · ·XtsXn).

The assertions of the preceding two lemmas descend from Property 2.1.
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Theorem 2.1 Let K′ be as above and suppose that it has loops on some of its vertices, say vα2 , vα4 , vα5 ,

vαm−3 , vαm−1 , vαi−1+j1 , . . . , vαi−1+jpi
, i = 1,. . . ,m , where {j1, . . . , jpi} ⊆ {1, . . . , αi−αi−1−1} . The ideal of

vertex covers Ic(K′) has at most m + 1 monomial generators Xj1 ···Xjp1
Xα1Xα1+j1 ···Xα1+jp2

Xα2Xα2+j1 ···
Xαm−1+jpm

Xαm , X1 ···Xα1−1Xα1+j1 ···Xα1+jp2
Xα2Xα2+j1 ···Xαm−1+jpm

Xαm , Xj1 ···Xjp1
Xα1Xα1+1 ···Xα2−1

Xα2Xα2+j1 ···Xαm−1+jpm
Xαm , . . . . . . . . . , Xj1 ···Xαm−3+jpm−2

Xαm−2Xαm−2+1 ·· ·Xαm−1−1Xαm−1Xαm−1+j1 ·· ·

Xαm−1+jpmXαm , Xj1 ···Xαm−2+jpm−1
Xαm−1Xαm−1+1 ···Xαm−1.

Proof See [8], Theorem 2.2. 2

Significant particular cases for determining the structure of the ideal of vertex covers related to a graph K′ -type

are (see [8]):

(a) some vertices of Km are not centers of star graphs,

(b) the loops lie only on the vertices of Km , and

(c) the loops lie only on the vertices not belonging to Km .

Example 2.1 Let K′ be the connected graph on vertex set {v1, . . . , v11} given by K3 ∪ star4(4) ∪ star8(4)

∪ star11(3) ∪ {v2, v2} ∪ {v5, v5} ∪ {v7, v7} ∪ {v11, v11} . The ideal of vertex covers for K′ is

Ic(K′) = (X2X4X5X6X7X11, X2X4X5X7X8X11, X1X2X3X5X7X8X11).

3. Linear quotients and properties for Ic(K)′

In this section we illustrate some algebraic aspects of Ic(K′).

We prove that there exists an ordering on the number of variables of every monomial of Ic(K′) for which

this ideal admits linear quotients and write them explicitly; we also compute standard algebraic invariants of

Ic(K′) such as projective dimension, depth, Krull dimension, and Castelnuovo–Mumford regularity, and finally,

because the ideals of vertex covers Ic(H) are Cohen–Macaulay ([9]), we show that this property is preserved for

the ideals of vertex covers Ic(K′) provided that the graphs K′ -type have loops on all the vertices corresponding

at least to a monomial generator of Ic(H).

Let us examine the existence of linear quotients for the ideal of vertex covers Ic(K′).

Theorem 3.1 Let K′ be as above, but at most m−2 vertices of Km have loops. Then there exists an order

⩽ on the number of variables in any monomial of Ic(K′) , natural order of indices for the same number of

variables, such that Ic(K′) has linear quotients.

Proof Theorem 2.1 and its consequences give us the minimal set of monomial generators for the ideal of vertex

covers Ic(K′). Such generators are squarefree and may have different degrees. Put them in increasing order

according to the degrees and, for the same degree, the leftmost nonzero difference of the indices is negative.

We have to distinguish two cases and for each of them will explicitly write the linear quotients of Ic(K′).

Case I. − The vertices vα1 , . . . , vαm of Km in K′ are centers of star graphs with or without loops;

otherwise there is a loop on any vertex of Km that is not the center of a star graph.

1196



IMBESI and LA BARBIERA/Turk J Math

▷ There are no loops on the vertices of Km . The linear quotients are:

◦ (Xα1), . . . , (Xαm)

if there are ends not covered by loops for each star graph;

◦ (Xα1), . . . , (Xαm−1)

if a star graph with its center in vαm has loops in all its remaining vertices.

▷ There is a loop on the vertex vαm of Km . The linear quotients are:

◦ (Xα1), . . . , (Xαm−1)

if there are ends not covered by loops for each star graph whose center has no loop, or vαm is not the

center of a star graph;

◦ (Xα1), . . . , (Xαm−2)

if a star graph with center in vαm−1 has loops in all its remaining vertices.

▷ There are loops on vertices vαm−1 , vαm of Km . The linear quotients are:

◦ (Xα1), . . . , (Xαm−2)

if there are ends not covered by loops for each star graph whose center has no loop, or vαm−1 , vαm are

not centers of star graphs;

◦ (Xα1), . . . , (Xαm−3)

if a star graph with its center in vαm−2 has loops in all its remaining vertices.

. . . . . . . . . . . . . . . . . . . . . . . . . . .
▷ There are loops on vertices vα3 , . . . , vαm of Km . The linear quotients are:

◦ (Xα1), (Xα2)

if there are ends not covered by loops for each star graph whose center has no loop, or vα3 , . . . , vαm are

not centers of star graphs;

◦ (Xα1)

if a star graph with its center in vα2 has loops in all its remaining vertices.

Observe that if there are loops on m−1 or m vertices of Km , Ic(K′) has no linear quotients because it is

generated by a unique monomial whose variables correspond to the vertices with loops of K′ .

Case II. − The vertices without loops of Km in K′ are not all centers of star graphs with or without

loops.

▷ There are no loops on the vertices of Km . The linear quotients are:

◦ (Xαi1
), . . . , (Xαim−1

)

∀ i1 ̸= . . . ̸= im−1 ∈ {α1, α2, . . . , αm} .

▷ There is a loop on the vertex vαm that can be the center of a star graph with or without loops. The linear

quotients are:
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◦ (Xαi1
), . . . , (Xαim−2

)

when none, some, or all the vertices vαi1
, . . . , vαim−2

of Km are centers of star graphs with or without

loops, ∀ i1 ̸= . . . ̸= im−2 ∈ {α1, . . . , αm−1} .

▷ There are loops on vertices vαm−1 , vαm and each one can be a center of a star graph with or without loops.

The linear quotients are:

◦ (Xαi1
), . . . , (Xαim−3

)

when none, some, or all the vertices vαi1
, . . . , vαim−3

of Km are centers of star graphs with or without

loops, ∀ i1 ̸= . . . ̸= im−3 ∈ {α1, . . . , αm−2} .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
▷ There are loops on vertices vα4 , . . . , vαm and each one can be a center of a star graph with or without loops.

The linear quotients are:

◦ (Xαi1
), (Xαi2

)

when none, one, or both the vertices vαi1
, vαi2

of Km are centers of star graphs with or without loops,

∀ i1 ̸= i2 ∈ {α1, α2, α3} .

▷ There are loops on vertices vα3 , . . . , vαm and each one can be a center of a star graph with or without loops.

The linear quotients are:

◦ (Xαi) when vαi ∈ Km is or not the center of a star graph with or without loops, ∀ i ∈ {α1, α2} .

As previously observed, if there are loops on at least m−1 vertices of Km , Ic(K′) has no linear quotients. 2

Remark 3.1 If K′ satisfies the hypotheses of Theorem 3.1, Ic(K′) has linear quotients. By Theorem 2.1,

Ic(K′) is not necessarily generated in the same degree. According to Remark 2.1, Ic(K′) has not in general a

linear resolution.

The existence of linear quotients for a monomial ideal I ⊂ R makes the computation of some algebraic

invariants of R/I easier. In fact:

⋄ the projective dimension, pdR(R/I) = q(I) + 1,

⋄ the depth, depthR(R/I) = dimR− pdR(R/I),

where dimR = dimR(R/I) + h(I) is the Krull dimension,

⋄ the Castelnuovo–Mumford regularity,

regR(R/I) = max{deg f | f minimal generator of I} − 1.

Lemma 3.1 Let R = K[X1, . . . , Xn] and Ic(K′) ⊂ R . Then h(Ic(K′)) = 1.

Proof Being Ic(K′) an ideal of vertex covers associated to a graph with at least a loop vi , the variable Xi is

common in all its generators. Thus there exists a vertex cover of Ic(K′) having the unique element Xi , namely

a set of minimal cardinality among the vertex covers of I(K′). 2

Lemma 3.2 Let R = K[X1, . . . , Xn] and Ic(K′) ⊂ R . Suppose that Ic(K′) has linear quotients. Then

q(Ic(K′)) = 1.
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Proof As a consequence of Theorem 3.1, Ic(K′) has linear quotients if it is generated at least by two monomials.

In this case, the number of variables for generating the ideal (f1, . . . , fh−1) : (fh) is 1, for all h = 1, . . . , t ,

t ⩽ m+ 1, m the number of vertices in Km . 2

Let us study algebraic invariants values for the ideal of vertex covers Ic(K′).

Theorem 3.2 Let K′ be as above. Let σ denote the maximal number of vertices among the star graphs of

K′ . Let R = K[X1, . . . , Xn] and Ic(K′) ⊂ R be the ideal of vertex covers related to K′ . If Ic(K′) has linear

quotients, then:

1) pdR(R/Ic(K′)) = 2 .

2) depthR(R/Ic(K′)) = n− 2 .

3) dimR(R/Ic(K′)) = n− 1 .

4) (m−1) + (σ−2) ⩽ regR(R/Ic(K′)) ⩽ n−2 .

Proof 1) The length of a minimal free resolution of R/Ic(K′) over R is equal to q(Ic(K′)) + 1 ([4], Corollary

1.6). Hence, by Lemma 3.2 , pdR(R/Ic(K′)) = 2.

2) As a consequence of 1), by the Auslander–Buchsbaum formula, one has that

depthR(R/Ic(K′)) = n− pdR(R/Ic(K′)) = n− 2.

3) It results in dimR(R/Ic(K′)) = dimRR− h(Ic(K′)) [2]. Hence, by Lemma 3.1 , dimR(R/Ic(K′)) = n− 1.

4) By [1], Lemma 4.1, reg(Ic(K′)) is the maximum of the degrees for any minimal generator of Ic(K′). By

hypothesis, Ic(K′) cannot be generated by a unique monomial and so any element of it has at most n−1

variables. Indeed, the lower bound is given by the maximal degree of the generators of the correspondent Ic(H)

([8], Prop. 2.1, Thm. 2.1). 2

If Ic(K′) is generated by a unique monomial, it has no linear quotients. However, the following result

holds:

Corollary 3.1 Let R = K[X1, . . . , Xn] and Ic(K′) ⊂ R . If Ic(K′) is generated by a unique monomial, then:

1) pdR(R/Ic(K′)) = 1 .

2) depthR(R/Ic(K′)) = n− 1 .

3) dimR(R/Ic(K′)) = n− 1 .

4) regR(R/Ic(K′)) ⩽ n−1 .

Example 3.1 Let K′ = K5 ∪ star3(3) ∪ star6(3) ∪ star8(2) ∪ star12(3) ∪ {v5, v5} ∪ {v8, v8} ∪
{v12, v12} on vertex set {v1, . . . , v12} .

Ic(K′) = (X3X5X6X8X12, X3X4X5X8X9X12, X1X2X5X6X8X9X12) .

Ic(K′) has linear quotients (X3), (X6) , but it is not generated in the same degree and so it has no linear

resolution. In fact:

0 → R(−7)⊕R(−8) → R(−5)⊕R(−6)⊕R(−7) → R/Ic(K′) → R → 0.

A computation for getting algebraic invariants gives:
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1) pdR(R/Ic(K′)) = 2 .

2) depthR(R/Ic(K′)) = 10 .

3) dimR(R/Ic(K′)) = 11 .

4) regR(R/Ic(H)) = 6 .

Let us examine the Cohen–Macaulay property for Ic(K′).

Recall that an ideal I ⊂ R is Cohen–Macaulay if and only if R/I is Cohen–Macaulay, i.e. depth(R/I) =

dim(R/I).

Starting from some characteristics of the loopless graph H , formed by the union of a complete graph

Km , m < n , together with star graphs with centers the vertices of Km , and from the structure of the edge

ideal I(H) of H , for the ideal of vertex covers Ic(H) the following holds.

Proposition 3.1 Ic(H) is a Cohen–Macaulay ideal.

Proof See [9], Proposition 2.4. 2

The next result shows that such a property is preserved for the ideals Ic(K′) related to the graphs K′ -type

that have loops on all the vertices corresponding at least to a monomial generator of Ic(H).

Theorem 3.3 Let Ic(H) be the ideal of vertex covers for the edge ideal associated to the graph H and

f1, . . . , ft, t ⩽ m−1 be its monomial generators. Let us consider the graph K′ obtained from H by insert-

ing loops at least in the vertices that correspond to all the variables on any generator fi of Ic(H) . Then the

ideal of vertex covers Ic(K′) is Cohen–Macaulay.

Proof In [8] the structure of the generators of the ideal of vertex covers Ic(H) was studied. When a loop

{vi, vi} is added to the graph H , all the generators of the ideal of vertex covers for the edge ideal associated

to the new graph K′ will have the common variable Xi . If the loops added are relative at least to all the

variables in any generator of Ic(H), the ideal of vertex covers Ic(K′) will be generated by a unique monomial.

The assertion follows from Corollary 3.1, because depthR(R/Ic(K′)) = dimR(R/Ic(K′)). 2

Example 3.2 Let H = K5 ∪ star3(3) ∪ star6(3) ∪ star8(2) ∪ star12(3) on vertex set {v1, . . . , v12} .
Ic(H) = (X1X2X6X8X9X12, X3X4X5X8X9X12, X3X6X7X9X12, X3X6X8X9X10X11, X3X6X8X12) .

Let K′ = K5 ∪ star3(3) ∪ star6(3) ∪ star8(2) ∪ star12(3) ∪ {v2, v2} ∪ {v3, v3} ∪ {v4, v4} ∪
{v5, v5} ∪ {v8, v8} ∪ {v9, v9} ∪ {v10, v10} ∪ {v12, v12} be the graph obtained from H by inserting loops on

the vertices correspondent to the monomial generator X3X4X5X8X9X12 of Ic(H) and in other ones.

It is Ic(K′) = (X2X3X4X5X8X9X10X12) .

One has: depthR(R/Ic(K′)) = 11 = dimR(R/Ic(K′)) .

Then Ic(K′) is Cohen–Macaulay.

The last theorem extends to any connected graph with loops, as the following formulates

Theorem 3.4 Let G be a connected loopless graph on vertex set [n] = {v1, . . . , vn} and edge ideal I(G) ⊂
R = K[X1, . . . , Xn] . Let Ic(G) be the ideal of vertex covers for the edge ideal associated to G and suppose
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that Ic(G) is Cohen–Macaulay. Let us consider the graph G′ built from G by adding loops at least on the

vertices that correspond to all the variables in any generator of Ic(G) . Then the ideal of vertex covers Ic(G′) is

Cohen–Macaulay.

Proof A generalization of the proof of Theorem 3.3, bearing in mind that the hypotheses make Ic(G′) a

principal ideal. 2

4. An optimization problem of police control

Let us evaluate an application for the widespread deployment of a minimum number of police patrols in crucial

crossroads or squares of a big city, in order to control all the streets and residential areas by standard routes.

To perform this, we can think of modeling the city through a graph K′ -type. To be more precise:

◦ vertices represent crucial nodes, such as crossroads or squares;

◦ every edge can be seen as the route assigned to the patrol stationed in a vertex to reach an adjacent one;

◦ every loop can be intended as the route assigned to the patrol to return to the starting vertex without

going through anyone else.

The least number of patrols needed to adequately cover the areas around the intersections of the center and

suburbs is given by the monomials with the minimum number of variables that generate the ideal of vertex

covers of the edge ideal related to K′ .

They just identify the crossroads or squares that have to be monitored. If there are different generators of

the ideal of vertex covers with the smallest number of variables, there will be several solutions to the minimum

problem.

Remark 4.1 If the ideal of vertex covers for K′ has only one generator, then it is Cohen–Macaulay. This can

be interpreted thinking of the graphs K′ -type have a unique covering, namely one solution to the problem of

minimal vertex covers.

Example 4.1 Let us suppose the map of any city can be modeled through the graph in the Figure.

The minimum number of police patrols necessary for covering the main crossroads or squares, represented

by the vertices of the graph, in order to control all the streets and residential areas by standard routes, outlined

by edges and loops of it, is linked to the generators with the minimum number of variables of the ideal of vertex

covers Ic(K′) .

According to Theorem 2.1, a computation yields the displayed monomial generators for it:

X1X2X3X7X9X10X12X14X15X16X17X19X20X23X25X26X27X28X29X30X32X33,

X2X3X4X7X9X10X11X12X13X15X16X17X19X20X23X25X26X27X28X29X30X32X33,

X2X3X4X7X9X10X12X14X15X16X17X18X20X21X22X25X26X27X28X29X30X32X33,

X2X3X4X7X9X10X12X14X15X16X17X18X20X23X25X26X27X28X29X30X32X33,

X2X3X4X7X9X10X12X14X15X16X17X19X20X21X22X25X26X27X28X29X30X32X33,

X2X3X4X7X9X10X12X14X15X16X17X19X20X23X25X26X27X28X29X32X33.

They correspond to minimal vertex covers of K′ . The only one with the smallest number of vertices is:

C = {2, 3, 4, 7, 9, 10, 12, 14, 15, 16, 17, 19, 20, 23, 25, 26, 27, 28, 29, 32, 33} .
Thus, the requested minimum number of patrols is the vertex covering number of K′ , namely twenty-one; they

have to be set out on the nodes of C .
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Figure 1. K′ -type graph
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