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Introduction

The purpose of this thesis is to investigate on beta estimation considering dif-
ferent trading periods. Starting from a literature review, given in the first chapter,
we explain the meaning of beta and the different methodologies used for its esti-
mation. We find that there is poor literature evidence on the differences between
daily, intraday and overnight betas, so we decide to focus on this topic.

In order to understand if beta estimation on different trading periods matter,
in the first chapter, we divide the total daily return in intraday and overnight re-
turn and evaluate daily, intraday and overnight betas using two different models.
Starting by the classical Capital Asset Pricing Model (CAPM), and assuming a
constant systematic risk, i.e. a constant beta over time, we estimate our three
betas. Subsequently, we consider a nonparametric method for time-varying con-
ditional betas, proposed by Ang and Kristensen (2012) and Li and Yang (2011).
By using this model we compute time-varying betas in conditional factor models
which are conditional on the realized betas. For both these models we estimate
daily, intraday and overnight betas considering US stocks traded on the NYSE,
AMEX, and NASDAQ markets. Furthermore, we try to understand if there is
some relation between the beta parameter and the stock size. Taking into account
the differences in pattern between the daily intraday and overnight betas, found
in the second chapter, we decide to investigate if it is possible to take advantage
of the different behaviors in a trading strategy based on the beta estimation. In
particular, we consider the statistical arbitrage strategy, proposed by Frazzini and
Pedersen (2014), Betting Against Beta (BAB) and we adapt it constructing three
different portfolios ranked and organized by daily, intraday and overnight betas.

Part of this work has been presented at the 4th Conference of the International
Society for Nonparametric Statistics (ISNPS 2018).
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Chapter 1

Systematic risk and beta estimation

Introduction
When we talk about investments we have to talk about risk. Every individual

investment is exposed to two types of risk: unsystematic risk and systematic risk.
Unsystematic risk, said also residual risk or diversifiable risk, represents the risk
related to one security or to a group of specific securities, it is indeed associated
to microeconomics factors. This kind of risk can be mitigated through diversi-
fication, investing on securities belonging to different sectors. Systematic risk
depends on the uncertainty related to the market. Macroeconomic factors, like
inflation, change in interest rate, recession and wars, can be considered as sources
of systematic risk. This kind of risk cannot be diversified, it can be mitigated by a
good asset allocation strategy, and so investing on different financial products (i.e.
bonds and stocks). When markets are perfect and frictionless, and we have a well
diversified portfolio, the only relevant risk is systematic risk (Elton et al., 2009),
that can be evaluated by beta, ’β ’.
Beta can be considered as a measure of the systematic risk, it represents the stock’s
sensitivity of returns with respect to the changes in the market. A beta less than
one implies that the investment will be less volatile than the market. A beta greater
than one indicates that the investment’s price will be more volatile than the mar-
ket. This suggests that a risk-averse investor will choose to invest on a stock with
a low beta. A not risk-averse investor will consider a stock with a beta greater
than one. Of course higher risk implies higher profit.
Beta is an unknown coefficient, unobservable to investors. Various evaluation
strategies have been proposed in order to obtain a more precise estimator as proxy
for its true value. The simplest way is to consider the CAPM and evaluate beta
by a classical OLS method, assuming a constant beta on the whole period. This
assumption has been criticized because it implies a constant systematic risk over
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CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

time, and this is not realistic because systematic risk represents the uncertainty
inherent to the market. In order to overcome this problem, and evaluate time-
varying beta, several different econometric methods have been proposed. The
most popular approaches consider non parametric techniques, different versions
of the GARCH model and Kalman filtering procedure.

In the first sections we give a literature review on beta estimation. We present
the limits of the CAPM and the different econometric methodologies used for
constant and time-varying betas evaluation. Finally we talk about beta estimation
through the use of high frequency data, and on different trading periods.

1.1 The Capital Asset Pricing Model
When we talk about beta, the first model that we have to consider is the Cap-

ital Asset Pricing Model (CAPM), developed by Sharpe (1964), Lintner (1965)
and Mossin (1966), where beta represents the slope from regressing the asset re-
turns on market returns. The expected return of a security, E(r), expressed by the
classical CAPM is given by:

E(r) = r f +β [E(rM)− r f ] , (1.1)

where r f is the return of a risk free investment and rM is the return from the market
portfolio. If we denote with R = r− r f and RM = rM − r f the excess return on the
security and on the market portfolio, we can write the model as:

E(R) = βE(RM) . (1.2)

Another parameter, which is often used in combination with beta, is the alpha
or Jensen index (Jensen, 1968) and it is related with volatility or risk. It can be
used to determine how much the realized return of the security differs from the
theoretical return determined by the CAPM. Mathematically speaking it is given
by:

α = E(r)− r f −β [E(rM)− r f ] . (1.3)

It provides a relationship between risk and return (technically called ’security mar-
ket line’ SML). Its value describes the performance of an investment in relation
with its benchmark. In an efficient market we expect that this value is equal to
zero. Having negative values for alpha means that we have a security’s under-
performance, on the other hand having a positive alpha means that our security
outperform its benchmark index.

The CAPM gives a way to measure the relationship between expected return
and risk. It is one of the most used models for the portfolio performance anal-
ysis. As in all mathematical models also in the CAPM there are some implicit
assumptions, as reported in Hull (2012):

4



CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

1. “Investors care only about the expected return and the standard deviation of
return of their portfolio”;

2. “The returns from investments are correlated with each other only because
of their correlation with the market portfolio”;

3. “Investors focus on returns over just one period and the length of this period
is the same for all investors”;

4. “Investors can borrow and lend at the same risk-free rate”;

5. Tax does not influence investment decisions;

6. “All investors make the same estimates of expected returns, standard devia-
tions of returns, and correlations between returns”.

To test the validity of the CAPM, many empirical studies have been conducted,
considering time-series and cross-sectional regressions. First studies support the
CAPM (Fama et al., 1969; Blume, 1970), but subsequently, some empirical re-
searches put some questions on the explanatory power of market betas for explain-
ing the cross-section of expected returns (Basu, 1977, 1983; Roll, 1977; Banz,
1981; Stattman, 1980; Rosenberg et al., 1985; Bhandari, 1988; Fama and French,
1992). It is important to mention that verify the accuracy of CAPM could be dif-
ficult, because if the value used as proxy for the market is inefficient, the resulting
beta estimates are less accurate (Roll, 1977; Ross, 1977; Roll and Ross, 1994).
The poor empirical results obtained, probably due to the very restrictive and unre-
alistic assumptions of the CAPM, brought to a long review debate, in which many
authors tried to develop and extend some of the crucial problems, in order to give
a more realistic model (for reviews of the CAPM literature see Campbell (2000);
Fama and French (2004); Jagannathan et al. (2010a,b); Subrahmanyam (2010);
Goyal (2012)).

The most discussed assumptions are the first one, for which investors look
only at the first two moments of return distribution, and the third one, in which the
model assumes a constant risk over time. The first hypothesis implies that returns
are normally distributed, but this is not true for many assets that have skewness
and excess kurtosis. This is supported by empirical results, in which it has been
shown that the corresponding third and fourth moment (skewness and kurtosis) of
asset distribution are very different from those of the normal distribution (Kraus
and Litzenberger, 1976; Harvey and Siddique, 2000; Hwang and Satchell, 1999;
Fang and Lai, 1997).

Probably one of the most criticized assumptions of the CAPM, is related to
consider the risk associated with an asset constant over time. Indeed, in reality,
investment horizon consists of many periods, and many studies showed empirical

5



CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

evidence for time-varying risk premia of financial assets (Shiller et al., 1984; Let-
tau and Ludvigson, 2001b). To overcome this problem there are two ways. The
first one considers a multiple source of systematic risk, by intertemporal models
developed by Merton (1973) and then extended by the three-factor model of Fama
and French (1993) and multifactor models.

For example Fama and French (1993), in order to explain the expected returns
of an investment, introduce in the CAPM other sources of systematic risk related
to size and book to market through the following three factor model:

E(r)− r f =+βM[E(rM)− r f ]+βSE(SMB)+βhE(HML) , (1.4)

where SMB (Small Minus Big) is the difference between the returns on portfolios
of small and large stocks, HML (High Minus Low) is the difference between
portfolios of high and low book to market value stocks.

The second methodology, used to add time-varying systematic risk factors, im-
plies the evaluation of conditional time-varying models (Jagannathan and Wang,
1996; Lettau and Ludvigson, 2001a). Considering conditional variances and co-
variances (Bodurtha and Mark, 1991), conditional factor models and conditional
CAPM are a good way to include the time-varying systematic risk factors. From
literature it seems that the use of a conditional version of the CAPM could better
explain the systematic risk (Jagannathan and Wang, 1996; Lettau and Ludvigson,
2001a).
By the conditional CAPM, we have the following relationship:

E
[
ri, t − r f , t |Ft−1

]
= E [βi, t |Ft−1]E

[
rM, t − r f , t |Ft−1

]
, (1.5)

here all the parameters are estimated at time t, they are conditional to Ft−1, that
represents the information set at time t −1. This equation can be written as:

E [Ri, t+1|Ft ] = E [βi, t+1|Ft ]E [RM, t+1|Ft ] , (1.6)

where the conditional beta can be evaluated as:

E [βi, t+1|Ft ] =
cov [Ri, t+1,RM, t+1|Ft ]

var [RM, t+1|Ft ]
.

1.2 Constant beta estimation
The most adopted approach for beta estimation, assumes the systematic risk

as constant, and evaluates it by an ordinary least squares (OLS) method. Consid-
ering a bivariate time series (Ri,RMi)

n
i=1 of excess returns of a security and excess

market returns, the empirical formulation of the CAPM (1.1) can be written as:

Ri = α +βRMi + εi εi ∼ (0,σ2) , (1.7)
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CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

where α is expected to be zero, εi are the error terms i.i.d, and the systematic
risk beta, is the estimated slope of the linear regression of Ri on RMi. It can
be evaluated considering the sample covariance between the excess returns of a
security and excess market returns divided by the sample variance of the excess
market returns:

β̂ =
cov(Ri,RMi)

var(RMi)
. (1.8)

If the covariance with the return of the market is zero we will have beta equal
to zero, so a risk free asset, otherwise, if the covariance is equal to the market
variance, we will have beta equal to one.

An equivalent beta formula is given by:

β̂ = ρ
σ

σM
,

where σ and σM are the standard deviation of the security returns and of the mar-
ket returns, ρ represents their correlation.

Evaluating beta by a simple OLS method is not efficient, because the market is
complex and volatile. For example, OLS is not suitable for estimating beta coeffi-
cient in the cases of normal distribution, tail or other distributions, that cannot be
explained successfully by the model. Furthermore the existence of outlier or ex-
treme data can create a problem of efficiency for the OLS regression model (Jiang,
2011; Shalit and Yitzhaki, 2002; Martin and Simin, 2003; Tofallis, 2008). To elim-
inate standard parametric model inefficiency, robust regression techniques have
been developed (Genton and Ronchetti, 2008; Alp and Bilir, 2015). For exam-
ple Sharpe (1971) considers the least absolute deviations (or the L1-estimator) for
beta estimation. Chan and Lakonishok (1992) use quantile regression, linear com-
binations of regression quantiles, and trimmed regression quantiles. Martin and
Simin (2003) propose to evaluate beta by means of redescending M-estimators.

The across time instability given by OLS standard beta estimation, can be
overcome considering different strategies. For Blume (1970) and Levy (1971), it
is possible increase precision of beta, grouping stocks into portfolios and com-
pute the beta, for each portfolio, in time series regression. Other authors (Baesel,
1974; Altman et al., 1974; Blume, 1975; Roenfeldt et al., 1978) assert that a more
stable evaluation can be given considering a longer estimate period. Furthermore,
has been proposed the use of autoregressive adjustment methods (Blume, 1975;
Vasicek, 1973). The Blume (1975) autoregressive adjustment method, try to cap-
ture the tendency of the standard betas to converge towards the value of unity over
time. Considering how much the historical betas are different from their average
value, Blume regresses betas from one historical period on beta from a prior pe-
riod and then uses this regression to adjust betas for the forecast period. Instead,

7



CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

Vasicek (1973) develops a Bayesian estimation technique, considering the accu-
racy of the historical betas. In particular, he modifies the past betas in relation to
the average beta, taking into account the value of the beta sampling error. When
this error is higher, there could be an higher difference from the average beta. To
betas with a larger sampling error will be assigned a lower weight. Respect to the
standard evaluation, these two adjustment techniques led to a more accurate fore-
cast for beta (Klemkosky and Martin, 1975; Luoma et al., 1996; Murray, 1995;
Hawawini et al., 1985; Sarker, 2013). As shown by Cloete et al. (2002) the use of
robust estimators with the Vasicek’s technique, generates a new class of estimators
that perform better respect to the traditional.

1.3 Time-varying beta estimation
Market risk premia changes over time, consequently stock betas will vary over

time, implying a change in the stock’s price (Bollerslev et al., 1988; Lettau and
Ludvigson, 2001b). The betas used within the CAPM are calculated on a set
period-by-period basis, ignoring its continuous evolution. Assuming a constant
beta the CAPM does not describe the cross-section of average returns on equities
and the market, considered to explain dynamics in volatility (Bos and Newbold,
1984; Collins et al., 1987; Brooks et al., 1992; Choudhry, 2002, 2005; Adrian and
Franzoni, 2009).

In order to estimate time-varying betas it is possible adopt more sophisticate
strategies. The most used methods make assumptions about the dynamics of be-
tas (parametric and non-parametric approaches, considering rolling regression,
Kalman filters) or make assumptions about the conditional covariance matrix of
returns (GARCH models).

Applying a parametric approach, we can model beta as a function of state vari-
able (Shanken, 1990) or firm characteristics (Jagannathan and Wang, 1996; Lettau
and Ludvigson, 2001a). Shanken (1990) assumes a linear relation between beta
and some state variables, and estimates the parameters of this function in a con-
ditional CAPM time-series regression. Jagannathan and Wang (1996) and Lettau
and Ludvigson (2001a) represent the variation of the conditional distribution of
returns as a function of lagged state variables. They model the covariance be-
tween the market returns and portfolio returns defining affine functions of these
variables. With this approach beta can be estimated by a multi-factor model, in
which the additional factors are given by the relations between the market return
and the state variables. There is also a non parametric version of this methodology
(Ferreira et al., 2011).

Kalman filters give a direct estimate of time varying betas. Betas are cal-
culated from an initial set of priors, producing a series of conditional betas, as-
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CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

suming standard stochastic processes such as random walk, autoregressive, mean
reverting and switching models (Black et al., 1992; Wells, 1994; Faff et al., 2000;
Brooks et al., 2002; Hillier, 2002; Gao and Yao, 2004; Ebner and Neumann, 2005;
Mergner and Bulla, 2008).

The GARCH models use the conditional variance information to construct the
conditional beta series. Generally, for time-conditional moments models is con-
sidered an autoregressive moving average relation. The first who introduced the
Autoregressive Conditional Heteroscedasticity (ARCH) model was Engle (1982).
Subsequently, in order to parametrize the conditional mean and the conditional
covariance of financial time series, Bollerslev (1986) introduces the Generalized
ARCH (GARCH). The Multivariate-GARCH (M-GARCH) model, first proposed
by Bollerslev (1990), evaluates the beta time-series indirectly, considering the es-
timates of the time-varying conditional covariance of security and market returns
and the time-varying conditional variance of market returns. The GARCH ap-
proach for time-varying beta has been considered in various studies (Bollerslev
et al., 1988; Engel and Rodrigues, 1989; Braun et al., 1995; Giannopoulos, 1995;
McClain et al., 1996; Bodurtha and Mark, 1991; Brooks et al., 1998; Lie et al.,
2000; Brooks et al., 2002; Li, 2003; Mergner and Bulla, 2008; Darolles et al.,
2018). Instead of the multivariate-GARCH models it is possible consider a new
class of multivariate models called Dynamic Conditional Correlation (DCC) mod-
els proposed by Engle (2002). As said by the author these estimators “have the
flexibility of univariate GARCH but not the complexity of conventional multivari-
ate GARCH”. In recent papers Engle (2016) and Bali et al. (2016) consider this
model for beta estimation.

The last methodology for the estimation of time-varying betas assumes that
betas vary smoothly over time. Starting from the Fama and MacBeth (1973)
work, it is possible to consider a rolling window ordinary least square estima-
tion. Considering this approach we do not have a parametrization problem, but
we have to select the window length. Within the family of rolling least squares es-
timators, we can include the nonparametric time-varying betas estimator (Robin-
son, 1989) and nonparametric time-varying conditional betas (Esteban and Orbe-
Mandaluniz, 2010; Li and Yang, 2011; Ang and Kristensen, 2012).

Many different papers evaluate the various approaches for time-varying betas,
discussed above. The most compared are the GARCH-based estimators and the
Kalman filter approaches. By the results obtained it seems that the last methodol-
ogy performs better in terms of forecasting ability (Faff et al., 2000; Mergner and
Bulla, 2008; Adrian and Franzoni, 2009; Choudhry and Wu, 2008; Nieto et al.,
2014; Bali et al., 2016).

9



CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

1.4 High-frequency data and trading period on beta
estimation

During the last few years there has been an explosion in the amount of fi-
nancial high frequency data. This led to the improvement and the development
of new techniques and models for the evaluation of financial parameters, both in
time-series than in cross-sectional dimensions.
Using higher frequency data, on simple autoregressive time series models, allows
a more accurate beta estimation and forecasting (Barndorff-Nielsen and Shephard,
2004; Andersen et al., 2005, 2006). Furthermore, systematic risk estimation with
daily-frequency data, can give a good relationship between betas and the cross-
section of expected stock returns. For example Bali et al. (2016), considering
dynamic conditional beta at daily frequency, find that results are efficient in ex-
plaining the cross-section of daily stock returns, confuting the previous empirical
tests for which the CAPM fails to describe the cross-section of stock returns (Fama
and French, 1992).

The use of high-frequency data allows also the development of new estima-
tors. Starting from techniques used for realized volatility (Foster and Nelson,
1994; Andersen and Bollerslev, 1998), it is possible forecast and model a new
estimator for beta, the ’realized betas’ (Barndorff-Nielsen and Shephard, 2004;
Andersen et al., 2005, 2006; Patton and Verardo, 2012). These new beta estimates
are time-varying and are defined as the ratio between the realized covariance of
stock and market and the realized market variance. They can be considered as a
non-parametric estimator of underlying beta.

One of the most relevant aspects, when we talk about high frequency data, is
the sampling frequency. Indeed, using low-frequency data, could determine im-
precise and noisy estimates for beta (Andersen et al., 2006), but conducting the
analysis to a very high frequency induces distortion on estimate, because intra-
day returns are corrupted by the market microstructure noise, due to the market
friction. In order to overcome these problems, it is possible consider different
approaches like adjustments by including filtering (Ebens et al., 1999; Andersen
et al., 2001; Bandi and Russell, 2005), subsampling (Andersen et al., 2011), cor-
rection for overnight price changes (Hansen and Lunde, 2004), considering kernel
estimators (Hansen and Lunde, 2004; Barndorff-Nielsen et al., 2011).

Most of the papers, using high-frequency data, do not take into account the
non trading effect in their estimation, indeed they employ just intraday values. For
example, Ryu (2011) finds that the realized beta, computed using only the intraday
returns, provides a good estimation of underlying beta that could outperform the
constant beta.

Some empirical studies put on evidence that the use of intraday returns can
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CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

improve the forecast accuracy of models based on daily returns (Taylor and Xu,
1997; Koopman et al., 2005; Pong et al., 2004; Liu and Maheu, 2009; Fuertes and
Olmo, 2013). Although, ignoring completely the overnight period, considering
only the intraday returns, could be an error, because of course non-trading periods
influence the following trading hours. The computation of financial measures,
including the overnight return, could change significantly, from those that exclude
that values.

Different authors, analyzing intraday and overnight price returns, show a dif-
ference in return patterns (Tsai et al., 2012; Branch and Ma, 2012, 2006; Cooper
et al., 2008; Berkman et al., 2009; Wang et al., 2009). Many of them find that day-
time returns and overnight returns tend to be anti-correlated. For example, Tsai
et al. (2012) investigate on the correlation between the three components on the
Taiwan stock market, and compare their results with others markets as the New
York Stock Exchange (NYSE) and the National Association of Securities Dealers
Automated Quotation (NASDAQ). They find a negative cross correlation between
the sign of daytime returns and the sign of overnight returns. Also Branch and Ma
(2006) and Wang et al. (2009) show that daytime returns and overnight returns
are significantly negatively correlated. In particular, Wang et al. (2009) studying
the statistical distribution and correlation between total return, overnight return,
and daytime return, on 2215 stocks in New York Stock Exchange, find an higher
mean value for daytime returns respect to overnight. In opposition, Gallo (2001),
shows that daytime returns and overnight returns are not significantly negatively
correlated, furthermore, Kelly and Clark (2011) and Cooper et al. (2008) suggest
that stock returns are higher overnight than intraday.

Analyzing the momentum returns Bogousslavsky (2016) and also Polk et al.
(2018), find that it increases overnight. Indeed their empirical studies show that
intraday, momentum returns do not exhibit any clear pattern except at the end of
the day, when returns tend to be negative. This is probably related to overnight
liquidity risk.

Obviously, periodic market closures impact also on stock price volatility. Volatil-
ity of returns during trading periods is found to be higher, than those during non
trading periods (French and Roll, 1986; Lockwood and Linn, 1990; Güner and
Önder, 2002). Also Linton and Wu (2017), in a recent paper, analyzing second
moments, and so volatility, they find that intraday is higher than overnight. Al-
though between 2009 to 2012 they note higher values for overnight volatility, due
probably to the European sovereign debt crisis. Furthermore, the ratio between
overnight and intraday volatility is increasing over part of the last 20 years.

Many approaches have been considered in realized volatility literature, most
of them ignore completely the non trading effect and scale upward the value ob-
tained, in this way the evaluation includes an entire 24-hour day (Koopman et al.,
2005; Martens, 2002). Hansen and Lunde (2005) derive optimal weights for the
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CHAPTER 1. SYSTEMATIC RISK AND BETA ESTIMATION

overnight return and the sum of intraday returns. Other authors (Bollerslev et al.,
2009; Pooter et al., 2008; Martens, 2002; Blair et al., 2010) estimate the overnight
return subtracting the day’s close value from the next day’s open, and add this
squared return as one of the factors in the sum of intraday returns. Andersen et al.
(2011) model the overnight returns as discontinuous movements.

Few authors put their attention on beta estimation considering different trading
periods. Liu (2003) evaluates the relationship between a security’s systematic risk,
considering high-frequency data for overnight and intraday returns. He computes
the security beta as a weighted average of its intraday beta and overnight beta,
the weight is the variance ratio between the intraday market index return and the
overnight market index return. Considering different trading periods for beta esti-
mation, Todorov and Bollerslev (2010) suggest a pricing framework in which they
evaluate three separate market betas: a continuous beta for the ’smooth’ intraday
co-movements with the market, and two ’rough’ betas associated with intraday
price discontinuities, or jumps, during the trading hours, and the overnight close-
to-open return. They found that the average of the two rough betas is higher than
the continuous beta.
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Chapter 2

Daily, intraday and overnight betas

Introduction
As we have seen in the first chapter, there are many papers about the financial

meaning of beta and the different methodologies used for its estimation, on the
other hand few studies investigate on the value of intraday and overnight betas.

Since we want to understand whether evaluating systematic risk, i.e. beta, on
different trading periods could lead to different results and if there are some dif-
ferences in patterns between the daily, intraday and overnight betas, we divide the
total daily return into intraday and overnight return. In order to do that, in this
chapter, we focus our attention on two models, the first one uses constant beta and
the other one allows time-varying beta.
The first evaluation is obtained starting from the classical CAPM applying a sim-
ple OLS method. As we said in the first chapter this is not the best choice for
beta estimation because this model assumes a constant systematic risk over time
and furthermore because there are obvious inefficiency problems using a standard
parametric model.
For the time-varying betas we consider the conditional CAPM, and we solve it us-
ing a non parametric method through a standard weighted regression in which the
kernel is around time. This procedure for conditional betas has been proposed by
Robinson (1989) and then by Ang and Kristensen (2012) and Li and Yang (2011).

We choice this approach because it can be quite simple and flexible from a
computational point of view, these are fundamental features considering the va-
riety of comparisons that we want to do and the big amount of data. Of course
the choice of the kernel and the bandwidth represents a crucial point for efficient
results. In particular, in order to obtain more accurate values, we decide to use a
Gaussian kernel and three different bandwidths for our estimations. As first band-
width we consider the simple Silverman’s rule (Silverman, 1986), then we adopt
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the optimal bandwidth evaluated by Ang and Kristensen (2012) and finally we
derive an optimal bandwidth adapting the Ruppert et al. (1995)’s rule of thumb.
Daily, intraday and overnight betas are estimated considering US stocks values
traded on the NYSE, AMEX, and NASDAQ markets. The data have been taken
from the Center for Research in Security Prices (CRSP). As benchmark for the
market index we first consider the same daily value for all the trading periods,
subsequently we use our intraday and overnight weighted index. In order to un-
derstand if there is some relationship between beta and the size, we evaluate our
betas stock by stock but also grouping them into ten portfolios sorted month by
month by market capitalization.
In the first sections of this chapter we present the conditional CAPM and the
methodology used for beta evaluation, focusing on the kernel and bandwidth se-
lection. In the last section we explain our procedure and show our results.

2.1 Local least square kernel regression
We evaluate our time-varying beta starting by the conditional CAPM, where

the excess returns of a generic stock, at discrete time points t = 1, · · · ,n, respect
to the excess market returns, are given by:

Rt = αt +βtRMt +ωtzt , (2.1)

αt and βt are the conditional alphas and betas, zt is the error term and ωt is the
conditional variance of errors.
Considering the filtration Ft = F (R j,RM j,α j,β j : j ≤ t) the error term have to
satisfies

E
[
zt

∣∣∣Ft

]
= 0 , E

[
ztz′t

∣∣∣Ft

]
= 1 , (2.2)

these assumptions can be viewed as a generalization of the classical OLS condi-
tions, they state that errors and factor are orthogonal.
Under the orthogonality condition (2.2), there is a conditional relation between
parameter and observation, Ang and Kristensen (2012), define the realization of
alphas and betas that generated data as:

[αt ,βt ]
′ = Λ−1

t E
[
XtR′

t |Ft
]
,

where Xt = (1,RMt)
′ and Λt = E [XtX ′

t |Ft ] is the conditional second moment of
the regressors.

As other authors have done (Robinson, 1989; Li and Yang, 2011; Ang and
Kristensen, 2012; Esteban and Orbe-Mandaluniz, 2010), in order to estimate the
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model (2.1) we assume that the sequences of αt and βt , vary smoothly over time
and lie on unknown functions of the time index:

αt = α(t/n) ∈ C2[0,1] and βt = β (t/n) ∈ C2[0,1] .

This assumption makes αt and βt dependent on the sample size n. We map each
observation labelled by t = 1,2, · · · ,n, into an interval between 0 and 1 through
the transformation t/n. We do not impose a functional form but we use local in-
formation to estimate the two quantities, for this reason the method can be viewed
as a non-parametric method.

Given the observations of excess returns and excess market returns at t =
1,2, · · · ,n, it is possible to derive an estimate of the functions α(τ) and β (τ),
for a generic asset, at any normalized time point τ ∈ (0,1). This is done using a
local least square kernel regression:[

α̂(τ), β̂ (τ)
]′
= argmin

(α,β )

n

∑
t=1

Kh (t/n− τ)(Rt −α(t/n)−β (t/n)RMt)
2 , (2.3)

where,

Kh(z)≡
1
h

K
( z

h

)
,

K(·) is a kernel function and h the bandwidth.
Solving the equation (2.3) we can obtain the optimal estimators running, for

each asset, a series of kernel-weighted ordinary least square (OLS) regressions

[
α̂(τ), β̂ (τ)

]′
=

[
n

∑
t=1

Kh (t/n− τ)XtX ′
t

]−1[ n

∑
t=1

Kh (t/n− τ)XtRt

]
. (2.4)

The use of a kernel function gives the possibility to estimate conditional alphas
and betas at any time, using all the data efficiently. Obviously, the most relevant
aspect of the implementation of this method is the selection of the kernel shape
and the bandwidth h.

2.2 Kernel
Using a kernel function we assign different weights to the observations. These

weights depend on how close the observations are to the point τ . The most fre-
quently used kernel functions are the uniform function

K(τ) =

{
1
2 , for |τ| ≤ 1
0 , for |τ|> 1
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and the Epanechnikov kernel function

K(τ) =

{
3
4(1− τ2) , for |τ| ≤ 1
0 , for |τ|> 1

In the first case, all the observations have the same weights. In the second one,
the observations closer to the estimation point τ have an higher weight compared
to those farther from it. This implies that weights decline with the increase of the
time lag. Although many authors like Li and Yang (2011), Andersen et al. (2006)
and Lewellen and Nagel (2006) use one-sided and uniform kernel, following Ang
and Kristensen (2012), we consider for our estimates, a Gaussian density

K(τ) =
1√
2π

exp
(
−τ2

2

)
.

The main problem that can occur using a two-sided symmetric kernel is an excess
of bias at the beginning and at the end of the sample. There are many techniques
that could be used to avoid this problem, such as locally linear kernel estimator or
boundary kernels. The simplest methodology, used also by Ang and Kristensen
(2012), is to delete the first and the last year of the conditional betas estimated. In
particular in our estimation we evaluate our beta on all the time period and delete
the results related to the first and last year. For this reason for the single stocks
analysis we consider only that with more than three years of observations.

2.3 Bandwidth
As pointed by many authors, the bandwidth selection is perhaps the most cru-

cial choice for this method. A small h tends to correspond a small bias in betas
and alphas, at the same time a large h involves a small variance in the estimates,
for these reasons we need estimate it optimally. The most popular techniques for
the bandwidth selection are the cross-validation method (Rudemo, 1982; Bow-
man, 1984; Robinson, 1989) and the plug-in method (Sheather and Jones, 1991;
Ruppert et al., 1995). The first one is completely data driven, on the other hand
the second requires to choose some unknown parameters, in order to estimate the
optimal window size. We decide to implement our procedure considering three
different bandwidths: the Silverman’s rule (Silverman, 1986) for a data driven
bandwidth and two plug-in methods considering the Ang and Kristensen (2012)
methodology and a the modified Ruppert’s rule of thumb (Ruppert et al., 1995).

Applying the Silverman’s rule (Silverman, 1986) we evaluate the bandwidth
for each stock as:

hS = 1.06 min(std dev(t), interquartile range(t)/1.34)n−1/5 .
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Clearly this first choice is the simplest one from a computational point of view, it
depends just on the number of observations that we are considering. Conversely,
it is not optimal since it considers just the time vector, ignoring other data.

The other two optimal global bandwidths can be obtained minimizing the con-
ditional Integrated Mean Square Error (MISE), given by:∫ 1

0

[
bias

(
β̂ (τ)

)]2
+ var

(
β̂ (τ)

)
dτ .

Bias and variance of our beta are:

bias
(

β̂t

)
=

1
2

µ2 β (2)
t h2 , var

(
β̂t

)
= ν0 [nhΛFF t ]

−1 σ2
t ,

where:
µ2 =

∫
u2K(t)dt = 1 and ν0 =

∫
K(t)2dt = 1/2

√
π = 0.2821 for a Gaussian kernel.

ΛFFt = ΛFF(t/n) is the conditional variance of our factor and σ2
t = σ2(t/n) is

the conditional variance of residuals. β (2)
t = β (t/n)(2) where β (·)(2) denotes the

second order derivative of β (t/n).
The optimal bandwidth can be written as:

hopt =

[
ν0

∫ 1
0 ΛFF(τ)−1σ2(τ)dτ
n
∫ 1

0 β (τ)(2)2dτ

]1/5

. (2.5)

In order to apply this formula we have to derive the conditional variance of the
factor and the conditional variance of residuals which depend on unknown pa-
rameters. First we evaluate them adapting the Ruppert’s rule of thumb procedure
(Ruppert et al., 1995) and then we use the Ang and Kristensen (2012) bandwidth
selection.

2.3.1 Ruppert rule of thumb
Ruppert et al. (1995) in their paper give some methodologies for bandwidth

selection in local least square regression. We emphasize that we need to adjust
their method to our case since in our work the kernel is around time and this
means that we are dealing with a different model. In particular, we modify the
rule of thumb procedure, in which, assuming conditional variance and conditional
variance of residual as constants, they estimate the unknown parameters used in
the bandwidth formula by a blocked quartic fit. They divide data into blocks and
for each block they evaluate the parameters. The optimal block, used in the for-
mula, is chosen by the Mallows’s Cp (Mallows, 1973).
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Considering ΛFFt = var(RM) and σ2
t =σ2 as constants and denoting B=

∫ 1
0 β (2)

τ
2
dτ ,

equation (2.5) can be written as:

h =

[
ν0 σ2

nvar(RM)B

]1/5

where σ2 and B are unknowns, so we need to estimate them by the following
procedure.

1. Considering our n observations we divide them in χ j blocks for j = 1, · · · ,N,
where the maximum number is given by:

Nmax = max{min(⌊n/20⌋ ,N∗),1} (2.6)

we select N∗ = 5, like in the Ruppert’s paper.

2. We assume βt = b0 + b1(t/n)+ b2(t/n)2 + b3(t/n)3 + b4(t/n)4, a polyno-
mial of order 4, and we estimate these coefficients applying a parametric
least square method for each block j by the following equation:

Rt = α +
(
b0 +b1(t/n)+b2(t/n)2 +b3(t/n)3 +b4(t/n)4)RM t + εt (2.7)

t = ⌊( j−1)n/N⌋+1, · · · ,⌊ jn/N⌋ and j = 1, · · · ,N .

For each block j we obtain:

β̂Q j t = b̂0 j + b̂1 j(t/n)+ b̂2 j(t/n)2 + b̂3 j(t/n)3 + b̂4 j(t/n)4 . (2.8)

3. Once we get β̂ we can estimate B̂Q as

B̂Q(N) =
1
n

n

∑
t=1

N

∑
j=1

[(
β̂Q j(t/n)

)(2)
]2

1{t∈χ j} , (2.9)

or equivalently

B̂Q(N) =
1
n

jn/N

∑
t=( j−1)n/N+1

N

∑
j=1

(
2b̂2 j +6b̂3 j(t/n)+12b̂4 j(t/n)2)2

. (2.10)

4. We evaluate also σ̂2
Q by

σ̂2
Q(N) =

1
(n−5N)

n

∑
i=1

N

∑
j=1

[
Rt − α̂ − β̂Q j(t/n)RM t

]2
1{t∈χ j} , (2.11)
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it can be written as

σ̂2
Q(N) =

1
(n−5N)

jn/N

∑
t=( j−1)n/N+1

N

∑
j=1

[
Ri − α̂+ (2.12)

−
(
b̂0 j + b̂1 j(t/n)+ b̂2 j(t/n)2 + b̂3 j(t/n)3 + b̂4 j(t/n)4)RM t

]2

.

(2.13)

5. In order to derive the optimal block N̂, following Mallows (1973), from the
set {1,2, · · · ,Nmax}, we consider the one that minimizes

Cp(N) =
RSS(N)(n−5Nmax)

RSS(Nmax)
− (n−10N) , (2.14)

where RSS(N) = ∑t∈N(Rt − α̂ − β̂ (t/n)RM t)
2 is the residual sum of squares

of a blocked quartic N-block-OLS.

6. Considering the previous estimates, we can now compute the modified Rup-
pert rule-of-thumb bandwidth ĥR as

ĥR =

[
ν0 σ̂2

Q(N̂)

nvar(RM) B̂Q(N̂)

]1/5

. (2.15)

2.3.2 Ang and Kristensen
Ang and Kristensen (2012) use for their conditional beta estimation a global

plug-in bandwidth. They start from the methodology presented by Ruppert et al.
(1995), but they take into account also the time-varying correlation between beta
and the factor. Their procedure for the bandwidth selection involves two steps. In
the first step they evaluate a preliminary bandwidth, considering for the unknown
parameters of equation (2.5) parametric estimates. In the second step they use this
first bandwidth for conditional beta, conditional variance and conditional standard
errors computation that will be used in the bandwidth formula (2.5). We show
below in detail their procedure.

1. From equation (2.5) we can consider ΛFFt = var(RM) and σ2
t = σ2 as con-

stants and write B =
∫ 1

0 β (2)
τ

2
dτ , so h can be written as:

h =

[
ν0 σ2

nvar(RM)B

]1/5
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In order to estimate σ2 and B, we consider, for t = 1, · · · ,n

βt = b0 +b1(t/n)+b2(t/n)2 +b3(t/n)3 +b4(t/n)4 +b5(t/n)5 +b6(t/n)6

a polynomial of order 6, and evaluate the coefficients applying parametric
least square on this equation:

Rt = α +βt RMt + εt t = 1, · · · ,n (2.16)

obtaining

β̂t = b̂0 + b̂1(t/n)+ b̂2(t/n)2 + b̂3(t/n)3 + b̂4(t/n)4 + b̂5(t/n)5 + b̂6(t/n)6 .
(2.17)

We evaluate B̂ as

B̂ =
1
n

n

∑
t=1

[
β̂ (2)

t

]2
, (2.18)

where β̂ (2)
t represents the second derivative given by:

β̂ (2)
t = 2b̂2 +6b̂3(t/n)+12b̂4(t/n)2 +20b̂5(t/n)3 +30b̂6(t/n)4 . (2.19)

We compute σ̂2 as

σ̂2 =
1
n

n

∑
t=1

[
Rt − α̂ − β̂ (t/n)RMt

]2
. (2.20)

Considering the previous estimates, we now can evaluate the first step band-
width h1 as:

h1 =

[
ν0 σ̂2

var(RM) B̂n

]1/5

. (2.21)

2. Once obtained h1 we estimate the variance components and β̂ (τ).

Λ̂FF(τ) =
∑n

t=1 Kh1(t/n− τ) [RMt − µ̂F(t/n)]2

∑n
t=1 Kh1(t/n− τ)

where

µ̂(τ) = ∑n
t=1 Kh1(t/n− τ)RMt

∑n
t=1 Kh1(t/n− τ)

is an approximation of the conditional mean.
The conditional variance of residual, σ2(τ), can be computed as:

σ̂2(τ) = ∑n
t=1 Kh1(t/n− τ)ε̂2

t

∑n
t=1 Kh1(t/n− τ)
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where ε̂t = ε̂(t/n) = Rt − α̂(t/n)− β̂ (t/n)RMt .

The numerator of equation (2.5) can be written as:

V̂ = ν0
1
n

n

∑
t=1

Λ̂−1
FF(t/n)σ̂2(t/n)

The denominator of (2.5) is given by:

B̂ =
1
n

n

∑
t=1

[
β̂ (t/n)(2)

]2
,

where β̂ (τ)(2) is the second derivative, with respect to τ , of the kernel esti-
mator:

β̂ (τ) = ∑n
t=1 K̄h1 ∑n

t=1 K̄h1RMtRt −∑n
t=1 K̄h1RMt ∑n

t=1 K̄h1Rt

∑n
t=1 K̄h1 ∑n

t=1 K̄h1R2
Mt − [∑n

t=1 K̄h1RMt ]
2 .

where K̄h1 = Kh1(t/n− τ).
Considering the previous estimates we can evaluate the bandwidth as

ĥAK =

[
V̂
n B̂

]1/5

. (2.22)

2.4 Data and Estimation
In our empirical analysis we evaluate US stock betas, traded on the NYSE,

AMEX, and NASDAQ markets. We compute daily, intraday and overnight betas
by an unconditional and a conditional CAPM. As benchmark for the market, we
first use, for all the trading periods, the same daily excess market return, provided
by French’s data library 1. After that we assign a market index for daily intraday
and overnight period. The conditional betas are computed considering the three
different bandwidths exposed in the previous paragraph. We conduct our analy-
sis evaluating betas stocks by stocks and then, for a more complete analysis, we
aggregate them in ten portfolios sorted by market capitalization.

The data are taken from the Center for Research in Security Prices (CRSP)2.
The original data set covers the period from December 31, 1925 to December 30,
2016. Since daily open prices are not available between July 1962 and June 1992,
we decided to consider just the series from June 15, 1992 to December 30, 2016.

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html

2http://www.crsp.com/
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We have 15125 stocks to analyze, as shown in Figure 2.1, the stocks belong to
different industry areas and are divided according to the Standard Industrial Clas-
sification (SIC) code associated to each stock. The most significant percentage of
stocks, 35%, belong to transportation, communications, electric, gas and sanitary
service sectors, the 21% belong to retail trade and 20% to finance, insurance and
real estate sectors. In the case of the stock by stock analysis we exclude from the
data set all the stocks with less of three years of observations, i.e. with less of 765
business days, obtaining 10849 stocks to analyze. We delete these stocks because,
as we said previously, the estimator for time-varying beta could give biased results
on the tails and for this reason we need to delete the first and last year estimate
betas from the analysis.

Figure 2.1: Percentage of CRSP stock, from June 16, 1992 to December 30, 2016 divided by the
Standard Industrial Classification (SIC) code.

In order to evaluate the daily, intraday and overnight returns, we adjust open
and closing price for dividends and splits, by the cumulative adjustment factor,
provided by the CRSP data set (CFACPR). The total return or daily return (close-
to-close) are calculated on the close price of the previous trading day and the close
price of the subsequent trading day:

rd
t =

pclose
t

pclose
t−1

−1 .

It can be decomposed, in daytime or intraday (open-to-close) and overnight (close-
to-open) return:

rid
t =

pclose
t

popen
t

−1 , rov
t =

popen
t

pclose
t−1

−1 .

The intraday returns are calculated over the trading hours, from current day
opening to closing. The overnight returns are computed considering the variation
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of the price from the previous trading day closure to current trading day opening.
Following Bogousslavsky (2016), for the excess returns computation we subtract
the daily risk-free rate, representing the daily treasury bill returns and obtained
from Kenneth French’s database, from our daily and overnight returns. This must
be done because intraday returns transactions are settled at the end of the day thus
the risk-free rate should not be earned (Heston et al., 2010).

In order to compare the results and before we compute any beta we adjust
our dataset so as to keep for each stock only those days in which we have daily,
intraday and overnight returns.

Market Index Correlation

MRFF MRd MRid MRov

MRFF 1

MRd 0.9997 1

MRid 0.8515 0.8517 1

MRov 0.5468 0.5470 0.0274 1

Table 2.1: Correlations between the Fama
and French daily market return (MRFF )
with our daily (MRd), intraday (MRid) and
overnight (MRov) weighted market index.

Market Index

MRFF MRd MRid MRov

Mean 0.0004 0.0004 0.0002 0.0002

Std. dev. 0.0114 0.0115 0.0096 0.0060

Variance 0.0001 0.0001 0.0001 0.0000

Skewness -0.1339 -0.1303 -0.1513 -0.6397

Kurtosis 11.1109 11.1048 11.2023 16.8949

Table 2.2: Some statistics of daily Fama and
French’s market index (MRFF ) and the daily
(MRd), intraday (MRid) and overnight (MRov)
weighted market index computed. Index series are
from June 16, 1992 to December 30, 2016.

For the purpose of having a more precise comparison, we decide to evaluate
betas considering also an intraday and overnight market benchmark. We think that
by a dimensionality point of view, it could be more correct to have a market value
for each trading period. Unfortunately, we do not have the value of the open price
of the market, in addition we are considering stocks belonging to three different
markets. Therefore, in order to have a daily, intraday and overnight market index
we construct a weighted index for each trading period, considering all the stocks
in the series, from June 16, 1992 to December 30, 2016. Our market index is
given by the following formulas:

MRd
t =

∑i wi, t rd
i, t

∑i wi, t
, MRid

t =
∑i wi, t rid

i, t

∑i wi, t
, MRov

t =
∑i wi, t rov

i, t

∑i wi, t
,

wi, t = pclose
i, t−1 si, t−1 are the weights for each stock i at time t given by the mar-

ket capitalization. We take the values of the number of shares outstanding, s,
from CRSP database and adjust them considering a cumulative adjustment fac-
tor (CFACSHR). We also evaluated the weights for intraday period, considering
open price and number of shares outstanding at the time t, but since we did not
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find relevant differences, we decide to consider the same weight for each trading
period.

We find that the Fama and French index correlates very highly with our daily
and intraday indices, also intraday and overnight market indices seem to be corre-
lated (Table 2.1). The mean and standard deviation of our daily index is similar to
Fama and French (Table 2.2). All the four series have a negative skew, this means
that the left tail is longer and the mass of the distribution is concentrated on the
right. This behaviour is more evident for overnight market index. Furthermore the
series exhibit a positive excess kurtosis, and so a leptokurtic distribution. These
results are also shown in the histograms of Figure 2.7 in Appendix A.

Portfolios

Portfolio Number of Market Mean Mean Mean Std. dev. Std. dev. Std. dev.
monthly capitalization Rd Rid Rov Rd Rid Rov

stocks (billion USD)

1 551 0.06 -0.0624 0.2615 -0.0082 0.1600 0.1261 0.0909

2 521 0.13 -0.0005 0.1429 0.0036 0.1391 0.1127 0.0705

3 503 0.24 0.0503 0.0967 0.0390 0.1596 0.1331 0.0730

4 493 0.41 0.0721 0.0542 0.0704 0.2006 0.1711 0.0860

5 485 0.64 0.0856 0.0449 0.0756 0.2249 0.1954 0.0943

6 481 1.14 0.0997 0.0575 0.0643 0.2236 0.1936 0.0954

7 479 1.92 0.0961 0.0685 0.0413 0.2183 0.1891 0.0938

8 477 3.45 0.0913 0.0701 0.0288 0.2126 0.1834 0.0927

9 476 10.3 0.0823 0.0492 0.0373 0.1966 0.1668 0.0905

10 476 61.7 0.0622 0.0343 0.0296 0.1809 0.1520 0.0966

Table 2.3: Monthly average of the number of stock and market capitalization of each portfolio.
Annualized mean and standard deviation of the daily intraday and overnight excess returns of our
portfolios, are computed multiplying for 252 and

√
252, respectively.

For a more complete and simple analysis we aggregate our stocks in portfo-
lios. As we said in the first chapter, this could allows a more precise beta es-
timation (Blume, 1970; Levy, 1971). In order to do this, on the last day of the
month, we evaluate the market capitalization for each stock traded and then we
sort our stocks in ascending order and divide them in ten portfolios. Portfolio 1
contains stocks with lower market capitalization, each month on average a total
of 60 milliards USD. Instead, portfolio 10 has stocks with higher market capital-
ization, each month on average 61 billions USD. The series are from July 1, 1992
to December 30, 2016 and so in each portfolio we have 6170 trading days. As
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we show in Table 2.3 in each decile we have on average 500 stocks traded each
month. Furthermore evaluating the daily, intraday and overnight returns, in excess
of the risk free rate (annualized, i.e. multiplied by 252), we find that almost all
portfolios have a greater daily excess return and a lower overnight return. Also
evaluating the annualized standard deviation, multiplying for

√
252, we note an

higher volatility for daily returns. Looking at the table and at the cumulative re-
turns represented in Figure 2.9 Appendix A, we note an higher value for intraday
return in the first and second portfolio.

We start analyzing the values of the constant betas, for all the single stocks,
obtained applying the simple OLS model. We observe that, considering the daily
Fama and French market index for all the trading periods, on 10849 stocks, 9586
have an intraday beta greater than overnight, so, only 1263 have the opposite rela-
tionship. If instead we compute betas with a daily intraday and overnight market
index we obtain 6122 stocks with an intraday beta greater than overnight and so
4727 with an overnight larger than intraday. This means that to consider or not
an equal market index, for all the trading periods, changes significantly the value
of intraday and overnight betas. The main statistics, computed considering the
values obtained by each stock, are in Table 2.4. With a variable market index, our
three betas have the same means, although the distribution is different (Figure 2.8
Appendix A), furthermore we have a greater variation for overnight betas.

Market Index Daily intraday and overnight
Fama and French Market Index

β d β id β ov β d β id β ov

Mean 0.7663 0.5654 0.2013 0.7659 0.7301 0.7217

Std. dev. 0.4663 0.3742 0.1745 0.4655 0.5028 0.4673

Table 2.4: Mean and standard deviation of the betas across all the stocks. Betas are computed, for
each stock, by OLS considering first Fama and French market index and then daily, intraday and
overnight market index.

Aggregating our stocks in ten portfolios by market capitalization, we note that
the values of betas on all periods are increasing by size (Table 2.5). Furthermore,
as in the case of the single stocks, we have higher values for intraday and overnight
betas, if we consider the specific trading market benchmark. Using a weighted in-
dex the values of daily and intraday betas are very similar, instead the overnight
values remain lower. These results are better shown by Figure 2.2, in which we
add the 95% confidence interval by the error bars. Looking at these results and
to the value of standard error for alphas and betas (Table 2.6) we can say that our
estimate is sufficiently precise. Although, as we have seen in the first chapter, to
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assume a constant beta is not the best choice, because systematic risk varies with
time.

Unconditional Beta

Market Index Daily intraday and overnight
Fama and French Market Index

αd α id αov β d β id β ov αd α id αov β d β id β ov

1 -0.0004 0.0009 -0.0001 0.4371 0.2853 0.1520 -0.0004 0.0010 -0.0001 0.4358 0.3685 0.5007

2 -0.0002 0.0005 -0.0000 0.4920 0.3415 0.1507 -0.0001 0.0005 -0.0000 0.4909 0.4381 0.5161

3 -0.0000 0.0002 0.0001 0.6500 0.4674 0.1823 0.0000 0.0003 0.0001 0.6490 0.6016 0.6249

4 -0.0000 -0.0000 0.0002 0.8840 0.6525 0.2309 0.0001 0.0001 0.0002 0.8831 0.8495 0.7871

5 -0.0000 -0.0001 0.0002 1.0427 0.7857 0.2573 0.0001 0.0000 0.0002 1.0418 1.0382 0.8884

6 0.0000 -0.0000 0.0002 1.0730 0.8086 0.2642 0.0001 0.0001 0.0001 1.0720 1.0718 0.9175

7 0.0000 0.0000 0.0001 1.0770 0.8131 0.2639 0.0001 0.0001 0.0001 1.0760 1.0802 0.9196

8 0.0000 0.0000 0.0000 1.0804 0.8164 0.2638 0.0001 0.0001 0.0000 1.0793 1.0839 0.9297

9 -0.0000 -0.0001 0.0001 1.0319 0.7679 0.2637 0.0001 0.0000 0.0000 1.0305 1.0246 0.9269

10 -0.0001 -0.0001 0.0000 0.9912 0.7009 0.2898 -0.0000 -0.0000 -0.0000 0.9895 0.9903 1.0162

Table 2.5: Unconditional alpha and beta on 10 Portfolios. Portfolios are divided and sorted con-
sidering the market capitalization at the end of each month. Alphas and betas are evaluated in each
portfolio considering the same daily Fama and French market index and also with a daily intraday
and overnight market index.

(a) (b)

Figure 2.2: Unconditional beta values on the 10 portfolios. Betas are evaluated considering the
Fama and French market index (a) and a daily intraday and overnight market index (b). We plot
also the 95% confidence interval by the error bars.
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Standard error unconditional Beta

Market Index Daily intraday and overnight
Fama and French Market Index

SE αd SE α id SE αov SE β d SE β id SE β ov SE αd SE α id SE αov SE β d SE β id SE β ov

1 9.81E-05 6.45E-05 3.48E-05 9.73E-03 8.05E-03 6.07E-03 9.79E-05 7.53E-05 5.96E-05 9.72E-03 9.40E-03 1.04E-02

2 6.54E-05 4.69E-05 2.02E-05 7.47E-03 6.59E-03 4.55E-03 6.53E-05 5.38E-05 3.02E-05 7.45E-03 7.56E-03 6.81E-03

3 7.56E-05 6.02E-05 2.10E-05 7.52E-03 7.18E-03 4.56E-03 7.55E-05 6.73E-05 2.63E-05 7.50E-03 8.02E-03 5.72E-03

4 1.06E-04 9.31E-05 2.85E-05 8.42E-03 8.64E-03 5.26E-03 1.06E-04 1.00E-04 3.10E-05 8.39E-03 9.29E-03 5.71E-03

5 1.20E-04 1.15E-04 3.42E-05 8.49E-03 9.35E-03 5.74E-03 1.20E-04 1.17E-04 3.38E-05 8.45E-03 9.52E-03 5.68E-03

6 1.08E-04 1.08E-04 3.47E-05 7.66E-03 8.83E-03 5.77E-03 1.07E-04 1.05E-04 3.14E-05 7.62E-03 8.61E-03 5.22E-03

7 9.30E-05 9.85E-05 3.34E-05 6.76E-03 8.27E-03 5.65E-03 9.24E-05 9.17E-05 2.74E-05 6.72E-03 7.70E-03 4.63E-03

8 7.65E-05 8.74E-05 3.25E-05 5.71E-03 7.56E-03 5.56E-03 7.60E-05 7.61E-05 2.24E-05 5.67E-03 6.58E-03 3.83E-03

9 5.13E-0 5 6.72E-05 3.06E-05 4.14E-03 6.39E-03 5.37E-03 5.09E-05 5.04E-05 1.61E-05 4.11E-03 4.79E-03 2.83E-03

10 1.28E-05 5.57E-05 3.45E-05 1.12E-03 5.81E-03 5.67E-03 1.24E-05 1.20E-05 4.38E-06 1.09E-03 1.26E-03 7.20E-04

Table 2.6: Standard error for the unconditional beta estimate on the 10 Portfolios. Portfolios are
divided and sorted considering the market capitalization at the end of each month. Alpha and beta
are evaluate in each portfolio considering the same daily Fama and French market index and also
with a daily intraday and overnight market index.

We begin now to analyze the results obtained applying, stock by stock, the
conditional CAPM. As for the constant beta analysis we consider the same daily
Fama and French market index and our daily, intraday and overnight weighted
index. Furthermore, as we said, we use three different bandwidths: Silverman
(1986), a modified Ruppert et al. (1995) and Ang and Kristensen (2012). Look-
ing at Figure 2.3, in which we represent the daily, intraday and overnight mean
of beta across the stocks in the period, it is obvious the time-varying nature of
betas and their difference behaviors. In particular we observe that daily, intraday
and overnight betas, obtained by considering a daily intraday and overnight mar-
ket index, are very similar until the 2000, then overnight is always lower respect
the daily and intraday that have very similar values in all the following time pe-
riod. Furthermore, we can notice that all three beta values are increasing from
November 2004.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Mean of conditional betas day by day. We evaluate conditional betas stock by stock
and plot the mean of betas for each day. Beta evaluation are given considering the Silverman
(hS), the modified Ruppert (hR) and the Ang and Kristensen (hAK) bandwidths. On the left betas
computed considering the Fama and French daily market index; on the right betas computed with
weighted market index for each trading period.
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Using the first two bandwidths we obtain very similar results and there could
be a little undershooting in our estimate, so the Ang and Kristensen bandwidth
seems to be the better choice. Similar results are evident also analyzing single
stocks, in which sometimes we have an overlapping between the Silverman and
modified Ruppert bandwidths (Figure 2.10 Appendix A), and looking at the mean
of the bandwidths, across all stocks (Table 2.7). The values of these two band-
widths are similar and larger respect than of Ang and Kristensen.

Bandwidth

Market Index Daily intraday and overnight
Fama and French Market Index

hS hd
R hid

R hov
R hd

AK hid
AK hov

AK hd
R hid

R hov
R hd

AK hid
AK hov

AK

mean 0.0664 0.0782 0.0797 0.0860 0.0471 0.0479 0.0537 0.0782 0.0792 0.0792 0.0470 0.0475 0.0481

std. dev. 0.0083 0.0277 0.0279 0.0294 0.0203 0.0202 0.0224 0.0279 0.0276 0.0290 0.0202 0.0200 0.0204

Table 2.7: Mean and standard deviation across the bandwidth of all the stocks. We consider three
bandwidths: the constant bandwidth of Silverman (1986) (hs) equal for all the trading periods; the
modified Ruppert et al. (1995) bandwidth (hR) and that of Ang and Kristensen (2012)(hAK). The
last two are different for each portfolio and each trading period, furthermore we evaluate them also
with the Fama and French market index and daily, intraday and overnight market index.

Conditional Beta
Market Index Fama and French

hS hR hAK

β d β id β ov β d β id β ov β d β id β ov

media 0.7876 0.5824 0.2059 0.7861 0.5811 0.2053 0.7906 0.5861 0.2052

std. dev 0.2931 0.2506 0.1491 0.2753 0.2331 0.1320 0.3602 0.3120 0.1804

Conditional Beta
Daily Intraday and Overnight Market Index

hS hR hAK

β d β id β ov β d β id β ov β d β id β ov

media 0.7876 0.7499 0.7322 0.7860 0.7486 0.7316 0.7904 0.7525 0.7324

std. dev 0.2927 0.3105 0.3484 0.2750 0.2914 0.3220 0.3598 0.3814 0.4357

Table 2.8: Mean of conditional beta across the stocks. Time-varying betas are evaluated stock by
stock considering the same daily Fama and French market index and daily intraday and overnight
market index.

On average our three time-varying betas have similar values to the uncon-
ditional betas (Table 2.8), but different distributions (Figure 2.12 2.11 2.11 Ap-
pendix A). Also in this case, we find higher values if we consider a daily, intraday
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and overnight weighted index as proxy for the market, specially for overnight be-
tas. Furthermore, with this approach, we obtain an higher correlation between
intraday and overnight betas independently by the bandwidth choice (Table 2.9).

Correlation Conditional Beta
Market Index Fama and French

hS hR hAK

β d β id β ov β d β id β ov β d β id β ov

β d 1 1 1

β id 0.8062 1 0.7895 1 0.7966 1

β ov 0.4915 0.0513 1 0.4762 0.0691 1 0.4678 0.0270 1

Correlation Conditional Beta
Daily Intraday and Overnight Market Index

hS hR hAK

β d β id β ov β d β id β ov β d β id β ov

β d 1 1 1

β id 0.7790 1 0.7650 1 0.7621 1

β ov 0.5066 0.3897 1 0.4976 0.3896 1 0.4719 0.3550 1

Table 2.9: Correlation of conditional beta across the stocks. We evaluate time-varying betas
stock by stock considering the same daily Fama and French market index and daily intraday and
overnight market index. Then for each stock we compute the correlation between the three betas,
obtained the values for all the stocks we consider the mean across all.

Aggregating our stocks in ten portfolios, sorted by size, and observing the
three different bandwidth values, we find that, as for the single stocks case, the
bandwidths of Ang and Kristensen (2012) are smaller implying more variability
in the betas, instead the Silverman (1986) and the modified Ruppert et al. (1995)
bandwidths are very similar (Table 2.10). Considering the same market index or
a daily, intraday and overnight give us similar results. As before, the best choice
for the bandwidth is the Ang and Kristensen (2012) bandwidth because other two
give some under smoothing on betas.

For these reasons, for conditional betas on portfolios, we decide to show just
results obtained considering the daily, intraday and overnight market index and the
Ang and Kristensen (2012) bandwidth, other cases are in Appendix A. Looking at
Table 2.11, displaying for each portfolio the means of alphas and betas across all
the period, we note that the values are very similar to the OLS estimates. Indeed,
also in this case, beta increases by size and for first and last portfolio overnight
beta is greater than intraday. The different trends of our three betas can be ob-
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Bandwidth

Market Index Daily intraday and overnight
Fama and French Market Index

Portfolio hS hd
R hid

R hov
R hd

AK hid
AK hov

AK hd
R hid

R hov
R hd

AK hid
AK hov

AK

1 0.0534 0.0715 0.0622 0.1005 0.0368 0.0474 0.0288 0.0711 0.0923 0.0523 0.0369 0.0424 0.0221

2 0.0534 0.0735 0.0637 0.0444 0.0339 0.0378 0.0305 0.0730 0.0853 0.0555 0.0347 0.0342 0.0241

3 0.0534 0.0348 0.0448 0.0386 0.0201 0.0270 0.0254 0.0348 0.0360 0.0292 0.0202 0.0224 0.0176

4 0.0534 0.0342 0.0446 0.0356 0.0206 0.0272 0.0226 0.0341 0.0348 0.0254 0.0206 0.0216 0.0166

5 0.0534 0.0370 0.0365 0.0406 0.0224 0.0208 0.0250 0.0369 0.0389 0.0303 0.0226 0.0226 0.0177

6 0.0534 0.0380 0.0350 0.0400 0.0208 0.0198 0.0246 0.0379 0.0385 0.0289 0.0207 0.0237 0.0176

7 0.0534 0.0367 0.0341 0.0420 0.0198 0.0194 0.0232 0.0366 0.0364 0.0310 0.0196 0.0222 0.0143

8 0.0534 0.0383 0.0355 0.0436 0.0184 0.0211 0.0225 0.0381 0.0379 0.0318 0.0182 0.0198 0.0120

9 0.0534 0.0468 0.0399 0.0438 0.0156 0.0272 0.0218 0.0468 0.0453 0.0308 0.0155 0.0168 0.0099

10 0.0534 0.0520 0.0573 0.0526 0.0151 0.0241 0.0255 0.0509 0.0493 0.0262 0.0155 0.0154 0.0073

Table 2.10: Bandwidth on 10 Portfolios. Portfolios are divided and sorted considering the market
capitalization at the end of each month. We consider three bandwidths: the constant bandwidth
of Silverman (1986) (hs) equal for all the portfolios and for all the trading periods; the modified
Ruppert et al. (1995) bandwidth (hR) and that of Ang and Kristensen (2012)(hAK). The last two
are different for each portfolio and each trading period, furthermore we evaluate them also with
the Fama and French market index and daily, intraday and overnight market index.

served in Figure 2.4 (in Figure 2.19, Figure 2.20, Figure 2.21 in Appendix A,
we show same results adding, in dashed lines, the 95% confidence bands), from
portfolio 3 to portfolio 8 we have a greater variability, furthermore the daily and
intraday betas have similar behaviors while overnight remain lower. In particular
looking at these portfolios we note an increasing value for beta between August
2002 and September 2006. Looking to lower cap and higher cap portfolios we can
see lower variations between betas, but higher values for portfolio 10, in which all
the three betas varying around one.
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Conditional Beta (hAK)
Daily intraday and overnight Market Index

αd α id αov β d β id β ov

1 -2.94E-04 9.83E-04 -4.74E-05 0.4344 0.3659 0.4830

2 -1.22E-04 4.68E-04 -1.99E-05 0.4879 0.4375 0.5006

3 -3.49E-05 2.10E-04 8.91E-05 0.6527 0.6223 0.6138

4 5.54E-06 1.33E-05 1.97E-04 0.8602 0.8404 0.7710

5 3.66E-05 -1.76E-05 1.86E-04 1.0152 1.0155 0.8739

6 9.90E-05 3.87E-05 1.44E-04 1.0628 1.0598 0.9048

7 9.12E-05 9.45E-05 4.47E-05 1.0737 1.0732 0.9035

8 8.49E-05 1.13E-04 -2.52E-06 1.0709 1.0735 0.9015

9 6.27E-05 3.19E-05 3.91E-05 1.0136 1.0090 0.8803

10 -6.84E-06 -1.48E-05 -3.73E-06 0.9923 0.9932 1.0272

Table 2.11: Mean of conditional alpha and beta on 10 Portfolios. Portfolios are divided and sorted
considering the market capitalization at the end of each month. Time-varying alpha and beta are
evaluated in each portfolio considering a daily intraday and overnight market index. Results are
from June 30, 1993 to December 31, 2015.

(a) (b)

Figure 2.4: Conditional betas on portfolios 1-2 between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the Ang and Kristensen bantwidth.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Conditional betas on portfolios 3-8 between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the Ang and Kristensen bantwidth.
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(g) (h)

Figure 2.4: Conditional betas on portfolios 9-10 between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the Ang and Kristensen bantwidth.

Finally, we decide to analyze the ratio between our overnight and intraday
betas over time for each portfolio. Looking at Figure 2.5 we can see that the
values are very different over time if we consider little stocks or large stocks it
seems that they have an opposite behavior. From the first to the third deciles we
have a decreasing ratio between the two periods, overnight betas have different
and higher values in relative to the intraday betas. Increasing the size of portfolio
the ratio became less variable until portfolio 10, in which the ratio fluctuates near
to one for all the time period. If we look at the average over all the ten portfolios,
we find that it is decreasing. Looking at volatility as risk measure Linton and Wu
(2017) show a different result in their paper. In particular analyzing the ratio of
overnight to intraday volatility they find that it is increasing over the last twenty
years. Furthermore, considering the volatility over ten market capitalization-based
portfolios they find that the ratio is monotonically increasing by the size, so larger
stocks have a relative larger increase in overnight volatility respect to intraday
volatility. Also in their case small stocks and large stocks have different trends,
the ratio is decreasing for small stocks but it is increasing for large stocks, so we
find a different behavior for large stocks.
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(i) (j)

(k) (l)

(m) (n)

Figure 2.5: Ratio between overnight and intraday betas of the 1-6 portfolios, between June 30,
1993 to December 31, 2015. Portfolios are divided and sorted considering the market capitaliza-
tion at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the Ang and Kristensen bantwidth.
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(a) (b)

(c) (d)

Figure 2.5: Ratio between overnight and intraday betas of the 7-10 portfolios, between June 30,
1993 to December 31, 2015. Portfolios are divided and sorted considering the market capitaliza-
tion at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the Ang and Kristensen bantwidth.
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Figure 2.6: Average ratio between overnight and intraday betas on 10 portfolios, between June
30, 1993 to December 31, 2015. Portfolios are divided and sorted considering the market capital-
ization at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the Ang and Kristensen bantwidth.

Conclusion
In order to investigate if daily, intraday and overnight betas have different be-

haviors we divide total daily returns in intraday and overnight and estimate them,
stock by stock and in size sorted portfolios, applying two different methods. First
we evaluate the betas by a classical CAPM and so using a simple OLS method.
In this case we obtain a constant beta related to all period. Of course assuming
systematic risk constant by time it is not realistic. Then we evaluate time-varying
betas by a conditional CAPM, solved by a kernel weighted OLS, with the kernel
around time. As pointed by many authors, the only problem that we have using
the last methodology is the correct choice of the bandwidth. Considering three
different bandwidths we find always some differences between our three betas,
although with the Silverman and modified Ruppert bandwidth we obtain under-
smoothing results. As proxy for the market index we decide to consider the same
daily market index of Fama and French and then we evaluate a weighted index
for each trading period. The use of market index daily intraday and overnight
is more coherent with the model dimensionality, and gives more variability and
differences in behavior specially for the overnight betas. Looking at results ob-
tained aggregating our stocks into portfolios, by market capitalization, it seems
that there is some kind of relationships between stock size and beta. We observe,
considering the conditional and the unconditional method, that betas increase by
size. Furthermore, the values related to the stocks with lower and higher mar-
ket capitalization do not exhibit a relevant variation of betas in time series. The
ratio between overnight and intraday is decreasing over time, so this means that
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overnight is always lower respect intraday betas.

38



CHAPTER 2. DAILY, INTRADAY AND OVERNIGHT BETAS

Appendix A

(a) (b)

(c) (d)

Figure 2.7: Market index distribution: Daily Fama and French daily market index (a), daily
weighted market index (b), intraday weighted market index (c) and overnight weighted market
index (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Beta distribution across stocks. On the left daily (a), intraday (c) and overnight (e)
betas computed for each stock considering the Fama and French daily market index; on the right
daily (b), intraday (d) and overnight (f) computed with weighted market index for each trading
period.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Cumulative returns of the 1-6 portfolios. Portfolios are divided and sorted, in ascend-
ing order, considering the market capitalization at the end of each month.

41



CHAPTER 2. DAILY, INTRADAY AND OVERNIGHT BETAS

(a) (b)

(c) (d)

Figure 2.9: Cumulative returns of the 7-10 portfolios. Portfolios are divided and sorted, in as-
cending order, considering the market capitalization at the end of each month.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.10: Conditional daily intraday and overnight betas values of a generic stock. We plot the
beta considering the three different bandwidths: Silverman hS, modified Ruppert hR and Ang and
Kristensen hAK . On the left we have the values daily (a) intraday (c) and overnight (e) considering
the same market index for all the trading periods. On the right we have the values daily (b) intraday
(d) and overnight (f) considering three different market index.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Conditional beta distribution across stocks, considering the Silverman bandwidth.
On the left daily (a), intraday (c) and overnight (e) betas computed for each stock considering
the Fama and French daily market index; on the right daily (b), intraday (d) and overnight (f)
computed with weighted market index for each trading period.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: Conditional beta distribution across stocks, considering the modified Ruppert band-
width. On the left daily (a), intraday (c) and overnight (e) betas computed for each stock consider-
ing the Fama and French daily market index; on the right daily (b), intraday (d) and overnight (f)
computed with weighted market index for each trading period.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Conditional beta distribution across stocks considering the Ang and Kristensen band-
width. On the left daily (a), intraday (c) and overnight (e) betas computed for each stock consider-
ing the Fama and French daily market index; on the right daily (b), intraday (d) and overnight (f)
computed with weighted market index for each trading period.
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Conditional Beta (hS)

Market Index Daily intraday and overnight
Fama and French Market Index

αd α id αov β d β id β ov αd α id αov β d β id β ov

1 -3.22E-04 9.45E-04 -3.98E-05 0.4350 0.2827 0.1527 -2.91E-04 9.85E-04 -4.99E-05 0.4343 0.3654 0.4989

2 -1.53E-04 4.23E-04 -2.87E-06 0.4874 0.3371 0.1508 -1.18E-04 4.70E-04 -1.74E-05 0.4868 0.4360 0.5097

3 -5.05E-05 1.57E-04 1.25E-04 0.6437 0.4616 0.1822 -3.06E-06 2.25E-04 1.06E-04 0.6434 0.6113 0.6102

4 -2.85E-05 -6.11E-05 2.36E-04 0.8465 0.6189 0.2271 3.48E-05 2.64E-05 2.15E-04 0.8459 0.8285 0.7520

5 -1.03E-05 -1.08E-04 2.32E-04 0.9941 0.7453 0.2490 6.38E-05 -6.08E-06 2.07E-04 0.9932 0.9981 0.8441

6 4.42E-05 -5.91E-05 1.88E-04 1.0363 0.7807 0.2554 1.21E-04 4.80E-05 1.60E-04 1.0355 1.0392 0.8787

7 2.93E-05 -8.01E-06 9.01E-05 1.0481 0.7941 0.2542 1.06E-04 1.02E-04 6.03E-05 1.0476 1.0529 0.8792

8 1.69E-05 4.78E-06 4.24E-05 1.0542 0.8022 0.2519 9.35E-05 1.18E-04 9.58E-06 1.0535 1.0585 0.8870

9 -9.85E-06 -7.08E-05 7.81E-05 1.0133 0.7615 0.2516 6.36E-05 3.56E-05 4.41E-05 1.0123 1.0075 0.8877

10 -8.18E-05 -1.07E-04 3.28E-05 0.9967 0.7133 0.2830 -1.00E-05 -1.60E-05 -6.92E-06 0.9953 0.9959 1.0265

Table 2.12: Mean of conditional alpha and beta on 10 Portfolios. Portfolios are divided and sorted
considering the market capitalization at the end of each month. Time varying alpha and beta are
evaluated in each portfolio considering the same daily Fama and French market index and daily
intraday and overnight market index. Results are from June 30, 1993 to December 31, 2015.
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Conditional Beta (hR)

Market Index Daily intraday and overnight
Fama and French Market Index

αd α id αov β d β id β ov αd α id αov β d β id β ov

1 -3.21E-04 9.45E-04 -2.45E-05 0.4342 0.2823 0.1501 -2.90E-04 9.80E-04 -5.00E-05 0.4334 0.3647 0.4986

2 -1.52E-04 4.23E-04 -3.98E-06 0.4868 0.3368 0.1505 -1.16E-04 4.68E-04 -1.71E-05 0.4861 0.4348 0.5101

3 -6.54E-05 1.53E-04 1.21E-04 0.6478 0.4631 0.1823 -1.76E-05 2.18E-04 9.55E-05 0.6476 0.6170 0.6119

4 -4.42E-05 -6.51E-05 2.32E-04 0.8541 0.6211 0.2284 2.00E-05 2.00E-05 2.02E-04 0.8536 0.8351 0.7662

5 -2.31E-05 -1.17E-04 2.28E-04 1.0046 0.7553 0.2498 5.21E-05 -1.01E-05 1.95E-04 1.0037 1.0051 0.8617

6 3.47E-05 -6.83E-05 1.86E-04 1.0476 0.7942 0.2560 1.12E-04 4.45E-05 1.50E-04 1.0468 1.0481 0.8949

7 2.17E-05 -1.58E-05 8.90E-05 1.0596 0.8079 0.2542 9.96E-05 9.89E-05 5.28E-05 1.0591 1.0628 0.8909

8 1.33E-05 -4.89E-08 4.23E-05 1.0604 0.8112 0.2514 9.06E-05 1.17E-04 4.50E-06 1.0597 1.0643 0.8928

9 -9.71E-06 -7.22E-05 7.90E-05 1.0135 0.7637 0.2505 6.38E-05 3.56E-05 4.28E-05 1.0125 1.0078 0.8839

10 -8.17E-05 -1.07E-04 3.29E-05 0.9966 0.7129 0.2829 -9.91E-06 -1.60E-05 -5.27E-06 0.9952 0.9957 1.0268

Table 2.13: Mean of conditional alpha and beta on 10 Portfolios. Portfolios are divided and sorted
considering the market capitalization at the end of each month. Time-varying alpha and beta are
evaluated in each portfolio considering the same daily Fama and French market index and also
with a daily intraday and overnight market index. As bandwidth here we consider the modified
Ruppert bandwidth. Results are from June 30 1993 to December 31 2015.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Conditional betas on 1-6 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering the Fama and French market index
and the Silverman bandwidth.
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(a) (b)

(c) (d)

Figure 2.14: Conditional betas on 7-10 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering the Fama and French market index
and the Silverman bandwidth.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.15: Conditional betas on 1-6 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the Silverman bandwidth.
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(a) (b)

(c) (d)

Figure 2.15: Conditional betas on 7-10 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the Silverman bandwidth.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.16: Conditional betas on 1-6 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the modified Ruppert bandwidth.
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(a) (b)

(c) (d)

Figure 2.16: Conditional betas on 7-10 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily intraday and overnight
market index and the modified Ruppert bandwidth.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.17: Conditional betas on 1-6 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily Fama and French market
index and the modified Ruppert bandwidth.
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(a) (b)

(c) (d)

Figure 2.17: Conditional betas on 7-10 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily Fama and French market
index and the modified Ruppert bandwidth.
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Conditional Beta (hAK)
Market Index Fama and French

αd α id αov β d β id β ov

1 -3.25E-04 9.44E-04 -3.97E-05 0.4351 0.2832 0.1498

2 -1.58E-04 4.20E-04 -4.96E-06 0.4884 0.3386 0.1495

3 -8.35E-05 1.40E-04 1.18E-04 0.6529 0.4687 0.1818

4 -5.93E-05 -7.86E-05 2.30E-04 0.8609 0.6287 0.2286

5 -4.02E-05 -1.33E-04 2.25E-04 1.0166 0.7678 0.2501

6 1.96E-05 -8.10E-05 1.85E-04 1.0640 0.8082 0.2562

7 1.18E-05 -2.51E-05 8.92E-05 1.0745 0.8210 0.2537

8 6.41E-06 -7.44E-06 4.47E-05 1.0718 0.8210 0.2495

9 -1.12E-05 -7.56E-05 8.39E-05 1.0148 0.7671 0.2464

10 -7.82E-05 -1.14E-04 4.10E-05 0.9938 0.7176 0.2769

Table 2.14: Mean of conditional alpha and beta on 10 Portfolios. Portfolios are divided and
sorted considering the market capitalization at the end of each month. Time-varying alpha and
beta are evaluated in each portfolio considering the same daily Fama and French market index. As
bandwidth here we consider the Ang and Kristensen bandwidth. Results are from June 30, 1993
to December 31, 2015.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.18: Conditional betas on 1-6 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily Fama and French market
index and the Ang and Kristensen bandwidth.
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(a) (b)

(c) (d)

Figure 2.18: Conditional betas on 7-10 portfolios, between June 30, 1993 to December 31, 2015.
Portfolios are divided and sorted considering the market capitalization at the end of each month.
Time-varying betas are evaluated in each portfolio considering a daily Fama and French market
index and the Ang and Kristensen bandwidth.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.19: Daily conditional betas on portfolios 1-6 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.
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(a) (b)

(c) (d)

Figure 2.19: Daily conditional betas on portfolios 7-10 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.

61



CHAPTER 2. DAILY, INTRADAY AND OVERNIGHT BETAS

(e) (f)

(g) (h)

(i) (j)

Figure 2.20: Intraday conditional betas on portfolios 1-6 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.
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(a) (b)

(c) (d)

Figure 2.20: Intraday conditional betas on portfolios 7-10 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.21: Overnight conditional betas on portfolios 1-6 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.
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(a) (b)

(c) (d)

Figure 2.21: Overnight conditional betas on portfolios 7-10 between June 30, 1993 to December
31, 2015. Portfolios are divided and sorted considering the market capitalization at the end of
each month. Time-varying betas are evaluated in each portfolio considering a daily intraday and
overnight market index and the Ang and Kristensen bandwidth. Dashed lines represent the 95%
confidence bands.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.22: Ratio between overnight and intraday betas on 1-6 portfolios, between June 30, 1993
to December 31, 2015. Portfolios are divided and sorted considering the market capitalization at
the end of each month. Time-varying betas are evaluated in each portfolio considering a daily
intraday and overnight market index and the Silverman bandwidth.
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(a) (b)

(c) (d)

Figure 2.22: Ratio between overnight and intraday betas on 7-10 portfolios, between June 30,
1993 to December 31, 2015. Portfolios are divided and sorted considering the market capitaliza-
tion at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the Silverman bandwidth.
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(e) (f)

(g) (h)

(i) (j)

Figure 2.23: Ratio between overnight and intraday betas on 1-6 portfolios, between June 30, 1993
to December 31, 2015. Portfolios are divided and sorted considering the market capitalization at
the end of each month. Time-varying betas are evaluated in each portfolio considering a daily
intraday and overnight market index and the modified Ruppert bandwidth.
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(a) (b)

(c) (d)

Figure 2.23: Ratio between overnight and intraday betas on 7-10 portfolios, between June 30,
1993 to December 31, 2015. Portfolios are divided and sorted considering the market capitaliza-
tion at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the modified Ruppert bandwidth.
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Figure 2.24: Average ratio between overnight and intraday betas on 10 portfolios, between June
30, 1993 to December 31, 2015. Portfolios are divided and sorted considering the market capital-
ization at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the Silverman bandwidth.

Figure 2.25: Average ratio between overnight and intraday betas on 10 portfolios, between June
30, 1993 to December 31, 2015. Portfolios are divided and sorted considering the market capital-
ization at the end of each month. Time-varying betas are evaluated in each portfolio considering a
daily intraday and overnight market index and the modified Ruppert bandwidth.
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Chapter 3

BAB daily, intraday and overnight

Introduction
All rational agents select for their investments portfolios with the highest ex-

pected excess return per unit of risk, and so with an higher Sharpe ratio. By the
CAPM (Sharpe, 1964; Lintner, 1965; Mossin, 1966) we know that an high beta
stock implies more risk respect to the market, and for this reason investor should
be compensated with an higher return. As shown by many empirical tests (Black,
1972; Jensen et al., 1972), high-risk stocks do not give the extra returns that the
theory predicts, indeed, an high-beta implies a low-return. The security market
line, and so the relationship between beta and returns, is flatter than the line sug-
gested by the CAPM. Probably these anomalies are due to the influence of investor
to funding restrictions, as leverage constraints and margin requirements. In order
to improve returns investors overweight their portfolios toward higher beta assets,
and leverage their position. Considering also that the market, usually, overpays
for high-beta stocks and underpays for low beta stocks, starting from the Black’s
(1993) work, Frazzini and Pedersen (2014) develop a statistical arbitrage strategy
in which try to take advantage of these anomalies by buying low-beta stocks and
shorting high-beta stocks. This strategy is known as Betting Against Beta (BAB).
The idea is to consider assets with higher betas and take a short position in them.
At the same time, they leverage its position taking a long position in assets with
lower betas. Analyzing US stock market, 20 international stock markets and dif-
ferent financial products, as treasury bonds, corporate bonds, future and forward,
Frazzini and Pedersen (2014) find that a BAB factor gives significant positive re-
turns and stocks with higher volatility give relatively lower returns. They find
that to an higher beta, corresponds a lower alpha and a lower Sharpe ratio. Same
results have been obtained by Agarwalla et al. (2014) for the Indian market.

As we have shown in the previous chapter, there are differences in patterns be-
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tween daily, intraday and overnight betas. Our idea is look at beta as a signal and
use these differences on the Frazzini and Pedersen (2014) BAB strategy. We want
to compare the BAB returns of three different portfolios sorted and divided con-
sidering as weights the value of daily, intraday and overnight pre-ranking betas.
Each portfolio is organized with the same methodology of Frazzini and Peder-
sen (2014) and so it is long-low-beta and short-high-beta. In addition to these
three portfolios, we organize ten portfolios for each trading period, considering
the value of pre-ranking betas. Finally, in order to evaluate the alpha and so the
portfolio performances, we implement a CAPM, a conditional CAPM, a Fama
and French (1992) three factor model and a Carhart (1997) four factor model.

In the first two sections we present the work of Frazzini and Pedersen (2014)
and explain how they construct their BAB factor, then we show the results ob-
tained considering our strategy.

3.1 The BAB factor
There are many kinds of different agents, each one is subject to portfolio con-

straints. For example, there could be agents that cannot use leverage and over-
weight high beta assets, in this case assets will have low returns, agents that cannot
use leverage, agents that can use leverage, but face margin constraints and finally
unconstrained agents, that underweight high beta assets and buy low beta assets
that they lever up.
Following Frazzini and Pedersen (2014) the required return for a security s, when
investors face leverage constraints, can be written as:

Et [rs
t+1] = r f +ψt +β s

t λt ,

where λt = Et [rM
t+1]− r f −ψt represents the risk premium and ψt the tightness of

funding constraints, measured by the average of Lagrange multiplier. The alpha
respect to the market is αs

t =ψt(1−β s
t ), it is decreasing in the beta β s

t . The Sharpe
ratio is highest for an efficient portfolio, furthermore it decreases for higher betas
and increases for lower betas.

In order to show the asset pricing effect of the funding friction, the authors
consider the returns on market-neutral Betting Against Beta (BAB) factor.
A BAB factor is a portfolio that is long leveraged on low-beta and short on high-
beta securities, it can be expressed as:

rBAB
t+1 =

1
β L

t

(
rL
t+1 − r f

)
− 1

β H
t

(
rH
t+1 − r f

)
, (3.1)
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where the returns associated to a portfolio of low and high assets, are computed
considering some weights, in particular rL

t+1 = r′t+1wL and rH
t+1 = r′t+1wH . The

betas of these portfolios are β L
t = β ′

t+1wL and β H
t = β ′

t+1wH with β L
t < β H

t . The
portfolio (3.1) is market neutral, this means that its beta is equal to zero. Further-
more leverage and de-leverage of the long and short portfolio respectively, has
been done considering a beta of one. The BAB factor provides an excess return
on a self-financing portfolio, because it is a difference of excess returns.
The authors give evidence of different aspects related to the BAB factor:

1. A BAB factor has a positive expected return:

E
[
rBAB
t+1

]
=

β H
t −β L

t

β L
t β H

t
ψt ≥ 0

and it is increasing in the ex ante betas β H
t −β L

t
β L

t β H
t

and in the funding tightness
ψt .

2. When a shock occurs, like a declining in funding liquidity or a credit crises,
we will have an increase on the investment constraints, mk

t , and at the same
time the returns on the BAB factor are negative although the future returns
rise.
A tighter portfolio constraint leads to a contemporaneous loss for the BAB
factor:

∂ rBAB
t+1

∂mk
t

≤ 0

and an increase in its required return:

∂E(rBAB
t+1 )

∂mk
t

≥ 0 .

3. When an increase in funding liquidity risk happens the betas of securities in
the cross-section are compressed towards one.
Assuming that over time all random variables are identically and indepen-
dently distributed (i.i.d.) and δt is independent from the other random vari-
ables. Further, considering that after the BAB portfolio formation, at time
t − 1, the prices are set, taking into account the new information about mt
and the wealth Wt , we have a rise (fall) in the conditional variance of the
discount factor 1/(1+ r f +ψt). Then,

(i) We have a compression toward one of the conditional returns betas
β i

t−1, related to all securities, this means a greater dispersion;
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(ii) Although the BAB portfolio is market neutral respect to the informa-
tion set used at portfolio formation, its conditional beta becomes pos-
itive (negative).

4. Constrained investors overweight high-beta assets and less-constrained in-
vestors overweight low-beta asset applying leverage.
Considering the security payoff in the period

Pt+1 +δt+1 = E[Pt+1 +δt+1]+b
(
PM

t+1 +δ M
t+1 −E[PM

t+1 +δ M
t+1]

)
+ e

where b is the vector of market exposures and e the vector of noise, the
authors give the following proposition related to the agent’s position:
“Unconstrained agents hold a portfolio of risky securities that has a beta
less than one; constrained agents hold portfolios of risky securities with
higher betas. If securities s and k are identical except that s has a larger
market exposure than k, bs > bk, then any constrained agent j with greater
than average Lagrange multiplier, ψ j

t > ψt , holds more shares of s than k.
The reverse is true for any agent with ψ j

t < ψt”.

3.2 Methodology
In order to construct the BAB factor and so the BAB portfolio, Frazzini and

Pedersen (2014) rank all securities in ascending order, on the basis of their esti-
mated beta at the end of each calendar month. The ex-ante beta, for the generic
security i, is obtained by a rolling regression of excess returns on market excess
returns:

β̂ T S
i = ρ̂

σ̂i

σ̂m
(3.2)

where σ̂i and σ̂m are the estimated volatilities for the stock and the market, and ρ̂
is their correlation. The evaluation of volatilities and correlation occurs over two
different periods. In particular the authors consider one-year rolling standard de-
viation for volatilities, using daily log return. For these computations they require
six months of non missing return data (120 trading days). Instead, for correlation
they consider a five-years rolling standard correlation, overlapping three days log
returns, over three years of non missing data (750 trading days). They decide to
overlap three days log returns, in order to overcome the non-synchronous trading,

r3d
i,t =

2

∑
k=0

ln(1+ ri
t+k) , (3.3)

where ri
t+k = (Pi

t+k + δ i
t+k)/Pi

t − 1, for k = 0,1,2 are the daily returns, related to
three days, evaluated considering dividends δ i

t+k.
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Furthermore, to reduce the influence of outliers, and so improve the accuracy of
stock betas, they consider a beta-compression method. In particular, following
Vasicek (1973) and Elton et al. (2009), in order to combine the beta related to
the market and the beta related to the stock, they use a shrinkage beta estimator.
This methodology consists of a simple weighted average of the two betas and it is
regarded as the statistically optimal estimator, the beta for a generic stock i can be
adjusted by:

β̂i = wiβ̂ T S
i +(1−wi)β̂ XS

i (3.4)

where β̂ T S
i is the time series estimate of beta, β̂ XS

i represents the market beta, that
can be evaluated as the cross sectional mean. wi represents some weight, it can be
evaluated as:

wi =
1
T

T

∑
t=1

σ2
βt

S.E.βit +σ2
βt

where σ2
βt

is the cross-sectional variation of betas at time t and S.E. βit is the stan-
dard error of beta related to the stock i at time t. Betas are computed regressing
daily returns on market returns considering five years rolling returns. The weight
wi is different for each stock, although usually in literature consider the same value
for all the stocks. For the empirical test they assume w = 0.6 and β̂ XS

i =1.
Obtained and adjusted, at the end of each calendar month, the ex-ante beta Frazz-
ini and Pedersen (2014) rank securities in ascending order and separate them in
two portfolios: low-beta and high-beta. In the first they consider all stocks with a
beta less than its asset class median and in the second one the others. Each security
in the portfolios is weighed by the ranked betas. In the low beta portfolio lower
beta securities have larger weight, in the high beta portfolio higher beta securities
have larger weight.
Considering n securities and let zi = rank(βit) the vector of ranked beta, with
z̄ = 1n

z
n , they define the weights as:

wH = k(z− z̄)+ , wL = k(z− z̄)− with k =
2
1n

|z− z̄| (3.5)

where (·)+ and (·)− indicate the positive and negative part of the vectors ((·)+ =
max(0, ·) , (·)− = max(0,−·)). In order to have the sum of the weights equal to
one, they consider the normalization factor k. Once we get these quantities, it is
possible to compute the BAB factor applying equation (3.1):

rBAB
t+1 =

1
β L

t

(
rL
t+1 − r f

)
− 1

β H
t

(
rH
t+1 − r f

)
,

where, as we said in the previous paragraph, the returns are rL
t+1 = r′t+1wL and

rH
t+1 = r′t+1wH and the betas of these portfolios are β L

t = β ′
t wL and β H

t = β ′
t wH .
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3.3 Daily, intraday and overnight BAB factor
Starting from the Frazzini and Pedersen (2014) procedure we estimate the

BAB factor (3.1) on three portfolios, ranked and divided considering the high and
low values of daily, intraday and overnight pre-ranking betas. We apply, essen-
tially, the same methodology that they use, but considering as signal, instead of
daily betas, also intraday and overnight betas.

As in Frazzini and Pedersen (2014), in order to evaluate pre-ranking betas, we
use formula (3.2), a standard rolling regression of excess return on market return.
It decomposes the betas in two parts: the correlation between returns of each stock
and market and the ratio of the standard deviation of returns on the market. The
daily, intraday and overnight pre-ranking betas, of a generic security i, can be
written as:

β̂ d
i = ρ̂d σ̂d

i
σ̂m

, β̂ id
i = ρ̂ id σ̂ id

i
σ̂m

, β̂ ov
i = ρ̂ov σ̂ov

i
σ̂m

, (3.6)

where correlations and volatilities are evaluated as in Frazzini and Pedersen (2014).
Considering that correlations are very slow moving, and volatilities have faster
windows (De Santis et al., 1997), we need more data to estimate the first one. So,
also in our case, we use five years horizon to calculate correlations and one year
rolling standard deviation for volatilities.

The excess log returns, are computed starting by the simple returns of each
trading period:

rd
i, t =

pclose
i, t

pclose
i, t−1

−1 ,

rid
i, t =

pclose
i, t

popen
i, t

−1 , rov
i, t =

popen
i, t

pclose
i, t−1

−1 .

(3.7)

Also in this chapter, following Bogousslavsky (2016), for the excess returns evalu-
ation we subtract the daily risk-free rate, just from our daily and overnight returns.
As in the paper of Frazzini and Pedersen (2014), for the correlation, we want to
take into account the financial market micro structure noise, which, in this case,
it is due to non synchronous trading. For example, if we have a stock that is very
liquid, and considering that the market, by definition, is very liquid, as effect we
have that the covariance is by toward zero. In order to mitigate this problem, for
daily data in the correlation we employ an averaging of three daily returns as in
(3.3), and for intraday and overnight values we overlap, for each security, three
periods:

r3id
i, t = ln(1+ rid

i, t)+ ln(1+ rov
i, t+1)+ ln(1+ rid

i, t+1) ,

r3ov
i, t = ln(1+ rov

i, t)+ ln(1+ rid
i, t)+ ln(1+ rov

i, t+1) .
(3.8)
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To reduce the influence of outliers on betas, we apply on our pre-ranking betas
the formula (3.4), assuming w=0.6 and β̂ XS

i =1.
Obtained the daily, intraday and overnight pre-ranking betas, for each trading pe-
riod we evaluate the rank vectors as:

zd
i = rank(β d

i, t) , zid
i = rank(β id

i, t) , zov
i = rank(β ov

i, t ) ,

now we can evaluate the weights for short and long portfolio like in (3.5). At the
beginning of each month the three different portfolios are ranked and splitted on
two portfolios, low and high beta, considering the values and the weights on the
last day of the previous month. The three portfolios have the same number of
stocks. Each low beta portfolio is levered up to a daily beta of 1. Each high beta
portfolio is levered down to a daily beta of 1. Weights inside each portfolio are
proportional to inverse of rank. Applying the (3.1) we obtain our daily, intraday
and overnight BAB returns. For the computation of β H

t , β L
t and rH

t+1, rL
t+1, at each

trading period, in the formula we have to change just the value of the correspond-
ing weights, the returns and betas have to be evaluate considering always daily
values, because the portfolios have to be beta neutral.

3.4 Results
For our empirical analysis we consider the US stock market. Daily data have

been taken from CRSP (Center of Research in Security Price)1. As we explained
in the previous chapter, in the data set, there is a lack of open price between July
1962 and June 1992 so, we consider just data from June 15, 1992 to December
30, 2016. We examine the whole cross-section of stocks, deleting that with more
than 120 trading days of non missing data for volatilities and 750 trading days of
non missing data for correlation. Furthermore, in order to obtain daily, intraday
and overnight portfolios with the same number of stocks we consider stocks with
open and close prices. Open and close prices are adjusted for dividends and splits
by the cumulative adjustment factor (CFACPR) of the CRSP database. This is
a difference with the paper of Frazzini and Pedersen (2014), in which probably
they adjust returns considering explicitly the dividends values. Excess returns are
evaluated using as risk free rate the treasury bill rate provided by the Kenneth
French’s database2. As proxy for the market, used for pre-ranking betas evalua-
tion, we consider for all the trading periods the same daily weighted index given
by the CRSP database (vwretd). We evaluate pre-ranking betas also considering a

1http://www.crsp.com/
2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html
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daily, intraday and overnight weighted market index, using the methodology of the
previous chapter. In the BAB strategy we obtain very similar results (Table 3.4 in
Appendix B) and so for simplicity we decide to use always the same market index
for all the three trading periods. In daily, intraday and overnight BAB portfolio

Jan2000 Jan2005 Jan2010 Jan2015

Date

3000

3500

4000

4500

5000

5500

M
on

th
ly

 n
um

be
r 

of
 s

to
ck

s

Figure 3.1: Number of stocks traded each month in the BAB portfolio, between June 2, 1997 and
December 30, 2016. We consider all the stocks in the database with at last 120 trading days of non
missing data for volatilities and 750 trading days of non missing data for correlation. We have on
average for each trading period, in each month, 4024 stocks, 2012 that go long and 2012 that go
short. Daily intraday and overnight portfolios have the same number of stocks.
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Figure 3.2: Market capitalization, between June 2, 1997 and December 30, 2016, of long (low
betas) (a) and short (high betas) (b) position at daily, intraday and overnight portfolio formation.
We trade all the stocks in the database with at last 120 trading days of non missing data for
volatilities and 750 trading days of non missing data for correlation. We have on average for each
trading period, in each month, 4024 stocks, 2012 that go long and 2012 that go short.
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we have, a monthly average of 4024 stocks, 2012 that go long and 2012 that go
short. As we show in Figure 3.1, the monthly number of stocks traded on US
stock market is decreasing on the last period. Although the stocks value, and so
the market capitalization, increases. This phenomenon could be due to different
factors, like the simple delisting of small firms from US market or the increasing
of company acquisitions (Doidge et al., 2017; Kahle and Stulz, 2017).
Plotting in Figure 3.2 the value of market capitalization related to our long and
short position, at monthly portfolio formation, we notice that at the beginning of
the series short stocks, and so that with an high beta, have a greater value. Instead,
at the end of the period, all portfolios have a similar market capitalization, with
an increasing trend for the long portfolio. Furthermore, the stocks that go short
organized considering the overnight pre-ranking betas, have an higher market cap-
italization respect to daily and intraday, but they are the lower in long position.

Comparing our three BAB portfolios in Table 3.1, we observe similar values
for volatility, and so the same level of risk in both portfolios, but we have a pretty
much higher returns for intraday BAB portfolio. It seems, also considering the
annualized value of the Sharpe ratio, that on intraday we have a kind of improve-
ment in the strategy returns although the risk level remains the same. Also looking
at the equity line of these strategies (Figure 3.3) we find that to use intraday betas
for portfolio organization give us a better returns on BAB strategy.

BAB Returns

Daily Intraday Overnight

Number of stocks 4024 4024 4024

Returns 0.1281 0.1417 0.0611

Volatility 0.1159 0.1173 0.0955

Sharpe 1.1053 1.2080 0.6392

Table 3.1: Values of annualized returns, an-
nualized volatility and Sharpe ratio of the
BAB returns on our three portfolios: daily,
intraday and overnight, between June 2,
1997 and December 30, 2016. We trade
the whole cross-section, considering stocks
with at last 120 trading days of non missing
data for volatilities and 750 trading days of
non missing data for correlation. We have
on average for each trading period, in each
month, 4024 stocks, 2012 that go long and
2012 that go short.
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Figure 3.3: Cumulative values of BAB daily, intra-
day and overnight strategy, between June 2, 1997
and December 30, 2016. We trade the whole cross-
section, considering stocks with at last 120 trad-
ing days of non missing data for volatilities and
750 trading days of non missing data for correla-
tion. We have on average for each trading period,
in each month, 4024 stocks, 2012 that go long and
2012 that go short.
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Considering the values of the daily, intraday and overnight pre-ranking betas
we organize, for each trading period, ten unweighted portfolios. At the end of each
calendar month we sort and divide stocks considering the value of our pre-ranking
betas. Portfolio 1 contains stocks with lower betas and portfolio 10 contains stocks
with higher betas. As we can see in Table 3.2 each portfolio includes about 424
stocks for each month, the mean of annualized returns is very similar, but volatility
increases with beta (Figure 3.4). We find, as in Frazzini and Pedersen (2014),
that the annualized Sharpe ratio decreases for higher beta portfolios (Figure 3.5).
There are not significant differences between the values of the daily and intraday
portfolios. Instead, looking at overnight portfolios we observe lower values for
returns, furthermore, the volatility is not decreasing by beta.

Daily Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 424.52 424.59 424.52 424.55 424.34 424.84 424.49 424.58 424.51 424.60

Mkt Cap. 1.51E+09 3.91E+09 4.16E+09 4.57E+09 4.61E+09 4.47E+09 3.69E+09 3.55E+09 3.21E+09 2.19E+09

Returns 0.2009 0.1647 0.1927 0.1788 0.1805 0.1740 0.1825 0.1866 0.2062 0.1781

Volatility 0.0824 0.1107 0.1367 0.1562 0.1784 0.1987 0.2211 0.2475 0.2844 0.3680

Sharpe 2.4393 1.4876 1.4103 1.1449 1.0118 0.8759 0.8257 0.7538 0.7252 0.4840

Intraday Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 424.52 424.59 424.52 424.55 424.34 424.84 424.49 424.58 424.51 424.60

Mkt Cap. 1.33E+09 4.33E+09 4.55E+09 4.92E+09 4.99E+09 4.07E+09 3.49E+09 3.30E+09 2.95E+09 1.98E+09

Returns 0.2292 0.1718 0.1810 0.1803 0.1745 0.1752 0.1795 0.1856 0.1827 0.1869

Volatility 0.0900 0.1100 0.1341 0.1559 0.1783 0.1976 0.2200 0.2470 0.2820 0.3662

Sharpe 2.5477 1.5624 1.3494 1.1562 0.9787 0.8868 0.8158 0.7513 0.6480 0.5103

Overnight Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 424.52 424.59 424.51 424.56 424.34 424.84 424.49 424.58 424.51 424.60

Mkt Cap. 8.35E+08 3.10E+09 3.34E+09 3.67E+09 4.19E+09 4.39E+09 4.44E+09 4.53E+09 4.19E+09 3.22E+09

Returns 0.2268 0.1379 0.1445 0.1504 0.1680 0.1764 0.1784 0.1990 0.2175 0.2538

Volatility 0.1069 0.1284 0.1492 0.1689 0.1860 0.2028 0.2199 0.2399 0.2632 0.3127

Sharpe 2.1220 1.0739 0.9689 0.8904 0.9030 0.8699 0.8114 0.8298 0.8262 0.8118

Table 3.2: Values of annualized returns, annualized volatility and Sharpe ratio of ten beta sorted
portfolios for each trading period, between June 2, 1997 and December 30, 2016. Stocks are
sorted and divided, in ten portfolios, considering the value, at the end of each calendar month, of
daily intraday and overnight pre-ranking betas. Portfolio 1 contains stocks with lower betas and
portfolio 10 contains stocks with higher betas. Results are obtained considering all the stocks in
the database with at last 120 trading days of non missing data for volatilities and 750trading days
of non missing data for correlation.

Using the daily excess return of our three BAB portfolios and of the ten daily,
intraday and overnight portfolios, we evaluate alpha and beta by simple regression
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Figure 3.4: Annualized volatility of daily, in-
traday and overnight BAB factors and ten beta
sorted portfolios related to each trading period.
Stocks are sorted and divided in ten portfolios
considering the value, at the end of each calen-
dar month, of daily intraday and overnight pre-
ranking betas. Portfolio 1 contains stocks with
lower betas and portfolio 10 contains stocks
with higher betas. Results are from June 2, 1997
to December 30, 2016 and are obtained consid-
ering all the stocks in the database with at last
120 trading days of non missing data for volatil-
ities and 750 trading days of non missing data
for correlation.
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Figure 3.5: Annualized Sharpe ratio of daily,
intraday and overnight BAB factors and ten beta
sorted portfolios for each trading period. Stocks
are sorted and divided in ten portfolios consider-
ing the value, at the end of each calendar month,
of daily intraday and overnight pre-ranking be-
tas. Portfolio 1 contains stocks with lower betas
and portfolio 10 contains stocks with higher be-
tas. Results are from June 2, 1997 to December
30, 2016 and are obtained considering all the
stocks in the database with at last 120 trading
days of non missing data for volatilities and 750
trading days of non missing data for correlation.

methods. First of all we adopt a classical CAPM and so we consider as explana-
tory variable the excess market return (Mkt). Then a Fama and French (1992)
three factor model, where the factors are excess market return (Mkt), value (SMB)
and book to market (HML). We evaluate also a Carhart (1997) four factor model
adding to the previous regressors the daily values related to momentum (MOM).
The daily data factors are provided by the Kenneth French’s library. In particular
Small Minus Large (SML) is the difference in returns of a portfolio of small stocks
and large stocks and so the difference on market capitalization. High Minus Low
(HML) is the difference in returns of a portfolio of high book-to-market value and
a portfolio of low book-to-market value. Momentum (MOM) represents the ten-
dency trend related to the stock. The factor is given by the difference in returns of
a portfolio of winners stock, and so with high returns, and losers stock, with a low
returns. Finally, using the same methodology of the previous chapter, we evaluate
alpha and beta also by a conditional CAPM.

We display the results obtained in Table 3.3, where below the coefficient es-
timates, in parenthesis, we write the t-statistics and in bold we report the values
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with a 5% statistical significance. Considering our daily and intraday portfolios
we find, as Frazzini and Pedersen (2014), a decreasing in alpha when the beta
increases. This result is highlighted by Figure 3.6 in which we represent the alpha
associated to the classical CAPM. Furthermore, we note that this kind of relation
is not true for overnight portfolios, in which alpha is greater for higher beta stocks
portfolios. In almost all regressions we find positive and statistically significant in
alphas, this should imply abnormal returns for portfolios.
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Figure 3.6: CAPM alpha of daily, intraday and overnight BAB factors and ten beta sorted portfo-
lios for each trading period. Stocks are sorted and divided in ten portfolios considering the value,
at the end of each calendar month, of daily intraday and overnight pre-ranking betas. Portfolio
1 contains stocks with lower betas and portfolio 10 contains stocks with higher betas. Results
are from June 2, 1997 to December 30, 2016 and are obtained considering all the stocks in the
database with at last 120 trading days of non missing data for volatilities and 750 trading days of
non missing data for correlation.

We conduct the same analysis also applying some kind of filters for the stocks
selection in our BAB portfolios and beta sorted portfolios construction. As we
said before, from a computational point of view, related to the model used for pre-
ranking beta estimation, we need always to consider stocks with at last 120 trading
days of non missing data for volatilities and 750 trading days of non missing data
for correlation. Furthermore, we delete from our portfolios first the stocks with a
price less than 5 USD and then stocks with a market capitalization lower than 10th

percentile breakpoints of the NYSE market equity, finally we organize portfolios
applying both filters. For the NYSE market equity benchmark we adopt the ME
breakpoints of the Kenneth French’s database.
As we can see, from Table 3.5 and Figure 3.9 in Appendix B excluding stocks
with a price less than 5 USD does not give us significant change on the strategy.
Of course, we have a lower return due to the lower number of stocks. In this case
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Daily Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 5.16E-04 6.43E-04 4.47E-04 5.17E-04 4.33E-04 4.08E-04 3.54E-04 3.59E-04 3.41E-04 3.74E-04 1.75E-04
(5.89) (11.13) (7.35) (8.03) (6.42) (5.64) (4.55) (4.12) (3.50) (3.25) (1.03)

CAPM β -0.3151 0.2606 0.4433 0.5888 0.6935 0.8059 0.9050 1.0056 1.1261 1.2850 1.5946
(-44.70) (56.16) (90.66) (113.74) (128.15) (138.77) (144.75) (143.60) (143.84) (138.86) (116.20)

Three-Factor α 5.36E-04 6.09E-04 3.96E-04 4.52E-04 3.56E-04 3.20E-04 2.54E-04 2.45E-04 2.18E-04 2.43E-04 2.74E-05
(6.26) (11.25) (7.66) (9.09) (7.58) (6.67) (5.29) (4.75) (3.71) (3.28) (0.20)

Four-Factor α 4.39E-04 6.05E-04 3.88E-04 4.46E-04 3.52E-04 3.27E-04 2.72E-04 2.78E-04 2.81E-04 3.41E-04 2.25E-04
(5.68) (11.17) (7.51) (8.98) (7.49) (6.83) (5.71) (5.54) (5.21) (5.33) (2.03)

Cond. CAPM α 3.77E-04 5.59E-04 3.84E-04 4.71E-04 3.83E-04 3.58E-04 3.34E-04 3.44E-04 3.27E-04 3.86E-04 2.26E-04

Cond. CAPM β -0.230 0.2761 0.4899 0.6482 0.7560 0.8556 0.9420 1.0353 1.1453 1.2914 1.5667

Intraday Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 5.76E-04 7.52E-04 4.78E-04 4.74E-04 4.39E-04 3.84E-04 3.59E-04 3.48E-04 3.36E-04 2.84E-04 2.12E-04
(5.89) (11.59) (7.79) (7.45) (6.51) (5.31) (4.70) (4.06) (3.55) (2.50) (1.25)

CAPM β -0.3151 0.2714 0.4363 0.5763 0.6918 0.8051 0.9028 1.0037 1.1315 1.2756 1.5888
(-44.70) (52.08) (88.52) (112.59) (127.69) (138.53) (146.97) (145.84) (149.08) (139.61) (116.77)

Three-Factor α 5.36E-04 7.19E-04 4.27E-04 4.09E-04 3.63E-04 2.96E-04 2.61E-04 2.36E-04 2.15E-04 1.50E-04 6.13E-05
(7.08) (11.76) (8.10) (8.32) (7.60) (6.20) (5.58) (4.67) (3.85) (2.09) (0.47)

Four-Factor α 5.02E-04 7.17E-04 4.17E-04 4.01E-04 3.61E-04 3.03E-04 2.79E-04 2.70E-04 2.73E-04 2.48E-04 2.59E-04
(6.59) (11.72) (7.94) (8.16) (7.54) (6.35) (6.02) (5.53) (5.34) (4.03) (2.41)

Cond. CAPM α 5.47E-04 6.77E-04 4.12E-04 4.18E-04 3.94E-04 3.44E-04 3.27E-04 3.24E-04 3.25E-04 2.90E-04 2.76E-04

Cond. CAPM β -0.2555 0.2847 0.4836 0.6344 0.7489 0.8504 0.9395 1.0324 1.1512 1.2859 1.5663

Overnight Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 2.10E-04 7.15E-04 3.13E-04 3.06E-04 3.01E-04 3.47E-04 3.56E-04 3.43E-04 4.01E-04 4.47E-04 5.48E-04
(2.63) (10.17) (4.93) (4.73) (4.36) (4.72) (4.60) (4.02) (4.23) (4.13) (3.65)

CAPM β -0.1728 0.3683 0.5426 0.6617 0.7619 0.8456 0.9289 1.0032 1.0909 1.1847 1.3375
(-26.86) (65.20) (106.46) (127.48) (137.49) (143.14) (149.24) (146.01) (143.54) (136.20) (110.94)

Three-Factor α 2.21E-04 6.73E-04 2.53E-04 2.34E-04 2.17E-04 2.55E-04 2.55E-04 2.30E-04 2.81E-04 3.24E-04 4.24E-04
(2.78) (10.53) (4.98) (5.08) (4.79) (5.48) (5.58) (4.77) (4.95) (4.55) (3.46)

Four-Factor α 1.30E-04 6.68E-04 2.44E-04 2.30E-04 2.20E-04 2.65E-04 2.83E-04 2.70E-04 3.46E-04 4.10E-04 6.07E-04
(1.81) (10.45) (4.80) (4.99) (4.86) (5.72) (6.37) (5.88) (6.76) (6.51) (6.04)

Cond. CAPM α 1.26E-04 6.66E-04 2.66E-04 2.51E-04 2.47E-04 3.17E-04 3.18E-04 3.24E-04 3.88E-04 4.63E-04 5.64E-04

Cond. CAPM β -0.0971 0.3963 0.5933 0.7171 0.8068 0.8896 0.9588 1.0310 1.1070 1.1958 1.3253

Table 3.3: Considering the values of daily, intraday and overnight pre-ranking betas we organize
for each trading period 10 portfolios and one BAB portfolios. For the ten portfolios formation
we sort and divide the stocks considering the value, at the end of each calendar month, of daily
intraday and overnight pre-ranking betas. Portfolios are unweighted and are update at each month.
Portfolio 1 contains stocks with lower betas and portfolio 10 contains stocks with higher betas.
BAB portfolios are long on low beta stocks and short on high beta stocks. They are ranked and
divided considering the values of daily intraday and overnight betas. Stocks are weighted by the
ranked betas and rebalanced at the begin of each month. For the estimates we consider all the
stocks, between June 2, 1997 and December 30, 2016, with at last 120 trading days of non missing
data for volatilities and 750 trading days of non missing data for correlation. We evaluate alpha
and beta in regression of daily excess returns. First we consider as explanatory variable the excess
market return and so a classical CAPM. Then a Fama and French (1992) three factor model, where
the factors are excess market return(Mkt), value (SMB) and book to market (HML). We evaluate
also a four factor model adding at the previous regressors the daily values related to momentum
(MOM). In parenthesis, below the coefficient estimates, we display t-statistics. The values with
a 5% statistical significance are represented in bold. At the end we give also the mean, on the
period, of alpha and beta obtained applying a conditional CAPM.
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returns are half of the previous one, indeed the average number of stocks, traded
each month, is 2638, 1319 that go long and 1319 that go short. Also in this case
we have an higher return and Sharpe ratio for the intraday BAB strategy.
If we evaluate the BAB strategy considering at portfolio formation stocks with
a market capitalization greater than the 10th percentile breakpoints of the NYSE
market equity, we have on average 2314 stocks, 1157 that go long and 1157 that
go short. The values of the daily and intraday strategies are pretty similar (Ta-
ble 3.8 Appendix B). Applying all the two filters we have a monthly average of
1730 stocks, 865 that go long and 865 that go short and as showed by Table 3.11
Appendix B we obtain similar results to the previous case.

Applying factor models, to these filtered portfolio returns, we note that the
exclusion of stocks with a market capitalization lower than the 10th percentile
breakpoints give negative alphas. The differences in results due to this kind of
filter maybe are due to the different behavior of small and large stocks. We know
by literature that micro-cap stocks, and so all the stocks with a market capital-
ization below, more or less, USD 250 million, have a different performance. It
seems that the exclusion of these stocks reduces portfolio returns and so small cap
outperform large cap (Banz, 1981; Fama and French, 1992, 1995).

Conclusion
We use the differences in behaviors of daily, intraday and overnight betas in

the Frazzini and Pedersen (2014) BAB strategy. Our three BAB portfolios are
long on low beta stocks and short on high beta stocks. Stocks are ranked and
divided considering the values of daily, intraday and overnight betas, they are
weighted by the ranked betas and rebalanced at the beginning of each month.
We observe an improvement in this methodology if we consider as signal, for
the BAB portfolio construction, the intraday betas. In particular we find higher
returns and higher Sharpe ratio. We organize also, for each trading period, ten
beta sorted portfolios, considering the value of daily, intraday and overnight pre-
ranking betas. Portfolio 1 contains lower beta stocks, portfolio 10 higher beta
socks. Portfolios are unweighted and are updated at each month. We find that
Sharpe ratio decreases and volatility increases in beta, independently from the
trading period. Implementing a CAPM, a conditional CAPM, a Fama and French
(1992) three factor model and a Carhart (1997) four factor model, we find that
our strategy give abnormal returns and, as in the paper of Frazzini and Pedersen
(2014), alpha decreases with beta. Although we find that it is not true for portfolios
sorted by overnight betas, in which we have an higher alpha for portfolios with
higher beta. We obtain same results if we delete, before portfolios formation, all
stocks with a price lower than 5 USD. If instead, we exclude securities with lower
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market cap, we note that intraday and overnight BAB portfolios have more similar
values and beta sorted portfolios present negative alpha. Probably the micro cap
stocks influence more beta values and so this kind of strategy.
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Appendix B

BAB Returns

Daily Intraday Overnight

Number of stocks 4023 4023 4023

Returns 0.1302 0.1433 0.0432

Volatility 0.1181 0.1252 0.1046

Sharpe 1.1024 1.1453 0.4135

Table 3.4: Values of annualized returns, annualized volatility and Sharpe ratio of the BAB returns
on our three portfolios: daily, intraday and overnight, between June 2, 1997 and December 30,
2016. We use a daily intraday and overnight weighted market index for the pre-ranking beta. We
trade the whole cross-section, considering stocks with at last 120 trading days of non missing data
for volatilities and 750 trading days of non missing data for correlation. We have on average for
each trading period, in each month, 4024 stocks, 2012 that go long and 2012 that go short.
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Figure 3.7: Number of stocks traded each month in the BAB portfolio, between June 2, 1997 and
December 30, 2016. We consider all the stocks in the database with at last 120 trading days of non
missing data for volatilities and 750 trading days of non missing data for correlation and all the
stock with a price greater of 5 USD. We have on average for each trading period, in each month,
2638 stocks, 1319 that go long and 1319 that go short. Daily intraday and overnight portfolios
have the same number of stocks.
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Figure 3.8: Market capitalization, between June 2, 1997 and December 30, 2016, of long (low
betas) (a) and short (high betas) (b) position at daily, intraday and overnight portfolio formation.
We trade all the stocks in the database with at last 120 trading days of non missing data for
volatilities and 750 trading days of non missing data for correlation and all the stock with a price
greater of 5 USD. We have on average for each trading period, in each month, 2638 stocks, 1319
that go long and 1319 that go short.
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BAB Returns

Daily Intraday Overnight

Number of stocks 2638 2638 2638

Returns 0.0877 0.0979 0.0361

Volatility 0.1199 0.1212 0.0994

Sharpe 0.7314 0.8082 0.3630

Table 3.5: Values of annualized returns, an-
nualized volatility and Sharpe ratio of the
BAB returns on our three portfolios: daily,
intraday and overnight, between June 2,
1997 and December 30, 2016. We trade
the whole cross-section, considering stocks
with at last 120 trading days of non miss-
ing data for volatilities and 750 trading days
of non missing data for correlation and all
the stock with a price greater of 5 USD. We
have on average for each trading period, in
each month, 2638 stocks, 1319 that go long
and 1319 that go short.
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Figure 3.9: Cumulative values of BAB daily, intra-
day and overnight strategy, between June 2, 1997
and December 30, 2016. We trade the whole cross-
section, considering stocks with at last 120 trading
days of non missing data for volatilities and 750
trading days of non missing data for correlation and
all the stock with a price greater of 5 USD. We have
on average for each trading period, in each month,
2638 stocks, 1319 that go long and 1319 that go
short.
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Daily Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 276.45 276.61 276.50 276.54 276.30 276.81 276.45 276.59 276.48 276.58

Mkt Cap. 2.76E+09 5.69E+09 5.79E+09 5.96E+09 5.87E+09 5.11E+09 4.58E+09 4.22E+09 4.39E+09 3.13E+09

Returns 0.1563 0.1370 0.1550 0.1597 0.1367 0.1507 0.1561 0.1554 0.1674 0.1544

Volatility 0.0806 0.1119 0.1397 0.1609 0.1816 0.2010 0.2220 0.2433 0.2818 0.3662

Sharpe 1.9401 1.2247 1.1096 0.9925 0.7524 0.7500 0.7033 0.6389 0.5941 0.4215

Intraday Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 276.45 276.61 276.51 276.53 276.30 276.81 276.45 276.59 276.48 276.58

Mkt Cap. 2.86E+09 6.31E+09 6.28E+09 6.83E+09 5.69E+09 4.62E+09 4.17E+09 3.98E+09 4.11E+09 2.72E+09

Returns 0.1754 0.1414 0.1499 0.1463 0.1540 0.1459 0.1426 0.1601 0.1583 0.1557

Volatility 0.0850 0.1109 0.1382 0.1592 0.1818 0.1994 0.2210 0.2437 0.2806 0.3641

Sharpe 2.0636 1.2745 1.0843 0.9189 0.8474 0.7317 0.6454 0.6571 0.5641 0.4277

Overnight Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 276.45 276.61 276.49 276.55 276.30 276.81 276.45 276.59 276.48 276.58

Mkt Cap. 1.91E+09 4.46E+09 4.38E+09 4.89E+09 5.29E+09 5.40E+09 5.53E+09 5.68E+09 5.50E+09 4.47E+09

Returns 0.1671 0.1211 0.1233 0.1336 0.1412 0.1440 0.1372 0.1807 0.1779 0.2061

Volatility 0.1012 0.1279 0.1522 0.1714 0.1900 0.2048 0.2194 0.2374 0.2635 0.3132

Sharpe 1.6511 0.9471 0.8099 0.7798 0.7431 0.7031 0.6251 0.7611 0.6750 0.6581

Table 3.6: Values of annualized returns, annualized volatility and Sharpe ratio of ten beta sorted
portfolios for each trading period, between June 2, 1997 and December 30, 2016. Stocks are
sorted and divided, in ten portfolios, considering the value, at the end of each calendar month, of
daily intraday and overnight pre-ranking betas. Portfolio 1 contains stocks with lower betas and
portfolio 10 contains stocks with higher betas. Results are obtained considering all the stocks in
the database with at last 120 trading days of non missing data for volatilities and 750 trading days
of non missing data for correlation and all the stock with a price greater of 5 USD.

89



CHAPTER 3. BAB DAILY, INTRADAY AND OVERNIGHT

Daily Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 3.64E-04 4.66E-04 3.34E-04 3.62E-04 3.49E-04 2.28E-04 2.59E-04 2.53E-04 2.22E-04 2.21E-04 8.11E-05
(4.09) (8.33) (5.62) (5.65) (5.18) (3.17) (3.26) (2.92) (2.34) (1.99) (0.48)

CAPM β -0.3418 0.2583 0.4572 0.6076 0.7207 0.8251 0.9136 1.0122 1.1090 1.2816 1.5939
(-47.84) (57.42) (95.86) (117.81) (133.05) (142.65) (143.09) (145.46) (145.18) (143.62) (118.13)

Three-Factor α 3.87E-04 4.34E-04 2.81E-04 2.91E-04 2.70E-04 1.36E-04 1.54E-04 1.34E-04 9.39E-05 8.42E-05 -8.57E-05
(4.45) (8.20) (5.54) (6.03) (5.65) (2.83) (3.07) (2.54) (1.62) (1.16) (-0.65)

Four-Factor α 2.82E-04 4.30E-04 2.69E-04 2.82E-04 2.68E-04 1.45E-04 1.72E-04 1.72E-04 1.52E-04 1.82E-04 1.15E-04
(3.65) (8.11) (5.33) (5.86) (5.61) (3.01) (3.47) (3.39) (2.85) (2.94) (1.08)

Cond. CAPM α 2.41E-04 3.87E-04 2.63E-04 3.07E-04 3.03E-04 1.77E-04 2.39E-04 2.21E-04 1.84E-04 2.02E-04 1.09E-04

Cond. CAPM β -0.2484 0.2699 0.5123 0.6741 0.7848 0.8742 0.9528 1.0405 1.1332 1.2896 1.5649

Intraday Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 4.10E-04 5.41E-04 3.53E-04 3.44E-04 2.98E-04 2.97E-04 2.41E-04 2.00E-04 2.39E-04 1.86E-04 8.90E-05
(4.65) (8.97) (5.93) (5.43) (4.47) (4.10) (3.10) (2.34) (2.57) (1.69) (0.53)

CAPM β -0.3603 0.2640 0.4505 0.6018 0.7132 0.8245 0.9091 1.0100 1.1164 1.2780 1.5854
(-50.93) (54.49) (94.19) (118.32) (133.22) (141.65) (145.26) (147.16) (149.26) (144.53) (118.35)

Three-Factor α 4.36E-04 5.07E-04 3.00E-04 2.75E-04 2.21E-04 2.06E-04 1.36E-04 8.28E-05 1.12E-04 4.58E-05 -7.94E-05
(5.07) (8.88) (5.87) (5.67) (4.64) (4.25) (2.81) (1.60) (2.02) (0.65) (-0.62)

Four-Factor α 3.31E-04 8.88E+00 5.87E+00 5.67E+00 4.64E+00 4.25E+00 2.81E+00 1.60E+00 2.02E+00 6.50E-01 -6.20E-01
(4.35) (8.84) (5.66) (5.47) (4.56) (0.41) (3.26) (2.45) (3.34) (2.42) (1.15)

Cond. CAPM α 2.93E-04 4.66E-04 2.82E-04 2.84E-04 2.48E-04 2.67E-04 1.98E-04 1.59E-04 2.09E-04 1.69E-04 1.21E-04

Cond. CAPM β -0.2735 0.273 0.507 0.662 0.772 0.868 0.949 1.041 1.141 1.286 1.568

Overnight Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 1.21E-04 4.80E-04 2.45E-04 2.17E-04 2.31E-04 2.35E-04 2.26E-04 1.79E-04 3.30E-04 2.87E-04 3.55E-04
(1.49) (7.47) (4.01) (3.33) (3.31) (3.13) (2.85) (2.15) (3.59) (2.74) (2.41)

CAPM β -0.2079 0.3624 0.5483 0.6778 0.7735 0.8637 0.9350 1.0067 1.0845 1.1957 1.3511
(-31.82) (70.20) (111.74) (129.85) (138.06) (143.18) (146.29) (150.45) (147.03) (141.81) (114.26)

Three-Factor α 1.34E-04 4.36E-04 1.84E-04 1.40E-04 1.43E-04 1.37E-04 1.17E-04 6.39E-05 2.05E-04 1.59E-04 2.15E-04
(1.66) (7.49) (3.76) (3.00) (3.05) (2.82) (2.44) (1.31) (3.74) (2.29) (1.80)

Four-Factor α 3.76E-05 4.34E-04 1.71E-04 1.37E-04 1.46E-04 1.49E-04 1.45E-04 1.05E-04 2.67E-04 2.50E-04 3.95E-04
(0.52) (7.45) (3.51) (2.93) (3.11) (3.07) (3.11) (2.27) (5.38) (4.18) (4.07)

Cond. CAPM α 2.79E-05 4.08E-04 1.82E-04 1.61E-04 1.89E-04 1.92E-04 1.91E-04 1.43E-04 3.11E-04 2.69E-04 3.61E-04

Cond. CAPM β -0.1272 0.39 0.61 0.73 0.82 0.90 0.97 1.04 1.10 1.21 1.34

Table 3.7: Considering the values of daily, intraday and overnight pre-ranking betas we organize
for each trading period 10 portfolios and one BAB portfolio. For the ten portfolios formation
we sort and divide the stocks considering the value, at the end of each calendar month, of daily
intraday and overnight pre-ranking betas. Portfolios are unweighted and are update at each month.
Portfolio 1 contains stocks with lower betas and portfolio 10 contains stocks with higher betas.
BAB portfolios are long on low beta stocks and short on high beta stocks. They are ranked and
divided considering the values of daily intraday and overnight betas. Stocks are weighted by the
ranked betas and rebalanced at the begin of each month. For the estimates we consider all the
stocks, between June 2, 1997 and December 30, 2016, with at last 120 trading days of non missing
data for volatilities and 750 trading days of non missing data for correlation and all the stock
with a price greater of 5 USD. We evaluate alpha and beta in regression of daily excess returns.
First we consider as explanatory variable the excess market return and so a classical CAPM. Then a
Fama and French (1992) three factor model where the factors are excess market return(Mkt), value
(SMB) and book to market (HML). We evaluate also a four factor model adding at the previous
regressors the daily values related to momentum (MOM). In parenthesis, below the coefficient
estimates, we display t-statistics. The values with a 5% statistical significance are represented in
bold. At the end we give also the mean, on the period, of alpha and beta obtained applying a
conditional CAPM.
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Figure 3.10: Number of stocks traded each month in the BAB portfolio, between June 2, 1997
and December 30, 2016. We consider all the stocks in the database with at last 120 trading days of
non missing data for volatilities and 750 trading days of non missing data for correlation and all
the stocks with a market capitalization greater than 10th percentile breakpoints of the NYSE ME.
We have on average for each trading period, in each month, 2314 stocks, 1157 that go long and
1157 that go short. Daily intraday and overnight portfolios have the same number of stocks.
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Figure 3.11: Market capitalization, between June 2, 1997 and December 30, 2016, of long (low
betas) (a) and short (high betas) (b) position at daily, intraday and overnight portfolio formation.
We trade all the stocks in the database with at last 120 trading days of non missing data for
volatilities and 750 trading days of non missing data for correlation and all the stock with a market
capitalization greater than 10th percentile breakpoints of the NYSE ME. We have on average for
each trading period, in each month, 2314 stocks, 1157 that go long and 1157 that go short.
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BAB Returns

Daily Intraday Overnight

Number of stocks 2314 2314 2314

Returns 0.0521 0.0477 0.0335

Volatility 0.1156 0.1142 0.1045

Sharpe 0.4508 0.4178 0.3209

Table 3.8: Values of annualized returns, an-
nualized volatility and Sharpe ratio of the
BAB returns on our three portfolios: daily,
intraday and overnight, between June 2,
1997 and December 30, 2016. We trade
the whole cross-section, considering stocks
with at last 120 trading days of non miss-
ing data for volatilities and 750 trading
days of non missing data for correlation and
all the stocks with a market capitalization
greater than 10th percentile breakpoints of
the NYSE ME. We have on average for each
trading period, in each month, 2314 stocks,
1157 that go long and 1157 that go short.
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Figure 3.12: Cumulative values of BAB daily,
intraday and overnight strategy, between June 2,
1997 and December 30, 2016. We trade the whole
cross-section, considering stocks with at last 120
trading days of non missing data for volatilities and
750 trading days of non missing data for corre-
lation and all the stocks with a market capitaliza-
tion greater than 10th percentile breakpoints of the
NYSE ME. We have on average for each trading
period, in each month, 2314 stocks, 1157 that go
long and 1157 that go short.
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Daily Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 232.92 233.00 232.91 233.00 232.67 233.23 232.92 232.98 232.89 233.03

Mkt Cap. 9.53E+09 7.18E+09 7.04E+09 6.62E+09 6.13E+09 5.80E+09 5.17E+09 5.34E+09 4.79E+09 3.22E+09

Returns 0.1019 0.1245 0.1266 0.1271 0.1160 0.1192 0.1350 0.1259 0.1328 0.1165

Volatility 0.1294 0.1560 0.1753 0.1930 0.2097 0.2260 0.2476 0.2721 0.3128 0.4049

Sharpe 0.7878 0.7982 0.7221 0.6586 0.5531 0.5276 0.5454 0.4626 0.4246 0.2876

Intraday Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 232.92 233.00 232.90 233.00 232.67 233.23 232.92 232.98 232.89 233.03

Mkt Cap. 1.03E+10 7.73E+09 7.82E+09 6.89E+09 5.98E+09 5.10E+09 4.74E+09 5.06E+09 4.33E+09 2.88E+09

Returns 0.1019 0.1238 0.1160 0.1331 0.1197 0.1150 0.1381 0.1326 0.1247 0.1204

Volatility 0.1291 0.1554 0.1749 0.1937 0.2097 0.2261 0.2454 0.2721 0.3121 0.4055

Sharpe 0.7892 0.7968 0.6632 0.6875 0.5709 0.5083 0.5629 0.4875 0.3996 0.2970

Overnight Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 232.92 233.00 232.88 233.02 232.67 233.23 232.92 232.98 232.89 233.03

Mkt Cap. 6.42E+09 5.52E+09 5.53E+09 6.05E+09 5.85E+09 6.27E+09 6.34E+09 6.71E+09 6.58E+09 5.53E+09

Returns 0.1000 0.1204 0.1154 0.1182 0.1282 0.1240 0.1240 0.1393 0.1270 0.1291

Volatility 0.1519 0.1701 0.1878 0.2012 0.2145 0.2262 0.2422 0.2635 0.2980 0.3634

Sharpe 0.6586 0.7080 0.6146 0.5874 0.5975 0.5481 0.5122 0.5286 0.4262 0.3553

Table 3.9: Values of annualized returns, annualized volatility and Sharpe ratio of ten beta sorted
portfolios for each trading period, between June 2, 1997 and December 30, 2016. Stocks are
sorted and divided, in ten portfolios, considering the value, at the end of each calendar month, of
daily intraday and overnight pre-ranking betas. Portfolio 1 contains stocks with lower betas and
portfolio 10 contains stocks with higher betas. Results are obtained considering all the stocks in
the database with at last 120 trading days of non missing data for volatilities and 750 trading days
of non missing data for correlation and all the stocks with a market capitalization greater than 10th

percentile breakpoints of the NYSE ME.
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Daily Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 1.77E-04 1.67E-04 2.15E-04 1.94E-04 1.71E-04 1.04E-04 9.42E-05 1.27E-04 5.67E-05 3.43E-05 -1.28E-04
(1.79) (2.70) (3.34) (2.90) (2.42) (1.39) (1.20) (1.52) (0.63) (0.31) (-0.74)

CAPM β -0.1798 0.5552 0.7016 0.8032 0.8917 0.9738 1.0546 1.1620 1.2802 1.4570 1.8009
(-22.67) (112.05) (135.69) (149.23) (156.75) (161.67) (166.75) (173.35) (176.80) (164.88) (129.10)

Three-Factor α 1.76E-04 1.11E-04 1.42E-04 1.13E-04 7.98E-05 4.35E-06 -1.36E-05 1.18E-05 -5.86E-05 -7.67E-05 -2.60E-04
(1.82) (2.11) (3.03) (2.46) (1.73) (0.09) (-0.30) (0.26) (-1.19) (-1.08) (-1.87)

Four-Factor α 6.45E-05 8.35E-05 1.21E-04 1.02E-04 7.64E-05 6.67E-06 -1.73E-07 4.08E-05 -4.95E-06 1.99E-05 -5.64E-05
(0.74) (1.62) (2.62) (2.22) (1.66) (0.15) (0.00) (0.91) (-0.11) (0.33) (-0.49)

Cond. CAPM α 6.80E-05 9.50E-05 1.51E-04 1.52E-04 1.27E-04 6.96E-05 5.04E-05 1.05E-04 5.66E-05 7.68E-05 -4.35E-05

Cond. CAPM β -0.0948 0.6199 0.7628 0.8583 0.9364 1.0152 1.0890 1.1888 1.3005 1.4671 1.7858

Intraday Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 1.63E-04 1.66E-04 2.12E-04 1.53E-04 1.94E-04 1.18E-04 7.63E-05 1.41E-04 8.39E-05 2.63E-06 -1.12E-04
(1.69) (2.73) (3.36) (2.29) (2.75) (1.60) (0.98) (1.72) (0.93) (0.02) (-0.64)

CAPM β -0.1934 0.5565 0.7015 0.8021 0.8963 0.9765 1.0579 1.1533 1.2790 1.4555 1.7997
(-24.92) (114.05) (138.39) (149.90) (158.26) (164.27) (169.64) (175.12) (175.66) (166.01) (127.84)

Three-Factor α 1.68E-04 1.11E-04 1.41E-04 7.16E-05 1.05E-04 2.07E-05 -3.00E-05 2.93E-05 -3.26E-05 -1.13E-04 -2.49E-04
(1.77) (2.15) (3.06) (1.58) (2.26) (0.45) (-0.67) (0.64) (-0.65) (-1.63) (-1.80)

Four-Factor α 5.45E-05 8.37E-05 1.18E-04 5.96E-05 9.98E-05 2.37E-05 -1.47E-05 5.62E-05 2.33E-05 -1.50E-05 -4.57E-05
(0.65) (1.65) (2.62) (1.32) (2.15) (0.52) (-0.33) (1.27) (0.52) (-0.26) (-0.40)

Cond. CAPM α 5.53E-05 9.35E-05 1.51E-04 1.01E-04 1.53E-04 8.11E-05 5.04E-05 1.18E-04 7.51E-05 3.99E-05 -2.36E-05

Cond. CAPM β -0.1183 0.6178 0.7623 0.8554 0.9367 1.0078 1.0897 1.1806 1.3038 1.4699 1.7982

Overnight Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 7.86E-05 1.28E-04 1.80E-04 1.33E-04 1.25E-04 1.46E-04 1.11E-04 8.93E-05 1.21E-04 2.89E-05 -2.74E-05
(0.85) (1.87) (2.62) (1.87) (1.70) (1.91) (1.46) (1.11) (1.39) (0.28) (-0.18)

CAPM β -0.0936 0.6653 0.7692 0.8617 0.9299 0.9975 1.0616 1.1390 1.2410 1.3946 1.6235
(-12.62) (121.18) (139.39) (150.68) (157.02) (162.85) (173.34) (176.25) (177.79) (170.09) (131.70)

Three-Factor α 6.87E-05 5.99E-05 1.00E-04 4.62E-05 2.84E-05 4.08E-05 4.72E-06 -2.03E-05 9.37E-06 -7.87E-05 -1.39E-04
(0.75) (1.13) (2.02) (0.96) (0.62) (0.93) (0.12) (-0.48) (0.20) (-1.20) (-1.09)

Four-Factor α -3.85E-05 3.07E-05 8.20E-05 3.60E-05 2.71E-05 5.11E-05 2.12E-05 7.38E-06 6.34E-05 1.13E-05 5.88E-05
(-0.47) (0.59) (1.67) (0.75) (0.59) (1.16) (0.53) (0.18) (1.49) (0.20) (0.57)

Cond. CAPM α 8.43E-07 7.12E-05 1.32E-04 9.35E-05 9.26E-05 1.09E-04 7.47E-05 4.50E-05 1.13E-04 5.71E-05 5.03E-05

Cond. CAPM β -0.0214 0.7356 0.8238 0.9068 0.9703 1.0359 1.1036 1.1766 1.2641 1.4080 1.6027

Table 3.10: Considering the values of daily, intraday and overnight pre-ranking betas we organize
for each trading period 10 portfolios and one BAB portfolios. For the ten portfolios formation
we sort and divide the stocks considering the value, at the end of each calendar month, of daily
intraday and overnight pre-ranking betas. Portfolios are unweighted and are update at each month.
Portfolio 1 contains stocks with lower betas and portfolio 10 contains stocks with higher betas.
BAB portfolios are long on low beta stocks and short on high beta stocks. They are ranked and
divided considering the values of daily intraday and overnight betas. Stocks are weighted by the
ranked betas and rebalanced at the begin of each month. For the estimates we consider all the
stocks, between June 2, 1997 and December 30, 2016, with at last 120 trading days of non missing
data for volatilities and 750 trading days of non missing data for correlation and all the stock with a
market capitalization greater than 10th percentile breakpoints of the NYSE ME. We evaluate alpha
and beta in regression of daily excess returns. First we consider as explanatory variable the excess
market return and so a classical CAPM. Then a Fama and French (1992) three factor model where
the factors are excess market return (Mkt), value (SMB) and book to market (HML). We evaluate
also a four factor model adding at the previous regressors the daily values related to momentum
(MOM). In parenthesis, below the coefficient estimates, we display t-statistics. The values with
a 5% statistical significance are represented in bold. At the end we give also the mean, on the
period, of alpha and beta obtained applying a conditional CAPM.
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Figure 3.13: Number of stocks traded each month in the BAB portfolio, between June 2, 1997 and
December 30, 2016. We consider all the stocks in the database with at last 120 trading days of non
missing data for volatilities and 750 trading days of non missing data for correlation. Furthermore
we trade all the stocks with a price greater of 5 USD and with a market capitalization greater
than 10th percentile breakpoints of the NYSE ME. We have on average for each trading period,
in each month, 1730 stocks, 865 that go long and 865 that go short. Daily intraday and overnight
portfolios have the same number of stocks.
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Figure 3.14: Market capitalization, between June 2, 1997 and December 30, 2016, of long (low
betas) (a) and short (high betas) (b) position at daily, intraday and overnight portfolio formation.
We trade all the stocks in the database with at last 120 trading days of non missing data for
volatilities and 750 trading days of non missing data for correlation. Furthermore we trade all the
stocks with a price greater of 5 USD and with a market capitalization greater than 10th percentile
breakpoints of the NYSE ME. We have on average for each trading period, in each month, 1730
stocks, 865 that go long and 865 that go short.
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BAB Returns

Daily Intraday Overnight

Number of stocks 1730 1730 1730

Returns 0.0490 0.0447 0.0304

Volatility 0.1185 0.1179 0.1059

Sharpe 0.4137 0.3792 0.2867

Table 3.11: Values of annualized returns,
annualized volatility and Sharpe ratio of the
BAB returns on our three portfolios: daily,
intraday and overnight, between June 2,
1997 and December 30, 2016. We trade
the whole cross-section, considering stocks
with at last 120 trading days of non missing
data for volatilities and 750 trading days of
non missing data for correlation. Further-
more we trade all the stocks with a price
greater of 5 USD and with a market capi-
talization greater than 10th percentile break-
points of the NYSE ME. We have on aver-
age for each trading period, in each month,
1730 stocks, 865 that go long and 865 that
go short.
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Figure 3.15: Cumulative values of BAB daily,
intraday and overnight strategy, between June 2,
1997 and December 30, 2016. We trade the whole
cross-section, considering stocks with at last 120
trading days of non missing data for volatilities and
750 trading days of non missing data for correla-
tion. Furthermore we trade all the stocks with a
price greater of 5 USD and with a market capital-
ization greater than 10th percentile breakpoints of
the NYSE ME. We have on average for each trad-
ing period, in each month, 1730 stocks, 865 that go
long and 865 that go short.
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Daily Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 173.93 174.07 173.93 174.03 173.75 174.22 173.92 174.03 173.94 174.06

Mkt Cap. 1.15E+10 8.50E+09 7.83E+09 7.44E+09 6.96E+09 6.40E+09 6.04E+09 5.82E+09 6.34E+09 4.32E+09

Returns 0.0964 0.1186 0.1171 0.1131 0.1145 0.1033 0.1169 0.1120 0.1181 0.1093

Volatility 0.1252 0.1503 0.1698 0.1888 0.2040 0.2193 0.2400 0.2596 0.2975 0.3908

Sharpe 0.7693 0.7891 0.6895 0.5991 0.5613 0.4712 0.4869 0.4315 0.3970 0.2797

Intraday Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 173.93 174.07 173.94 174.02 173.75 174.22 173.92 174.03 173.94 174.06

Mkt Cap. 1.24E+10 9.11E+09 9.18E+09 7.69E+09 6.49E+09 5.66E+09 5.46E+09 5.44E+09 5.89E+09 3.79E+09

Returns 0.0963 0.1148 0.1094 0.1256 0.1114 0.0979 0.1194 0.1210 0.1165 0.1071

Volatility 0.1242 0.1490 0.1700 0.1881 0.2044 0.2204 0.2364 0.2612 0.2978 0.3915

Sharpe 0.7751 0.7705 0.6431 0.6679 0.5451 0.4439 0.5051 0.4631 0.3912 0.2736

Overnight Portfolios

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Number of stocks 173.93 174.07 173.93 174.03 173.75 174.22 173.92 174.03 173.94 174.06

Mkt Cap. 7.95E+09 6.34E+09 6.36E+09 6.88E+09 6.57E+09 7.00E+09 7.32E+09 7.54E+09 7.93E+09 7.23E+09

Returns 0.0960 0.1053 0.1115 0.1108 0.1139 0.1160 0.1133 0.1202 0.1166 0.1158

Volatility 0.1437 0.1628 0.1831 0.1965 0.2089 0.2207 0.2334 0.2541 0.2836 0.3490

Sharpe 0.6683 0.6465 0.6087 0.5641 0.5452 0.5256 0.4854 0.4729 0.4113 0.3319

Table 3.12: Values of annualized returns, annualized volatility and Sharpe ratio of ten beta sorted
portfolios for each trading period, between June 2, 1997 and December 30, 2016. Stocks are
sorted and divided, in ten portfolios, considering the value, at the end of each calendar month, of
daily intraday and overnight pre-ranking betas. Portfolio 1 contains stocks with lower betas and
portfolio 10 contains stocks with higher betas. Results are obtained considering all the stocks in
the database with at last 120 trading days of non missing data for volatilities and 750 trading days
of non missing data for correlation. Furthermore we trade all the stocks with a price greater of 5
USD and with a market capitalization greater than 10th percentile breakpoints of the NYSE ME.
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Daily Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 1.77E-04 1.53E-04 2.01E-04 1.65E-04 1.23E-04 1.08E-04 4.28E-05 6.74E-05 1.99E-05 -6.57E-06 -1.42E-04
(1.80) (2.43) (3.10) (2.48) (1.72) (1.42) (0.53) (0.79) (0.23) (-0.07) (-0.87)

CAPM β -0.2249 0.5247 0.6671 0.7732 0.8657 0.9395 1.0134 1.1159 1.2159 1.3954 1.7516
(-28.40) (103.44) (127.79) (144.18) (150.07) (153.67) (156.62) (162.78) (171.00) (172.58) (133.67)

Three-Factor α 1.86E-04 1.04E-04 1.30E-04 8.53E-05 3.22E-05 7.96E-06 -6.76E-05 -5.15E-05 -1.03E-04 -1.27E-04 -2.96E-04
(1.92) (1.82) (2.58) (1.78) (0.65) (0.16) (-1.34) (-0.99) (-1.96) (-1.93) (-2.29)

Four-Factor α 7.27E-05 7.69E-05 1.11E-04 7.38E-05 3.25E-05 1.53E-05 -4.91E-05 -2.03E-05 -5.28E-05 -3.69E-05 -9.80E-05
(0.83) (1.37) (2.22) (1.55) (0.65) (0.31) (-0.98) (-0.40) (-1.08) (-0.66) (-0.93)

Cond. CAPM α 7.85E-05 8.48E-05 1.32E-04 1.12E-04 8.32E-05 5.93E-05 8.40E-06 2.19E-05 -1.15E-05 2.93E-06 -9.60E-05

Cond. CAPM β -0.1383 0.5817 0.7276 0.8303 0.9100 0.9812 1.0533 1.1418 1.2440 1.4068 1.7388

Intraday Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 1.64E-04 1.53E-04 1.87E-04 1.34E-04 1.73E-04 9.43E-05 1.93E-05 8.16E-05 5.37E-05 -1.30E-05 -1.50E-04
(1.69) (2.48) (2.94) (2.02) (2.46) (1.26) (0.24) (0.98) (0.60) (-0.13) (-0.91)

CAPM β -0.2394 0.5238 0.6631 0.7750 0.8663 0.9440 1.0193 1.1012 1.2226 1.3955 1.7492
(-30.72) (105.65) (129.50) (145.15) (153.63) (156.48) (157.41) (164.94) (170.09) (171.54) (131.81)

Three-Factor α 1.79E-04 1.05E-04 1.18E-04 5.45E-05 8.48E-05 -3.50E-06 -9.11E-05 -3.36E-05 -7.04E-05 -1.38E-04 -3.10E-04
(1.88) (1.88) (2.36) (1.14) (1.74) (-0.07) (-1.80) (-0.66) (-1.34) (-2.13) (-2.41)

Four-Factor α 6.45E-05 7.83E-05 9.75E-05 4.23E-05 8.36E-05 5.69E-06 -7.18E-05 -2.02E-06 -2.22E-05 -4.53E-05 -1.14E-04
(0.76) (1.43) (1.97) (0.89) (1.71) (0.11) (-1.43) (-0.04) (-0.45) (-0.83) (-1.08)

Cond. CAPM α 6.70E-05 8.38E-05 1.21E-04 7.89E-05 1.28E-04 5.27E-05 -1.35E-05 4.63E-05 2.18E-05 -2.12E-05 -1.01E-04

Cond. CAPM β -0.1643 0.5780 0.7228 0.8239 0.9051 0.9818 1.0534 1.1352 1.2513 1.4095 1.7526

Overnight Portfolios

BAB P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

CAPM α 7.94E-05 1.24E-04 1.31E-04 1.26E-04 1.04E-04 9.93E-05 8.93E-05 5.97E-05 5.87E-05 5.95E-06 -6.63E-05
(0.87) (1.86) (1.92) (1.75) (1.40) (1.27) (1.14) (0.75) (0.69) (0.06) (-0.47)

CAPM β -0.1408 0.6227 0.7289 0.8340 0.9017 0.9612 1.0263 1.0929 1.1930 1.3299 1.5748
(-19.10) (116.25) (132.99) (144.48) (150.60) (153.07) (163.10) (170.80) (173.91) (172.64) (137.96)

Three-Factor α 7.71E-05 6.03E-05 5.48E-05 3.77E-05 7.84E-06 -8.61E-06 -1.93E-05 -5.15E-05 -6.01E-05 -1.12E-04 -1.96E-04
(0.84) (1.09) (1.05) (0.74) (0.16) (-0.18) (-0.40) (-1.10) (-1.23) (-1.81) (-1.67)

Four-Factor α -3.14E-05 3.26E-05 3.61E-05 3.05E-05 8.61E-06 5.23E-06 7.09E-09 -1.98E-05 -7.91E-06 -2.68E-05 -6.94E-06
(-0.38) (0.60) (0.69) (0.60) (0.17) (0.11) (0.00) (-0.44) (-0.18) (-0.51) (-0.07)

Cond. CAPM α 9.75E-06 6.46E-05 7.69E-05 8.14E-05 6.91E-05 4.47E-05 5.19E-05 5.23E-06 2.93E-05 -3.70E-06 -2.58E-05

Cond. CAPM β -0.0675 0.6843 0.7884 0.8779 0.9433 1.0034 1.0684 1.1352 1.2160 1.3460 1.5560

Table 3.13: Considering the values of daily, intraday and overnight pre-ranking betas we organize
for each trading period 10 portfolios and a BAB portfolios. For the ten portfolios formation we sort
and divide the stocks considering the value, at the end of each calendar month, of daily intraday
and overnight pre-ranking betas. Portfolios are unweighted and are update at each month. Port-
folio 1 contains stocks with lower betas and portfolio 10 contains stocks with higher betas. BAB
portfolios are long on low beta stocks and short on high beta stocks. They are ranked and divided
considering the values of daily intraday and overnight betas. Stocks are weighted by the ranked
betas and rebalanced at the begin of each month. For the estimates we consider all the stocks, be-
tween June 2, 1997 and December 30, 2016, with at last 120 trading days of non missing data for
volatilities and 750 trading days of non missing data for correlation. Furthermore we trade all the
stocks with a price greater of 5 USD and with a market capitalization greater than 10th percentile
breakpoints of the NYSE ME. We evaluate alpha and beta in regression of daily excess returns.
First we consider as explanatory variable the excess market return and so a classical CAPM. Then
a Fama and French (1992) three factor model where the factors are excess market return(Mkt),
value (SMB) and book to market (HML). We evaluate also a four factor model adding at the previ-
ous regressors the daily values related to momentum (MOM). In parenthesis, below the coefficient
estimates, we display t-statistics. The values with a 5% statistical significance are represented in
bold. At the end we give also the mean, on the period, of alpha and beta obtained applying a
conditional CAPM.
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