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Abstract. We describe qualitatively some 2D stationary problems for metal electrons in the
presence of a temperature gradient and a magnetic field. To this aim we refer to a linearized
Extended Thermodynamics model that allows a semianalytical construction of the solutions.
The results are in agreement with the thermomagnetic effects already known in the literature.

1. Introduction

In this paper we consider a metallic plate in the presence of a temperature gradient and of a
magnetic flux density. In order to describe the stationary physical phenomena related to this
case, we refer to a Rational Extended Thermodynamics (RET) model for free electrons bounded
within a metal, in agreement with the original idea by Sommerfeld [1, 2, 3, 4, 5]. The electrons
in the metallic body are described as free fermion particles of mass m. Electrons can collide
occasionally with a lattice ion (mass M), but their energy is unchanged by a collision, due to the
large ratio M/m. In fact, the ions are modeled as rigid spheres, at rest at their lattice point and
their density is uniform and constant. Moreover, the collision between electrons are neglected.

Our analysis of the physical system will be developed within the the framework of RET [4, 6],
a macroscopic theory based on a different strategy with respect to Classical Thermodynamics
(CT). In fact, RET considers as field variables not only those of CT (mass density, momentum
and energy) but also the stress tensor, the heat flux and others. The corresponding field
equations are balance laws supplemented by local and instantaneous constitutive equations, that
are determined by the requirement of validity of universal physical principles, like the entropy
principle and the principle of relativity. During the last decades, RET proved to be a very
powerful theory, capable of describing non-stationary physical phenomena through hyperbolic
PDE systems, overcoming the paradox of infinite velocities due to parabolic PDE models. At
the beginning, the theory was proposed by Müller, Ruggeri and other researchers for rarefied
monatomic gases [4], but in the last years it has been generalized to rarefied polyatomic gases
both in the classical [6, 7] and in the relativistic framework [8] and also to quantum systems
[9], obtaining relevant results and very good agreement with experimental data (see for example
[4, 6, 10, 11]). So, it is natural to turn to this theory also in the present case.

The physical phenoma that we will study here are basically associated to heat transfer and
we will show the relevance of the boundary conditions assignment, in contrast to what happens

http://creativecommons.org/licenses/by/3.0
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for a classical gas. In particular, a special attention will be devoted to the Righi-Leduc effect.
The structure of the paper is the following. Section 2 is devoted to the equation model, while

the physical problems is presented and analysed in Section 3. Some concluding remarks are
proposed in Section 4.

2. The model

In this section we refer to the RET 8-moment model obtained by Müller [3, 4] through a
microscopic approach and recently revisited in [5] at a macroscopic level. In order to derive
this set of balance equations, following [1, 2], it is assumed that the state of the electron gas is
described by the phase density f (x, c, t) of electrons at the position x, with the velocity c and
at the time t. The phase density must satisfy the Boltzmann equation, which assumes the form

∂f
∂t + ci

∂f
∂xi

+ fi
∂f
∂ci

= S, (1)

where S stands for the collision term, while fi represents the specific external force acting on
the particles which, in a metal gas, is the Lorentz force

fi = − q

m
[Ei + (c ∧B)i] , (2)

if −q denotes the charge of an electron, m denotes its mass, E is the electromotive intensity and
B represents the magnetic flux density, while ’∧’ is the symbol of the vector product.

Multiplying equations (1) by a generic function ϕ (x, c, t) and integrating it over the whole
range of c, it is possible to construct the generic moment equation for the electron gas:

∂ϕ̄
∂t + ∂ciϕ

∂xi
− ∂ϕ

∂t + ci
∂ϕ
∂xi

+ (fi + ici )
∂f
∂ci

=
∫

ϕSdc. (3)

where the symbol ϕ̄ indicates the moment
∫

ϕfdc =
∫

∞

−∞

∫

∞

−∞

∫+∞

−∞
ϕfdc1dc2dc3.

To derive the macroscopic equation model, setting ϕ = m, mci, mc2, mc2ci, . . . in equation
(3), it is possible to construct an infinite hierarchy of moment equations [4, 6] that are truncated
to the first eight moments:

the mass density ρ =
∫

mfdc,

the mass flux or the momentum density Ji =
∫

mcifdc,

the energy density e = 1
2

∫

mc2fdc,

the heat flux qi =
1
2

∫

mc2cifdc,

(4)

where the electric current density reads Si = − q
mJi.

From equation (3), the set of eight balance equations for the eight field variables ρ, Ji, e and
qi assumes the form

∂ρ
∂t +

∂Jk
∂xk

= 0,

∂Ji
∂t + ∂Pik

∂xk
−

(

− q
mEi

)

ρ−
(

− q
mǫijkBk

)

Jj = Gi,

∂e
∂t +

∂qk
∂xk

−
(

− q
mEk

)

Jk = 0,

∂qi
∂t + 1

2
∂ρllik
∂xk

−
(

− q
mEk

)

(

P<ik> + 5
3eδik

)

−
(

− q
mǫijkBk

)

qj = Hi,

(5)

if ǫijk and δik denote, as usual, the Levi-Civita tensor and the Kronecker tensor, Pij =
∫

mcicjfdc
represents the momentum flux, ρllik =

∫

mc2cickfdc is the trace of the fourth moment, Gi and
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Hi are the productions, while the square brackets stand for the traceless part of a symmetric
tensor (Pij = Pkkδij/3 + P<ij>).

In order to obtain a closed set of field equations from system (5), the fluxes Pik and ρllik and
the productions Gi and Hi must be expressed in terms of the eight field variables ρ, Ji, e and
qi, by material dependent relations. Following the procedure of RET at macroscopic level, the
closure of the system is obtained starting from the validity requirement of the entropy principle:

∂h

∂t
+

∂Φi

∂xi
= Σ ≥ 0, (6)

for an entropy density h, an entropy flux Φi and an entropy production Σ. An approximation
of the constitutive relations in the neighborhood of the equilibrium, the Gibbs relation and the
Fermion statistics are the main ingredient used to reach the goal. In particular, we recall that
at equilibrium the distribution function for fermion particles reads

fE =
y

e
−

m
kB

g
T
+mc2

2kB

1

T + 1

, (7)

if kB is the Boltzmann constant, g = e
ρ − ThE

ρ + pE
ρ is the specific free enthalpy, hE denotes the

entropy density at equilibrium, while pE represents the equilibrium pressure, and 1
y = h

3

2m3 [3, 4],
where h denotes Plank’s constant. To simplify the expressions of the final results, it is convenient
to adopt as independent field variables the following ones: ϑ = 2kBT/m, Ji, α = − mg

kBT and qi.
In this way one gets

P<ij> = 0,

e (ϑ, α) = 2πmy (ϑ)
5

2 i4 (α) ,

ρ (ϑ, α) = 4πmy (ϑ)
3

2 i2 (α) ,

a (ϑ, α) = 4
3πmy (ϑ)

7

2 i6 (α) +K (ϑ),

(8)

for an arbitrary function K(ϑ) and the integral functions

in (α) =
In(α)

n+ 1
=

∫ +∞

0

xn

eα+x2 + 1
dx. (9)

The function in(α) is well-known in the framework of degenerate gas theory and several numerical
techniques were adopted to calculate it, for an exhaustive review see [12]. It presents some
peculiar properties, in particular we recall the following recurrence relation

din (α)

dα
= −n− 1

2
in−2 (α) ; (10)

moreover, for completely degenerate gases (i.e. when α → −∞) it holds In(α) ≈ (−α)(n+1)/2.
With regard to the production terms, the macroscopic approach requires that the production

terms are expressed as a linear combination of Ji and qi through a positive definite matrix that
could depend on ϑ and α.

Through the comparison with Müller’s kinetic approach it is possible to fix the remaining
arbitrary functions: K(ϑ) = 0 and

Gi = A11(ϑ, α)Ji +A12(ϑ, α)qi, Hi = A21(ϑ, α)Ji +A22(ϑ, α)qi, (11)
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where l is the mean free path of an electron between two collisions and

A11(ϑ, α) =
ϑ1/2

l
I4(α)I5(α)−I3(α)I6(α)

I2(α)I6(α)−I2
4
(α)

,

A12(ϑ, α) =
2

lϑ1/2

I3(α)I4(α)−I2(α)I5(α)
I2(α)I6(α)−I2

4
(α)

,

A21(ϑ, α) =
ϑ3/2

2l
I4(α)I7(α)−I5(α)I6(α)

I2(α)I6(α)−I2
4
(α)

,

A22(ϑ, α) =
ϑ1/2

l
I4(α)I5(α)−I2(α)I7(α)

I2(α)I6(α)−I2
4
(α)

.

(12)

It was proven that the PDE system (5) is hyperbolic and equipped with an entropy law with
concave entropy density in the neighborhood of equilibrium, if the electron gas is not completely
degenerate [5].

2.1. The dimensionless variables

Here we will deal with processes independent of the time that will be described by the stationary
equations

∂Jk
∂xk

= 0,

2
3

∂e
∂xi

= (− q
mEiρ− q

mǫijkBkJj) +A11Ji +A12qi,

∂qk
∂xk

= − q
mEkJk,

1
2

∂a
∂xi

= (− 5q
3mEie− q

mǫijkBkqj) +A21Ji +A22qi.

(13)

In order to rewrite the system in dimensionless variables, we have to introduce preliminarly
some suitable values of length, temperature and α denoted by D, T0 and α0, respectively.

Referring to relations (8) it is natural to propose the following reference quantities

ϑ0 =
2kT0

m
, ρ0 =

4πmyϑ
3/2
0 (−α0)

3/2

3
,

e0 =
2πmyϑ

5/2
0 (−α0)

5/2

5
, a0 =

4

3

πmyϑ
7/2
0 (−α0)

7/2

7
,

(14)

under the ussumption that α << −1 and to define the following dimensionless quantities

x̂k =
xk
D

, în(α) =
(n+ 1)in(α)

(−α0)(n+1)/2
, T̂ =

T

T0
, ϑ̂ =

ϑ

ϑ0
,

v̂k =
vk√
ϑ0

, Ĵk =
Jk

ρ0
√
ϑ0

, q̂k =
qk

ρ0ϑ
3/2
0

, α̂ =
α

α0
,

ρ̂ =
ρ

ρ0
= ϑ̂3/2 î2(α), ê =

e

e0
= ϑ̂5/2î4(α), â =

a

a0
= ϑ̂7/2 î6(α).

(15)

Moreover, taking into account the previous relations, we will use the following dimensionless
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coefficients

Â11(α) =
î4(α)̂i5(α)− î3(α)̂i6(α)

î2(α)̂i6(α)− î24(α)
, Â12(α) =

î3(α)̂i4(α) − î2(α)̂i5(α)

î2(α)̂i6(α) − î24(α)
,

Â21(α) =
î4(α)̂i7(α)− î5(α)̂i6(α)

î2(α)̂i6(α)− î24(α)
, Â22(α) =

î4(α)̂i5(α) − î2(α)̂i7(α)

î2(α)̂i6(α) − î24(α)
,

F̂ e
k =

DqEk

mϑ0
, F̂B

k =
DqBk

mϑ
1/2
0

, β =
D

l
.

(16)

Hence, the stationary equations can be rewritten as

∂Ĵk
∂x̂k

= 0,

ϑ̂3/2 î4(α)
∂ϑ̂

∂x̂i
− ϑ̂5/2 î2(α)

−α0

∂α

∂x̂i
=

[

− 2F̂ e
i

(−α0)
ϑ̂3/2 î2(α)−

6

(−α0)2
ǫijkF̂

B
k Ĵj

]

+ β

[

2Â11

(−α0)1/2
ϑ̂1/2Ĵi +

4Â12

(−α0)3/2
q̂i

ϑ̂1/2

]

,

∂q̂k
∂x̂k

= −F̂ e
k Ĵk,

ϑ̂5/2 î6(α)
∂ϑ̂

∂x̂i
− ϑ̂7/2 î4(α)

−α0

∂α

∂x̂i
=

[

− 2F̂ e
i

(−α0)
ϑ̂5/2 î4(α)−

4

(−α0)2
ǫijkF̂

B
k q̂j

]

+ β

[

2Â21

(−α0)1/2
ϑ̂3/2Ĵi +

4Â22

(−α0)3/2
ϑ̂1/2q̂i

]

.

(17)

2.2. The 2D stationary set of equations

In this paper we will consider a metallic plate whose thickness is so small with respect to other
dimensions that we can neglect it and describe the electron behavior inside the plate as a 2D
problem in a bounded domain. Moreover, we will assume the possible presence of a magnetic
flux density orthogonal to the plate, but the absence of any electromotive intensity. Hence the
stationary 2D system is

B11
∂ϑ̂

∂x̂i
+B12

∂α̂

∂x̂i
= ǫij3ΩĴj + C11Ĵi + C12q̂i,

B21
∂ϑ̂

∂x̂i
+B22

∂α̂

∂x̂i
= ǫij3Γq̂j + C21Ĵi + C22q̂i,

∂q̂k
∂x̂k

= 0,

(18)
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for i = 1, 2 and if

B11 = ϑ̂3/2î4(α), B12 = −ϑ̂5/2 î2(α), B21 = ϑ̂5/2 î6(α),

B22 = −ϑ̂7/2î4(α), C11 =
2βÂ11(α)

(−α)1/2
ϑ̂1/2, C12 =

4βÂ12(α)

(−α)3/2ϑ̂1/2
,

C21 =
2βÂ21(α)

(−α)1/2
ϑ̂3/2, C22 =

4βÂ22(α)

(−α)3/2
ϑ̂1/2,

Ω = − 6

(−α)2
F̂B
3 , Γ = − 4

(−α)2
F̂B
3 .

(19)

Now, if we assume that there is no electric current, i.e. Ji = 0 and we rewrite in a suitable
way equations (18) for i = 1, 2, we get the following system:

∂α̂

∂x̂1
= ν

∂ϑ̂

∂x̂1
+ ς

∂ϑ̂

∂x̂2
,

∂α̂

∂x̂2
= −ς

∂ϑ̂

∂x̂1
+ ν

∂ϑ̂

∂x̂2
,

q̂1 = µ
∂ϑ̂

∂x̂2
+ η

∂ϑ̂

∂x̂2
,

q̂2 = −η
∂ϑ̂

∂x̂1
+ µ

∂ϑ̂

∂x̂2
,

∂q̂1
∂x̂1

+
∂q̂2
∂x̂2

= 0,

(20)

where
ν(α, ϑ̂) = (−B21C12+B11C22)(B22C12−B12C22)−B11B12Γ2

Λ ,

ς(α, ϑ̂) = (−B12B21+B11B22)C12Γ
Λ ,

µ(α, ϑ̂) = (B12B21−B11B22)(−B22C12+B12C22)
Λ ,

η(α, ϑ̂) = − (B12B21−B11B22)B12Γ
Λ ,

Λ(α, ϑ̂) = (B22C12 −B12C22)
2 + (B12Γ)

2.

(21)

We underline that all the previous coefficients depend on B3 through Γ and, in particular, ς
and η vanish in the absence of a magnetic field. This fact will play a relevant role in the next
sections.

2.3. The linearized equations

In order to simplify the integration of the previous equations, we linearize system (17) in the
neighborhood of α = α0 and ϑ = ϑ0, so that, setting

ν0 = ν(α0, ϑ̂0), ς0 = ν(α0, ϑ̂0), µ0 = µ(α0, ϑ̂0), η0 = η(α0, ϑ̂0), (22)
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system (20) reduces to

∂α̂

∂x̂1
= ν0

∂ϑ̂

∂x̂1
+ ς0

∂ϑ̂

∂x̂2
,

∂α̂

∂x̂2
= −ς0

∂ϑ̂

∂x̂1
+ ν0

∂ϑ̂

∂x̂2
,

∇2ϑ̂ = 0,

(23)

and is equipped with the following algebraic relations:

q̂1 = µ0
∂ϑ̂

∂x̂2
+ η0

∂ϑ̂

∂x̂2
,

q̂2 = −η0
∂ϑ̂

∂x̂1
+ µ0

∂ϑ̂

∂x̂2
.

(24)

For a problem in a bounded domain described by the previous set of equations it is necessary
to prescribe the values of the temperature or of the heat flux along the boundaries (to solve the
Laplace equation). In addition, a value of α has to be fixed in a point of the boundary in order
to determine completely the α quantity. We imagine, for example, to set α = α0 in a vertex of
the plate.

3. Heat transfer problems

We consider the application of the previous model to heat transfer problems. For a classical gas
the stationary heat transfer problem in a bounded domain is described equivalently assigning
a heat flux or different temperatures on the boundaries (see for example [13, 14, 15]). What
we will verify here and in the following section is that for an electron gas the two assignments
give rise to different phenomena. To present both cases, let us imagine to deal with a square
plate whose side legth is D, and introduce a reference system with the axis passing through two
consecutive sides of the plate: in this way, we can assume that x̂1 ∈ [0, 1], x̂2 ∈ [0, 1]. Referring
to reasonable values for the mean free path and for the mean electron density, accounting for
a small sample at room temperature and a very high maximum magnetic flux density, we will
consider here and in the next section the following parameter values: β ≤ 106, α0 = −100,
|F̂B

3 | ≤ 105. The value of α0 will be prescribed in the vertex (x̂1, x̂2) = (0, 0).

3.1. Temperature assignment

First of all, let us study the assignment of the temperature values (or, it is the same, of ϑ̂ ) on
the boundaries of the plate. Just to analyse a simple case (although a bit rough) we prescibe the
same temperature values on three sides of the plate and a different temperature on the remaining
one. The behavior of the temperature corresponding to this case can be described analytically,
referring to the classical solution of the Laplace equations, under the previous conditions.

Concerning the temperature, let T0 be the temperature common to three sides x1 = 0, x2 = 0
and x2 = 1 so that ϑ̂ = ϑ̂0 = 1 on these boundaries, while on x1 = 1, ϑ̂ = ϑ̂1. Then, the solution
for ϑ̂ reads:

ϑ̂(x̂1, x̂2) = ϑ̂0 +∆ϑ̂
∞
∑

n=1

cn sinh(nπx̂1) sin(nπx̂2), (25)

while the expression for α̂ is

α̂(x̂1, x̂2) = K0 +∆ϑ̂
∞
∑

n=1

cn [ν sinh(nπx̂1) sin(nπx̂2) + ς cosh(nπx̂1) cos(nπx̂2), ] (26)
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Figure 1. A 3D-plot of the
analytical ϑ̂ solution (ϑ̂1 = 1.2,

F̂B
3 = 105, β = 106).

1

-1

1

-0.9

0.8

x
2

0.5

-0.8

0.6

x
1

0.4
0.2

0 0

Figure 2. A 3D-plot of the
analytical α̂ solution (ϑ̂1 = 1.2,

F̂B
3 = 105, β = 106).
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1
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Figure 3. The transversal profile
of the analytical expression of ϑ̂
independent of F̂B

3 (ϑ̂1 = 1.2, β =
106).

0 0.2 0.4 0.6 0.8 1

x
2

1.00011

1.000112

1.000114

1.000116

1.000118

1.00012

1.000122

1.000124

Figure 4. The transversal profile
of the analytical expression of ρ̂ for
F̂B
3 = −105(continuous line), F̂B

3 =

105(dashed line), F̂B
3 = 0 (dotted

line), (ϑ̂1 = 1.2, β = 106).

with

cn =
2[1− (−1)n]

nπ sinh(nπ)
, ∆ϑ̂ = ϑ̂1 − ϑ̂0, K0 = α̂0 − ς∆ϑ̂

∞
∑

n=1

cn. (27)

Unfortunately, due to the discontinuities in (x̂1, x̂2) = (1, 0) and (x̂1, x̂2) = (1, 1), the previous
series are only pointwise and not uniformly convergent; anyway, in the present case it is possible
to get an analytical expression of the solution.

Figures 1 and 2 show a 3D-plot of ϑ̂ and α̂ as functions of the two spatial variables. It is
evident that in the present case the temperature behaviour does not depend on the magnetic
flux density. In contrast, α and also the electron mass density are related to B3 through the
coefficient µ and η. Nevertheless, very small differences are observable for α̂ and ρ̂, when the
value of F̂B

3 is varied. This fact is evident in Figures 3 and 4, where the profile of ϑ̂ and ρ̂ along

the x̂2 axis (x̂2 = 0.5) is presented for different values of F̂B
3 . We remark that ρ̂ was defined

as dimensionless variable before the linearization, but here it was determined through a linear
approximation, so in (x̂1, x̂2) = (0, 0) in general ρ̂ 6= 1.
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Figure 5. A 3D-plot of the ϑ̂
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Figure 6. A 3D-plot of the α̂
behaviour, in the case of Section 3.2
(ϑ̂1 = 1.2, F̂B

3 = 105, β = 106).

3.2. Heat flux assignment and Righi-Leduc effect

The Righi-Leduc effect [16, 17] is a well-known effect in the literature. In the case of a metallic

plate it predicts a transversal temperature gradient ( ∂ϑ̂
∂x̂2

6= 0) in the presence of a longitudinal
heat flux q1 and an orthogonal magnetic field B3 under the adiabatic condition q2 = 0. This
fact is easily verified for the previous equations (20). If we impose that q̂2 = 0 we get

∂ϑ̂

∂x̂2
=

η

µ

∂ϑ̂

∂x̂1
= − B12Γ

(−B22C12 +B12C22)

∂ϑ̂

∂x̂1
,

q̂1 =
µ2 + η2

µ

∂ϑ̂

∂x̂1
=

(B12B21 −B11B22)

(−B22C12 +B12C22)

∂ϑ̂

∂x̂1
.

(28)

The coefficient for the Righi-Leduc effect is η/µ and through a mathematical technique similar
to the one used in the Appendices of [5], it is possible to show that if the electron gas is not
completely degenerate, it holds

sgn(η/µ) = −sgn(B3), (29)

in agreement with previous studies [1, 2].
In the framework of a real experiment, in a metallic plate it is not possible to impose that

q̂2 = 0 everywhere. What is reasonable to prescribe at the boundaries is a temperature difference
at two parallel sides and the vanishing orthogonal component of the heat flux at the other sides
(q̂2 = 0). Unlike [5], we neglect here the effect due to the interaction with the boundaries for
two reasons: first of all we are interested to isolate the thermomagnetic phenomenon, secondly
we are dealing here with a rough linearized model and the interaction effects could represent a
more refined aspect. The previous conditions bring to a problem that cannot be easily solved
analitycally, even if we refer here to the linearized equations (23). The results obtained through
a numerical integration of (23), based on finite difference schemes and carried on with Matlab c©,

are shown in the following Figures. In particular, Figure 5 and 6 show the profile of ϑ̂ and α̂ as
functions of the spatial variables.

The details about the longitudinal and the transverse tendency of the field variables could
not be observed through a 3D-plot. Therefore, in Figure 7 we present the ϑ̂ profile for x̂1 = 0.5.
In Figure 8 we resort again to a 3D-picture to get an overview of the temperature difference for
different values of the magnetic field.
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Figure 9. The behaviour of α̂
as a function of x̂2 (ϑ̂1 = 1.2,
β = 106) for different values of

F̂B
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3 = −105 continuous line,

F̂B
3 = 105 dashed line, F̂B
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Figure 10. The behaviour of ρ̂n =
ρ(x1, x2)/ρ(0.5, 0.5) as a function

of x̂2 (ϑ̂1 = 1.2, β = 106) for

different values of F̂B
3 : F̂B

3 = −105

continuous line, F̂B
3 = 105 dashed

line, F̂B
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The transversal behavior of α̂ and ρ̂ along the x̂2-axis (when x̂1 = 0.5) is illustrated in Figures
9 and 10. To better compare the different solutions of ρ̂ we have plotted the variable normalized
with respect to the central value. Figure 11 presents a comparison of the transversal profile of
ϑ̂ for different values of β, that is to say for different mean free paths (i.e. different metals).

For Figure 12 we introduce the quantity ϑn(x̂1, x̂2) = ϑ̂(x̂1, x̂2)/ϑ̂(0.5, 0.5) in order to compare

the transversal profile for different values of ∆ϑ̂. From the previous analysis it is natural to
conclude that the Righi-Leduc effect is enhanced for processes further from equilibrium: if the
magnetic field, the difference between the temperature at the boundaries or the mean free path
increases, the same happens also to the transversal temperature gradient.

These results confirm the idea that the choice of the boundary conditions in a heat transfer
problem plays a crucial role to describe different phenomena related to metal electrons.
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Figure 11. The profile of ϑ̂ as
a function of x̂2 when x̂1 = 0.5
(ϑ̂1 = 1.2, F̂B

3 = −105) for different
values of β: β = 106 continuous
line, β = 2 × 106 dashed line, β =
5 × 106 dotted-dashed purple line,
β = 107 dotted green line.
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Figure 12. The profile of ϑ̂n =
θ(x1, x2)/θ(0.5, 0.5) as a function
of x̂2 when x̂1 = 0.5 (β = 106,

F̂B
3 = −105) for different values

of ∆ϑ̂: ∆ϑ̂ = 0.2 continuous line,
∆ϑ̂ = 0.1 dashed line, ∆ϑ̂ = 0.05
dotted green line.

4. Conclusions

This paper aims to a preliminary study of 2D heat transfer problem for metal electrons
confined in a very thin plate. The role of the magnetic field is also investigated. Although
the oversemplification of the equation system (few moments and linearization), it is possible to
describe qualitatively well the main features of the phenomena and in particular to ”capture” the
Righi-Leduc effect, obtaining results also for the electron density behavior. To our knowledge,
these cases are described here through a 2D integration for the first time in the literature. The
linearized model allows a semi-analytical approach to the solution and constitute the first step
to a more general treatment of the problem, that is already in progress.
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